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Abstract We present an idealised process-based model to
study the possibly resonant response of closed basins sub-
ject to periodic wind forcing. Two solution methods are
adopted: a collocation technique (valid for arbitrary rota-
tion) and an analytical expansion (assuming weak rotation).
The spectral response, as obtained from our model, dis-
plays resonance peaks, which we explain by linking them
to the spatial pattern of the wind forcing, the along-wind
and cross-wind basin dimensions as well as the influence
of rotation. Increasing bottom friction lowers the peaks.
Finally, we illustrate how the spectral response is reflected
in the time-dependent set-up due to a single wind event.

Keywords Wind-driven flow · Coastal basins ·
Resonance · Idealised process-based modelling · Coriolis
effects · Spectral response

1 Introduction

Wind blowing over coastal basins often induces high water
levels that may threaten coastal safety (Pugh 1987). An
overall practical goal is to be able to predict water levels
for any type of wind event at any location. These water lev-
els are generally sensitive to basin geometry and the type of
wind forcing (Pugh 1987). In extreme cases, a phenomenon
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known as resonance may occur. Examples of unusual flood-
ing events that have been linked to such resonant conditions
are typhoon Winnie at the Korean coast of the Yellow Sea
(Moon et al. 2003) and storm Xynthia in the Bay of Bis-
cay (Bertin et al. 2012). However, it is difficult to identify
the physics from these complex site-specific events. Achiev-
ing the practical goal mentioned above requires a more
generic insight in the physical processes underlying this
wind-driven resonance phenomenon.

For the equilibrium response to steady wind, it is the rel-
ative importance of rotation and friction that determines the
way in which the wind stress is communicated through the
water column (e.g. Ekman 1905; Csanady 1982). This bal-
ance is expressed in the Ekman number δE = h−1√2K/f

with water depth h, vertical eddy viscosity K , and Cori-
olis parameter f . Focusing on the circulation in closed
basins, in shallow/highly turbulent basins (Mathieu et al.
2002; Winant 2004) (small δE), cross-wind flows are weak,
whereas they are strong in deep/weakly turbulent basins
(large δE). The general case requires a three-dimensional
flow model.

Other studies focused on the time-dependency of the
dynamics. Two approaches exist. The first is to study the
transient evolution to equilibrium of a quiescent basin to a
suddenly imposed spatially uniform wind (Csanady 1968;
Birchfield 1969; Mohammed-Zaki 1980). The second is to
study the response to a single wind event, characterised by
not only a spin-up but also a spin-down stage. Such an
event can be seen as the superposition of periodic wind forc-
ings at various frequencies ω (Craig 1989). Assuming linear
dynamics, also the response will be the superposition of the
reponses at these individual frequencies. Hence, the basin’s
response to a single wind event lies in its spectral response.
For example, from his idealized model for elongated basins
(B � L) subject to periodic and spatially uniform wind,
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Ponte (2010) identified resonance peaks associated with
along-basin standing waves. The oscillations associated
with these peaks (eigenmodes) were investigated more gen-
erally by Rao (1966). His numerical study particularly
demonstrated that the resonant frequencies strongly depend
on B and L.

Other studies account for spatial variations in the wind
field, which have been observed, e.g. in the Gulf of Califor-
nia (Ponte et al. 2012) and are known to affect the response
(Pugh 1987). This was also found in theoretical studies,
e.g. regarding the equilibrium response to steady wind in
a shallow circular basin (Birchfield 1967) and the transient
response to a suddenly imposed wind stress in deep circular
basins (Mohammed-Zaki 1980).

From the above, we identify the following knowledge
gap. There is no study systematically investigating the res-
onance properties of basins of arbitrary geometry, subject
to arbitrary wind fields. The goal of the present study is
to systematically investigate the resonance properties of
wind-driven flow in closed rotating basins. Specifically, our
research questions are as follows. How do the resonance
properties depend on the following aspects: (1) basin dimen-
sions, (2) the spatial structure of the wind forcing and (3)
bottom friction?

As a first step to answering these question, we present a
three-dimensional idealized process-based model of wind-
driven flow in closed rectangular rotating basins of uniform
depth. The vertical profile of the flow field is resolved fully
analytically, and expressed in the free surface elevation. In
turn, the free surface elevation pattern follows from solv-
ing an elliptic problem. To solve it, two methods are used:
(i) a so-called collocation method, valid for arbitrary val-
ues of the dimensionless Coriolis parameter f/ω, and (ii)
an analytical approximation valid for small values of f/ω to
obtain physical insight in the influence of rotation. Spatial
variations in the wind are accounted for in a schematized
way, i.e. by allowing linear variation of wind stress ampli-
tude and phase in the along-wind (nonzero divergence) and
cross-wind direction (nonzero curl).

This paper is organised as follows. In Section 2, we
present the model. Next, Section 3 contains the solution
method, and in Section 4, we present the model results.
Finally, Sections 5 and 6 present the discussion and conclu-
sions, respectively.

2 Model formulation

Consider a rectangular basin of length L, width B and uni-
form depth h on the f plane (see Fig. 1). Let x and y be the
along-basin and cross-basin coordinates, such that the basin
boundaries are located at x = 0, L and y = 0, B . The
vertical coordinate z points upward, with z = η denot-
ing the free surface elevation with respect to the undisturbed
water level z = 0 and the bed level at z = − h. Let
u = (u, v, w) represent the flow velocity vector, with com-
ponents u, v and w in the x, y and z-direction, respectively.
Assuming that the vertical displacement of the free sur-
face is small compared to the water depth, conservation of
momentum and mass is expressed by the three-dimensional
linearised shallow water equations according to

∂u

∂t
− f v = −g

∂η

∂x
+ ∂

∂z

[
K

∂u

∂z

]
, (1)

∂v

∂t
+ f u = −g

∂η

∂y
+ ∂

∂z

[
K

∂v

∂z

]
, (2)

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0. (3)

Here, f = 2� sin ϑ is the Coriolis parameter (with
� = 7.292 × 10−5 rad s−1 the angular frequency of
the Earth’s rotation and ϑ the latitude), g = 9.81 m s−2

the gravitational acceleration and K the vertical eddy vis-
cosity, assumed constant. Horizontal mixing of momentum
is neglected.

