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Abstract An idealized model for tide propagation and
amplification in semi-enclosed rectangular basins is
presented, accounting for depth differences by a com-
bination of longitudinal and lateral topographic steps.
The basin geometry is formed by several adjacent
compartments of identical width, each having either a
uniform depth or two depths separated by a transverse
topographic step. The problem is forced by an incoming
Kelvin wave at the open end, while allowing waves to
radiate outward. The solution in each compartment is
written as the superposition of (semi)-analytical wave
solutions in an infinite channel, individually satisfying
the depth-averaged linear shallow water equations on
the f plane, including bottom friction. A collocation
technique is employed to satisfy continuity of elevation
and flux across the longitudinal topographic steps be-
tween the compartments. The model results show that
the tidal wave in shallow parts displays slower propa-
gation, enhanced dissipation and amplified amplitudes.
This reveals a resonance mechanism, occurring when
the length of the shallow end is roughly an odd mul-
tiple of the quarter Kelvin wavelength. Alternatively,
for sufficiently wide basins, also Poincaré waves may
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become resonant. A transverse step implies different
wavelengths of the incoming and reflected Kelvin wave,
leading to increased amplitudes in shallow regions and
a shift of amphidromic points in the direction of the
deeper part. Including the shallow parts near the basin’s
closed end (thus capturing the Kelvin resonance mech-
anism) is essential to reproduce semi-diurnal and di-
urnal tide observations in the Gulf of California, the
Adriatic Sea and the Persian Gulf.
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1 Introduction

Understanding tidal dynamics is important for coastal
safety, navigation, and ecology. The tide in many semi-
enclosed basins is the result of co-oscillation with a
larger sea, where basin geometry and topography play
an important role. Examples of such basins that will
be used throughout this study are the Gulf of Califor-
nia, the Adriatic Sea and the Persian Gulf (denoted
GoC, Adr, and PGf, respectively). Typical for each of
these basins is a relatively shallow zone near the closed
end, roughly connected to one (GoC, PGf) or more
(Adr) deeper parts, with a symmetric (GoC, Adr) or a
clearly asymmetric cross-sectional depth profile (PGf;
see Fig. 1). Observations indicate increased amplitudes
near the closed end with amplification factors depend-
ing on the tidal frequency, which suggests a form of
tidal resonance (Garrett 1975; Godin 1993) associated
with the topography near the basin’s closed end.
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To reproduce tide observations, numerical models
with a detailed representation of geometry and topog-
raphy have been developed, in some cases using data
assimilation to fine-tune the open boundary conditions.
This has led to accurate quantitative agreement with
tide observations in the Gulf of California (Carbajal
and Backhaus 1998; Marinone 2000; Marinone and
Lavín 2005), the Adriatic Sea (Malačič et al. 2000;
Cushman-Roisin and Naimie 2002; Janeković et al.
2003; Janeković and Kuzmić 2005) and the Persian
Gulf (Proctor et al. 1994; Sabbagh-Yazdi et al. 2007).
However, a generic model study into the effects of these
spatial depth differences on tide propagation and dissi-
pation in semi-enclosed basins, giving insight into the
underlying physical mechanisms, is still lacking. This
particularly applies to the shallow zone near the closed
end of the basins mentioned above and the asymmetric
cross-sectional depth profile of the Persian Gulf. In this
study, we develop and test such an idealized process-
based model, accounting for depth differences by a
combination of longitudinal and lateral topographic
steps. These topographic steps, seemingly a strong sim-
plification of true bathymetry, are partly motivated by
computational considerations explained below, but also
by the rather abrupt depth changes seen in real basins.
For example, the distinction in a shallow Northern
Adriatic, the mid-Adriatic and the deep Southern Adri-
atic Pit is well recognized (e.g., Artegiani et al. 1997;
also see Fig. 1b).

Our idealized process-based model extends the
work by Taylor (1922) and several later studies.
Taylor (1922) investigated the problem of Kelvin wave
reflection in a rotating, rectangular basin of uniform
depth. Using the linear depth-averaged shallow water
equations on the f plane, the solution can be written as
a superposition of analytical wave solutions: an incom-
ing Kelvin wave, a reflected Kelvin wave and an infinite
series of Poincaré modes generated at the closed end.
A collocation technique can be used to obtain the
coefficients of these modes (Brown 1973). Because of
rotation, the solution expresses an amphidromic system
with elevation amphidromic points (zero tidal range)
and current amphidromic points (no velocities), alter-
natingly found on the centerline of the basin (provided
that it is sufficiently narrow such that all Poincaré
modes are evanescent). Although Taylor’s solution
qualitatively represents the main features of tides in
semi-enclosed basins, two strong simplifications are the
absence of a dissipation mechanism and the assumption
of uniform depth.

