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Abstract In order to determine the maintenance mech-
anisms of the currents of the global ocean, this study
investigates the budget of the annual mean kinetic en-
ergy (KE) in a high-resolution (0.1◦ × 0.1◦) semi-global
ocean simulation. The analysis is based on a separa-
tion of the mean KE using the barotropic (i.e., depth-
averaged) and baroclinic (the residual) components of
velocity. The barotropic and baroclinic KEs dominate
in higher and lower latitudes, respectively, with their
global average being comparable to each other. The
working rates of wind forcing on the barotropic and
baroclinic circulations in the global ocean are 243 and
747 gigawatts, respectively. This study presents at least
three new results for the budget of the barotropic KE.
Firstly, an energy diagram is rederived to show that
the work of the barotropic component of the horizon-
tal pressure gradient (HPG) is connected to the work
related to the joint effect of baroclinicity and bottom
relief (JEBAR), and then to the budget of potential en-
ergy (PE). Secondly, the model analysis shows that the
globally averaged work of the barotropic HPG (which
is connected to the work related to JEBAR and then
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to the budget of the PE) is nearly zero. This indicates
that the wind- and buoyancy-induced barotropic circu-
lations in the global ocean are of the same strength with
opposite sign. Thirdly, it is found that the work of the
wind forcing on the barotropic component of the sim-
ulated Antarctic Circumpolar Current (ACC) is can-
celed by the combined effect, in equal measure, of the
work of the barotropic HPG and the work of dissipative
processes for mean KE. This result makes a significant
contribution to the discussion on the depth-integrated
momentum balance of the ACC. The barotropic KE
is dissipated by the effects of bottom frictional stress,
lateral frictional stress, and the Reynolds stress, of
which more than half is attributed to an unexpectedly
large contribution from biharmonic horizontal friction.
Future studies should pay more attention to the role of
biharmonic friction used in high-resolution numerical
models.

Keywords General circulation · High-resolution ocean
simulation · Z -Coordinate ocean model · Biharmonic
friction · Frictional and pressure effects of bottom
topography · JEBAR (joint effect of baroclinicity
and bottom relief) · Antarctic Circumpolar Current

1 Introduction

Characterizing the geography of sources, sinks, and
conversions of kinetic energy (KE) in the global ocean
remains one of the outstanding issues in physical
oceanography (cf. Ferrari and Wunsch 2009). This
study investigates the budget of the annual mean KE
in a high-resolution semi-global numerical simulation,
and identifies the dominant equilibrium in the energy
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balance in a number of important regions. The focus on
the mean-field energy (rather than total-field energy) is
intended to revisit existing hypotheses for the momen-
tum and vorticity balances in general circulation theo-
ries, and also suggest what kind of a KE budget should
be represented by coarse-resolution ocean models used
in climate studies.

In this study, the mean KE is separated into that as-
sociated with the barotropic (i.e., depth-averaged) and
baroclinic (i.e., the residual) components of velocity.
Such a separation has been adopted in previous studies
for wave KE and eddy KE concerning topographic
generation of tidal internal waves or barotropization
of geostrophic turbulence (cf. Cummins and Oey 1997;
Holloway 1986). On the other hand, the separation
of the mean KE in this study gives insight into the
mechanisms maintaining the ocean currents, and in
particular allows the relative importance of the fric-
tional and pressure effects of bottom topography to be
determined.

The pressure effect associated with bottom topog-
raphy has attracted significant attention in previous
studies of the depth-integrated momentum balance of
the Antarctic Circumpolar Current (ACC). Munk and
Palmen (1951) (MP51) and Johnson and Bryden (1989)
(JB89) presented an inviscid theory for the dynamics
of the ACC. They considered the presence of only a
bottom slope and a horizontally inhomogeneous den-
sity distribution, leading to a hypothesis that the east-
ward wind stress over the Southern Ocean must be
canceled by the difference of pressure upstream and
downstream of a bottom ridge (Appendix A). The
steady-state depth-integrated balance of momentum is
written as,

ρ0f ×
∫ 0

−H
V dz � −

∫ 0

−H
∇ p dz + τwind, (1)

where ρ0 is reference density, f is the Coriolis parameter
f multiplied by a unit vector z in the vertical direction,
V is the horizontal velocity vector, ∇ is the horizontal
gradient operator, p ≡ ps + ∫ 0

z gρ dz is the sum of sea
surface pressure ps and the hydrostatic pressure with g
and ρ being the gravitational acceleration and in situ
density of seawater, respectively, and τwind is the wind
stress vector. The sea surface is located at z = 0 and
assumed to be rigid, with H(> 0) being the bottom
depth. Equation 1 represents a statistically steady state
of the ACC with the overbar denoting an Eulerian time
mean (or a low-pass temporal filter at fixed height).
See Table 1 for an explanation of symbols used in the
present paper.

An equation for barotropic KE can be derived from
either of Eqs. 1 and 47, whose spatial integral in the

band δ� between two barotropic streamlines circling
Antarctica or in the global domain � becomes (Holland
1975; Treguier 1992; Ivchenko et al. 1997),

0 � −
∫

δ�,�

TPE
V

bt · ∇ H
H

+
∫

δ�,�

V
bt · τwind d2x, (2)

where TPE ≡ ∫ 0
−H gρz dz is total (mean plus eddy) po-

tential energy (PE) in each vertical column, and V
bt ≡∫ 0

−H V dz/H is the barotropic (i.e., depth-averaged)
component of V.

The first term of Eq. 2 is the expression1 derived by
Ivchenko et al. (1997), and has two interesting charac-
teristics: (1) it does not contain the sea surface pressure
ps and (2) it vanishes when the contours of TPE and
H are parallel (∇TPE × ∇ H = 0), the latter of which is
proved by the present study. These characteristics are
the same as that of the joint effect of baroclinicity and
bottom relief (JEBAR) (Sarkisyan and Ivanov 1971)
term in the barotropic vorticity Eq. 47, except that
Eq. 2 is in an integrated form. Although JEBAR is a
concept that was originally developed from the vorticity
equation, we use the term of JEBAR in a general sense
and call the first term of Eq. 2 the working rate of
JEBAR.

There remain several important questions concern-
ing Eq. 2: (1) whether the work of JEBAR is connected
to the PE equation or the baroclinic KE equation, (2)
which of the barotropic KE balance (Eq. 2) and its
baroclinic counterpart is more effective in the ocean,
and (3) whether the work of JEBAR prevails over the
contributions of bottom frictional stress, lateral fric-
tional stress, and the Reynolds stress in the ACC. In or-
der to examine these questions, this paper presents the
set of mathematical, physical, and numerical investiga-
tions in Sections 2, 3, and 4, respectively. In Section 2,
we derive an energy diagram which is used in the rest
of the present paper. In Section 3, we investigate the
relationship between the role of JEBAR and Ekman
dynamics. Section 4 presents a comprehensive analysis
of the annual mean KE in a high-resolution semi-global
simulation. Section 5 presents a summary.

2 Mathematical investigation

This section derives a version of Holland’s (1975) en-
ergy diagram by focusing on the general circulation.
We show that the integrated work of JEBAR—the first

1The expression of Holland (1975) and Treguier (1992) can be
retrieved by using (1/H)TPE = (1/H)

∫ 0
−H p dz − p|z=−H .
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Table 1 List of symbols, where A(x, y, z, t) is an arbitrary quantity

A Eulerian time mean at a fixed height, A ≡ A
A′ ≡ A − A Deviation from the Eulerian time mean (compared at fixed height, A′ ≡ 0)
∇ ≡ (∂/∂x, ∂/∂y) Horizontal gradient in z coordinates
V ≡ (u, v) Horizontal velocity vector
w Vertical component of velocity: w = −∇ · ∫ z

−H V dz
ρ In situ density of seawater
p ≡ ps + ∫ 0

z gρ dz The sum of sea surface pressure ps and hydrostatic pressure
H Bottom depth

V
bt ≡ ∫ 0

−H V dz/H Barotropic (depth-averaged) component of the mean horizontal velocity

wbt ≡ (z/H)V · ∇ H Vertical component of the mean barotropic velocity: wbt = −∇ · ∫ z
−H V

bt
dz

V
bc ≡ V − V

bt
Baroclinic (residual) component of the mean horizontal velocity

wbc ≡ w − wbt Vertical component of the mean baroclinic velocity: wbc = −∇ · ∫ z
−H V

bc
dz

B Horizontal viscosity term
τ Vertical momentum flux (shear stress) caused by microscopic turbulence
R ≡ −ρ0[∇ · (V′V′) + (w′V′)z] Divergence of the Reynolds stress in the time-averaged momentum Eq. 6
F ≡ Ssrfτ z Wind forcing term in the time-averaged momentum Eq. 6
D ≡ R + B + Sbtmτ z The sum of dissipative process (for mean KE) terms in the time-averaged momentum Eq. 6
Ssrf A step function which is unity in the surface Ekman layer and zero at other depths
Sbtm A step function which is unity in the bottom Ekman layer and zero at other depths
Smid A step function which is zero in both surface and bottom Ekman layers and unity elsewhere
Vgeo Geostrophic velocity: ρ0f × Vgeo = −∇ p
Vwind Wind-induced Ekman velocity: ρ0f × Vwind = F
Vtd Total-drag ageostrophic velocity: ρ0f × Vtd = D (see text)

N ≡ −ρ0∇ · ∫ 0
−H V

bc
V

bc
dz Advective interaction in the mean field (barotropic effect of baroclinic velocity)

TPE ≡ ∫ 0
−H gρz dz Total (mean plus eddy) potential energy in each vertical column

� Streamfunction for the mean barotropic velocity: ∇� = HV
bt × z

δ� Band between two barotropic streamlines
� Global domain
τwind ≡ τ |z=0 Wind stress vector
τbtm ≡ τ |z=−H Bottom-frictional stress vector
lbld Thickness of surface boundary layer
lwind Thickness of surface Ekman layer

term of Eq. 2—is connected to the budget of PE. We
also show that the work of JEBAR vanishes when the
contours of TPE and H are parallel (∇TPE × ∇ H = 0).