Regarding boundary conditions, we impose a wind stress
at the free surface and a partial-slip condition at the bottom.
Along with the kinematic boundary conditions, this reads in

y

x

L=x0=x
y=0

y=B

(a) top view

z

x ↓
z=η(x,y,t)

u(x,y,z,t)

L=x0=x
z=−h

z=0

(b) side view (along−basin)

Fig. 1 Definition sketch of the model geometry, showing a rectan-
gular basin of uniform depth: a top view, b side view in along-basin
direction displaying the vertical profile of one component of the three-
dimensional flow field. The black dot in the left-hand image indicates

the location used to evaluate the solution in Section 4. The dash-dotted
lines denote the along-basin and cross-basin centrelines, used in the
symmetry arguments in Section 5
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linearised form:

w = ∂η

∂t
, K
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∂z
,
∂v

∂z

)
= (τ

(x)
w , τ

(y)
w )

ρ
at z = 0, (4)

w = 0, K

(
∂u

∂z
,
∂v

∂z

)
= s(u, v) at z = −h. (5)

The linearisation procedure causes the free surface con-
dition to be imposed at z = 0 instead of at z = η. In Eq. 5,
we have introduced the resistance parameter s, its value usu-
ally obtained from the analysis of field data. Two limiting
cases are of interest. For large s, the bottom boundary condi-
tion effectively means no-slip, as used by, e.g. Ponte (2012).
On the other hand, s = 0 corresponds to free-slip for which
the flow becomes z-independent.

Furthermore, (τ
(x)
w , τ

(y)
w ) is the wind stress vector. The

wind is assumed time-periodic with angular frequency ω,
aligned with the x-direction. In addition to a spatially uni-
form contribution (Fig. 2a), we allow the wind to vary
linearly in both the along-wind and the cross-wind direc-
tion. Along-wind variations lead to a nonzero divergence of
the wind field, cross-wind variations to a nonzero curl (see
Figs. 2b, c).

This means

(τ
(x)
w , τ

(y)
w )

ρ
= �

{
(T (x), T (y)) exp(−iωt)

}
, (6)

with

T (x) = T̂

(
1 + a

[
2x

L
− 1

]
+ b

[
2y

B
− 1

])
, T (y) = 0.

(7)

The parameter T̂ denotes the magnitude of the forcing
(wind stress divided by density) at the basin’s centre. The
complex coefficients a and b quantify the along-wind and
cross-wind variation from this basin-averaged value. Impor-
tantly, the assumption of wind in x-direction only is not
restrictive. The solution to a periodic wind in an arbitrary
direction is the superposition of the separate solutions for
wind in x- and y-direction only. The latter solution can be
obtained by rotating the entire system 90 ◦ in the clockwise

direction (effectively interchanging L and B , wind now par-
allel to x-axis) and finally rotating the solution 90 ◦ in the
counterclockwise direction.

Finally, at the horizontal boundaries of the rectangular
basin, we require the normal transports to vanish, i.e.

〈u〉 = 0 at x = 0, L and 〈v〉 = 0 at y = 0, B.

(8)

where angle brackets denote vertical integration from bot-
tom to surface, i.e. 〈·〉 = ∫ 0

−h ·dz (with the upper boundary
z = 0 arising from the linearisation).

3 Solution method

3.1 Differential problem for surface elevation amplitude

First we write the solution in a time-periodic fashion accord-
ing to

η = � {N(x, y) exp(−iωt)} , (9)

u = � {U(x, y, z) exp(−iωt)} , (10)

with complex amplitudes N and U . Similar expressions
hold for v and w, with complex amplitudes V and W .

Next, we express the horizontal flow solution U and V

in terms of surface slopes ∇N and wind stress. This is done
using the so-called rotating flow components, for which we
derive expressions; see Appendix A.1. Substituting these
expressions into the continuity equation and integrating
from bottom to surface gives the following elliptic equation
for N (see Appendix A.2):

∂2N

∂x2
+ ∂2N

∂y2
+ k2N = −

[
∂ 〈R1〉

∂x
+ ∂ 〈R2〉

∂y

]
, (11)

in which k is a wave number satisfying

k2 = −iω

〈C1〉 , (12)

with the coefficient 〈C1〉 as specified in Appendix A.2.
The forcing term on the right-hand side of Eq. 11 includes
contributions arising from the divergence and curl of the

Fig. 2 Top view of the three
contributions to the spatial wind
pattern in Eq. 7: a spatially
uniform part, b divergent part
showing linear variation in the
along-wind direction, c curl part
showing linear variation in the
cross-wind direction. These
images are snapshots showing
wind directions at a certain time:
half a period later these
directions are reversed

(a) spatially uniform part (b) divergent part (c) curl part
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(a) Nunif and Ncurl using along−basin modes
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Fig. 3 Sketch of the solution method outlined in Section 3.2. a To cal-
culate Nunif and Ncurl, a superposition of along-basin channel modes
(white arrows) and a suitable particular solution (double arrow) is
forced to satisfy 〈U〉 = 0 at a set of collocation points at x = 0, L

(white circles). b Alternatively, to obtain Ndiv, a superposition of

cross-basin channel modes and a particular solution is forced to satisfy
〈V 〉 = 0 at a set of collocation points at y = 0, B. By symme-
try, the latter orientation also works for Nunif, which is done in the
convergence test (Appendix B.2)

wind stress field (see Appendix A.1); it is zero for spa-
tially uniform wind. Moreover, k is a wave number, and the
coefficient 〈C1〉 in Eq. 12 is as specified in Appendix A.2.

The boundary conditions in Eq. 8 imply

∂N

∂x
+ γ

∂N

∂y
= − 〈R1〉 at x = 0, L, (13)

−γ
∂N

∂x
+ ∂N

∂y
= − 〈R2〉 at y = 0, B, (14)

with coefficient γ = 〈C2〉 / 〈C1〉 as well as forcing
terms 〈R1〉 and 〈R2〉 associated with the wind stress at the
cross-basin and along-basin boundaries, respectively; see
Appendix A.2. Finally, the vertical flow amplitude W at any
depth z can be expressed in terms of the free surface eleva-
tion N and the wind forcing. This follows from integration
of the continuity equation over z; see Appendix A.3.

Finally, for ω = 0, the wave number in Eq. 11 reduces
to k2 = 0, and as an additional condition the total water
volume in the basin must be prescribed.