Regarding dissipation, Hendershott and Speranza
(1971) replaced the no-normal flow condition at the
closed end with a partially absorbing one, which re-
duces the amplitude of the reflected Kelvin wave
and shifts the amphidromes away from the center-
line. To estimate the absorption coefficients for the
Adriatic Sea and the Gulf of California, two general-
ized Kelvin waves were fitted to tide observations in
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the central parts of these basins, where the (evanes-
cent) Poincaré waves cannot be felt. Alternatively,
Rienecker and Teubner (1980) incorporated a linear
bottom friction formulation, which causes damping of
the (Kelvin) waves as they propagate, shifting the am-
phidromes onto a straight line making a small angle
with the boundaries. Similar damping and displacement
of amphidromes are seen in three-dimensional mod-
els, where dissipation is represented using a vertical
eddy viscosity and a no-slip (or partial-slip) condi-
tion at the bed, see e.g., the Kelvin wave analysis by
Mofjeld (1980), the numerical work by Davies and
Jones (1995, 1996), and the recent model for elongated
basins by Winant (2007). Finally, adding horizontally
viscous effects introduces boundary layers and a weak
further displacement of the amphidromic points (Roos
and Schuttelaars 2009).

Allowing arbitrary depth variations, the eigenmodes
can in general no longer be found analytically. Most
analytical studies have been restricted to Kelvin waves,
e.g., for linear (Hunt and Hamzah 1967; Staniforth et al.
1993), parabolic (Hidaka 1980), and stepwise lateral
depth profiles (Hendershott and Speranza 1971), and
for linear and exponential longitudinal depth profiles
(Godin and Martínez 1994). Note that Hidaka (1980)
and Staniforth et al. (1993) also considered Poincaré
waves, but in a different way: they fixed the wave
number to a real value and solved for the (possibly
complex) frequency. This approach is suitable for initial
value problems but not for forced problems (Ripa and
Zavala-Garay 1999). Instead of using a superposition of
eigenmodes, Winant’s (2007) three-dimensional model
is based on a truncated power series expansion in the
basin’s width-to-length ratio. The solution can be found
analytically for a uniform depth and numerically for,
e.g., a parabolic lateral profile.

The innovation of our study is twofold. Firstly, we
extend Rienecker and Teubner’s (1980) frictional ver-
sion of Taylor’s (1922) model to account for depth
variations in the longitudinal and lateral directions. To
this end, we distinguish several adjacent compartments,
each having either a uniform depth or two different
depths separated by a transverse step. The solution in
each compartment can be written as a superposition of
wave solutions satisfying the linear shallow water equa-
tions, including bottom friction. For a compartment of
uniform depth, these solutions are analytically avail-
able (Rienecker and Teubner 1980). For a transverse
step, they will be derived semi-analytically, following
Hendershott and Speranza’s (1971) derivation of
Kelvin waves over a sequence of transverse steps, now
extending to Poincaré modes and accounting for bot-
tom friction. A collocation technique is then employed

to satisfy no-normal flow at the closed end as well
as continuity of free surface elevation and water flux
across the longitudinal topographic steps between the
compartments (matching conditions). Note that Godin
(1965) followed a nearly similar approach to model
the amphidromic system in Labrador Sea and Baffin
Bay (Canada/Greenland), without bottom friction and
not aimed at systematically identifying physical mech-
anisms. To explain ocean-shelf resonance, also Webb
(1976) followed this approach, though he neglected
bottom friction in the deep (ocean) part and investi-
gated resonance by treating the frequency as a complex
quantity.

The second innovation is the way in which we test
our idealized model against tide observations in the
Gulf of California, the Adriatic Sea and the Persian
Gulf. Unlike Hendershott and Speranza’s (1971) study,
this comparison covers the full basin, i.e., not only the
central part. We compare elevation amplitudes and
phases, as they are modeled and observed along the
coastline, for four different tidal components: M2, S2,
K1 and O1. Our goal is to obtain insight in the dominant
physical mechanisms necessary to reproduce the main
features of the observed patterns of tide propagation,
amplification and dissipation in these basins.

