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Abstract An idealized process-based model is devel-
oped to investigate tidal dynamics in the North Sea.
The model geometry consists of a sequence of different
rectangular compartments of uniform depth, thus, ac-
counting for width and depth variations in a stepwise
manner. This schematization allows for a quick and
transparent solution procedure. The solution, forced
by incoming Kelvin waves at the open boundaries and
satisfying the linear shallow water equations on the
f plane with bottom friction, is in each compartment
written as a superposition of eigenmodes, i.e. Kelvin
and Poincaré waves. A collocation method is employed
to satisfy boundary and matching conditions. First, the
general resonance properties of a strongly simplified
geometry with two compartments, representing the
Northern North Sea and Southern Bight, are studied.
Varying the forcing frequency while neglecting bot-
tom friction reveals Kelvin and Poincaré resonance.
These resonances continue to exist (but with lower
amplification and a modified spatial structure) when
adding the Dover Strait as a third compartment and
separating the solutions due to forcing from either
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the north or the south only. Including bottom friction
dampens the peaks. Next, comparison with tide ob-
servations along the North Sea coast shows remark-
able agreement for both semi-diurnal and diurnal tides.
This result is achieved with a more detailed geometry
consisting of 12 compartments fitted to the coastline
of the North Sea. Further simulations emphasize the
importance of Dover Strait and bottom friction. Finally,
it is found that a sea level rise of 1 m, uniformly applied
to the entire North Sea, amplifies the M2-elevation
amplitudes almost everywhere along the coast, with
an increase of up to 8 cm in Dover Strait. Bed level
changes of +1 m, uniformly applied to the Southern
Bight only, imply weaker changes, with changes in
coastal M2-elevation amplitudes below 5 cm.

Keywords Tides - North Sea - Resonance -
Sea level rise

1 Introduction

Understanding tidal dynamics in the North Sea is im-
portant for navigation, coastal safety and ecology. This
link is both direct, through fluctuating water levels and
oscillatory currents, and indirect, through the dynamics
of tide-induced bed forms (Dyer and Huntley 1999).
Of particular interest is the tide’s response to large-
scale changes due to human intervention (de Boer et al.
2011) and sea level rise.

Tide observations in the North Sea indicate a pre-
dominant semi-diurnal character (Otto et al. 1990;
Huthnance 1991). Semi-diurnal lunar (M2) elevation
amplitudes are of the order of I m. Diurnal components
are weaker, with coastal elevation amplitudes of K1
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Fig. 1 Bathymetric chart of
the North Sea, with depth
below MSL in m (data
source: Amante and Eakins
2009). White lines indicate the
idealized model geometry
consisting of 12 rectangular
compartments to be used in
this study (points A to F
introduced are for
convenience). Open circles
denote the coastal tide
stations involved in the
comparison between model
results and observations.
Small dots indicate other tide
stations not considered in this
study (British Admiralty
2009a, b)

and O1 of about 10 cm. Figure 1 shows the locations
of coastal tide stations where harmonic constants, i.e.
tidal range and phase of the four most important con-
stituents (M2, S2, K1 and O1) are available (Bristish
Admiralty2009a, b).

North Sea tides result primarily from co-oscillation
with the Atlantic (Defant 1961). Their complexity is
due to several factors (see Fig. 1):

— Significant variations in depth, ranging roughly
from 20-150 m from south to north, dissipation
through bottom friction being important in the shal-
lower parts. The Norwegian Trench in the north-
east has depths of up to 700 m.

— Significant basin width, relative to the Rossby de-
formation radius, emphasizing the importance of
rotation.

— Significant variations in basin width, ranging from
over 500 km in the north to about 200 km in the
Southern Bight (points BC D) and less than 40 km
in the Dover Strait (point C). In combination with
the preceding point, this explains the profound two-
dimensional spatial structure of the tide.
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— The presence of two open boundaries to the At-
lantic: east of Scotland and Dover Strait.!

Detailed numerical model studies have been car-
ried out to reproduce the tide observations mentioned
above (Sinha and Pingree 1997; Davies and Kwong
2000, see Fig. 2). Such numerical tide simulations are a
key factor in the water level forecasts for a storm surge
warning system; e.g. in the Dutch Continental Shelf
model (Gerritsen et al. 1995; Verlaan et al. 2005). Nu-
merical models are generally computationally expen-
sive and not aimed at obtaining insight in the physics,
which limits their suitability for a systematic study of
the resonance properties of the North Sea.

On the other hand, idealized process-based models
are specifically designed to obtain insight in tidal dy-
namics. Taylor’s (1922) classical solution to the prob-
lem of Kelvin wave reflection in a rectangular rotating
basin of uniform depth and width explains elevation

IThe tidal energy flux through the Skagerrak in the east is two
orders of magnitude smaller (Barthel et al. 2004).
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Fig. 2 Co-tidal charts of M2-tide (left) and K1-tide (right), with elevation amplitudes in cm (solid) and phases in degrees (dashed), as
obtained with a numerical model (Davies and Kwong 2000, reprinted with permission from the American Geophysical Union)

amphidromic points (no surface fluctuations) and cur-
rent amphidromic points (no velocities) occurring al-
ternately on the centerline of the basin. Incorporating
dissipation causes the amphidromes to shift in the cross-
basin direction (Rienecker and Teubner 1980; Rizal
2002; Roos and Schuttelaars 2009). To mimic Dover
Strait, Brown (1987, 1989) imposed an oscillating free
surface elevation at the head, which causes an along-
basin shift of the amphidromes. We note that also com-
plex numerical models have been run with simplified
geometries, to study the frictional and wind effects with
a three-dimensional model (Davies and Jones 1995,
1996), the influence of basin geometry on the current
amphidromic system (Xia et al. 1995) and sandbank
formation (Carbajal et al. 2005). Table 1 summarizes
the tidal basins around the world that have been studied
using (extensions of) Taylor’s (1922) idealized model.
Although the idealized studies mentioned above pro-
vide qualitative insight, the rather strong geometrical
schematizations preclude a more specific understand-
ing of the North Sea tides.