2.1 Time-mean momentum equations

The momentum and continuity equations for an in-
compressible hydrostatic rotating Boussinesq fluid that
are used in eddy-resolving ocean general circulation
models (OGCMs) are

ρ0[Vt + ∇ · (V V) + (wV)z + f × V]
= −∇ p + B + τ z, (3)

pz = −ρg, (4)

∇ · V + wz = 0, (5)

where w is the vertical component of velocity, subscript
z is the vertical derivative operator, B is the subgrid-
scale horizontal mixing term, and τ z is the subgrid-scale

vertical mixing term. In this paper, the sea surface is
assumed to be rigid to simplify the equations used in the
analysis (the fact that the model we use for our analysis
has a free surface does not compromise our results).
The momentum flux of vertical mixing or shear stress
τ is defined at all depths with boundary conditions of
τ |z=0 ≡ τwind (wind stress) and τ |z=−H ≡ τ btm (bottom-
frictional stress). All equations in the present study are
expressed in z coordinates.

The present study focuses on the dynamics of the
general circulation (i.e., mean field rather than pertur-
bation field) which can be described by applying a low-
pass temporal filter. Momentum Eq. 3 and continuity
Eq. 5 become

ρ0

[
Vt + ∇ · (V V) + (wV)z + f × V

]

= −∇ p + R + B + τ z, (6)

∇ · V + wz = 0, (7)
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which allow a slow variation of the general circula-
tion. The vector R ≡ −ρ0[∇ · (V′V′) + (w′V′)z] is the
Reynolds stress divergence with prime denoting devi-
ation from the Eulerian time mean.

2.2 Mean and eddy KEs

The total (mean plus eddy) field equations for KE and
pressure-flux divergence can be derived from Eqs. 3–5:

ρ0

2

[
|V|2t + ∇ · (V|V|2) + (w|V|2)z

]

= −V · ∇ p + V · B + V · τ z, (8)

∇ · (Vp) + (wp)z = V · ∇ p + wpz. (9)

The mean-field equations for KE and pressure-flux
divergence can be derived from Eqs. 6 and 7:

ρ0

2

[
|V|2t + ∇ · (V|V|2) + (w|V|2)z

]

= V · (−∇ p + R + B + τ z), (10)

∇ · (V p) + (w p)z = V · ∇ p + w pz. (11)

The volume integrals of Eqs. 8–11 in the global domain
� yield

d
dt

∫
�

ρ0

2
|V|2 d3x =

∫
�

V · (−∇ p + R + B + τ z) d3x,

(12)

0 =
∫

�

(V · ∇ p + w pz) d3x, (13)

d
dt

∫
�

ρ0

2
|V′|2 d3x

=
∫

�

[V′ · (−∇ p′ + B′ + τ ′
z) − V · R] d3x, (14)

0 =
∫

�

(V′ · ∇ p′ + w′ p′
z) d3x, (15)

where
∫
�

d3x = ∫
�

∫ 0
−H dzd2x. Equations 12 and 13 are

for the mean field, while Eqs. 14 and 15 are for the eddy
field.

2.3 Barotropic component of mean KE

Holland (1975) derived a prototype of the barotropic
KE (Eq. 2). He separated KE in each vertical column
into that associated with the barotropic and baroclinic
components of velocity. His approach is applied here to

the mean KE, to focus on the general circulation, rather
than (the unaveraged) total KE,

ρ0

2

∫ 0

−H
|V|2 dz = ρ0

2
H|Vbt|2 + ρ0

2

∫ 0

−H
|Vbc|2 dz, (16)

where V
bc ≡ V − V

bt
is the baroclinic component of

velocity:
∫ 0
−H V

bc
dz = 0. This separation is essential for

formulating the energetics of JEBAR. In sharp contrast
to a vertical mode decomposition in a linear theory
assuming no bottom slope, each of the barotropic and
baroclinic components of velocity in the present study
satisfies a no-normal-flow boundary condition at the
top and bottom of the ocean even if the bottom is
steeply sloped, as will be shown below.

The time evolution of the barotropic velocity is gov-
erned by the depth integrals of momentum and conti-
nuity Eqs. 6 and 7,

ρ0

[
HV

bt
t + ∇ ·

(
HV

bt
V

bt
)

+ f × HV
bt

]

=
∫ 0

−H
(−∇ p + F + D) dz + N, (17)

∇ · (HV
bt

) = 0, (18)

where F ≡ Ssrfτ z is the wind forcing vector with Ssrf(z)

being a step function which becomes unity in the sur-
face Ekman layer and zero underneath. The vector D ≡
Sbtmτ z + B + R is the sum of bottom friction, horizon-
tal mixing, and the Reynolds stress divergence terms,
with Sbtm(z) being a step function which becomes unity
in the bottom Ekman layer and zero above. Introduc-
tion of the two separate vectors F and D simplifies our
presentation. The vector D is hereafter called the sum
of dissipative processes for convenience.2 It may also be
called the sum of turbulent drag forces.

The vector N ≡ −ρ0∇ · ∫ 0
−H V

bc
V

bc
dz represents an

advective (nonlinear) interaction between barotropic

2Inclusion of the Reynolds stress divergence as a “dissipative
process for mean KE” (Section 2.3) or as part of the “total-
drag” (Section 3.1) in our terminology is aimed at simplifying our
presentation in such a way as to offset the complexity arising from
the barotropic–baroclinic decomposition. Our model diagnosis
shows that the Reynolds stress induces both the deceleration
of mean currents near coastlines and the acceleration of mean
currents in open regions (Fig. 8e, f). However the net effect of
the Reynolds stress in each of the Southern, Pacific, Atlantic,
and Indian Oceans is the deceleration (Table 3). The effect of
the Reynolds stress divergence has been parameterized by a
horizontal eddy viscosity term in both coarse-resolution ocean
models and western boundary current theories.
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and baroclinic modes. The advective terms in Eq. 17
are transformed from those in Eq. 6 by using,

∫ 0

−H

[
∇ · (V V) + (wV)z

]
dz

= ∇ ·
∫ 0

−H
V V dz − (V V)|z=−H · ∇ H +

[
wV

]z=0

z=−H

= ∇ ·
∫ 0

−H

(
V

bt
V

bt + V
bc

V
bc

)
dz, (19)

where a no-normal-flow boundary condition of the
mean velocity has been applied. Namely, w|z=0 = 0 and
w|z=−H = −V|z=−H · ∇ H at the top and bottom of the
ocean, respectively.

Using Eqs. 17 and 18 we derive equations for the
barotropic part of the mean KE and mean pressure-flux
divergence,

ρ0

2

[
H|Vbt|2t + ∇ ·

(
HV

bt|Vbt|2
)]

= V
bt ·

[∫ 0

−H
(−∇ p + F + D) dz + N

]
, (20)

∇ ·
(

V
bt

∫ 0

−H
p dz

)

= V
bt ·

∫ 0

−H
∇ p dz +

∫ 0

−H
wbt pz dz, (21)

where wbt is the vertical component of barotropic
velocity:

wbt ≡ (z/H)V
bt · ∇ H. (22)

This vertical component of velocity satisfies the bound-
ary conditions at the top and bottom of the ocean
even if the bottom is steeply sloped (Fig. 1). The
utility of Eq. 22 has been little explored in previ-
ous studies for JEBAR or bottom form stress. Use
of Eqs. 18 and 22 shows that the barotropic veloc-
ity (V

bt
, wbt) is three-dimensionally nondivergent: ∇ ·

V
bt = −(1/H)V

bt · ∇ H ≡ −wbt
z .

We consider the volume budgets of both mean
barotropic Eq. 20 and pressure-flux divergence Eq. 21,

d
dt

∫
δ�,�

ρ0

2
H|Vbt|2 d2x =

∫
δ�,�

V
bt · N d2x

+
∫

δ�,�

V
bt ·

∫ 0

−H
(−∇ p + F + D) dz d2x, (23)

0 =
∫

δ�,�

(
V

bt ·
∫ 0

−H
∇ p dz +

∫ 0

−H
wbt pz

)
dz d2x. (24)

z=0

z=-H(x,y)

wbt

Fig. 1 Illustration of the vertical component of velocity which is
induced by the horizontal component of barotropic velocity over
a sloping bottom, as defined in Eq. 22

Equation 24 has three important implications:

• Equation 24 can be derived by using the spatial
integral

∫
dx2 not only in the global domain � but

also in a band δ� of barotropic streamlines.
• Equation 24 shows that the JEBAR term of Eq. 2

represents the conversion between mean KE and
PE.

• Each of the two terms of Eq. 24 and the first term of
Eq. 2 vanishes when the bottom is level (i.e., ∇ H =
0), when the density distribution is horizontally
homogeneous (i.e., ∇ρ = 0), or when the contours
of TPE and H are parallel (i.e., ∇TPE × ∇ H = 0).

The first implication is confirmed by the barotropic
pressure flux on the left hand side of Eq. 21 hav-
ing no component normal to barotropic streamlines:∫ 0
−H p dzV

bt · ∇� = ∫ 0
−H p dzV

bt · (HV
bt × z) = 0. The

second implication is clarified by using Eqs. 22, 24, and
pz = −gρ:
∫

δ�,�

V
bt ·

∫ 0

−H
∇ p dz d2x =

∫
δ�,�

∫ 0

−H
gρ wbt dz d2x

=
∫

δ�,�

TPE
V

bt · ∇ H
H

d2x, (25)

where the last term is identical to the first term of Eq. 2.
Given the vertical component of velocity wbt in the
middle term of Eq. 25, it is natural to infer that the work
of JEBAR is connected to PE as in Holland (1975)
and Sakamoto and Umetsu (2006). This is in contrast
to Treguier (1992), Ivchenko et al. (1997), and Best
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et al. (1999) who suggested that the work of JEBAR
is directly connected to baroclinic KE.

With Eq. 25 the third implication is obvious in the case
of ∇ H = 0. In the case of ∇ρ = 0, it can be shown that
∫

δ�,�

V
bt ·

∫ 0

−H
∇ p dz d2x

=
∫

δ�,�

V
bt ·

∫ 0

−H
∇ ps dz d2x

=
∫

δ�,�

HV
bt · ∇ ps d2x

=
∫

δ�,�

∇ ·
(

HV
bt

ps
)

d2x

= 0, (26)

where Eq. 18 has been used. In the case of ∇TPE ×
∇ H = 0, TPE can be written as a function of H. Here
we introduce a new function Q(H) defined by

dQ
dH

≡ TPE

H2
. (27)

Substitution of Eq. 27 into the last term of Eq. 25 yields

∫
δ�,�

TPE
V

bt · ∇ H
H

d2x

=
∫

δ�,�

(
HV

bt · ∇ H
) dQ

dH
d2x

=
∫

δ�,�

HV
bt · ∇Q d2x

=
∫

δ�,�

∇ ·
(

HV
bt

Q
)

d2x

= 0, (28)

where Eq. 18 has been used. Derivations of Eqs. 26 and
28 can be based on the spatial integral

∫
dx2 not only in

the global domain � but also in a band δ� of barotropic
streamlines.