3.2 Collocation method

The solution, for arbitrary values of the dimensionless
rotation parameter f/ω, will be written as

N = Nunif + aNdiv + bNcurl, (15)

with three contributions associated with the spatially uni-
form part of the wind, the divergent part of the wind
(a 	= 0) and the curl part of the wind (b 	= 0).

The first contribution Nunif takes advantage of the fact
that a function φunif(y) exists satisfying both the differential
Eq. 11 and the along-basin boundary conditions in Eq. 14,
only regarding the forcing terms arising from the spatially

uniform wind. See Appendix B.1 for an expression for φunif.
We thus write

Nunif = φunif(y) +
M∑

m=0

c⊕
mN⊕

m (x, y) +
M∑

m=0

c�
mN�

m (x, y),

(16)

with N⊕
m (x, y) and N�

m (x, y) representing two families
of so-called along-basin eigenmodes, consisting of Kelvin
and Poincaré modes propagating or exponentially decay-
ing in the positive or negative x-direction, respectively (see
Appendix B.3 ). In Eq. 16, M is the truncation number. The
coefficients c⊕

m and c�
m follow from applying a collocation

technique. Herein, we require the boundary condition (13)
to be satisfied at two sets of M + 1 collocation points, one
at x = 0 and the other at x = L (see Fig. 3)1. Note that
this boundary condition includes a contribution due to φunif.

The second contribution Ndiv is found analogously, but
now using a solution φdiv(x) satisfying both the differential
equation and the cross-basin boundary conditions, regarding
the forcing terms proportional to a (see Appendix B.1). We
thus write

Ndiv = φdiv(x)+
M̃∑

m=0

a⊕
mÑ⊕

m (x, y)+
M̃∑

m=0

a�
mÑ�

m (x, y), (17)

Also, this solution involves two families of cross-basin
eigenmodes, but now propagating or exponentially decay-
ing in the positive or negative y-direction, respectively. The
2(M̃ + 1) collocation points are now located at y = 0 and

1This approach of finding solutions involving multiple sets of colloca-
tion points, has been adopted earlier in a tidal flow context (Roos and
Schuttelaars 2011; Roos et al. 2011).
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y = B . Please note that the value of M̃ may differ from
the value of M used above.

Finally, the third contribution reads

Ncurl = φcurl(y) +
M∑

m=0

b⊕
mN⊕

m (x, y) +
M∑

m=0

b�
mN�

m (x, y),

(18)

again involving along-basin eigenmodes and collocation
points identical to those used in obtaining Nunif (and involv-
ing φcurl, as given in Appendix B.1).

By symmetry, the contribution Nunif due to the spatially
uniform wind can just as well be obtained with an alterna-
tive form of Eq. 16, involving cross-basin eigenmodes and
collocation points at y = 0 and y = B . This requires an
alternative particular solution φ̃unif(x) instead of φunif(y).
This symmetry property provides us with an opportunity to
perform a convergence test; see Appendix B.2 . This possi-
bility does not exist for the other two contributions Ndiv and
Ncurl.

3.3 Analytical solution for small f/ω and free slip

In the case of weak Coriolis effects, we may obtain addi-
tional insight from expanding the solution in powers of
ε = f/ω. For convenience we will do this for the case
of free slip (s = 0), which makes the flow pattern
z-independent. Let us write the complex amplitudes as

N = N0 + εN1 + ε2N2 + . . . , (19)

U = U0 + εU1 + ε2U2 + . . . , (20)

and the same for V , where U and V are the flow velocities.
At lowest order, i.e. at O(ε0), Coriolis effects is absent.

For the uniform and divergent wind field, we then obtain

a purely along-basin oscillation. Alternatively, due to its
cross-basin dependency, the solution due to the curl part of
the wind also displays cross-basin oscillations. Adopting a
notation that is convenient to present also the higher-order
solutions, the lowest-order solution reads

N0

N̂
= F −

k0
(x) + a

[
2

k0L
− F +

k0
(x)

]

+b
∑

m odd

cmF −
α̃m

(x) cos βmy, (21)

U0

Û
= iG−

k0
(x) + ia

[
2x

L
− G+

k0
(x)

]

+ib
∑

m odd

cm

α̃m

k0
G−

α̃m
(x) cos βmy, (22)

V0

Û
= ib

∑
m odd

cm
βm

k0
F −

α̃m
(x) sin βmy. (23)

Here, we have introduced reference values of the eleva-
tion and velocity amplitudes given by N̂ = T̂ /(ghk0)

(with shallow water wave number k0 = ω/
√

gh) and
Û = T̂ /(ωh), respectively. Next, the curl-part has a
cross-basin structure containing a cross-basin wave number
βm = mπ/B and coefficients cm = − 8k0/[α̃m(mπ)2],
only required for odd values of m. Moreover, we used the
dimensionless functions F ±

k0
(x) = sin k0x ± ξ±

k0L cos k0x

and G±
k0

(x) = 1 − cos k0x ± ξ±
k0L sin k0x involving

the coefficient ξ±
k0L = (1 ± cos k0L)/ sin k0L. Simi-

larly, we introduce along-basin wave numbers α̃m satisfying
α̃2

m + β2
m = k2

0 as well as functions F ±
α̃m

(x) and G±
α̃m

(x)

involving a similar coefficient ξα̃mL.
The solutions at first order, i.e. at O(ε1) express

how Coriolis effects modify the above oscillations.
Mathematically, the Coriolis acceleration of the lowest

Table 1 Overview of model parameters and their reference values

Description Symbol Value Unit

Basin length L 200 km

Basin width B 100 km

Basin depth h 10 m

Latitude∗ ϑ 40 ◦N

Coriolis parameter∗ f 9.37 × 10−5 s−1

Vertical eddy viscosity K 0.025 m2 s−1

Resistance parameter† s 10−4 m s−1

Resistance parameter‡ s 0 m s−1

Along-basin truncation number§ M 32 -

Cross-basin truncation number§ M̃ 64 -

∗
Default value (we assume f � ω in the expansion for weak rotation and free slip, Section 3.3)

†Including bottom friction
‡Zero resistance parameter to have a 2DH solution without friction (free slip, Section 3.3)
§Chosen such that along-basin and cross-basin collocation spacings are identical



330 Ocean Dynamics (2015) 65:325–339

order flow enters as the only forcing term at first order (the
direct wind forcing being absent here). As a result, the solu-
tions for a uniform and divergent wind field now experience
a forcing in the cross-basin direction. Alternatively, the curl
part is further modified in along-basin and cross-basin direc-
tions. Expressions for the first-order solutions are given in
Appendix C.