A third class of studies specifically focused on the
resonance properties of tidal basins, which is indica-
tive of their response to large-scale changes. A clas-
sical result for semi-enclosed bays co-oscillating with
a larger sea/ocean states that resonance occurs when

basin length equals one quarter of the shallow wa-
ter wavelength (or an odd multiple; see e.g. Defant
1961). This theory, however, ignores radiative damping
into the adjacent sea/ocean (Garrett 1975) and is only
valid for narrow rectangular bays of uniform depth and
width. Rotation complicates the resonance properties
of wider basins, which also allow for a cross-bay half-
wave? resonance (Huthnance 1980).3 This type of reso-
nance, associated with amplification of Poincaré modes,
is also possible in wide embayments of uniform width
with a shallow zone near the head (Webb 1976; Roos
and Schuttelaars 2011). Alternatively, the resonant
frequencies of various basins around the world have
been estimated by fitting analytical frequency-response
curves to tide observations (Garrett 1972; Godin 1993;
Sutherland et al. 2005; Arbic et al. 2007). The curves are
derived from e.g. the rectangular bay model mentioned
above (or a Helmholtz oscillator for smaller basins),

20r an integer multiple of this one half wave: one wave, three
halve waves, etc.

3Huthnance (1980) used the term ‘resonance’ only to denote
infinite amplification and uses ‘maximum response’ in the case
of a peak that is finite due to friction, radiation damping and
rotation. In the present study, we use the term ‘resonance’ to
denote any peak response.
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Table 1 Overview of studies extending Taylor’s (1922) approach and applying it to basins other than the North Sea

Reference Application Constituent(s) # Comp. Width Bottom
variations friction
Godin (1965) Labrador Sea/Davis Str./Baffin Bay M2 3 Yes No
Hendershott and Speranza (1971) Adriatic Sea, Gulf of California M2 12 No No#b
Webb (1976) Patagonian Shelf M2¢ 2 No Yes
Kowalik (1979) Arctic Sea M2 2d n/ad Yes
Huthnance (1980) Brazilian shelf M3 2¢ Yes® Yes
Kang (1984) Yellow Sea M2, K1 1f No No
Mosetti (1986) Northern Adriatic M2 1 No No
Yanagi (1987) Bungo and Kii Channel (Japan) M2 12 No No
Fang et al. (1991) Yellow Sea M2 1he No Yes
Rizal (2000) Malacca Strait M2 1 No Yes
Jung et al. (2005) Yellow Sea, East China Sea M2 38 No Yes
Roos and Schuttelaars (2011) Adr. Sea, Gulf of Cal., Persian Gulf M2, S2,K1, O1 2,3h No Yes

aSuperposition of two Kelvin waves without bottom friction

bPartial absorption at bay head, a region not explicitly resolved, explains the amplitude reduction and phase lag of the reflected Kelvin

wave

¢The system’s resonant period is estimated at 10.8 h (2.23 cpd), near the semi-diurnal band; forcing frequency further treated as a

complex quantity

dFrictionless Kelvin wave in channel, Sverdrup wave in circular basin’s interior; no systematic matching of these two solutions
¢Extending Garrett’s (1975) analysis to wide gulfs, explaining ocean-shelf resonance

fPart of bay head as open boundary

gSpecifying elevation amplitude at bay mouth (rather than sending in a Kelvin wave)

h Also allowing for transverse topographic steps

whereas the observations comprise amplitude gains and
phase shifts over the basin for various tidal constituents.
This method relies on the availability of observations at
different tidal frequencies, their proximity to resonance
and the validity of the model underlying the adopted
frequency-response curve.

The present study is aimed at understanding tidal
dynamics in the North Sea, particularly its resonance
properties and its response to large-scale changes. Mo-
tivated by the lack of geometrical detail in existing
idealized model studies and the limited suitability of
numerical models for this purpose, we present a new
idealized model (Fig. 1). Innovative aspects of our work
are the model geometry (many compartments, depth
and width variations, two open boundaries), the focus
on resonance properties, and the detailed comparison
with semi-diurnal and diurnal tide observations along
the North Sea coast. Our approach largely follows that
of Roos and Schuttelaars (2011) but involves the neces-
sary extensions to make it suitable for the North Sea.

This paper is organized as follows. The model set-
up and solution method are presented in Section 2. In
Section 3, we investigate the general resonance prop-
erties of a relatively shallow compartment connected
to a wider and deeper compartment and to a narrow
strait. A crucial next step is then to show that our model
is quantitatively capable of reproducing tidal dynamics
as observed in the North Sea (tide stations in Fig. 1).
As shown in Section 4, good agreement with semi-
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diurnal and diurnal tide observations is achieved with
a geometry consisting of 12 compartments. This result
gives confidence in the model’s reliability in situations
for which no observational data are available. Further
simulations, presented in Section 5, then provide insight
into:

— The importance of the tidal energy fluxes from the
north (east of Scotland) and the south (through
Dover Strait) as well as the effects of closure of
Dover Strait

— The role of bottom friction

— The effects of sea level rise, simulated by an overall
increase in water depth

— The system’s sensitivity to bed level variations in
the Southern Bight

Finally, Sections 6 and 7 contain the discussion and
conclusions, respectively.

2 Model
2.1 Model formulation

Consider a tidal wave of angular frequency » and
typical elevation amplitude Z. The model geometry
consists of a sequence of J rectangular compartments
of length /;, width b ; and (uniform) depth A; (Fig. 3).
The geometries in Fig. 3a, b will be used in Section 3



Ocean Dynamics (2011) 61:2019-2035

2023

(a) Two compartments

(b) Three compartments (including strait)

(c) North Sea fit
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Fig. 3 Definition sketch of the model geometry, showing a a simple set-up with two compartments, b extension with strait and ¢ the
North Sea fit with 12 compartments also shown in Figs. 1 and 6. Shaded compartments represent the Southern Bight; details in Table 3

to investigate general resonance properties. The more
detailed geometry in Fig. 3c will be used in Section 4 to
reproduce tide observations in the North Sea and forms
the basis of further simulations in Section 5. Details
of these configurations are given in Table 3, where §;
denotes the displacement of compartment j’s centerline
with respect to that of compartment j — 1.