2.4 Baroclinic component of mean KE

The volume budgets of both mean baroclinic KE and
pressure-flux divergence are given by subtracting Eqs. 23
and 24 from Eqs. 12 and 13, respectively,

d
dt

∫
�

ρ0

2

∫ 0

−H
|Vbc|2 dzd2x = −

∫
�

V
bt · N d2x

+
∫

�

∫ 0

−H
V

bc · (−∇ p + F + D + Smidτ z) dz d2x, (29)

0 =
∫

�

(∫ 0

−H
V

bc · ∇ p dz +
∫ 0

−H
wbc pz dz

)
d2x, (30)

where Smid(z) ≡ 1 − Ssrf − Sbtm is a step function which
becomes unity at depths between the bottom of the
surface Ekman layer and the top of the bottom
Ekman layer and zero at other depths. The sym-
bol wbc ≡ w − wbt represents the vertical component
of mean baroclinic velocity. The baroclinic velocity
(V

bc
, wbc) satisfies no-normal-flow boundary condi-

tions at the top and bottom of the ocean as do (V, w)

and (V
bt

, wbt). The baroclinic velocity (V
bc

, wbc) is
three-dimensionally nondivergent as are (V, w) and
(V

bt
, wbt).

2.5 Potential energy

Hydrostatic pressure is defined in terms of in situ den-
sity, as shown in Eq. 4. By using the equations for
temperature, salinity, and in situ density that are used
in OGCMs (not shown), one can derive an equation for
the total (mean plus eddy) PE in the global domain �,

d
dt

∫
�

TPE d2x =
∫

�

(gρ w + gρ ′w′ + Diabatic) d3x,

(31)

where Diabatic represents the sum of the effects
of buoyancy forcing, diabatic density mixing, and
the nonlinearity of the state equation of seawater (cf.
Gnanadesikan et al. 2005; Kuhlbrodt et al. 2007).

Now we have a complete set of equations for the
barotropic and baroclinic parts of mean KE and their
interactions with total PE, leading to an energy diagram
shown in Fig. 2. The budget of each energy box is
given by Eqs. 14, 23, 29, and 31 with the connections
between them being given by Eqs. 15, 24, and 30. The
external source/sink terms for the eddy KE and total
PE are not illustrated in Fig. 2 for simplicity. The energy
conversion routes represented by the triple lines in
Fig. 2 are investigated in the rest of this paper.

Note that, with the assessment of the numerical sim-
ulation of the ACC in mind (Section 1), the present
study investigates the work of JEBAR which is caused
only by a time mean flow (hereafter stationary JE-
BAR). On the other hand previous studies, such as
Treguier (1992), Ivchenko et al. (1997) and Best et al.
(1999) investigated the combined effect of the station-
ary JEBAR and transient JEBAR (the latter of which
is caused by both transient eddies and seasonal cycles)
because they used the equation of total KE rather than
mean KE. While the work of the stationary JEBAR
maintains the interaction between mean KE and total
PE (Fig. 2), the work of the transient JEBAR main-
tains the interaction between eddy KE and total PE
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Fig. 2 Energy diagram used in the present study. Energy budgets
are evaluated after taking the volume integral in the global
domain based on Eqs. 14, 15, 23, 24, and 29–31 as detailed in
Section 2. Energy conversions represented by triple lines are in-
vestigated in the present study. The role of JEBAR is represented

by
∫ 0
−H gρ wbt dz and the role of Ekman pumping/suction in the

classical view is represented by
∫ 0
−H gρ wbc dz (Sections 2 and 3).

The external source/sink terms for the eddy kinetic energy and
total PE are not illustrated for simplicity

(not shown). The roles of the stationary and transient
JEBAR may mask each other in the previous analyses
for the total KE.

3 Physical investigation

This section gives a physical interpretation of Fig. 2.
We illustrate the relationship between the role of JE-
BAR and Ekman dynamics, which follows a debate
raised by Warren et al. (1996) (see Appendix A for
details). In particular the work of JEBAR,

∫ 0
−H gρ wbt

dz(= − ∫ 0
−H pzw

bt dz), can be also interpreted as the
work of the barotropic component of the Ekman ve-
locity on the barotropic component of the horizontal

pressure gradient (HPG), if a spatial integral is taken.
On the other hand, the role of Ekman pumping/suction
in classical views is represented by

∫ 0
−H gρ wbc dz(=

− ∫ 0
−H pzw

bc dz).

3.1 Terminology

We first clarify names used for some components of the
mean velocity V. Terminology and definitions provide
a language that proves useful to our argument and
discussion in the rest of this paper.

The geostrophic velocity Vgeo is the velocity compo-
nent in the Coriolis term that is balanced by the HPG
term of Eq. 6: ρ0f × Vgeo ≡ −∇ p. The wind-induced
Ekman velocity Vwind—which is defined in the surface
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Ekman layer—is the velocity component in the Coriolis
term that is balanced by the vertical mixing term of
Eq. 6: ρ0f × Vwind = Ssrfτ z = F.

The bottom-friction Ekman velocity—which is
defined in the bottom Ekman layer—is the velocity
component in the Coriolis term that is balanced by the
vertical mixing term of Eq. 6: ρ0f × V = Sbtmτ z. The
terminology of “Ekman” is extended in Spall (2003,
2008) to refer to the velocity component in the Coriolis
term that is balanced by the horizontal mixing term of
Eq. 6 near the (subsurface) lateral boundaries of the
ocean (i.e., the Stewartson layer): ρ0f × V = B. In an
analogy to the above extended definition of Ekman
velocity, if the role of the Reynolds stress divergence
is similar to that of the horizontal mixing term (i.e.,
decelerating mean currents in coastal boundary re-
gions), it is useful to consider the velocity component
in the Coriolis term that is balanced by the Reynolds
stress term of Eq. 6: ρ0f × V = R. For convenience, the
sum of the above three types of ageostrophic velocity
is referred to in the present study as the total-drag
ageostrophic velocity Vtd, and is defined by ρ0f × Vtd ≡
Sbtmτ z + B + R = D.2

The result is that the present study considers
two kinds of ageostrophic velocity, namely the
wind-induced Ekman velocity and the total-drag
ageostrophic velocity. This simplification is aimed at
offsetting the complexity arising from the barotropic-
baroclinic decomposition.

3.2 Wind-induced and total-drag energy routes

The statistically steady state of mean KE is explained
by a relationship between geostrophic velocity and
Ekman (or ageostrophic) velocity, as shown below. We
focus on two types of energy route (i.e., a partial energy
cycle) for the mean KE, namely a wind-induced energy
route and a total-drag energy route.

The energy route associated with the wind-induced
Ekman velocity operates in regions away from bottom
and side boundaries where the momentum balance is
written by

ρ0f × V � −∇ p + F. (32)

The product of Eq. 32 and V � Vgeo + Vwind yields an
equation for the balance of mean KE that corresponds
to Eq. 10,

0 � −V · ∇ p + V · F � −Vwind · ∇ p︸ ︷︷ ︸
negative

+ Vgeo · F︸ ︷︷ ︸
positive

, (33)

where the first term on the right-hand side is the rate
of the work done by the wind-induced Ekman velocity

on the HPG. Hereafter the second term V · F or Vgeo ·
F of Eq. 33 is called “the work of wind forcing” (it is
somewhat different from “the work of wind stress” used
in previous studies, see Appendix B).

The right-hand side of Eq. 33 indicates that the HPG
work term is typically negative since the wind work
term is usually positive (but can be negative if ocean
currents flow against the direction of wind forcing).
An increase of mean KE by wind forcing is locally
canceled by a decrease of mean KE by wind-induced
Ekman velocity flowing toward a higher mean pressure
(cf. Kuhlbrodt et al. 2007). This linkage of two work
elements in Eq. 33—the work of wind forcing being
locally canceled by the work of the HPG—is hereafter
called the wind-induced energy route (WER: a clearer,
but more cumbersome, term is the wind-to-HPG route)
as it originates in the wind input of mean KE.

The energy route associated with the total-drag
ageostrophic velocity operates near bottom and side
boundaries where the momentum balance is written
by

ρ0f × V � −∇ p + D. (34)

The product of Eq. 34 and V � Vgeo + Vtd yields an
equation for the balance of mean KE that corresponds
to Eq. 10,

0 � −V · ∇ p + V · D � −Vtd · ∇ p︸ ︷︷ ︸
positive

+ Vgeo · D︸ ︷︷ ︸
negative

, (35)

where the first term on the right-hand side is the rate
of the work by the total-drag ageostrophic velocity on
the HPG. The right-hand side of Eq. 35 indicates that
the HPG work term is positive because the total-drag
work term is usually negative (but can be positive if
the Reynolds stress divergence causes an acceleration
of the mean flow). A decrease of mean KE by dis-
sipative processes is locally canceled by an increase
of mean KE by the total-drag ageostrophic velocity
flowing toward a lower mean pressure. This linkage
of two work elements in Eq. 35—the work of dissi-
pative processes being locally canceled by the work
of the HPG—is hereafter called the total-drag energy
route (abbreviated as DER: a clearer term is the HPG-
to-total-drag route). The DER is associated with the
buoyancy-induced circulation in that the source of this
energy route is buoyancy (or more exactly, a nonzero
∇ p) which has already been present in each region of
the ocean by processes such as (1) being carried from
the other regions by both pressure fluxes and advection
of PE, (2) local atmospheric buoyancy forcing, and (3)
local diabatic density mixing.
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Previous numerical investigations of the global en-
ergy budget have shown that the work of the HPG acts
to feed PE, which can be interpreted as the work of the
wind-induced Ekman velocity on the HPG prevailing
over that of the total-drag ageostrophic velocity (cf.
Kuhlbrodt et al. 2007; Aiki and Richards 2008). In
this case, it can be said that the WER prevails over
the DER in the global ocean. However the relative
magnitude of the WER and DER may look different
if the equation of mean KE is separated into the
associated barotropic and baroclinic components of
velocity.