4 Results

4.1 Collocation method

To present the results, we consider a reference basin with
characteristics as shown in Table 1. This corresponds to
a basin with dimensions roughly representing those of the
Southern Bight of the North Sea. To investigate the role of
bottom friction, we consider a frictional case with the resis-
tance parameter equal to s = 10−4 m s−1 as well as a
frictionless case with s = 0.

We will first present three examples (Fig. 4). The exam-
ples all deal with the reference basin, but differ with respect
to the applied forcing. We have intentionally chosen our
forcing frequencies such that they coincide with peaks in the
spectral response, to be shown in Fig. 5. The first example is
forced by a spatially uniform wind field with an angular fre-
quency given by ω1 = 1.52 × 10−4 rad s−1 = 0.49ωref

with reference frequency

ωref = √
gh

2π

L
. (24)

The reference frequency is the frequency for which the

frictionless shallow water wave length λ = 2π
√

gh
ω

equals
the basin length. The second example is forced by a spatially
uniform wind field, as well, but now of angular frequency
ω2 = 2.95 × 10−4 rad s−1 = 0.95ωref. The same
frequency is applied in the third example, but now using
a divergent wind field. Since the solution is time-periodic,

the elevation field can be visualised as an amphidromic sys-
tem, displaying amplitudes and co-phase lines. As shown in
Fig. 4a, the first examples display a rotating wave with one
amphidromic point at the basin centre, and relatively high
amplitudes near the coast. The other examples, shown in
Figs. 4b,c, display qualitatively different patterns and much
lower amplitudes. These examples already illustrate that
the response depends on both types of forcing and forcing
frequency.

To further investigate the dependency of the solution on
the forcing frequency for the various types of wind forcing,
we will focus on the location midway one of the cross-
basin boundaries; see the black dot in Fig. 1a. The elevation
amplitude at this location, scaled against the reference
elevation amplitude N̂ according to

A = |N |
N̂

at (x, y) = (L,
1

2
B) with N̂ = T̂

ghk0
, (25)

will be used to evaluate the solution. Figure 5 shows the
value of A as a function of the dimensionless forcing fre-
quency ω/ωref. This is done for each of the three types of
wind forcing, in each case distinguishing a case without
(black line) and with bottom friction (thick pink line). First
of all, the three examples presented before appear here as
part of the spectral response, the first one clearly having the
highest value. More generally, the spectral response shows
a complex pattern of peaks at certain frequencies and lower
responses in between. Comparison between panels a, b, and
c of Fig. 5 shows that this pattern strongly depends on the
type of wind forcing, e.g. at ω ≈ 1

2L/λ showing a peak
for the spatially uniform wind, but not for the other types of
forcing.

Increasing the resistance parameter (see Table 1) gener-
ally lowers the peaks, in certain cases causing it more or
less to disappear. As a second-order effect, actually not vis-
ible in Fig. 5, the peaks shift to a slightly lower frequency.
Further simulations, not shown here, suggest that the spec-
tral response of the surface elevation hardly depends on the
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Fig. 4 Amphidromic charts for three examples of basin responses. a Uniform wind with ω = ω1. b Uniform wind with ω = ω2. c Divergent
wind with ω = ω2. Colours indicate elevation amplitude; pink lines are the co-phase lines. Parameter values as in Table 1 (including bottom
friction)
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Fig. 5 Scaled elevation
amplitude A at evaluation point
(black dot in Fig. 1a), as a
function of the dimensionless
forcing frequency ω/ωref for
three different types of wind
forcing: a spatially uniform part,
b divergent part and c curl part.
Parameter values as in Table 1,
with black and pink curves
pertaining to the cases without
and with bottom friction,
respectively. As indicated, the
three pink dots refer to the cases
displayed in Fig. 4. Please note
that all peaks of the black curve
should reach to infinity, but due
to the plotting resolution for ω

this is not visible for all peaks
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value of the vertical eddy viscosity K . However, the vertical
structure of the flow velocity does depend on K .

The influence of basin width on the spectral response
is shown in Fig. 6, for each of the three types of wind
forcing. We kept the basin length to its default value, and
varied basin width from B = 25 to 400 km, thus covering
a width-over-length range from 0.1 to 3.5. For the solutions
with collocation points along the cross-basin boundaries, the

number of collocation points was adjusted to keep a colloca-
tion spacing to a constant value of about 3 km. The colour
plots show that for elongated basins, i.e. for B/L � 1,
the spectral response is nearly B/L-independent for the fre-
quency range plotted. In Fig. 6a, we particularly reproduce
the peaks mentioned by Ponte (2010); and we now show
that similar behaviour is found for the other spatial wind
patterns. For non-elongated basins, i.e. for B/L = O(1)

Fig. 6 Scaled elevation
amplitude A at evaluation point
(black dot in Fig. 1a), as a
function of dimensionless
forcing frequency ω/ωref and
dimensionless basin width B/L,
for three different types of wind
forcing: a spatially uniform part,
b divergent part and c curl part.
This figure has been obtained by
varying ω and B, while fixing
the other parameters to the
values listed in Table 1
(including bottom friction)
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Fig. 7 Scaled elevation amplitude A at evaluation point (black dot
in Fig. 1a), as a function of the dimensionless forcing frequency L/λ

according to the expansion in powers of ε = f/ω: a lowest order
and b first order. The curves pertain to the solution due to the spatially

uniform part (black) and the divergent part (red) of the wind field.
Bracketed numbers (m, n) indicate the eigenmode with along-basin
mode number m and cross-basin mode number n; see text. Parameter
values as in Table 1 (free slip case and small f )

and larger, a more complicated pattern is obtained show-
ing a strong width-dependence to be further interpreted in
Section 5.2. The reference case for which B/L = 1

2 is
denoted by a dashed white line.