The compartment widths are not small compared
with the (local) Rossby deformation radius, which
shows the importance of adopting a horizontally two-
dimensional approach including rotation. Assuming
that Z/h; < 1, conservation of momentum and mass is
expressed by the depth-averaged linear shallow water
equations on the f plane:*

8Ltj rjuj 37’]]‘

i L = 1
a0 It T T8y M
ij ]U] 87)]'

_! . g, 2
o1 + fiuj+ I 3y’ (2)
377}‘ 3L£j ij

Hap |l = =0. 3
ar T ’[ax * dy )

For compartment j, u; and v; are the depth-averaged
flow velocity components in along-basin x and cross-
basin y-direction, respectively, and 7 is the free surface
elevation (j =1, ---, J). Furthermore, f; = 2Qsin?; is
a Coriolis parameter (with Q = 7.292 x 107> rad s™!
the angular frequency of the Earth’s rotation and ¢; the
central latitude of compartment j) and g = 9.81 m s~2

4For a derivation of Egs.1-3, see e.g. the scaling procedure in
Roos and Schuttelaars (2009).

the gravitational acceleration. Finally, we have intro-
duced a bottom friction coefficient

_ SCD(U]')

3T B (U]> :OlFUj, (4)

Tj
based on linearization of a quadratic friction law while
accounting for the simultaneous presence of several
tidal components. In Eq. 4, cp = 2.5 x 1073 is a stan-
dard drag coefficient. Furthermore, the velocity scale
(U;) is a correction of the coastal current amplitude U;
of a classical Kelvin wave without bottom friction (Gill
1982):

Ui= 7 hﬁ. (5)
J
Here, the coastal elevation amplitude Zyp = 1.40 m is
typical for the dominant M2-tide, obtained by averag-
ing over all coastal tide stations under consideration.
Turning back to Eq. 4, the following corrections are
made to U; to obtain a proper velocity scale (U;).
Firstly, the coefficient o accounts for the fact that cur-
rent amplitudes throughout the domain are typically
smaller than the tidal current amplitudes near the coast
(¢ < 1). In Section 4, o will be used as a tuning pa-
rameter that is assumed identical for all constituents.
Secondly, the coefficient F accounts for the fact that
the simultaneous presence of several tidal components
enhances friction (F > 1), particularly for the weaker
components (Jeffreys 1970; Pingree 1983; Inoue and
Garrett 2007). Properly incorporating this mechanism
is important when we use our model to reproduce tide
observations in Section 4. To calculate the F values for
M2, S2, K1 and O1 in the North Sea, we follow the

@ Springer



2024

Ocean Dynamics (2011) 61:2019-2035

procedure by Inoue and Garrett (2007); see Table 2
and Appendix A. As it turns out, the ratios F/Fyp
are close to the theoretical maximum of 1.5 obtained
in the € | O-limit with € = Z/Z\p (Jeffreys 1970). In
Section 3, where we investigate the model’s frequency
response by varying » in a broad range surrounding
the tidal bands, we will ignore the presence of other
components and take F = 1.

Our model geometry displays different types of
boundaries. At the closed boundaries %, ; and %, ;
orthogonal to the along-basin and cross-basin direction,
respectively, we impose a no-normal flow condition, i.e.

for (x, y) € Z,.j, (6)

v; =0, for (x,y) € B,,;. (7

Next, continuity of elevation and normal flux is re-
quired across the topographic steps .#; ;1 between the
adjacent compartments:

hjuj=hjauji,

nj=MNj+1, for (x,y) € Fj 1.

®)

Finally, the system is forced by a single Kelvin wave
coming in through the open boundary for the geometry
in Fig. 3a, or by two Kelvin waves coming in through the
two open boundaries for the geometries in Fig. 3b, c. In
either case, other waves are allowed to radiate outward.
In the case of two incoming Kelvin waves, the solution
will also depend on their relative amplitudes and phase
lag, which complicates the interpretation of the model
results.

2.2 Solution method

Let ¢ = (u, v, n) symbolically denote the solution. In
each compartment we seek time-periodic solutions of
the form

;= (uj, vj, nj)zfﬁ{(ﬁj, b, ﬁj)exp(iwt)}, C)

Table 2 Amplitudes Z and friction coefficients F, as used in
Eq. 4, of four tidal components in the North Sea

Comp. T (h) w(cpd)? Z (m)® e(=) F(=) F/Fap(-)
M2 1242 1.932 1.40 - 1.078 1

S2 12.00  2.000 0.43 0307 1522 141

K1 2393 1.003 0.09 0.064 1539 143

o1 25.82 0.930 0.11 0.079 1.538 1.43

aTidal frequency in cycles per day

PElevation amplitude obtained by averaging over coastal tide
stations

¢Amplitude divided by (dominant) M2-amplitude, ie. € =
YAVAYY
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with i denoting the real part, w the angular frequency
and (@, v;, ;) the complex amplitudes of flow and
elevation, which depend on x and y. These amplitudes
are then written as a truncated superposition of funda-
mental wave solutions in an open channel, i.e. Kelvin
and Poincaré modes, propagating or exponentially de-
caying in the positive and negative x-direction (see
Appendix B). Since these individual waves satisfy the
lateral boundary condition in Eq. 7, so does their su-
perposition in the solution.

A collocation technique is then employed to also
satisfy the other no-normal flow condition in Eq. 6
and the matching conditions in Eq. 8. We, thus, extend
earlier studies to account for width variations (Webb
1976; Jung et al. 2005; Roos and Schuttelaars 2011).
Collocation points are defined with an equidistant spac-
ing along the interfaces and the adjacent closed lon-
gitudinal boundaries.> At each collocation point, we
require either zero normal flow (if located on a closed
boundary) or matching of elevation and normal flux
(if located on an interface). The truncation numbers
mentioned previously are chosen such to balance the
distribution of collocation points. The coefficients of
the individual modes then follow from a linear system,
which is solved using standard techniques.