3.3 Barotropic and baroclinic energy routes

We take the product of Eq. 32 and each of V
bt = V

bt
geo +

V
bt
wind and V

bc = V
bc
geo + V

bc
wind, and then take the depth

integral of the two equations. Likewise, we take the
product of Eq. 34 and each of V

bt = V
bt
geo + V

bt
td and

V
bc = V

bc
geo + V

bc
td , and then take the depth integral of

the two equations. This yields the following four types
of energy balance,

0 � −V
bt
wind ·

∫ 0

−H
∇ p dz + V

bt
geo ·

∫ 0

−H
F dz, (36)

0 � −
∫ 0

−H
V

bc
wind · ∇ p dz +

∫ 0

−H
V

bc
geo · F dz, (37)

0 � −V
bt
td ·

∫ 0

−H
∇ p dz + V

bt
geo ·

∫ 0

−H
D dz, (38)

0 � −
∫ 0

−H
V

bc
td · ∇ p dz +

∫ 0

−H
V

bc
geo · D dz, (39)

namely barotropic WER (Fig. 3a), baroclinic WER
(Fig. 3b), barotropic DER (Fig. 3c), and baroclinic
DER (Fig. 3d), respectively. No previous studies have
investigated the relative magnitude of barotropic and
baroclinic energy balances (Eqs. 36–39) in the global
ocean.

(a) barotropic WER

(c) barotropic DER

(b) baroclinic WER

(d) baroclinic DER

Fig. 3 Comparisons of a barotropic wind-induced energy route, b baroclinic wind-induced energy route, c barotropic total-drag energy
route, and d baroclinic total-drag energy route. These routes are defined by Eqs. 36–39, respectively
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The first term in each of Eqs. 36 and 38 represents
the work done by the barotropic component of the
Ekman (or ageostrophic) velocity on the barotropic
component of the HPG, which is connected to the work
of JEBAR in Fig. 2 after a spatial integral is taken in
a band of barotropic streamlines or the global domain
(Section 2). It is worth noting that the work of JEBAR
can act as either a sink or source of KE depending on
the barotropic WER or DER, respectively, the latter of
which has attracted less attention in previous studies.

If we consider an ocean with a flat bottom, the baro-
tropic velocity V

bt
is horizontally nondivergent (i.e.,

wbt = 0), while the baroclinic velocity V
bc

is horizon-
tally divergent (i.e., wbc �= 0). It could be said that (the
classical view of) an increase in available PE by wind-
driven Ekman pumping and suction is related to the
pressure term in the baroclinic balance (Eq. 37) but not
in the barotropic balance (Eq. 36). Another interpre-
tation is obtained if the pressure term in the baroclinic
balance (Eq. 37) is written, using integration by parts,
as

−
∫ 0

−H
V

bc
wind · ∇ p dz

=
[
−

∫ z

−H
V

bc
winddz·∇ p

]z=0

z=−H
+

∫ 0

−H

∫ z

−H
V

bc
winddz·∇ pz dz

= −g
∫ 0

−H

∫ z

−H
V

bc
winddz · ∇ρ dz, (40)

which is the depth integral of the product of the over-
turning vector, density gradient, and g. KE is decreased
(i.e., converted to PE, see Fig. 4a) when the wind-
induced Ekman velocity steepens the slope of density
surfaces near the sea surface, which is the baroclinic
WER.

Likewise, (the classical view of) a decrease in avail-
able PE by bottom-frictional Ekman flow is related to
the pressure term in the baroclinic balance Eq. 39 which
can be written, using integration by parts, as

−
∫ 0

−H
V

bc
td · ∇ p dz

=
[
−

∫ z

−H
V

bc
td dz · ∇ p

]z=0

z=−H
+

∫ 0

−H

∫ z

−H
V

bc
td dz · ∇ pz dz

= −g
∫ 0

−H

∫ z

−H
V

bc
td dz · ∇ρ dz. (41)

This equation gives an interpretation that KE is in-
creased (i.e., converted from PE, see Fig. 4b) when
the total-drag ageostrophic velocity relaxes the slope
of density surfaces near the ocean bottom, which is the
baroclinic DER.

z=0

z=-H

z=0

z=-H

(a)

(b)

Fig. 4 Side view of the baroclinic component of a the wind-

induced Ekman velocity V
bc
wind and b the bottom-frictional Ek-

man velocity V
bt
td, illustrated by black arrows. The dashed line is

a density surface. The product of the overturning streamfunction

and density gradient
∫ z
−H V

bc
dz · ∇ρ is positive in (a) and neg-

ative in (b) in each vertical column, suggesting an increase and
decrease in available potential energy, respectively. The red, blue,
and green symbols show the directions of wind stress, geostrophic
current, and bottom frictional stress, respectively, in the northern
hemisphere. The direction of each of wind stress (red symbol),
geostrophic current (blue symbol), and bottom frictional stress
(green symbol) reverses in the southern hemisphere, while there
is no such change in the direction of the wind-induced and
bottom-frictional Ekman velocities (black arrows)

3.4 Application to the barotropic dynamics of the ACC

There are several theories for the depth-integrated
balances of momentum and vorticity in the ACC, as
reviewed by Nowlin and Klinck (1986), Warren et al.
(1996, 1997), and Rintoul et al. (2001) and integrated
by Hughes (2002) and Nadeau and Straub (2009). De-
pending on how the budget of barotropic KE is closed,
the prototypes of these barotropic theories can be clas-
sified into nondissipative and dissipative KE models
(Table 2). On the other hand, readers who are inter-
ested in the baroclinic dynamics of the ACC including
the role of mesoscale eddies are referred to previous
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Table 2 Classification of theories for the barotropic dynamics of
the ACC based on the budget of barotropic KE

Inhomogeneous
density

Flat bottom

Homogeneous
density

Sloping bottom

Munk and Palmen (1951)
Johnson and Bryden (1989)

Ishida (1994b), Cessi (2007)

Krupitsky and Cane (1994)
Wang (1994)

Stommel (1957)
Webb (1993), Ishida (1994a)

(barotropic KE is converted to potential energy)

(barotropic KE is taken by bottom and
 sidewall  friction and Reynolds stress)

(barotropic KE is taken by bottom and
 sidewall  friction and Reynolds stress)

(barotropic KE is taken by bottom and
 sidewall  friction and Reynolds stress)

The nondissipative KE model applies to the theories assuming
both a sloping bottom and an inhomogeneous density distribu-
tion (shaded box). The dissipative KE model applies to the other
theories

studies, such as Hallberg and Gnanadesikan (2001),
Karsten and Marshall (2002), and Aiki and Richards
(2008).

The nondissipative KE model applies to the theories
of MP51 and JB89 who suggested that the wind stress
over the Southern Ocean must be canceled by the
difference of pressure upstream and downstream of
a bottom ridge (Section 1). This model assumes the
presence of only ∇ H �= 0 and ∇ρ �= 0 (Table 2). The
balance of momentum is written by Eq. 1 which is
the depth integral of Eq. 32. Thus the balance of mean
KE becomes the barotropic WER (Eq. 36), with its
spatial integral in a band δ� of barotropic streamlines
being written by

0�−
∫

δ�

V
bt
wind ·

∫ 0

−H
∇ p dz d2x +

∫
δ�

V
bt
geo ·

∫ 0

−H
F dz d2x,

(42)

which is illustrated by Fig. 3a. Equation 42 is quan-
titatively identical to Eq. 2 because of Eq. 25. The
HPG work in Eq. 42 and the JEBAR work in Eq. 2
are sequentially connected to the budget of total PE
in Fig. 2. The nondissipative KE model, Eq. 42, can
be viewed as a case where the work of wind stress
on the barotropic component of geostrophic velocity is
fully balanced by the creation of PE by the barotropic
component of wind-induced Ekman velocity. This is the
barotropic WER.

In Section 2 we have shown the mathematical con-
straint that the integrated pressure term in Eq. 42 van-
ishes in two cases: either when ∇ H = 0 or when ∇ρ =
0. These conditions apply to the theories of Stommel
(1957), Webb (1993), Ishida (1994a, b), Krupitsky and
Cane (1994), Wang (1994) and Cessi (2007), and are
classified in the present study as the dissipative KE
model (Table 2). In order for the volume budget of
the barotropic KE to be closed without conversion into
PE, one needs to introduce dissipative processes for
mean KE, such as boundary friction, horizontal mixing,

and the Reynolds stress. The integrated balance of
barotropic KE becomes,

0�
∫

δ�

V
bt
geo ·

∫ 0

−H
F dz d2x+

∫
δ�

V
bt
geo ·

∫ 0

−H
D dz d2x, (43)

which can be derived by taking the spatial integral in
δ� of the sum of Eqs. 36 and 38. In other words, the
dissipative KE model can be regarded as a case where
both WER and DER are present and of the same
strength. The energy cycle of the dissipative KE model
is illustrated by the composite of Fig. 3a, c.

To illustrate the local and integrated budgets of
barotropic KE in the dissipative KE model, our expla-
nation in the following is associated with the western
boundary current theory of Munk (1950) that consists
of a Sverdrup interior region and a frictional western
boundary region. In regions where the path of the ACC
is away from coastal boundaries or continental slopes—
which correspond to the Sverdrup interior region in
Munk (1950)—the positive work of wind stress is locally
canceled by the negative work of the HPG (which is the
WER). Because of the aforementioned mathematical
constraint that the integrated HPG work should vanish,
the local work of the HPG changes sign somewhere.
Hence in regions where the path of the ACC touches
coastal boundaries or continental slopes—with associ-
ated frictional western boundary layers—the positive
work of the HPG is locally canceled by the negative
work of boundary friction and the Reynolds stress
(which is the DER).

With the above concepts in mind, the practical goals
for the numerical analysis in Section 4 are to (1) de-
termine the global distribution of the contributions of
the wind-induced Ekman velocity and the total-drag
ageostrophic velocity, which is intended to identify
both wind- and buoyancy-induced circulations in the
global ocean (Section 3.2), (2) quantify the relative
magnitudes of Eqs. 36 and 37 in the global ocean, which
is intended to compare the importance of JEBAR and
Ekman pumping/suction, respectively, in feeding the
PE (Section 3.3), and (3) examine the validities of
the nondissipative and dissipative KE models for the
barotropic dynamics of the ACC (Section 3.4).

4 Numerical investigation

We analyze the output of a high-resolution (0.1◦ × 0.1◦
in the horizontal direction with 54 depth levels) near-
global OGCM simulation which was integrated for a
51-year period (Masumoto et al. 2004). This simula-
tion, which is called the OFES (OGCM for the Earth
Simulator) climatological run, was performed using
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the Geophysical Fluid Dynamics Laboratory Modular
Ocean Model version 3 (MOM3, Pacanowski and
Griffies 2000) and climatological atmospheric forcing
(Kalnay et al. 1996). Our choice of analyzing the output
of a climatological run (rather than the output of a
hindcast run) is intended to minimize the effect of
annual variability. The model domain extends from
75◦S to 75◦N. The artificial boundaries at 75◦S and 75◦N
are solid (i.e., no meridional velocity is allowed), and
have buffer zones on the equator side of each where
the temperature and salinity field are relaxed to the
monthly-mean climatological values at all depths.