This paper is organized as follows. The model is
introduced in Section 2. In Section 3, we present the
solution method, including details of the collocation
technique (and referring to Appendices A and B for
the derivation of wave solutions in channels of uni-
form depth and channels with a transverse step, respec-
tively). Next, Section 4 contains generic results on the
model behavior, identifying two topographic resonance
mechanisms. The comparison with tide observations is
conducted in Section 5. Finally, Sections 6 and 7 contain
the discussion and conclusions, respectively.

2 Model

Consider a tidal wave of angular frequency ω and
typical elevation amplitude Z (decimeters to meters),
propagating through a rotating, semi-enclosed basin of
uniform width B (tens to hundreds of kilometers) and
length L (hundreds of kilometers, see Fig. 2). In terms
of a horizontal coordinate system with longitudinal
coordinate x and lateral coordinate y, the longitudinal
basin boundaries are located at y = 0, B, the closed end
at x = 0, the open end at x = L. The basin consists of J
compartments, separated by longitudinal topographic
steps at x = s j. Each compartment either has a uniform
depth H = H j (tens to hundreds of meters) or consists
of two subcompartments with depths H j and H′

j (a
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Fig. 2 Top view of the model geometry, showing basins of
length L, width B and depths H j and H′

j. The three basins
used in the comparison are sketched: a Gulf of California (one
step, H1 < H2), b Adriatic Sea (two steps, H1 < H2 < H3),
c Persian Gulf (combination of longitudinal and transverse step,

H1 = H2 < H′
2). The solution along the basin perimeter PQRS

will be used in the comparison with observations; the lines Q′ R′
and Q′′ R′′ represent the longitudinal steps at x = s1 and x = s2,
respectively

prime denotes the upper subcompartment; no prime for
the lower subcompartment), separated by a transverse
step at y = bj (Fig. 2c). Note that the first compartment
( j = 1) contains the basin’s closed end, whereas the last
compartment ( j = J) contains the basin’s open end.

Assuming that the surface elevation amplitude is
much smaller than the water depth, conservation of
mass and momentum is expressed by the linear depth-
averaged shallow water equations on the f plane, in-
cluding bottom friction:

∂u j

∂t
− f v j + r ju j

H j
= −g

∂ζ j

∂x
, (1)

∂v j

∂t
+ f u j + r jv j

H j
= −g

∂ζ j

∂y
, (2)

∂ζ j

∂t
+ H j

[
∂u j

∂x
+ ∂v j

∂y

]
= 0. (3)

Here, ζ j denotes the free surface elevation (with respect
to still water z = 0); u j and v j are the depth-averaged
flow velocity components in x and y-direction, respec-
tively, and t is time. The scaling procedure justifying
Eqs. 1–3 is not presented here, see e.g., Roos and
Schuttelaars (2009). We merely state the implications:
nonlinear advection terms are absent and the mean wa-
ter depth H j (rather than the true water depth H j+ζ j)
appears in the denominator of the friction terms and in
the continuity equation. In the case of a transverse step,
the solution in the upper subcompartment is denoted
with a prime; we then solve Eqs. 1–3 for the primed
variables (ζ ′

j, u′
j, v′

j) and primed parameters (r′
j, H′

j).
Variables and parameters without primes are used to
denote the solution in the lower subcompartment.

In Eqs. 1–2, f = 2� sin ϑ is a Coriolis parameter,
with � = 7.292 × 10−5 s−1 the angular frequency of the
Earth’s rotation and ϑ the latitude. Moreover, g =

9.81 m s−2 is the acceleration of gravity. We have in-
troduced a linear bottom friction term with coefficient

r j = 8CDU j

3π
, CD = 2.5 × 10−3, (4)

obtained from Lorentz’ linearization of a quadratic
friction law (Zimmerman 1982) with a default value
of the drag coefficient CD and typical flow velocity
scale U j. Since the water depth is likely to influence U j,
we allow each (sub)compartment to have a different
bottom friction coefficient r j (or r′

j). Calculating each
friction coefficient thus requires an estimate of the
flow velocity scale, which we define as the square
root of the (squared) velocity amplitude averaged over
the (sub)compartment. The friction coefficients are
obtained using an iterative procedure, explained in
Section 3.3. An advantage of this procedure is that only
one friction parameter, i.e., the drag coefficient CD,
must be specified, while accounting for the local feed-
back of higher (lower) flow velocities onto larger
(smaller) values of the friction coefficient.