In the remainder of this study we adopt an average
spacing between collocation points of about 6 km. In
Section 3, where we investigate the resonance proper-
ties of the simple geometries in Fig. 3a, b, this leads
to a total number of about 170 Kelvin and Poincaré
modes. In reproducing the tide observations from the
North Sea (Section 4; geometry of Fig. 3c), the same
spacing implies a total number of about 1700 Kelvin
and Poincaré modes in the complete domain.

3 Results: general resonance properties
3.1 Indicators of amplitude gain in the Southern Bight

To investigate resonance properties, we consider the
frequency-response of our model. To this end, we an-
alyze the solution for different values of the forcing fre-
quency w in a range that includes the diurnal and semi-
diurnal tidal bands. This analysis will be carried out for
the simple geometries shown in Fig. 3a, b. The first con-
sists of two compartments, representing the relatively
wide and deep northern part of the North Sea and the

5The open boundaries do not require collocation points, since we
specify incoming Kelvin waves
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Table 3 Compartment properties of the basin geometries in
Fig. 3

Fig. j [i(km) bj(km) hj(m) §;(km)* & (°N)
3a 1 600 550 80 - 56
25 200 200 20 0 52
3b 1 600 550 80 - 56
25 200 200 20 0 52
3 40 35 20 0 51
3¢ 1 50 500 1515 - 59.0
2 85 760 1299  —130 58.1
3 85 720 73.8 40 57.4
4 95 650 65.0 —72 56.5
5 100 720 529  —16 55.6
6 80 700 413 74 54.7
7 60 520 39.6 27 54.1
8 125 330 26.7 19 53.3
9 55 190 263 —70 52.4
10> 60 170 24.9 10 51.9
11 60 160 19.5 35 51.5
12 60 35 27.3 18 51.0

aDisplacement in y-direction of the centerline of compartment j
with respect to that of compartment j— 1

bCompartment(s) representing the Southern Bight (shaded in
Fig. 3)

narrower and shallower Southern Bight. This geometry
is extended in Fig. 3b by including a third compartment,
representing Dover Strait as a second opening to the
Atlantic. For simplicity, all compartments have been
symmetrically aligned about the basin’s central axis, i.e.
8; = 0. See Table 3 for the dimensions and latitudes.

(a) Two compartments

\S] W NN

Amplitude gain (-)

[

Fig. 4 Amplitude gain versus forcing frequency w for the model
geometries in Fig. 3a, b: a two compartments, b three com-
partments (including strait). Solid lines without bottom friction,
dashed lines with bottom friction. In (a), the black and red lines
indicate Apeaq and Apigne, respectively. In (b), the red and blue

To quantify the ‘response’, we introduce the ampli-
tude gain Apeag. This indicator is defined as the eleva-
tion amplitude, scaled against the input amplitude Zj,.
and averaged over the head of the bight (thick solid line
in Fig. 3a):

1 R
Ahead = sz/ [n21dy.
mnc

Although Aycag is commonly used to quantify the am-
plitude gain (e.g. Huthnance 1980), it is less meaningful
for the case with a strait, because part of the bay head
is then an open boundary (Fig. 3b). We, therefore,
introduce a second indicator Ap;gn, averaging the ele-
vation amplitude over the complete bight (shaded area
in Fig. 3a, b):

(10)

1 R
Abight = —/ [72]dx dy. (11)

b 212 Zinc
3.2 Results for two compartments

Figure 4a shows the amplitude gains Apeaq and Apign
as a function of forcing frequency for the two-
compartment geometry (Fig. 3a), both without and with
bottom friction. It is seen that both amplitude gains
show qualitatively similar behaviour, with, as one may
expect, the bight-averaged indicator Apien (red line)
being somewhat lower than the head-averaged Apeaq
(black line).

(b) Three compartments (including strait)
3 : : : :

Amplitude gain (-)

o (cpd)

lines indicate Apigne(ny and Apignecs), respectively, i.e. separately
forcing the system from the north and south only. The co-tidal
charts of the cases denoted by the lowercase letters a—/ are
depicted in Fig. 5
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The curves without bottom friction (solid lines) dis-
play a peak between the diurnal band (o ~ 1 cpd) and
semi-diurnal band (@ ~ 2 cpd), a weaker response at
® = 2.5 — 3 cpd and two further peaks at higher values
of the forcing frequency. As can be seen from the co-
tidal chart in Fig. 5a, the first peak is associated with a
quarter wavelength resonance of the Kelvin mode in
the Southern Bight. Next, Fig. 5b shows an example of
weaker amplification in the bight, which is accompa-
nied by higher amplitudes in the corners of the deep
and wide compartment (e.g. the German Bight, region
near point E in Fig. 1). The second peak in the
frequency-response curve represents resonance of the

Fig. 5 Co-tidal charts of the (a) (b)
twelve cases a-I highlighted in
the frequency-response
curves in Fig. 4 (without
bottom friction). The top row
pertains to the
two-compartment geometry
(Fig. 3a); the middle and
bottom rows to the
three-compartment geometry
(Fig. 3b) if forced from the
north or south only,
respectively. Please note the
different colourbars used in
each row

7

N

@ Springer

=1

=

7=
2

a
AW

first Poincaré mode (Fig. 5c), whereas the third peak
is a three quarter wavelength resonance of the Kelvin
mode. We note that adjusting the dimensions of the mod-
el geometry may affect the order in which the Kelvin
and Poincaré resonances appear as a function of w.

As shown by the dashed lines in Fig. 4a, including
bottom friction causes the peaks to nearly disappear.
The amplitude gain becomes nearly monotonically de-
creasing function of w. It should be noted that, in the
simulation with bottom friction, we assume Z = 1 m,
ignore the enhancement of friction due to the simul-
taneous presence of other constituents (F =1) and
maintain o« = 0.6; see Eqs. 4-5.