4.2 Analytical solution for small f/ω and free slip

In addition to the results from the collocation method, we
now turn to the analytical solution in powers of f/ω. The
spectral response at various orders of ε = f/ω is shown
in Fig. 7 (for spatially uniform and divergent wind) and
Fig. 8 (for wind with nonzero curl), again as a function of
the scaled frequency L/λ. Analogous to Rao (1966), the
resonance peaks have been labelled by bracketed numbers
(m, n), with along-basin mode number m and cross-basin
mode number n. As such, they correspond to an eigen-
mode with a specific spatial structure as presented by Rao
(1966). For example, the mode associated with the (1, 0)-
peak at L/λ = 1

2 in Fig. 7a is actually the frictionless
counterpart of the first example (Fig. 4a), in the limit of no

rotation. Likewise, the mode associated with the (2, 0)-peak
at L/λ = 1 in Fig. 7a is the counterpart of the third exam-
ple (Fig. 4c). Peaks are labelled only if they are new at a
certain order in ε, not if they are already present at a lower
order for the same type of forcing. As noted by Rao (1966),
all eigenmodes are either symmetric or antisymmetric about
the center point of the basin.

5 Discussion

5.1 Interpretation of the resonances

To interpret the complex patterns of peaks in the spec-
tral response presented in Section 4.1, we will examine the
physics behind the peaks appearing in the analytical solution
for small f/ω and free slip presented in Section 4.2. To this
end, we must turn to the concept of resonance. Resonance
implies that, when starting from rest, the forcing contin-
uously feeds energy into the system. This means that the

Fig. 8 Same as Fig. 7, but now
for the solution due to the curl
part of the wind field (blue),
which is available at a the
lowest order and b the first order
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net power supplied by the wind forcing, i.e. integrated over
the basin and averaged over a forcing period, is positive.
In our context with along-basin wind only and neglecting
dissipation, this resonance condition can be expressed as

Pinput = ω

2π

∫ 2π/ω

0

[
ρ

∫ B

0

∫ L

0
u τw dx dy

]
dt > 0. (26)

Whether a certain mode can be excited depends on sym-
metry properties associated with the spatial structure of
the wind field in relation to the spatial structure of the
along-basin flow field.

Let us now focus on the lowest-order solution for spa-
tially uniform and divergent wind (Fig. 7a), i.e. without
rotation. The peaks occurring at L/λ = 1

2 + p for
p = 0, 1, 2, ..., associated with the odd modes (2p + 1, 0)

are the odd seiches of a closed basin that can be excited by
a spatially uniform wind (Csanady 1982; Ponte 2010). In
addition to this well-known result, the peaks at L/λ = p

for p = 1, 2, · · · demonstrate that a divergent wind
field may excite the even modes (2p, 0). Symmetry argu-
ments help to explain this from Eq. 26. Odd modes can be
excited by a spatially uniform wind field, because both wind
and along-basin flow are symmetric about the cross-basin
centerline, thus giving a nonzero result in Eq. 26. Analo-
gously, even modes can be excited by a divergent wind field,
because both wind and along-basin flow are then antisym-
metric about the cross-basin centerline. This is illustrated in
Fig. 9a,b.

Next, let us discuss the lowest order solution due to
the curl part of the wind field, also without rotation. As

shown by the peaks in Fig. 8a, modes characterised by odd
along-basin and odd cross-basin mode numbers can be res-
onant under this type of forcing. The following symmetry
arguments show why this is the case. Modes with an even
along-basin mode number cannot be resonant, because the
along-basin flow on the left-hand side of the cross-basin
centerline is then always opposite to that on the right-hand
side. However, the wind forcing is symmetric about this
cross-basin centerline. The power input by the wind in these
two parts of the basin will thus always cancel, which causes
the net power by the wind forcing to be zero. A similar argu-
ment holds for the modes with an even cross-basin mode
number, but now with respect to the along-basin centerline.
These modes cannot be resonant, because the along-basin
flow is then symmetric about this line and the wind forc-
ing is antisymmetric about this line. Hence, the power input
by the wind in these situations. Such symmetry arguments
do not apply to the modes characterised by odd along-basin
and odd cross-basin mode numbers. The above reasoning is
illustrated in Fig. 9c.

The first-order solutions for the uniform and divergent
wind case show new resonances; see the peaks in Fig. 7b.
To understand these peaks, it is crucial to realise that the
first-order problem is actually similar to the lowest-order
problem, but instead of by the wind, it is forced by the Cori-
olis acceleration of the lowest-order along-basin flow. This
forcing acts in the cross-basin direction, it is uniform in
this cross-basin direction and it has an along-basin struc-
ture that depends on the type of wind forcing. For spatially
uniform wind, the lowest order along-basin flow in Eq. 22

(a) spatially uniform part mode (1,0)

resonant

mode (2,0) mode (1,1)

(b) divergent part mode (1,0) mode (2,0)

resonant

mode (1,1)

(c) curl part mode (1,0) mode (2,0) mode (1,1)

resonant

Fig. 9 Sketch of the symmetry argument showing the spatial struc-
ture of the forcing (left-hand panel) and the spatial structure of the
along-basin flow field of three modes: (1, 0), (2, 0), and (1, 1). Grey
shades indicate positive values, white means negative. We consider

three types of wind forcing: a spatially uniform part, b divergent part
and c curl part. Whether a certain mode is resonant under these forcing
conditions, is denoted in the figure
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and hence, the first-order forcing is symmetric about the
cross-basin centerline. Alternatively, for divergent wind, the
first-order forcing is antisymmetric about the cross-basin
centerline. Symmetry arguments similar to those presented
above for the lowest-order solution due to the curl part now
explain why the uniform wind (divergent wind) gives rise
to resonance at modes with an even (odd) along-basin mode
number, and in each case an odd cross-basin mode number.

Similar symmetry arguments explain the new peaks aris-
ing in the first-order response to the curl part of the wind
(Fig. 8b), but this is more complicated due to the spatial
structure of the forcing.