The KPP mixing scheme (Large et al. 1994) was
used for vertical subgrid-scale viscosity. However, this
quantity was not available to our analysis: it had not
been stored in the model output and we found it
difficult to reproduce the parameters of the complex
KPP scheme offline. A biharmonic operator was used
in OFES for horizontal subgrid-scale mixing with a
coefficient of −27 × 109 m4 s−1 at the equator (which
decreases poleward in proportional to the cube of the
zonal size of grid cells (Smith et al. 2000)). Since MOM3
(OFES) is discretized in z coordinates, boundary fric-
tion is caused at both bottom and (subsurface) sidewalls
of grid cells. While the bottom friction in the model
is parametrized by the standard quadratic bottom drag
with a standard coefficient of 0.0025, the (subsurface)
sidewall friction in the model is included as part of
the biharmonic horizontal mixing operator mentioned
above. These frictions maintain the Stommel (1948)
and Munk (1950) layers of western boundary currents,
respectively, but the relative importance in OGCMs has
been less investigated in previous studies.

The volume transport of the ACC through the Drake
Passage in the OFES climatological run is 152.5 Sv,
where 1 Sv (a Sverdrup) is 106 m3 s−1. This is reasonably
realistic value if compared with the observed values
of 134 ± 27 Sv (Cunningham et al. 2003). The OFES
climatological run is also successful in simulating the
overflows of North Atlantic Deep Water (hereafter
NADW) from the Nordic Seas and Antarctic Bottom
Water (AABW) from the Weddell Sea (Masumoto
et al. 2004; Sasai et al. 2006), but not the overflows of
Mediterranean Sea Water and Red Sea Water in the
North Atlantic and Indian Oceans, respectively.

The bottom topography of OFES is represented by
the so-called partial step scheme with its performance
being partially assessed by Merryfield and Scott (2007).
Further details and assessments of the OFES climato-
logical run are given in Nakamura and Kagimoto (2006)
and Aiki and Richards (2008).

The low-pass temporal filter (overbar) in Sections 1–
3 was set to annual means in our model analysis. We

analyzed the output from the 46th to 51th years of the
OFES climatological run. The distributions and values
of energies and energy conversions presented below
refer to the composite of six sets of the annual results,
unless noted otherwise. The hydrostatic pressure in the
present analysis was calculated from in situ density, as
in the primitive equations used in OGCMs including
OFES. For simplicity, the sea surface in the present
analysis was treated as a rigid rather than a free surface
(the latter of which is included in OFES).

4.1 Barotropic and baroclinic KEs

The global distribution of the barotropic and baroclinic
parts of mean KE in each vertical column is shown in
Fig. 5. The volume integrals of the mean barotropic
and baroclinic KEs in the global ocean amount to 500
and 681 PJ, respectively, where 1 PJ (a petajoule) is
1015J. We have confirmed that the annual variability for
each of the barotropic and baroclinic KEs is sufficiently
small (Appendix C).

  

  

  

Fig. 5 Vertical integrals
∫ 0
−H dz of a mean barotropic KE and b

mean baroclinic KE [J m−2]. All the distributions and values of
energies and energy conversions shown in the present study are
the composites of six sets of annual results from the 46th to 51th
years of the OFES climatological run, unless noted otherwise.
The net value over the global ocean, given to the top right of each
figure, is calculated for each quantity (1 PJ = 1015 J)
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The barotropic KE (Fig. 5a) depicts the positions
of major currents at middle and high latitudes, such
as the ACC, the Agulhas Current, and the western
boundary currents in each basin. The barotropic KE
has little signal at low latitudes, whereas the baroclinic
KE (Fig. 5b) clearly captures the equatorial currents
in each basin. The ratio of the barotropic component
of mean KE to the total mean KE (Fig. 6) ranges
0–0.2 in equatorial regions where the thermocline is
shallow. The ratio increases poleward, reaching a value
0.5 along a latitude of about 40◦S in the Southern Ocean
and 50◦N in the North Atlantic Ocean, and is greater
than 0.5 at higher latitudes. The ratio is more than
0.8 in the Weddell, Ross, and Labrador Seas where
the surface mixed layer is deepened by atmospheric
cooling.

4.2 Contribution of the wind-induced Ekman velocity

We first look at the work of wind forcing on the
barotropic velocity (Fig. 7a) whose rate is given by V

bt ·∫ 0
−H F dz = V

bt · τwind in Eq. 23. Its global integral is
243 GW, where 1 GW is 109 W, with main contributions
coming from the Indian Ocean sector of the Southern
Ocean. This is compared with the work of wind forc-
ing on baroclinic velocity (Fig. 7b) whose rate is ap-
proximated by

∫ 0
−H V

bc · F dz � ∫ 0
−H V

bc
exp(z/lbld) dz ·

τwind/lbld from Eqs. 29 and 48, Its global value is
747 GW with main contributions coming from the en-
tire Southern Ocean and the equatorial Pacific Ocean.
Here, the ratio of the barotropic and baroclinic working
rates of wind forcing (about 1:3) is determined for the
first time in oceanic studies.

  

  

  

  

Fig. 6 The ratio of barotropic KE to the sum of barotropic and
baroclinic KEs in Fig. 5 (nondimensional)

The contribution of the barotropic component of the
wind-induced Ekman velocity—the barotropic WER,
Eq. 36, in Fig. 3a—can be identified by comparing the
barotropic working rate of wind forcing (Fig. 7a) with
the barotropic working rate of the HPG (Fig. 7c), the
latter of which is given by −V

bt · ∫ 0
−H ∇ p dz in Eq. 23.

In the entire Southern Ocean (excluding the Drake Pas-
sage region), the barotropic work of the HPG is largely
negative which appears to cancel the positive work of
wind forcing in the same region (boxed in Fig. 7a, c).
This negative work of the barotropic HPG indicates a
decrease in mean KE, which results from the Ekman
velocity “pushing” water columns in the direction of
higher pressure (i.e., northward). The northward HPG,∫ 0
−H ∇ p dz, is associated with the eastward geostrophic

velocity of the ACC, and is attributed mainly to the
gradient in the sea surface pressure. The barotropic
WER is also identified in the Labrador Sea (boxed
in Fig. 7a, c) where the work of wind forcing and
the HPG are anticorrelated. Elsewhere in the global
ocean, there are some regions where the barotropic
work of the HPG is locally positive: such regions are
revisited in the next subsection. Because both positive
and negative signals are scattered in the global ocean,
the global barotropic working rate of the HPG—which
can be interpreted as the global working rate of JEBAR
(OFES has no fluxes through the model boundaries at
75◦S and 75◦N)—is nearly zero (−2 GW) and cannot
cancel the 243 GW from the barotropic working rate
of wind forcing (Fig. 7a). As for the energy balance of
the ACC, the positive work of the HPG in the Drake
Passage region needs to be explained (Section 4.3) and
the regional statistics for both the Southern Ocean
and the streamlines of the ACC need to be calculated
(Section 4.4) before determining the validity of the
nondissipative and dissipative KE models.

The contribution of the baroclinic component of the
wind-induced Ekman velocity—the baroclinic WER,
Eq. 37, in Fig. 3b—can be identified by comparing
the baroclinic working rate of wind forcing (Fig. 7b)
with the baroclinic working rate of the HPG (Fig. 7d),

the latter of which is given by − ∫ 0
−H V

bc · ∇ p dz in
Eq. 29. Negative (positive) values indicate a decrease
(increase) in the mean KE. Clearly there is a strong
anticorrelation between the baroclinic wind work and
the baroclinic HPG work in many regions of the global
ocean (boxed in Fig. 7b, d), such as outside the Drake
Passage region in the Southern Ocean, the equatorial
Pacific Ocean, the North Pacific Ocean, the equator-
ial Indian Ocean, the North Atlantic Ocean, and the
Caribbean Sea. This tendency for the two terms to can-
cel gives evidence of the wind-induced Ekman veloc-
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Fig. 7 The barotropic and baroclinic working rates of: a, b wind
forcing; c, d pressure gradient; e, f overall dissipative processes
for mean KE (W m−2) in Eqs. 23 and 29, respectively. The
combined dissipative processes for mean KE consist of the work
terms of horizontal viscosity, bottom friction, and the Reynolds

stress divergence that are plotted in Fig. 8. The sign of each
quantity is relative to the budget of the mean KE, with the
net value over the global ocean being calculated (1 gigawatts
(GW) = 109 W). c, d The working rate of the HPG is plotted
with horizontal Gaussian smoothing with a radius of 1.0◦

ity steepening (relaxing) the slope of density surfaces
near the sea surface in response to winds blowing in
(against) the direction of surface currents (cf. Thomas
and Lee 2005). Elsewhere in the global ocean, there
are some regions—near the western boundaries of each
basin—where the baroclinic work of the HPG is locally
positive, and are explained in the next subsection. The
global rate of −577 GW for the baroclinic work of the
HPG largely cancels the 747 GW from the wind forcing.
The residual imbalance (−577 + 747 GW = 170 GW)

must be attributed to the effect of dissipative processes,
as we see in the next subsection.

4.3 Contribution of the total-drag ageostrophic
velocity

This section examines whether or not the aforemen-
tioned positive signals in the working rate of the HPG
in near-coastal regions (Fig. 7c, d) are canceled by the
effect of bottom friction, horizontal viscosity, and the
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Reynolds stress. The working rate of overall dissipative
processes for mean KE on barotropic and baroclinic
velocities in Eqs. 23 and 29 are estimated in the present
study by using

V
bt ·

∫ 0

−H
D dz=V

bt ·
[
−τ btm+

∫ 0

−H
(B+R) dz

]
, (44)

and
∫ 0

−H
V

bc · D dz � V
bc|z=−H · (−τ btm)

+
∫ 0

−H
V

bc · (B + R) dz, (45)

respectively (Appendix D). The term
∫ 0
−H SmidV

bc ·
τ z dz in Eq. 29, which is the working rate of
vertical shear stress at mid depths of the ocean,
was not analyzed in the present study because
the three-dimensional distribution of vertical viscos-
ity was unavailable for the analysis. The Reynolds
stress divergence R in Eqs. 44 and 45 is cal-
culated from 3-day snapshots of three-dimensional
velocity fields throughout the 46th year of the
OFES climatological run; only for this year were
3-day snapshots stored as part of the model output. The
46th year has as many as 121 snapshots which is enough
to remove the effect of inertial oscillations.