Z

Tidal amplitude (m)

Tidal amplitude (m)

Tidal amplitude (m)
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3.3 Results for three compartments (including strait)

Now let us proceed with the three-compartment geom-
etry of Fig. 3b. Justified by the linearity of the problem,
we may write the solution as

¢ = o) + ds).

where ¢ is the solution if forced from the north
only and ¢, the solution if forced from the south
only (while maintaining the other boundary as an
open boundary). Accordingly, we define Apignin)
and Apignis) as the amplitude gains of these sepa-
rate solutions. It should be noted that, due to phase
differences, the amplitude gain of the complete solution
does not equal the sum of the individual amplitude
gains, i.e. in general Apigh # AbightN) + Abight(s)-
Figure 4b shows the frequency-response curves if
the three-compartment-system is forced from the north

(12)

(a) M2—tidal elevation

Amplitude (m)

Phase (deg)

Coastal coordinate (km)

Fig. 6 Modelled amphidromic chart (fop) and comparison of
model results (solid lines) and observations (open circles) as
a function of the coastal coordinate along A-F, i.e. elevation

only (Avpightn), red) and south only (Apighys), blue). For
the case without bottom friction (solid lines), the curves
are qualitatively similar to the case with two compart-
ments (Fig. 4a), i.e. showing similar peaks at similar w
values, regardless whether the system is forced from
the north or south. Restricting our attention first to the
case with forcing from the north only, it is seen that
the amplitude gain is roughly a factor 2 smaller than
in the two-compartment-case, which is due to radiation
of energy from the bight into the strait. The lowest
values are obtained if the system is forced from the
south only, which is due to (1) radiation of energy from
the bight into the northern compartment and (2) the
absence of a shoaling effect, because the depth in bight
and strait is identical (hy; = h3 = 20 m; see Table 3).
The co-tidal charts in Fig. 5e-1 show that the resonance
mechanisms identified in Section 3.2 continue to exist
after the introduction of a strait and the distinction

(b) S2—tidal elevation

Amplitude (m)

Amplitude (m)

Phase (deg)

Coastal coordinate (km)

amplitudes (middle) and phases (bottom) for four constituents: a
M2, b S2 and, on the next page, ¢ K1, d O1. Note the differences
in scales of the colourbars and the amplitude axes
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in forcing from either the north or south. It is seen
that they occur at nearly the same frequencies, yet in
a somewhat modified spatial form.

Finally, analogous to the case with two compart-
ments, it is found that including bottom friction damp-
ens the peaks of the frequency-response curves (dashed
curves in Fig. 4b). Analogous to Section 3.2, our sim-
ulations with bottom friction use Z = 1m, F =1 and
a = 0.61in Egs. 4-5.

4 Reproducing tide observations in the North Sea

In this section, our model will be tested against tide
observations from the coastal tide stations shown in
Fig. 1 (British Admiralty 2009a, b). The tide observa-
tions comprise elevation amplitudes and phases of the
four dominant constituents: M2, S2 (semi-diurnal), K1
and O1 (diurnal). The procedure, roughly similar to
that presented in Roos and Schuttelaars’ (2011) study
of the Adriatic Sea, Gulf of California and Persian Gulf,
consists of four steps.

(c) K1-tidal elevation

Amplitude (m)

e @
oW

Amplitude (m)
S

Phase (deg)

Coastal coordinate (km)

Fig. 6 (continued)
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Choose the basin geometry by specifying the com-
partment dimensions /; and b; (j=1,...,J), the
position of the first and the centerline displace-
ments §; of all other compartments. This step is car-
ried out manually leading to a configuration with
J =12 compartments and an orientation aligned
with the Southern Bight (positive x-axis directed
13° East from North). See Figs. 1, 3c and Table 3.
We note that an accurate representation of the
northeastern part (Norwegian Trench, Skagerrak)
is not our main interest.

Specify h; as the compartment-averaged depth
and ¥, as the compartment’s central latitude (j =
1,...,J). Bathymetric data are taken from Amante
and Eakins (2009). In calculating the compartment-
averaged depth, the parts on land are ignored.
Project the available coastal tide stations orthog-
onally onto the nearest coastal boundary. This
projection allows us to visualize the observations as
a function of the coastal coordinate and compare
them to model results. Tide stations located up-
river, up-estuary, at offshore locations or otherwise

(d) Ol1-tidal elevation

Amplitude (m)

Coastal coordinate (km)
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more than 50 km away from the model boundaries
are discarded.

4. Perform simulations using the basin set-up, depth
values and latitudes as above. The amplitudes
and phases (Zny), oy, Zs), ¢s)) of the two in-
coming Kelvin waves and the overall correction
factor « serve as tuning parameters. The friction
coefficients r; are calculated from Egs. 4-5, using
the typical elevation amplitude Zyp and the F
values from Table 2. The simulations mentioned
above are carried out for each of the four tidal
constituents: M2, S2, K1 and O1 (all using the same
a-value).

The results are presented in Fig. 6. The corresponding
amplitudes and phases of the incoming Kelvin waves
are shown in Table 4. The best agreement between
model results and coastal tide observations is obtained
by setting the overall correction factor for the velocity
scale in Eq. 4 at « = 0.6. The plots in Fig. 6a—d show
remarkable agreement between model results and ob-
servations, regarding the coastal amplitudes and phases
of all four constituents. This qualitative and quantita-
tive agreement applies to nearly the entire North Sea
(coastal coordinate A to E), except the region in the
north-east (EF) where the bathymetry is less accu-
rately represented than elsewhere in the model domain.
However, because of the counterclockwise propagation
direction of the tidal wave in the North Sea, errors
in this part of the domain do not adversely affect the
model results elsewhere.

The qualitative features of the M2 and K1 co-tidal
charts from our idealized model in Fig. 6a, c show good
agreement with those obtained using numerical models
(e.g., Davies and Kwong 2000, see Fig. 2). The M2-
amphidrome in Fig. 6a is located too far away from the
German Bight and the K1-amphidrome near Norway
in Fig. 6¢ should be virtual. Furthermore, the virtual
nature of the K1-amphidrome in the Dover Strait is not
reproduced by our model. Note that in conducting the
simulations, we tuned to obtain agreement with coastal
tide observations, rather than to obtain agreement with
the positions of amphidromic points from numerical
models.