5.2 Influence of basin dimensions

The modes identified in the previous subsection allow us to
interpret the width-dependence of the (peaks in the) spectral
response presented in Fig. 6. As noted earlier, for elongated
basins, i.e. for B < L � 1, the response is indepen-
dent of B/L in the frequency range under consideration.
This is because the cross-basin dynamics are weak. For non-
elongated basins, i.e. for B/L = O(1) and larger, we see
that these purely along-basin modes (e.g. (1, 0) for the spa-
tially uniform wind) are modified by Coriolis effects into
a more rotary wave propagating around the basin, which
has a longer travel distance and thus a lower resonant fre-
quency. In addition to this, resonant peaks appear pertaining
to purely cross-basin modes (e.g. (0, 1)) as well as mixed
along-/cross-basin modes (e.g. (2, 1)). As can be expected,
the peak frequency modes decrease with increasing basin
width. In conclusion, we can say that for non-elongated
basins, cross-wind dynamics produces peaks at frequencies
significantly lower than those obtained by Ponte (2010).

5.3 Single wind event

We will now illustrate how the spectral response translates
into time-dependent elevation patterns for a single wind
event (Fig. 10). To this end, it is important to realise that
any wind event can be represented as the superposition of
periodic signals. This means that Eq. 6 must be extended
according to

(τ
(x)
w , τ

(y)
w )

ρ
= �

⎧⎨
⎩

P∑
p=0

(T (x)
p , T

(y)
p ) exp(−iωpt)

⎫⎬
⎭ , (27)

with frequencies ωp = p ωmin and corresponding wind

amplitudes T
(x)
p and T

(y)
p . As we must discretise the wind

spectrum, there is a minimum frequency ωmin and hence a
recurrence period Trecur = 2π/ωmin over which the event
repeats itself. To realistically describe a ‘single’ wind event,
this recurrence period must be sufficiently large such as
to avoid unwanted interference. In this example, we have
taken Trecur = 10 days. By linearity, the basin response
to the forcing in Eq. 27 will be the superposition of the
responses to the individual periodic forcings as calculated
by our model.

Now, let us consider two wind events I and II, that impose
a spatially uniform wind forcing of 3 N m−2 onto our
reference basin in the along-basin direction (parameter val-
ues in Table 1). According to standard empirical friction
laws (Wu 1982), this corresponds to a wind speed of about
30 m s−1 (at 10 m height). The two wind events differ in
their duration: wind event I lasts 10.3 h, wind event II lasts
6 h. Regarding spin-up and spin-down of the forcing, we
apply a smooth transition taking 1.2 h for both wind events
(see grey curves in Fig. 10b, d).
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Fig. 10 Response of surface elevation at evaluation point for two wind
events that differ in duration: 10.3 h for event I (top), 6 h for event II
(bottom). The plots on the left show the spectral representation of the
wind (grey) as well as the amplification (pink), and the actual response
(dashed). The plots on the right show the temporal representation of

both forcing (grey) and response (black). Note that the grey curve
represents the wind forcing as it is actually simulated using a super-
position of Fourier modes. Parameter values as in Table 1, spatially
uniform wind



Ocean Dynamics (2015) 65:325–339 335

The elevation at the evaluation point, as a function of
time, shows quite different responses for the two wind
events (see black curves in Fig. 10b, d). The strongest
sloshing is observed after wind event II, whereas wind
event I produces relatively little oscillations. This is as
expected from comparing the wind spectrum with the spec-
tral response of the basin (see Fig. 10a, c). It is the product
of these two quantities that gives the spectral response to
the wind event under consideration (blue curve). Indeed, the
resonant frequency L/λ = 0.49 is not contained in the
wind spectrum of event I, whereas it is present in event II.

6 Conclusions

We have developed an idealised process-based model to sys-
tematically investigate the resonance properties of closed
rectangular rotating basins of uniform depth, subject to
space- and time-dependent wind forcing. We focus on the
spectral response of the surface elevation at an evaluation
point midway one of the cross-basin boundaries.

Regarding the resonance peaks, we conclude that the
spatial structure of the wind forcing matters. For example,
without rotation, a spatially uniform wind produces the clas-
sical resonance peaks at L/λ = 1

2 , 3
2 , ..., whereas divergent

wind also gives peaks at L/λ = 1, 2, .... Including rotation
shifts these peaks.

Next, because the cross-wind basin dimension B is not
small, cross-wind dynamics produces peaks at frequencies
significantly lower than obtained by Ponte (2010). These
cross-wind dynamics can be triggered by several mecha-
nisms. Firstly, a wind forcing with nonzero curl produces
cross-wind variations in elevation and thus cross-basin flow
and oscillations that may be resonant. Secondly, the Coriolis
acceleration of the along-wind flow also produces cross-
basin oscillations. As discussed above, this along-wind
pattern depends on the spatial pattern of the wind forcing, so
these rotation-induced peaks will be different for spatially
uniform wind and divergent wind.

In each of the above cases, the main effect of increas-
ing friction is a lowering of the peaks. Finally, we have
illustrated how the spectral response analysed above man-
ifests itself in the response to a single wind event, and
particularly, how excitation of resonant frequencies pro-
duces sloshing in the basin. Extending this model approach
with respect to geometry (realistic topography and coast-
lines) and atmospheric forcing is essential before making a
detailed comparison with observations.
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Appendix

A Expressions for flow and problem for N

A.1 Vertical profiles from horizontal momentum equations

Here, we present the details of the vertical structure of the
flow First we define rotating flow components according to
q± = u ± iv with complex amplitudes Q±, such that
U = (Q+ + Q−)/2 and V = (Q+ − Q−)/(2i). From
Eqs.1–2, the differential equation for the complex amplitude
Q± is given by

d2Q±

dz2 − λ±2Q± = gL±N, (28)

with complex operatorsL± = ∂/∂x ± i∂/∂y. From Eqs.4–
5, the boundary conditions are given by

K
dQ±

dz
= T ± at z = 0, and K

dQ±

dz
= sQ± at z = −h,

(29)

with rotating wind forcing amplitudes T ± = T (x) ± iT (y)

(wind stress divided by density). The two forcing terms in
this nonhomogeneous differential problem imply that the
rotating flow solution contains two contributions, propor-
tional to the surface gradient and the wind stress, respec-
tively:

Q±(z) = Q±
η (z)L±N + Q±

w(z)T ±, (30)

The vertical structures read

Q±
η (z) = g

[
cosh λ+z − α±

c

]
α±

c Kλ±2
, (31)

Q±
w(z) = α±

c sinh λ±z + α±
s cosh λ±z

α±
c Kλ± , (32)

with λ±2 = −i(ω ∓ f )/K and α±
c = cosh λ±h +

s−1Kλ± sinh λ±h and α±
s = sinh λ±h+s−1Kλ± cosh λ±h.