    

Fig. 8 As in Fig. 7e, f, but separated into contributions from: a,
b horizontal viscosity; c, d bottom friction; and e, f the Reynolds
stress divergence in Eqs. 44 and 45, respectively. e, f The working

rate of the Reynolds stress divergence is plotted with horizontal
Gaussian smoothing with a radius of 1.0◦
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The contribution of the barotropic component of
the total-drag ageostrophic velocity—the barotropic
DER, Eq. 38, in Fig. 3c—can be identified by com-
paring the barotropic work of the HPG (Fig. 7c) and
the barotropic work of overall dissipative processes
(Fig. 7e). They are roughly anticorrelated in many re-
gions of the global ocean (boxed in Fig. 7c, e), such
as in the East Greenland Current, the Gulf Stream,
the North Brazil Current, the eastern coast of the
Weddell Sea, the region between 135◦E–135◦W in
the Southern Ocean (the Tasman Fracture Zone, the
Macquarie Ridge, the Campbel Plateau, and the
Pacific–Antarctic Ridge), and in the Bering Strait. This
tendency of anticorrelation gives evidence of the total-
drag ageostrophic velocity pushing water columns in
the direction of lower pressure to recover barotropic
KE. Here we find that most of the positive signals in
the work of the HPG (Fig. 7c) can be qualitatively
explained by the DER. The lack of a clear local anticor-
relation in some regions such as the region of the Drake
Passage and the Malvinas Current (i.e., the Scotia Sea
and the Falkland Plateau) suggests the advection of
mean KE by the mean flow may be important. The
global barotropic working rate of overall dissipative
processes (−216 GW) comprises −133 GW for horizon-
tal viscosity, −67 GW for bottom friction, and −16 GW
for the Reynolds stress divergence (Fig. 8a, c, e), with
the main contribution coming from horizontal viscosity
particularly in the East Greenland Current and off the
Antarctic Peninsula.3 These two regions are known for
the overflows of NADW from both the Denmark Strait
and the Faroe Bank Channel, and AABW from the
Weddell Sea. Now most of the signals in the barotropic
work of the HPG in the global ocean (boxed in Fig. 7c)
are qualitatively explained by either the WER or DER,
namely the role of the wind-induced Ekman or total-
drag ageostrophic velocity.

The contribution of the baroclinic component of the
total-drag ageostrophic velocity—the baroclinic DER,
Eq. 39, in Fig. 3d—can be identified by comparing the
baroclinic work of the HPG (Fig. 7d) and the baroclinic
work of overall dissipative processes (Fig. 7f). Much of

3The result of our analysis for the work of bottom friction may
be compared with the result of a similar analysis by Sen et al.
(2008) using observed velocity profiles. In contrast to the present
study focusing on the budget of mean KE, they and Arbic et al.
(2009) estimated the dissipation rate of total (mean plus eddy)
KE, which appears to be the reason why they did not take into
account the work of the HPG (including JEBAR and Ekman
pumping/suction) as a sink of KE. Another difference is that,
while Sen et al. (2008) did not analyze the work of bottom friction
in dense water overflows, we show it is more significant than the
friction in western boundary currents in the global ocean.

the signal in the latter has an opposite signed signal
to the former in many regions (boxed in Fig. 7d, f),
such as in the region of the Denmark Strait and
the Faroe Bank Channel, the extension of the Gulf
Stream, the North Brazil Current, the extension of
the Kuroshio, the Celebes Sea in the western equato-
rial Pacific Ocean, the eastern coast of Australia, the
eastern coast of Africa and Madagascar, the Agulhas
Current, and around 60◦E, 40◦S (i.e., east of the Crozet
Plateau). This tendency for the baroclinic work of over-
all dissipative processes to be canceled by the baro-
clinic work of the HPG gives evidence of the total-
drag ageostrophic velocity relaxing the slope of density
surfaces to recover baroclinic KE. Again, we find that
most of the signals in the baroclinic work of the HPG
in the global ocean (boxed Fig. 7d) are qualitatively
explained by either the WER or DER, namely the role
of the wind-induced Ekman or total-drag ageostrophic
velocity. As for the barotropic component, the lack of
a clear local anticorrelation in some regions such as the
region of the Drake Passage and the Malvinas Current
suggests the possible importance of advection of mean
KE by the mean flow.

The global baroclinic working rate of overall dissi-
pative processes (−203 GW) comprises −121 GW for
horizontal viscosity, 9 GW for bottom friction, and
−91 GW for the Reynolds stress divergence (Fig. 8b,
d, f). The energy decrease by horizontal viscosity is sig-
nificant in the Denmark Strait and the Drake Passage
(Fig. 8b). The energy decrease by the Reynolds stress
(i.e., a deceleration of the mean flow) is significant in
the western boundary currents of each ocean (Fig. 8f).
There are some regions where the work of overall
dissipative processes (Fig. 7f) is positive (i.e., increase
of KE) which is an indication of mean flow accelera-
tion caused by the Reynolds stress. Such regions are
found in the extensions of the Gulf Stream and the
Kuroshio, and some localized regions in the Southern
Ocean where the path of the ACC is constrained by
steep bottom topography (Fig. 8f). This result is partly
consistent with Ivchenko et al. (1996) who identified an
acceleration of the mean flow in the ACC.

4.4 Regional statistics

We examine the strengths of the WER and DER in
each of the Southern, North Atlantic, North Pacific,
Equatorial Pacific, Equatorial Atlantic, and Indian
Oceans. Table 3 lists regional statistics for energy
and working rate shown in Section 4.1–4.3. Note the
definition of the WER and DER neglects the advection
of mean KE by the mean flow. Since the residual of the
sum of the calculated terms in each ocean is relatively
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small in most cases when compared the largest term
(Table 3), we assume neglect of the advective flux
does not compromise our physical interpretations. The
exception is the sum of the barotropic terms in the
Indian Ocean.

The working rates in Table 3 are subject to about
10% error associated with inaccuracies of our assump-
tions and analysis code (Appendix C). These errors are
within an acceptable range for our purpose of examin-
ing work balances to the leading order.

Assessing the validities of the nondissipative and dis-
sipative KE models for the barotropic dynamics of the
ACC is one of the purposes of the present study. As far
as we know, the present study describes the first result
of an analysis of the simulated ACC at 0.1◦ × 0.1◦ reso-
lution. Early reports of confirming the momentum bal-
ance between wind stress and the pressure difference
across a bottom ridge (MP51; JB89) were derived
by analyzing the outputs of eddy-permitting OGCM
simulations at about 0.5◦ × 0.25◦ resolution where the
transports of the model ACC was in an unrealistic
range: 200 Sv in Gille (1997) and 18 Sv in Ivchenko
et al. (1996). Recently the momentum balance between
wind stress and the bottom pressure difference was
again confirmed by Grezio et al. (2006) who analyzed
the outputs of two OGCM simulations with the ACC

transports being in a realistic range (152 and 134 Sv in
the cases of a horizontal resolution of 0.25◦ × 0.25◦ and
0.28◦ × 0.14◦, respectively). However their momentum
analysis was performed over a relatively limited re-
gion (a latitude band between 55◦ and 63◦S) which
covers only half (the polar side) of the regions where
the barotropic streamlines of the ACC are present.
A related discussion appears in Olbers and Ivchenko
(2001). We expect that the other half of the region (the
equator side of 55◦S) is more important for the budget
of KE. This is because, in all OGCM simulations for
the ACC, both wind stress and barotropic currents are
more intense on the equator side (cf. Toggweiler and
Russell 2008).

In the entire Southern Ocean (south of 20◦S,
Table 3), the barotropic working rate of wind forcing
(191 GW) is balanced mainly by the working rate
sum of the HPG (−99 GW) and horizontal viscosity
(−87 GW). To exclude contributions from the Agulhas
Current, the Malvinas Current, and the overflow of
AABW (off the Antarctic Peninsula) from the above
estimate, we performed another analysis for the regions
between barotropic streamfunctions of 30 and 120 Sv
of ACC (dotted lines in Figs. 9 and 10). The spatial
integral in a band δ� of barotropic streamlines allows
us to interpret the barotropic work of the HPG as

    

    

   

Fig. 9 As in Fig. 7 except for barotropic working rates in the
Southern Ocean. Dotted contours in each figure are annual mean
barotropic streamfunctions of 30 and 130 Sv. The net value over

the regions banded by the contours (i.e., streamlines of ACC) is
calculated for each quantity
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the work of JEBAR (Section 2). The result in Ta-
ble 4 shows that again the barotropic working rate
of wind forcing (81 GW) is balanced mainly by the
sum of the HPG (−42 GW) and horizontal viscosity
(−25 GW) rate of working. The work of horizontal
viscosity is significant (Fig. 10a) in only four localized
regions in the band of streamlines of the ACC: the Ker-
gulen Plateau (70◦E), the Macquarie Ridge (160◦E),
the Pacific–Antarctic Ridge (140◦W), and the Drake
Passage. These steep topographies constrain the path
of the ACC and apply (subsurface) sidewall friction.
Moreover the ACC hits tiny islands in the Kergulen
Plateau and the Macquarie Ridge. The magnitude of
DER (38 GW = 25 + 5 + 8 GW in Table 4) in the
ACC is about half of the magnitude of WER (81 GW).
We see, therefore, that the KE budget of the ACC
is explained by an equal blend of the nondissipative
and dissipative KE models, given by Eqs. 42 and 43,
respectively.

Outside the Southern Ocean, the barotropic DER
overwhelms the barotropic WER in every ocean. It
is shown in Table 3 that the barotropic work of the
HPG is positive in all of the North Atlantic, North
Pacific, Equatorial Pacific, Equatorial Atlantic, and In-
dian Oceans, and is largely canceled by the work sum of
horizontal viscosity and bottom friction in each ocean.
In the North Atlantic and North Pacific Oceans, the

working rates of the HPG (58 and 22 GW, respectively)
are much larger than the working rates of wind forcing
(17 and 4 GW, respectively), indicating that barotropic
velocities in these oceans are maintained mainly by the
dissipative processes rather than the wind. This positive
work of the HPG is caused not only by the overflow
of NADW in the North Atlantic Ocean (explained in
Section 4.3) but also by the onshore intrusions of the
Gulf Stream and the Kuroshio at latitudes between
20◦ and 30◦N (Fig. 7c). In other words the mean cur-
rents are steered in the direction of lower pressure
by barotropic ageostrophic velocities associated with
bottom and (subsurface) sidewall friction. On the other
hand in low latitudes (the Equatorial Pacific, Equator-
ial Atlantic, and Indian Oceans), the barotropic work-
ing rate of the HPG (4, 5, and 5 GW, respectively)
is smaller than the barotropic working rate of wind
forcing (12, 11, and 7 GW, respectively). This indicates
that the WER is slightly strengthened in low latitudes.