Table 4 Amplitudes and phases of the incoming Kelvin waves
for the simulations in Fig. 6

Comp. Z N (m) o (°) Zs) (m) o) ()
M2 0.89 310 2.45 170
S2 0.32 355 0.82 235
K1 0.09 91 0.12 42
O1 0.10 290 0.13 264

5 Further results

5.1 Forcing from north and south,
Dover Strait, dissipation

In this section, we will perform further simulations to
unravel and better understand tidal dynamics in the
North Sea. To this end, we continue to use the basin
geometry of Fig. 3c, which was already used in Section 4
to reproduce the North Sea tides. For brevity, we focus
on the dominant tidal constituent only: M2.

Firstly, we investigate the M2-tidal elevation ampli-
tudes in the cases of tidal forcing from the north only
(Zn) from Table 4 and Z s, = 0) and, alternatively,
from the south only (Z ) = 0 and Z s, from Table 4).
The corresponding coastal amplitudes, as a function of
the coastal coordinate, are plotted in Fig. 7a. It is seen
that the forcing through Dover Strait hardly affects the
elevation amplitude along the UK coast. Furthermore,
the plot alternately displays coastal stretches of con-
structive interference (e.g. around C and along DFE)
and destructive interference (e.g. at point B).

Secondly, the importance of Dover Strait is studied
by performing a simulation in which the Dover Strait is
closed off. To this end, compartment j = 12 is removed
and the southern boundary of compartment j= 11 is
treated as a closed boundary, where according to Eq. 6,
uj =0 is imposed (and, consequently, no tidal energy
enters or leaves the domain). Analogous to the simula-
tions above, the characteristics of the incoming Kelvin
wave from the north are as in Table 4. As shown in
Fig. 7b, the resulting curve is slightly higher than the
red dotted curve in Fig. 7a. Due to reflection in the
Southern Bight, amplitudes are higher than in the case
with an open Dover Strait and forcing from the North
only, particularly in the eastern part of the domain.
These results emphasize the importance of including
Dover Strait as an open boundary with appropriate
forcing (Brown 1987), and the strait’s influence ex-
tending to the German Bight contrasts earlier beliefs
(Defant 1961).

Thirdly, the importance of dissipation is assessed
by performing a simulation for the M2-tide without
bottom friction, i.e. for r; = 0 for all j. In doing so, we
retain the input characteristics of the incoming Kelvin
waves as given in Table 4. As shown in Fig. 7b, without
bottom friction, amplitudes in the eastern part would be
much higher, by a factor of more than two (blue dashed
line). The increasing difference along ABCD EF with
the frictional case (black solid line) furthermore em-
phasizes the counterclockwise propagation direction of
the tidal wave.
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(a) M2: role of forcing (b) M2: role of friction and Dover Strait
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Fig. 7 M2-tidal elevation amplitudes as function of the coastal
coordinate for the following cases. a Forcing from the north
only (red, dotted), forcing from the south only (blue, dashed).
b Simulation without bottom friction (blue, dashed); simulation

5.2 Sea level rise

To mimic sea level rise, we now perform simulations
with an overall increase in water depth A/ of 0-2 m.
This range surrounds the value of 1 m, which corre-
sponds to a high-end projection for local sea level rise
along the Dutch coast onto the year 2100 (Katsman
et al. 2011). The chosen Ah value is applied uniformly
to all compartments in Fig. 3c and Table 3. In our
analysis, we assume that the horizontal boundaries of
our basin are maintained, e.g. by coastal defence works.

(a) M2: 1m mean sea level rise
10 - -

Ah (m)

Change in elevation ampl. (cm)

/m\j V

B-C—D-B

A
0 1000 2000
Coastal coordinate (km)

3000

Fig. 8 Changes in coastal M2-elevation amplitudes, due to sea
level rise, as a function of the coastal coordinate. a Line plot for
an overall sea level rise of Az = 1 m, b colour plot for an overall
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Coastal coordinate (km)

after closure of Dover Strait (red, dotted; with bottom friction). In
both plots, the black solid line denotes the reference case already
shown in Fig. 6a

According to the depth dependency of the bottom
friction formulation in Egs. 4-5, the friction coefficients
experience a slight decrease. Furthermore, the tidal
wave speed will increase slightly as the result of the
increased water depth. As before, the amplitudes and
phases of the incoming Kelvin waves are assumed to
be unaffected. To assess whether this assumption is
justified, one would require a larger model domain
which is beyond the scope of the present study.

Fig. 8a shows the difference in coastal elevation
amplitudes induced by Ak = 1 m. The overall qualita-

(b) M2: 0 to 2m mean sea level rise

Change in elevation ampl. (cm)

-10

(B-CO—DXE

1000 2000
Coastal coordinate (km)

F
3000

sea level rise in the range 0-2 m. The dashed black line in the
colour plot denotes the reference value used in the line plot
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(a) M2: —1m and 1m depth change Southern Bight (b) M2: —2m to 2m depth change Southern Bight
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Fig. 9 Changes in coastal M2-elevation amplitudes, due to a
uniform bed level change in the Southern Bight, as a function
of the coastal coordinate. a Line plots for a uniform depth
increase of Ahgg = 1 m (black) and a uniform depth decrease of

tive picture of coastal amplitudes is unaffected. Hardly
any changes occur along the UK coast, whereas in
the Dover Strait and the eastern part of the domain
amplitudes increase up to 8 and 5 cm, respectively.

To get an impression of the sensitivity around this
reference case, the colour plot in Fig. 8b shows the
effects of sea level rise in a range of 0 — 2 m. It is seen
that the qualitative picture, e.g. the locations where an
increase or decrease is obtained, hardly depends on the
value of Ah. From a quantitative point of view, the
response turns out to be roughly linear in A#.

5.3 Bed level changes in the Southern Bight

Finally, we investigate the sensitivity of the M2-tide to
changes in bed level in the Southern Bight. To this end,
we varied the water depth in the Southern Bight uni-
formly in a range from Ahgg = —2 m (depth decrease)
to Ahsg = +2 m (depth increase). These changes are
applied to the compartments 9, 10 and 11 in Fig. 3c
and Table 3. The adopted range includes the reference
values Ahsg = £1 m, which we will discuss separately
below. We then perform simulations as described in
Section 5.2 for the case of sea level rise.