No-normal flow across the closed boundaries implies

v j = 0, at y = 0, B, (5)

u1 = 0, at x = 0, (6)

thus accounting for the upper and lower boundaries of
each compartment ( j = 1, · · · , J) as well as the basin’s
closed end in the first compartment, respectively.
Across topographic steps, we require continuity of sur-
face elevation and water flux (matching conditions).
For a longitudinal step, this gives

ζ j = ζ j+1, H ju j = H j+1u j+1, at x = s j, (7)
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where a subscript denotes the solution in the corre-
sponding compartment ( j = 1, · · · , J − 1). For a trans-
verse step, the matching conditions read

ζ j = ζ ′
j, H jv j = H′

jv
′
j, at y = b j, (8)

where a prime denotes the solution in the upper sub-
compartment (no prime for the lower subcompart-
ment). Note that the quantities in Eqs. 7 and 8, due to
the discontinuity in depth, need not be differentiable
across the topographic steps. Finally, the problem is
forced by an incoming Kelvin wave at x = L, while
allowing reflected Kelvin and (free) Poincaré waves to
radiate outward. In fact, this is equivalent to letting the
last compartment stretch to infinity, and imposing an
incoming Kelvin wave from infinity as the forcing of our
problem.

3 Solution method

3.1 Superposition of wave solutions

Let φ j = (ζ j, u j, v j) symbolically represent the system’s
state in compartment j. We seek time-periodic solu-
tions of the form

φ j(x, y, t) = �
{
φ̂ j(x, y) exp(iωt)

}
, (9)

where � denotes the real part and ω is the angular fre-
quency. For compartment j, the vector φ̂ j = (ζ̂ j, û j, v̂ j)

contains the complex amplitudes of surface elevation,
longitudinal and lateral flow velocity, respectively.

The key step is now to write the solution in each
compartment as a truncated sum of (semi)-analytical
wave solutions in an infinite channel. This involves
Kelvin modes propagating in the positive and negative
x-direction, as well as Poincaré modes, generated at
the closed end and on either side of each topographic

step. For all compartments (except the last one, so j =
1, . . . , J − 1), we thus write

φ̂ j(x, y) =
M∑

m=0

[
a⊕

j,mφ̃⊕
j,m(y) exp

(
−ik⊕

j,m

[
x − s j−1

])

+ a�
j,mφ̃�

j,m(y) exp
(
−ik�

j,m

[
x − s j

])]
, (10)

with truncation number M (and defining s0 = 0). Here,
φ̃⊕

j,m(y) and k⊕
j,m are the lateral structure and the wave

number, respectively, corresponding to the mth mode
propagating (if free) or exponentially decaying (if
evanescent) in the positive x-direction. This involves
both Kelvin modes (m = 0) and Poincaré modes (m =
1, 2, . . . , M), which are generated (i.e., reflected or
transmitted) at the interface x = s j−1 on the left. The
opposite modes, i.e., propagating or decaying in the
negative x-direction and denoted with a superscript �,
are generated at the interface x = s j on the right. To
make sure that the coefficients a⊕

j,m and a�
j,m are of the

same order as Z , the exponential functions in Eq. 10
have been normalized to unity at the interfaces x = s j−1

and x = s j, respectively.
Due to the open boundary at x = L, the last com-

partment J requires a different form of the solution.
Since we neglect the Poincaré modes bound to the open
end (x = L), the only mode propagating or decaying in
the negative x-direction is the incoming Kelvin wave,
with coastal amplitude Z and initial phase ϕ (both at
x = L). This gives

φ̂J(x, y) =
M∑

m=0

a⊕
J,mφ̃⊕

J,m(y) exp
(−ik⊕

J,m

[
x − sJ−1

])

+ Z exp(iϕ)φ̃�
J,0(y) exp(−ik�

J,0[x − L]). (11)

The wave solutions in an infinite channel of uniform
depth (Rienecker and Teubner 1980), along with their
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Fig. 3 Collocation points used to satisfy no-normal flow at the
basin’s closed end (open circles) and continuity of elevation ζ and
flux Hu across the topographic steps (solid circles). Combined
sets of Kelvin/Poincaré modes are indicated by double arrows,

pointing in the direction of propagation/decay; a single arrow
represents the incoming Kelvin wave. Examples as in Fig. 2,
truncation number M = 8
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symmetry properties, are given in Appendix A. Wave
solutions in an infinite channel with a transverse step
are derived in Appendix B.