Next we look at the budget of mean baroclinic KE
in each ocean. The Southern and Equatorial Pacific
Oceans are the main receivers of the baroclinic work
of wind forcing (352 and 206 GW, respectively). In
middle and high latitudes (i.e., the Southern, North
Atlantic, and North Pacific Oceans), the work of wind
forcing is largely canceled by the work of the HPG,
which indicates the dominance of the WER. In the

Fig. 10 As in Fig. 9c, but separated into contributions from a horizontal viscosity, b bottom friction, and c the Reynolds stress
divergence
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Table 4 As in Table 3 except for barotropic working rates in the
barotropic streamlines of the ACC between 30 and 130 Sv

ACC
streamlines
(GW)

Barotropic power of wind forcing 81
Barotropic power of pressure gradient (JEBAR) −42
Barotropic power of horizontal viscosity −25
Barotropic power of bottom friction −5
Barotropic power of Reynolds stressa −8
Advective interaction 5
Sum of the above six values 6

The rates are adapted from Figs. 9 and 10
aThe working rate of the Reynolds stress divergence was esti-
mated by using 3-day snapshots throughout the 46th year of the
same OFES run

Equatorial Pacific Ocean, only half of the working rate
of wind forcing (206 GW) is canceled by the working
rate of the HPG (−120 GW). We expect the residual
to be canceled by the work of vertical viscosity at
mid depths of the ocean, because horizontal veloci-
ties in low latitudes have high vertical shears (Sec-
tion 4.1, Fig. 6). Indeed Table 3 shows that the ratio of
baroclinic/barotropic KEs is highest in the Equatorial
Pacific Ocean (220 PJ/23 PJ). In the Equatorial Atlantic
and Indian Oceans, the working rates of wind forcing
(53 and 52 GW, respectively) is balanced mainly by the
working rate sum of the HPG (−22 and −36 GW, re-
spectively) and the Reynolds stress (−22 and −19 GW,
respectively).

We have not explained the working rate of advective
interaction listed in Table 3 and its global distribution
shown in Fig. 11. These are calculated by V

bt · N[Vbc] in

Fig. 11 The energy conversion [W m−2] between mean
barotropic and mean baroclinic KEs by the advective interaction

term V
bt · N[Vbc] in Eqs. 23 and 29. The sign is relative to the

budget of mean barotropic KE, with the net value over the global
ocean being calculated

Eqs. 23 and 29. Although it is hard to characterize the
noisy global distribution, the working rate of advective
interaction in the North Atlantic Ocean is as significant
as the other working rates (Table 3), which should be
investigated in a future study.

The working rate of the HPG in Table 4 is based on
the volume integral in the band between two barotropic
streamlines circling Antarctica, and thus can be inter-
preted as the working rate of JEBAR. On the other
hand, the regional statistics for the working rate of
the HPG in Table 3 are not necessarily equal to the
working rate of JEBAR or Ekman pumping/suction in
each region. This is because of pressure fluxes through
the open boundaries of each region.

5 Summary

In order to develop an understanding of the main-
tenance mechanisms of the general circulation in the
global ocean, this study investigates the budget of the
annual mean KE in a climatological ocean simulation,
and points out important regions concerning the domi-
nant equilibria in the energy balance. The overall con-
tent of this study serves to promote model comparisons
of energetics in future studies, assess parametrization
of frictional processes in ocean models, and revisit
hypotheses for the momentum and vorticity balances
in general circulation theories.

5.1 Approach of the analysis

The dominant equilibria in the energy balance are ex-
plained using two separate energy routes. The WER
represents the role of the wind-induced Ekman ve-
locity. The DER represents the role of the total-drag
ageostrophic velocity (which is defined in the present
study to refer to the sum of the bottom-frictional Ek-
man velocity and its variants). The utility of looking
at these energy routes has not been explored to any
significant extent in previous numerical studies before
Aiki and Richards (2008). This is because the interac-
tion between KE and PE in a stratified fluid is tradi-
tionally examined through the term ρgw (rather than
−V · ∇ p). This tradition comes from either a focus on
the budget of PE or the use of the quasi-geostrophic
potential vorticity equation (the latter of which yields a
term proportional to wind stress curl in place of ρgw)
in deriving the energy equations. While the horizontal
distribution of ρgw displays both positive and negative
signs (not shown), the horizontal distribution of −V ·
∇ p tends to be single signed (for each of the WER
and DER), the latter of which greatly simplifies the
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interpretation of the KE budget.4,5 This has enabled
us to determine the contributions of the wind-induced
Ekman and total-drag ageostrophic velocities in the
global ocean.

In order to investigate the energetics of JEBAR, the
mean KE is separated into that associated with the
barotropic and baroclinic components of velocity. We
summarize the relationship between the role of JEBAR
and the Ekman dynamics, as follows. The work of the
barotropic component of the Ekman (or ageostrophic)
velocity on the barotropic component of the HPG is
connected to the work of JEBAR and then to the bud-
get of PE. On the other hand the work of the baroclinic
component of the Ekman (or ageostrophic) velocity on
the baroclinic component of the HPG is connected to
the work of Ekman pumping/suction and then to the
budget of PE.

5.2 Result of the analysis

The budget of annual mean KE in a high-resolution
semi-global simulation has been comprehensively an-
alyzed in the present study. As expected, the budget
of baroclinic KE is found to be maintained mainly by
the WER rather than the DER: the wind-induced baro-
clinic circulation overwhelms the buoyancy-induced
baroclinic circulation in the global ocean. Most of the
wind-induced baroclinic energy is converted to PE by
the sequentially connected work of the baroclinic HPG
and the Ekman pumping/suction in the global ocean.
In contrast to the baroclinic budget, the global work
of the barotropic HPG—which is connected to the
global work of JEBAR and then to the budget of PE—
is found to be nearly zero, as it changes sign in the
ACC (feeds PE) and in the overflows of NADW and
AABW (releases PE). This indicates that the wind- and
buoyancy-induced barotropic circulations in the global

4A successful application of an analog of this characteristic is the
Gent and McWilliams (1990) scheme which parametrizes the role
of eddies in baroclinic instability. The principle of the parame-
trization is to adiabatically decrease the volume integral of PE
(i.e., not local PE). This is achieved by making − ∫ 0

−H Veddy ·
∇ p dz = ∫ 0

−H

∫ z
−H Veddydz · ∇ρ dz single signed (positive) in

each vertical column where Veddy is the horizontal component
of eddy-induced velocity for parametrization.
5A concern appears if PE is defined as ρ′′gz based on the density
anomaly ρ′′[x, y, z, t] ≡ ρ[x, y, z, t] − ρback[z] where ρback[z] is
the density of a background stratification. The local value of
ρ′′gw is sign-indefinite and sensitive to the choice of ρback[z],
which would eventually require the use of a volume integral to
see the residual. In contrast to this the local value of V · ∇ p′′
(where p′′ is the hydrostatic pressure based on ρ′′) is not sensitive
to the choice of ρback[z] because ∇ p = ∇ p′′. A related discussion
appears in Aiki et al. (2011).

ocean are of the same strength with opposite sign, the
reason for which should be investigated further in a
future study. The relative importance of the barotropic
and baroclinic dynamics in the global ocean can be
quantified by the ratio between the working rates of the
barotropic wind forcing (243 GW) and the baroclinic
wind forcing (747 GW).

The above procedure of energy analysis has been
applied to examine the validity of theories for the
barotropic dynamics of the ACC. We have shown that
depending on how the budget of barotropic KE is
closed, these barotropic theories can be classified into
nondissipative KE models (MP51 and JB89) and dissi-
pative KE models, which has been little mentioned in
previous studies. It is found that about half of the work
of wind forcing on the barotropic component of the
simulated ACC is canceled by the combined effect of
the dissipative processes of mean KE, such as horizon-
tal viscosity, bottom friction, and the Reynolds stress,
with the other half being converted to PE by the se-
quentially connected work of the barotropic HPG and
JEBAR. This indicates that the state of the simulated
ACC is characterized by an equal blend of the dynam-
ics of the nondissipative and dissipative models. The
relative importance of the barotropic and baroclinic
dynamics of the ACC can be quantified by the ratio be-
tween the working rates of the barotropic wind forcing
(191 GW) and the baroclinic wind forcing (352 GW) in
the Southern Ocean.

5.3 Future work

The result of the global analysis identifies some re-
gions where the Reynolds stress divergence accelerates
(rather than decelerates) mean currents and where the
advection by mean flows is significant. These are less
explained in the present study for priority reasons, and
it would be worth focusing on such effects or regions in
a future study (cf. Greatbatch et al. 2010).

Lastly the results of the present study have shown
the importance of horizontal friction at (subsurface)
sidewalls in the ACC, western boundary currents, and
dense water overflows. Recently Sakamoto (2007) and
Nakano et al. (2008), who investigated the separation
of western boundary current in quasi-geostrophic and
primitive equation ocean models, respectively, showed
the dynamical importance of high potential vorticity
water which is formed by friction at the western bound-
ary. This result is in contrast to Hughes and Cuevas
(2001) who suggested that the depth-integrated mo-
mentum and vorticity balances of western boundary
currents are explained by the relationship between the
wind stress and JEBAR, as in the case of MP51 and
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JB89 for the dynamics of the ACC. In other words
the dynamics considered in Hughes and Cuevas (2001)
and Nakano et al. (2008) are explained by the nondis-
sipative and dissipative KE models, respectively. Our
numerical analysis has shown that the barotropic work
of the HPG is positive (which increases KE) outside
the Southern Ocean. This indicates that in OFES the
nondissipative KE model, Eq. 42, is not applicable in
the Pacific, Atlantic, and Indian Oceans. The subsur-
face sidewall friction is an artifact of the way bottom
topography is handled in many z coordinate ocean
models. Its importance in the KE budget, as shown in
this study, suggests the need for further investigation
of dissipation at boundaries in OGCMs. It would be
also interesting to replace the temporal filter in this
study with a horizontal local filter, to see changes in
the working rates of the Reynolds stress and horizontal
viscosity terms.
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Appendix

A JEBAR and bottom form stress

The ocean has at least two kinds of form stress (the
residual effect of the horizontal pressure gradient
(HPG)), namely bottom form stress which is caused
by bottom topography and layer-thickness form stress
which is caused by the perturbation of layer interfaces.
It is the bottom form stress which is similar to but
slightly different from the joint effect of baroclinicity
and bottom relief (JEBAR) (Sarkisyan and Ivanov
1971). Layer-thickness form stress concerns the role of
mesoscale eddies in baroclinic instability. It has already
been investigated by Aiki and Yamagata (2006) and
Aiki and Richards (2008), and is out of the scope of the
present study.