The results for the reference values are plotted in
Fig. 9a, showing changes in coastal M2-elevation am-
plitudes that are less than 5 cm in magnitude, alter-
nately showing zones of increase and decrease. It is
seen that deepening of the Southern Bight produces
a curve qualitatively resembling but showing smaller

B)

1000

(DXE)

2000
Coastal coordinate (km)

-10

Ahgsg = 1 m (red), b colour plot for a uniform depth change in
the range —2 to 4+2 m. The dashed lines in the colour plot denote
the reference values used in the line plots

changes than the sea level rise simulation in Fig. 8.
Roughly the inverse of this curve is obtained when
making the Southern Bight 1 m shallower instead of
deeper, suggesting a linear dependency on Ahgg. The
colour plot in Fig. 9b shows the variation around the
reference values of 1 m. Again, the qualitative picture
is insensitive to Ahgg and the quantitative response is
roughly linear in Ahgg.

6 Discussion
6.1 Model properties

The solution procedure is quick, a typical North Sea
simulation taking less than a second on a personal
computer. This allows us to conduct many simulations
(as required e.g. in Figs. 4, 5, 8b and 9b). In our
simulations to reproduce the tides in the North Sea,
we have considered all aspects of basin geometry (di-
mensions, positioning, depth, latitude) and the friction
coefficients as fixed, except for the parameter «. We
then used the amplitudes Z () and Z s, and phases ¢
and ¢, of the incoming Kelvin waves along with the
correction factor « as tuning parameters. We remark
that the dynamics of the system is effectively controlled
by three dimensionless quantities: the correction fac-
tor « (assumed the same for all constituents to minimize
the degrees of freedom), the amplitude ratio Z s,/ Z
and the phase lag ¢s) — o). This is true for ampli-
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tudes for which the Z and F values in Table 2 remain
representative; such that the friction coefficients r; in
Eq. 4 remain unaffected. The remaining 2 degrees of
freedom then merely provide an overall multiplication
factor and an overall phase shift, used to improve the
agreement with observations.

There is a degree of arbitrariness in choosing the
basin geometry, particularly its orientation, the number
of compartments as well as their dimensions and rela-
tive position. Because of our interest in the Southern
Bight, we have chosen the orientation of the South-
ern Bight. Other simulations, not reported here, show
that aligning the geometry with the deeper northern
part leads to similar results (although fitting the di-
rection of Dover Strait is somewhat awkward). Al-
ternatively, simulations with fewer compartments, also
not reported here, lack the more precise quantitative
agreement with observations. The inaccuracies in the
basin geometry induce (quantitative) inaccuracies in
both the physics and the projection procedure.

On the other hand, increasing the number of com-
partments does not further improve the agreement,
merely increasing the computational time. The ab-
sence of lateral depth variations then becomes a crucial
limitation. Allowing for a lateral topographic step in
each compartment, effectively creating two subcom-
partments of uniform depths /; and h/j, would im-
prove our representation of bathymetry and, hence,
the agreement between model results and observations
(especially if additional compartments would be added
to represent the Skagerrak). The fundamental wave
solutions can then no longer be found fully analytically;
arelatively straight-forward search routine for the wave
numbers is required (Roos and Schuttelaars 2011). Al-
ternatively, one may also adopt an arbitrary, smooth
transverse depth profile in each compartment. How-
ever, the transverse structure of the fundamental wave
solutions must then be found numerically, which is com-
putationally relatively expensive (de Boer et al. 2011).

6.2 Resonance properties

Now let us interpret the resonance properties
against the background of previous studies. The two-
compartment geometry studied in Section 3.2 (Fig. 3a),
consisting of a relatively shallow and narrow bight
(j = 2) connected to a deeper and wider compartment
(j = 1), can be interpreted as an intermediate geometry
between two extremes studied previously in different
contexts: a shallow rectangular gulf opening to a
deeper semi-infinite ocean (Garrett 1975; Huthnance
1980) and the channel model without width variations
and with a longitudinal depth step (Webb 1976;
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Roos and Schuttelaars 2011). These geometries are
approximated by our model in the limits of b1 /b, — oo
and b/b, | 1, respectively.

A further complication is encountered by our inclu-
sion of a third compartment representing a strait as
a second connection with the ocean (see Section 3.3
and Fig. 3b). Due to the linearity of the problem,
the solution can be conveniently written as the su-
perposition of two solutions: one forced at the open
boundary of the deep and wide compartment only, the
other forced through the strait only. However, since
these solutions may locally interfere in a constructive,
destructive or neutral manner, the final amplification
strongly depends on the relative amplitude and phase of
the two types of boundary forcing. The presence of two
open boundaries thus complicates the interpretation of
resonance mechanisms.

By varying the forcing frequency in the two- and
three-compartment model, we identified the following
resonance mechanisms:

— Kelvin resonance, i.e. the generalization of the clas-
sical quarter wavelength resonance to the case in-
cluding rotation, radiation damping and bay width
(Garrett 1975; Webb 1976; Huthnance 1980; Roos
and Schuttelaars 2011).

— Poincaré resonance, i.e. the amplification of cross-
bay modes in the shallow and narrow compartment
(Huthnance 1980; Roos and Schuttelaars 2011).
This mode was not found by Garrett (1975) due
to the narrow-gulf assumption. The cases with an
amplified response in the corners of the wide com-
partment (e.g. the German Bight) show that this
type of amplification may also occur in the deep and
wide compartment. In our example, this phenom-
enon is accompanied by a rather weak response in
the bight.

After including a strait and separately forcing the sys-
tem from the north and south, these resonances con-
tinue to occur. The response is weaker, particularly
in the case of forcing through the strait, and the spa-
tial structure modified. Clearly, the frequency-response
curves shown in Fig. 4 are much more complex than
those of a rectangular bay or a Helmholtz model.