3.2 Collocation technique

Since each of the individual wave solutions in Eqs. 10
and 11 satisfies the no-normal flow condition at the
closed boundaries y = 0 and y = B according to Eq. 5,
so do the superpositions φ̂ j and φ̂J . A collocation tech-
nique is used to satisfy the no-normal flow condition at
the closed end in Eq. 6 and the matching conditions in
Eq. 7, as well (Fig. 3).

Defining M + 1 lateral points yn = Bn/M for n =
0, 1, . . . , M, we require

û1 = 0, at (x, y) = (0, yn), (12)

ζ̂ j = ζ̂ j+1, at (x, y) = (s j, yn), (13)

H jû j = H j+1û j+1, at (x, y) = (s j, yn), (14)

for n = 0, 1, . . . , M and j = 0, . . . , J − 1. This leads to
a linear system of equations for the (2J + 1)(M + 1)

coefficients a⊕
j,m and a�

j,m, which is solved using standard
techniques.

3.3 Iterative procedure to calculate friction coefficient

Calculating the bottom friction coefficient r j (or r′
j) in

each (sub)compartment using Eq. 4 requires a typical
velocity scale U j (or U ′

j). This quantity is defined as the
square root of the squared velocity amplitude, averaged
over compartment j, i.e.

U2
j = 1

BL j

∫ B

0

∫ s j

s j−1

(
û2

j + v̂2
j

)
dx dy, (15)

or, in the case of a transverse step,

U2
j = 1

b jL j

∫ b j

0

∫ s j

s j−1

(
û2

j + v̂2
j

)
dx dy, (16)

U ′
j
2 = 1

b ′
jL j

∫ B

b j

∫ s j

s j−1

(
û2

j + v̂2
j

)
dx dy. (17)

To proceed, we adopt an iterative procedure. At first
guess, r j is obtained from Eq. 4 using the typical ve-
locity scale of a classical Kelvin wave without friction:
U j = Z

√
g/H j (Pedlosky 1982). Next, evaluation of the

solution leads to new Uj-values and thus to new r j-
values, which in turn lead to a new solution, and so
forth. The same applies to r′

j and U ′
j in the case of a

transverse step. As it turns out, this method converges
rapidly. Note that the feedback of the solution on the
values of the friction coefficients is in fact a nonlinear
element in an otherwise linear model.

4 Results

4.1 Qualitative properties

To investigate the model results qualitatively, let us
consider the semi-diurnal lunar tide (“M2”) in a sample
basin, at a latitude of 45◦N with a width B = 200 km,
a length L = 600 km and a reference depth of 50 m.
We now distinguish four different topographies: (a) the
reference case of uniform depth, (b) a shallow zone of
20 m depth near the basin’s closed end bounded by a
longitudinal step at x = 200 km, (c) a transverse step at
y = 100 km, with a shallow lower subcompartment of
20 m depth (type I), (d) a transverse step at y = 100 km
with a shallow upper subcompartment of 20 m depth
(type II).

Figure 4 displays the amphidromic systems of these
four cases, showing the results both without (top row,
Fig. 4a–d) and with bottom friction (bottom row,
Fig. 4e–h). The shallow zones are indicated with a grey
shade. In the simulations, the coastal elevation ampli-
tude of the incoming Kelvin wave at x = L is Z = 1 m,
and we used truncation numbers M = 16 (and M = 15
in the case of a transverse step; an odd number to avoid
a collocation point positioned exactly at the transverse
step). Note that, for both the shallow and deep part, the
channel width is below the critical channel width such
that all Poincaré mode are evanescent.