If the HPG term of Eq. 1 is rewritten as − ∫ 0
−H

∇ p dz = −∇ ∫ 0
−H p dz + p|z=−H∇ H, the last term can

be regarded as the bottom form stress vector. This

vector has no vertical component because bottom form
stress originates in the horizontal gradient of the sum of
sea surface and hydrostatic pressure. One way to focus
on the role of bottom form stress is to transform Eq. 1
into the vorticity equation. Two kinds of vorticity equa-
tions have been used in previous studies (cf Greatbatch
et al. 1991; Mellor 1999; Zhang and Vallis 2007),

ρ0 J(�, f ) � J(p|z=−H, H) + ∇ × τwind, (46)

ρ0 J (�, f/H) � J (TPE, 1/H) + ∇ × τwind

H
, (47)

where ψ is a barotropic streamfunction defined by
∇� ≡ ∫ 0

−H V dz × z, and J(A, B) ≡ ∇ A × ∇ B and

TPE ≡ ∫ 0
−H gρz dz. The first term on the right-hand

side of Eq. 46 can be interpreted as the curl of bottom
form stress, J(p|z=−H, H) = ∇ × (p|z=−H∇ H), which is
nonzero if the contours of bottom topography and bot-
tom pressure are not parallel. The bottom pressure is
the sum of the sea surface pressure and the hydrostatic
pressure: p|z=−H = ps + ∫ 0

−H gρ dz.
The first term on the right-hand side of Eq. 47 is

traditionally called the JEBAR term because (1) it does
not contain the sea surface pressure ps, which is in
contrast to the bottom form stress term in Eq. 46, and
(2) it is nonzero if the contours of TPE and H are not
parallel: J(TPE, H) �= 0.

If the spatial integral is taken in the band between
two barotropic streamlines circling Antarctica, the left
hand sides of Eqs. 1, 46 and 47 vanish because of
periodicity, resulting in the volume-integrated momen-
tum and vorticity budgets of the ACC being main-
tained by the balance between wind-induced sources
and pressure-induced sinks (MP51; JB89). Previous
arguments for the budget of momentum or vortic-
ity paid little attention to what the pressure-induced
sinks are connected to. On the other hand, Warren
et al. (1996) pointed out the dynamics of the ACC
could be explained, not necessarily using the concept
of bottom form stress and JEBAR, but using only the
wind-induced Ekman velocity and geostrophic velocity.
Their argument is straightforward in that the momen-
tum equation (Eq. 1) represents the depth integral of
the combined geostrophic and Ekman balance. The
energetics of the flow are useful for clarifying such ar-
guments, as is addressed throughout the present study.

The original JEBAR equation (Eq. 47) can be writ-
ten ∇ A � (ρ0 f/H)∇ψ + TPE∇(1/H) + τwind/H using
an arbitrary scalar quantity A. Taking the outer prod-
uct of ∇ψ , this equation yields ∇ψ × ∇ A � TPE∇ψ ×
∇(1/H) + ∇ψ × τwind/H whose left hand side vanishes
after taking the surface integral

∫
δ�,�

dx2 in the band
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between two barotropic streamlines or in a closed do-
main. This is Eq. 2.

B Work of wind forcing

The present study uses the term work of “wind forcing”
to distinguish it from the work of “wind stress”. The
work of “wind forcing” can be interpreted as the wind
work on the geostrophic velocity (whose global rate
is about 800–1,000 GW (Wunsch 1998)). The work
of “wind stress” (whose global rate is about 2,000–
3,000 GW (Wang and Huang 2004; Von Storch et al.
2007)) is the sum of the wind work on the geostrophic
velocity and the wind work on the Ekman spiral veloc-
ity, the latter of which is canceled by dissipation within
the surface Ekman layer.

By definition the Ekman spiral velocity Vwind is
perpendicular to the wind forcing vector F (i.e., ρ0f ×
Vwind = F). Hence Vwind makes no contribution to the
working rate of wind forcing V · F � (Vgeo + Vwind) ·
F = Vgeo · F at each depth (i.e., the work of wind forc-
ing is nearly equal to the wind work on the geostrophic
velocity). On the other hand, Wang and Huang (2004)
and Von Storch et al. (2007) use integration by parts,∫ 0
−H(Vgeo + Vwind) · F dz � (Vgeo + Vwind)|z=0 · τwind −∫ 0
−H Ssrf(∂Vwind/∂z)τ dz. The first term on the right-

hand side is the working rate of wind stress on both
geostrophic and Ekman spiral velocities while the sec-
ond term is the dissipation rate within the surface
Ekman layer.

In other words, the wind work on the Ekman spiral
velocity and the dissipation in the surface Ekman layer
cancel out in the work of wind forcing V · F. This sim-
plicity will serve to offset the complexity arising from
the barotropic–baroclinic decomposition in the present
study.

The above explanation interprets the work of wind
forcing as the wind work on the geostrophic velocity
for simplicity, with geostrophic balance in mid- and
high-latitudes in mind. Nevertheless there is no need
to single out the geostrophic velocity in estimating the
V · F term in our model analysis. Actually, the work
of wind forcing includes not only the wind work on
the geostrophic velocity but also the wind work on
equatorial currents in low latitudes.

C Residuals in the budget calculation

Confidence in the result of the model analysis
(Section 4) is increased if errors originating in inaccura-
cies of our assumptions and analysis code and are small.

Below we show that the size of errors is generally about
10% and thus does not affect the budget of mean KE to
the leading order.

In order to see if the mean KE is in a statistically
steady state, we have computed the standard deviation
for the year-to-year change of the annual mean KE
during the 6 years of the analysis. The standard de-
viations for the barotropic and baroclinic KEs in the
global ocean are 4.25 and 5.85 PJ, respectively, which
can be interpreted as annual rates of 0.135 GW (=
4.25 PJ/365 day) and 0.186 GW (= 5.85 PJ/365 day).
These rates are sufficiently small when compared with
the working rate of wind forcing (Table 3).

The budget of barotropic KE should be closed in the
(semi) global ocean because the OFES has no volume
fluxes through the boundaries at 75◦S and 75◦N. The
sum of the six working rates in Table 3 associated with
the budget of barotropic KE is very small (−2 GW)
when compared with the working rate of wind forcing
(243 GW). It is also interesting to compute the resid-
ual of the barotropic KE budget over the barotropic
streamlines of ACC which we have looked at in
Section 4.4. The sum of the six barotropic working rates
in Table 4 for the ACC is 6 GW (nonzero), suggesting
the size of the error is about 7% (6 GW/81 GW) of
the working rate of the barotropic wind forcing. It is
concluded that the size of errors in the budget calcu-
lation of the barotropic KE does not unduly affect our
conclusions.

On the other hand, it is difficult to close the budget
of baroclinic KE because we (1) estimated the work-
ing rate of wind forcing by using the approximation
(Eq. 48) and (2) did not estimate the working rate
of vertical shear stress at mid depths of the ocean.
As explained in Section 4.4, the work of mid-depth
shear stress must be significant in the Equatorial Pacific
Ocean where the ratio of barotropic / baroclinic KEs is
lowest in the world’s oceans. If the budget of baroclinic
KE in the Equatorial Pacific Ocean is nearly closed,
the working rate of mid-depth shear stress would be
about −53 GW which is the negative of the sum
of the other six quantities for the Equatorial Pacific
Ocean in Table 3. If this value is tentatively adopted
as the global working rate of mid-depth shear stress,
the sum of this and the other six quantities given in
Table 3 for the global budget of the baroclinic KE
becomes −59 GW, suggesting the size of the error
is about 8% (59 GW/747 GW) of with the global
working rate of the baroclinic wind forcing. Again, we
conclude that the size of errors in the budget calcula-
tion of the baroclinic KE does not unduly affect our
conclusions.
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D Approximation of wind forcing and bottom friction

The equation for mean baroclinic KE, Eq. 29, includes
the term representing the rate of the work done by the
vertical viscosity,

∫ 0
−H V

bc · τ z dz, which consists of con-

tributions from wind forcing SsrfV
bc · τ z, shear stress

at mid depths of the ocean SmidV
bc · τ z, and bottom

friction SbtmV
bc · τ z. Because the three-dimensional

distribution of subgrid-scale vertical viscosity was not
available for our analysis (see Section 4), we could not
determine SmidV

bc · τ z (this is indicated as mid-depth
vertical viscosity in Fig. 2). Nevertheless, to analyze the
working rate of wind forcing on the baroclinic velocity
in Eq. 29, one needs the vertical profile of τ z near
the sea surface because horizontal velocities in model
outputs contain the Ekman spiral velocity with (1) high
vertical shear and (2) components in the direction of
wind forcing.

In calculating
∫ 0
−H SsrfV

bc · τ z dz, we approximated
the vertical profile of τ near the sea surface by using the
(surface) boundary layer depth lbld(x, y) > 0 which had
been stored as part of our model output. The boundary
layer depth is determined by the KPP scheme based on
the Richardson number: see Fig. 7 of Von Storch et al.
(2007) for the global distribution of lbld in the OFES
output. The present study approximated the vertical
profile of τ near the sea surface as,

τ (x, y, z) � τwindexp(z/lbld). (48)

This approximation originates in the classical linear so-
lution of the Ekman spiral (Ekman 1905). According to
analytical solutions, the vertical profile of shear stress
inside the Ekman layer of depth lwind is given by τ (z) =
τwindexp[(z/ lwind)(1 + i)] and τwindexp[(z/ lwind)(1 − i)]
in the Northern and Southern Hemispheres, respec-
tively. The complex (i.e., turning) part has a discon-
tinuity at the equator and has been discarded in our
approximation. The amplitude part of these solutions is
adopted for our approximation (Eq. 48) assuming lbld �
lwind. As shown in Section 4.2, the global working rate
of wind forcing based on the approximation (Eq. 48) is
consistent with values suggested by previous observa-
tional and numerical studies (cf. Wunsch 1998; Aiki and
Richards 2008; Scott and Xu 2009). This suggests that
the errors involved in using the approximation (Eq. 48)
are not large enough to invalid the results.

On the other hand, the working rate of bottom fric-
tion SbtmV

bc · τ z was determined in the present study
by assuming a linear decay of τ in each bottom cell.
As such only the grid cell at the bottom of the ocean

is subject to the sink of momentum and KE by bottom
friction.
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