7 Conclusions

We have developed an idealized process-based model
to gain insight in the tidal dynamics of the North Sea.
By accounting for bottom friction, changes in depth and
width and the presence of two open boundaries, our
model extends and combines earlier work (Taylor 1922;



Ocean Dynamics (2011) 61:2019-2035

2033

Godin 1965; Rienecker and Teubner 1980; Roos and
Schuttelaars 2011). The solution method combines a
superposition of wave solutions per compartment with
a collocation method, thus accounting for no-normal
flow at the longitudinal closed boundaries and the
matching conditions between adjacent compartments.
The resulting model is quick to run and allows inclusion
of sufficient level of geometrical detail for a comparison
with observations.

First, we studied the general resonance properties of
a highly simplified geometry with two compartments,
representing the deep and wide Northern North Sea
and the shallow and narrow Southern North Sea. By
varying the tidal frequency while neglecting bottom
friction, we identified both Kelvin and Poincaré reso-
nance. These resonances continue to exist when adding
a third compartment that accounts for the Dover Strait
and subsequently forcing the system from the North
and South only. However, resonance peaks are lower
than in the two-compartment case. The response when
being simultaneously forced from the North and South,
as in the tidal case, strongly depends on the relative
amplitude and phase. Incorporating bottom friction
further reduces the resonance peaks. Due to the differ-
ences in geometry, our findings add to results from ear-
lier studies on basins connected to deeper and in
some cases also wider bodies of water (Garrett 1975;
Webb 1976; Huthnance 1980; Roos and Schuttelaars
2011).

Next, we adopted a more detailed geometry with 12
compartments fitted to the coastline of the North Sea.
Comparison with tide observations along the North
Sea coast, i.e. tidal range and phase of the principal
semi-diurnal (M2 and S2) and diurnal constituents (K1
and O1), shows good agreement. These results give
confidence in applying our idealized model to situations
for which no data are available. This leads to the follow-
ing results:

— The solutions due to the tidal energy coming in
from north and south create alternating patterns
of constructive and destructive interference along
the coast. Closure of Dover Strait would imply
significant decreases in M2-tidal range along the
German coast.

— Without bottom friction, coastal amplitudes would
be larger, particularly in the eastern part of the
North Sea (roughly a factor 2 for M2).

— To mimic sea level rise, a simulation with a 1 m
increase in water depth, while leaving the horizon-
tal boundaries of the system and the amplitudes/
phases of the incoming Kelvin waves unaffected,
leads to an increase in coastal M2-elevation ampli-

tudes up to 8 cm, particularly in the eastern part of
the North Sea.

— Bed level variations of +1 m uniformly applied to
the Southern Bight lead to changes in coastal M2-
elevation amplitudes of the order of cm, particu-
larly in the Southern Bight itself and in the German
Bight.
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Appendix
A Calculation of friction coefficients

To calculate the friction coefficient F in Eq. 4 for
each of the tidal constituents in Table 2, we follow
the procedure proposed by Inoue and Garrett (2007).
We consider a (unidirectional) tidal signal with a domi-
nant M2-component and three smaller components (S2,
K1 and O1) of relative amplitude esp, €x1 and €o1,
respectively.

The fourth order approximations of the friction
coefficients of the dominant M2-component and the
weaker S2-component are given by

3 3
Fyvp =1+ 1 (€32 + €1 + €61) — o4 (&2 + €1 + €01)

3
T (5261 + €52€01 + €k1€01) - (13)

3 1 652 2 2
F32=§ 1+Z 7+6K1+601
1 (€}
te <% + €1 +egl)

16\ 2 2

respectively. (Eq. 13 is given by Inoue and Garrett
(2007); Eq. 14 provides the fourth order terms not
specified in their study.)

Note that the dependencies of Fgs, on the terms
involving eg, differ from the dependencies on terms
not involving esp. Expressions for Fx; and Fp; follow
directly from Eq. 14 by interchanging the roles of es;,

1 (e el €2, €2
< $2°K1 | 8201 +€]2(16(2)1>:|, (14)

@ Springer



2034

Ocean Dynamics (2011) 61:2019-2035

ex1 and €p;. Table 2 in the main text shows the ¢- and
F values.

B Wave solutions in a channel of uniform depth

This appendix contains analytical expressions of the
wave solutions in an infinitely long channel of uni-
form width b ; (lateral boundaries at y =0 and y = b ;)
and uniform depth 4; (with j = 1, 2), including bottom
friction:

N 7 ,m(}’)
up, | = 2" @7, | expllot — k5,,xD), (15)
v, 05,

with amplitude factor Z’ (in m) wave number kGB
and lateral structures ﬁfm (y), u (y) and v (). For
the Kelvin mode (m = 0) propagatlng in the posmve X-
direction, we obtain

] ,m(y) 1
i) | = | 7 ey | exp (). (17
m(Y) 0
respectively. Here, we have used the reference wave
number K, the Rossby deformation radius R; (both
typical for a classical Kelvin wave without friction) and
a frictional correction factor, given by

w gh]
= R, = ,
] gh/ ] f

Vi= 1__’

(18)

respectively.

The wave number and lateral structures of the mth
Poincaré mode (m > 0) propagating (if free) or decay-
ing (if evanescent) in the positive x-direction are given
by

\/VZKZ_)/] 2R Z_ﬁ (19)
®
im (¥) = 08(Bny) = Z—5= sin(Bny). (20)
mrj
k®
1%, () = —3= cos(Bny) — sm(ﬁmy), (21)
viw ,Bm
—iw $2
D _
Vo, () = —IBmijhj |:y] K2 :| sin(Bmy), (22)

respectively, with g,, = mn /b ;.
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The modes propagating or decaying in the negative
x-direction are defined analogous to Eq. 15, but now
using a superscript © instead of a superscript ®. By
symmetry, the two type of modes &?m and (]3]?,” satisfy
the following relationships:

7 ,m(b =)
¢S, = —u5,b; =, K, =—k%,. (23)
_i}fm(bf =¥

Finally, dealing with the lateral displacements of the
compartments relative to one another requires suitable
translations of the y-coordinate in the above solutions.
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