The vertical integral is given by

〈
Q±〉 =

〈
Q±

η

〉
L±N + 〈

Q±
w

〉
T ±, (33)
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with

〈
Q±

η

〉
= g

[
sinh λ±h − α±

c λ±h
]

α±
c Kλ±3

, (34)

〈
Q±

w

〉 = α±
c

[
1 − cosh λ±h

] + α±
s sinh λ±h

α±
c Kλ±2

. (35)

The two cases ω = ± f require alternative expressions
for either Q+ or Q−. If ω = +f , we must replace the Q−
expressions in Eqs.31–33; if ω = −f we must replace the
Q+ expressions. They must be replaced with

Q±
η (z) = gh2

K

[
1

2

( z

h

)2 − 1

2
− K

sh

]
,

Q±
w(z) = h

K

[
1 +

( z

h

)
+ K

sh

]
, (36)

and

〈
Q±

η

〉
= −gh3

K

[
1

3
+ K

sh

]
,

〈
Q±

w

〉 = h2

K

[
1

2
+ K

sh

]
.

(37)

A.2 Elliptical problem for N

Depth-integration of the continuity Eq. 3, with the aid of
boundary conditions (4) gives, in terms of the complex
amplitudes of surface elevation and the rotating velocity
components.

−iωN + ∂

∂x

(〈
Q+〉 + 〈

Q−〉
2

)

︸ ︷︷ ︸
〈U 〉

+ ∂

∂y

(〈
Q+〉 − 〈

Q−〉
2i

)

︸ ︷︷ ︸
〈V 〉

= 0,

(38)

Substitution of Eq. 30 gives the elliptical equation for
N presented in Eq. 11 of the main text. The corresponding
coefficients are given by

C1 = 1

2

[
Q+

η + Q−
η

]
, C2 = 1

2i

[
Q+

η − Q−
η

]
, (39)

The boundary conditions presented in Eqs.13–14 of the
main text follow from depth-integration of the momen-
tum Eqs. 1–2. The coefficients in there are given by
γ = 〈C2〉 / 〈C1〉 and

R1 = 1

2 〈C1〉
[
Q+

wT + + Q−
wT −] ,

R2 = 1

2i 〈C1〉
[
Q+

wT + − Q−
wT −] . (40)

A.3 Vertical flow velocity

The vertical flow velocity amplitudes at any depth z are
given by

W(z) = − �C1�
(

∂2N

∂x2
+ ∂2N

∂y2

)
− 〈C1〉

(⌊
∂R1

∂x

⌋
+

⌊
∂R2

∂y

⌋)
,

(41)

where floor brackets indicate integration from bottom to z,
i.e. �·� = ∫ z

−h ·dz. This expression can be simplified fur-
ther by using the differential Eq. 11 for N to eliminate the
Laplacian of N .

B Details of the collocation method

B.1 Expressions for φunif, φdiv and φcurl

Our solution method uses functions that homogenize the dif-
ferential Eq. 11 and either the along-basin or cross-basin
boundary conditions in Eqs.13–14. For the three different
parts of the wind field, these functions are given by

φunif(y) = −
[〈
Q+

w

〉 − 〈
Q−

w

〉]
T̂

2i 〈C1〉 k

[
sin ky − χ−

k cos ky
]
, (42)

φdiv(x) =
[〈
Q+

w

〉 + 〈
Q−

w

〉]
T̂

4 〈C1〉 k

[
sin kx + ξ+

k cos kx − 2

kL

]
, (43)

φcurl(y) =
[〈
Q+

w

〉 − 〈
Q−

w

〉]
T̂

4i 〈C1〉 k

[
sin ky + χ+

k cos ky − 2

kB

]
, (44)

with k as defined in Eq. 11 and χ±
k = (1 ± cos kB)/ sin kB

and ξ±
k = (1 ± cos kL)/ sin kL.

B.2 Convergence test for spatially uniform wind

As already pointed out in Section 3, the case of spatially
uniform wind can be solved in two ways. The first is by
combining along-basin modes with collocation points at the
cross-basin boundaries (as in Fig. 3a and in the main text);
the second by combining cross-basin modes and collocation
points at the along-basin boundaries (Fig. 3b). The latter
choice requires an alternative particular solution; Eq. 42
should be replaced with

φ̃unif(x) = −
[〈
Q+

w

〉 + 〈
Q−

w

〉]
T̂

2 〈C1〉 k

[
sin kx − ξ−

k cos kx
]
. (45)

The symmetry property mentioned above allows us to
perform a convergence test by intercomparing the two solu-
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tions for different truncation numbers. Using superscripts to
denote the two ways of solution, we calculate the difference

εconv = 1

Mcolloc

∑
m

|Nunif(xm, ym)(1) − Nunif(xm, ym)(2)|,

(46)

averaging over the combined set of Mcolloc collocation
points (xm, ym) along the boundaries (see circles in Fig. 3a,
b). In doing so, we make sure that the collocation spacing
for both solutions is equal, i.e. B/M equals L/M̃ . The result
of doing this for different values of the truncation number
M is shown in Fig. 11. The figure displays second-order
convergence (Boyd 2000).

B.3 Channel modes: Kelvin and Poincaré waves

Here, we present expressions for the surface elevation
amplitudes of the along-basin and cross-basin channel
modes, used in Section 3.2.

First, along-basin channel modes are wave solutions in an
infinitely long channel aligned with the x-axis, and of width
B . This means that these modes satisfy the homogenised
elliptic (11) for N as well as the homogenised cross-basin
boundary conditions in Eq. 14, while having a harmonic
along-basin structure exp(iκmx) with complex wave num-
ber κm. We thus identify infinitely many modes, charac-
terised by

κ2
0 = k2

1 + γ 2
, κ2

m = k2 −
(mπ

B

)2
, (m = 1, 2, · · · ).

(47)

For each m, these quadratic relationships yield two wave
numbers. We thus distinguish two families of modes. The
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Fig. 11 Difference εconv between two possible solution techniques
available for the case with spatially uniform wind, as defined in Eq. 46.
M is the truncation number used for the solution with along-basin
modes. Parameter values as in Table 1

modes having a wave number with a positive imaginary part
�{κm} > 0 propagate and/or decay exponentially in the
positive x-direction are termed positive modes and denoted
with a superscript ⊕. The modes having a wave number with
a negative imaginary part �{κm} < 0 propagate and/or
decay exponentially in the negative x-direction are termed
negative modes and denoted with a superscript �.

Within each of these two families of modes, we identify a
Kelvin wave (corresponding to m = 0) and infinitely many
Poincaré waves (m = 1, 2, ...). The spatial structure of the
Kelvin mode is given by

N⊕
0 (x, y) = exp

( −y

Rdef

)
exp(iκ⊕

0 x), Rdef =
√

1 + γ 2

γ 2k2
,

(48)

where, due to vertical friction, the Rossby deformation
radius Rdef is now a complex quantity. The spatial structure
of the Poincaré modes is given by:

N⊕
m (x, y) =

[
cos

(mπy

B

)
− γ ikB

mπ
sin

(mπy

B

)]

exp(iκ⊕
mx), (m = 1, 2, · · · ). (49)

Expressions for the negative Kelvin and Poincaré modes
follow similarly.

Analogously, the cross-basin channel modes are wave
solutions in an infinitely long channel aligned with the y-
axis, and of width L. This means that these modes satisfy the
homogenised elliptic (11) for N as well as the homogenised
along-basin boundary conditions in Eq. 13, while having an
exponential cross-basin structure exp(iκ̃y) with wave num-
ber κ̃ . The two families of cross-basin channel modes follow
from the along-basin modes by replacing B with L and
considering a rotated coordinate system.

B.4 Equilibrium response to steady wind forcing (ω = 0)

Here, we will solve the equilibrium response to a steady
wind forcing (ω = 0). The free surface elevation amplitude
satisfies a Poission problem:

∂2N

∂x2
+ ∂2N

∂y2
= −

[
∂ 〈R1〉

∂x
+ ∂ 〈R2〉

∂y

]
, (50)

with boundary conditions as in Eqs. 13–14.
For the solution due to the spatially uniform part of the

wind field, the solution is a linear profile sloping in the
along-basin direction only:

Nunif = −�

(
x − L

2

)
, � =

〈
Q+

w + Q−
w

〉
〈
Q+

η + Q−
η

〉 T̂ . (51)

The solution due to the divergent part of the wind field is
solved by means of a collocation technique largely similar
to the one presented in Section 3.2. However, there are three
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notable differences: (i) the particular solution φdiv has a dif-
ferent form, (ii) the Kelvin modes must be replaced with a
linearly sloping function ψdiv and a constant function, (iii)
the Poincaré modes are as in Appendix B.3 but now with
k = 0 and (iv) the boundary condition at one of the collo-
cation points must be replaced by the overall statement that
water is conserved. We write

Ndiv = φdiv(x) + asl
0 ψdiv(x, y) + aconst

0 +
M̃∑

m=1
a⊕
mÑ⊕

m (x, y) +
M̃∑

m=1
a�
mÑ�

m (x, y), (52)

with φdiv(x) = − 1
2�(x − 1

2L)2, ψdiv(x, y) = γ x − y

and associated coefficients asl
0 and aconst

0 . We always use an
even number for M̃ , and we select the collocation point mid-
way one of the collocation boundaries for the conservation
condition. A second solution is then obtained by doing the
same, but now selecting the collocation point midway as the
other boundary. Averaging the two finally leads to a solution
that is symmetric with respect to the collocation method.

For the solution due to curl part of the wind field, a
similar approach is followed:

Ncurl = φcurl(y) + bsl
0 ψcurl(x, y) + bconst

0 +
M∑

m=1
b⊕
mN⊕

m (x, y) +
M∑

m=1
b�
mN�

m (x, y), (53)

with φcurl(x) = − 1
2�(y − 1

2B)2, ψcurl(x, y) = x + γy

and associated coefficients bsl
0 and bconst

0 .

C Details of the expansion in f/ω

At first order, i.e. at O(ε) with ε = f/ω, the elevation
amplitude and flow field are given by

N1

N̂
= i

∑
n even

dn cos(αnx)F−
β̃n

(y) + ia
∑
n odd

en cos(αnx)F−
β̃n

(y)

−ib

{
2

k0B
+
∑

m odd

∑
n even

(
jmnF

+
α̃n

(x) cos βny + kmn cos(αnx)F+
β̃n

(y)
)}

,

(54)

U1

Û
= −

∑
n even

dn

αn

k0
sin(αnx)F−

β̃n
(y) − a

∑
n odd

en

αn

k0
sin(αnx)F−

β̃n
(y)

+b
∑

m odd

( ∑
n even

jmn

α̃n

k0
Iα̃nαm

(x) cos βny + kmn

αn

k0
sin(αnx)F+

β̃n
(y)

)
,

(55)

V1

Û
= −

∑
n even

dn

β̃n

k0
cos(αnx)G−

β̃n
(y) − a

∑
n odd

en

β̃n

k0
cos(αnx)G−

β̃n
(y)

+b

{ ∑
m odd

∑
n even

(
jmn

βn

k0
F+

α̃n
(x) sin βny − kmn

β̃n

k0
cos(αnx)H+

β̃nβm
(y)

)}
,

(56)

respectively. Here, we have introduced wave numbers
αn = nπ/L and β̃n satisfying α2

n + β̃2
n = k2

0. Next, the

coefficients dn and en are given by

d0 = 2ξ−
k0L

k0L
− 1, dn = 2k0Lξ−

k0L

(β̃nL)2
, (57)

for n nonzero and even, as well as

en = 8 sin k0L

(αnL)2
+ 4k0Lξ+

k0L

(β̃nL)2
, (58)

for n odd. For m odd and n even, we have

jm0 = cm
βm

k0

2ξ−
α̃mL

mπ
,

jmn = cm

βm

α̃n

4ξ−
α̃mL

m

π(m2 − n2)
, (59)

km0 = cm
α̃m

k0

[
1 − 2ξ−

αnL

α̃mL

]
,

kmn = cm
α̃m

β̃n

4ξ−
α̃mL

α̃mL

(αnL)2 − (α̃mL)2
. (60)

As new functions, we have used H+
β̃nβm

(y) = 1 −
cos βmy − G+

β̃n
(y) and Iα̃nα̃m

(x) = G+
α̃n

(x) − 1 −
F −

α̃m
(x)/ξα̃mL.
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