The reference case in Fig. 4a is the classical Tay-
lor solution, with elevation and current amphidromic
points alternatingly on the centerline of the basin. In
this case, the Kelvin wavelength equals 990 km. Includ-
ing a shallow end (Fig. 4b) leads to amplified ampli-
tudes and flow velocities in the shallow end. Further-
more, the amphidromic points shift towards the closed
end, which is due to the smaller tidal wavelength in
the shallow part (626 km). The Taylor solution with a
transverse step generally shows a shift of amphidromic
points toward the deeper part. In Fig. 4c, the incoming
Kelvin wave is bound to the coastline of the deep
part, the reflected Kelvin wave to the coastline of the
shallow part (Northern Hemisphere). By conservation
of wave power, the associated decrease in wavelength
of the turning tidal wave (from 904 to 714 km) leads to
increased elevation amplitudes in the shallow subcom-
partment. Compared to the uniform depth case, this
pushes the amphidromes away from the centerline, into
the (deeper) upper subcompartment. The situation in
Fig. 4d is opposite; the turning Kelvin wave now expe-
riences an increase in wavelength (from 714 to 904 km).
This lowers the amplitude of the reflected Kelvin wave,
which pushes the amphidromes away from the center-
line into the (deeper) lower subcompartment. Note that
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Fig. 4 Amphidromic system of the M2-tide in the sample basin,
without (top row, i.e., a–d) and with friction (bottom row, i.e.,
e–h), shallow zones shaded in grey. From left to right: a and e
uniform depth, b and f shallow end, c and g transverse step of
type I (shallow lower subcompartment), d and h transverse step

of type II (shallow upper subcompartment). Co-phase lines (in
red) spiral outward from amphidromic points (tidal period in 12
intervals), co-range contours in red; contour interval equals 20 cm
and the basin’s closed end is on the left (at x = 0). For parameter
values, see text

the Kelvin wavelengths obtained here for a channel
with a transverse step are in between the wavelengths
in a channel of the same depths but then distributed
uniformly (626 and 990 km; see above).

The main effect of including friction is the exponen-
tially decaying Kelvin wave amplitude in the direction
of propagation (Rienecker and Teubner 1980; Roos
and Schuttelaars 2009). Regardless the chosen topog-
raphy, amphidromic points thus shift toward the coast
to which the reflected Kelvin wave is bound (Fig. 4e–h).
Sufficiently far away from the closed end, this may lead
to so-called virtual amphidromic points, located outside
the basin. The shift in amphidromes toward the lower
coast can be seen for the reference case with friction,
by comparing Fig. 4a with e. Adding friction to the
case with a shallow end leads to a stronger decay of
the reflected Kelvin wave as it propagates and turns
in the shallow part, and thus to a stronger shift of
the amphidromic points towards the lower coastline
(Fig. 4f). This shift is also seen from the two cases
with a transverse topographic step (Fig. 4g, h). Hence,
depending on the type of transverse step, frictional
effects either counteract the inviscid displacement of
amphidromic points (type I) or amplify it (type II).

Changing the parameter values of our sample basin
will affect the quantitative properties, but not the qual-
itative picture.

4.2 Kelvin and Poincaré resonance

Now let us further analyze the tidal amplification, as-
sociated with the presence of a shallow zone near the
basin’s closed end (Figs. 2a, 4b and 4f). To this end,
we define the amplification factor A as the ratio of

the elevation amplitude, averaged across the closed
end (line QR in Fig. 2a), and the coastal elevation
amplitude of the incoming Kelvin wave at the topo-
graphic step (x = s1, point Q′). Below we will iden-
tify two topographic resonance mechanisms, associated
with amplification of either Kelvin modes or Poincaré
modes.

The first resonance mechanism exists also in the
absence of rotation ( f = 0). The problem with a single
topographic step is then nearly similar to that described
by Godin (1993). As shown in Appendix C, the solution
can be found analytically. In the case without bottom
friction, the amplification rate is found to be

A1D = 2√
cos2 K1L1 + (H1/H2) sin2 K1L1

, (18)

with K1 = ω/
√

gH1. Hence, assuming H2 > H1, maxi-
mum amplification (resonance) occurs if cos K1L1 = 0,
i.e., if the length of the shallow end is an odd multi-
ple of a quarter of the frictionless Kelvin wavelength
λ1,0 = 2π/K1 in the shallow part:

L1

λ1,0
= 1 + 2p

4
, (p = 0, 1, 2, . . . ). (19)

The corresponding amplification rate is proportional to
the square root of the ratio of water depths: A1D,max =
2
√

H2/H1. Conversely, minimum amplification occurs
if cos K1L1 = 1, giving A1D,min = 2. This factor 2 is due
to the standing wave character: the elevation amplitude
at the closed end is twice the amplitude of the incoming
wave.

To investigate the amplification for the case with
rotation ( f �= 0), we will now vary the dimensions of
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Table 1 Parameter settings and other information for the comparison with observations

Basin Gulf of California (GoC) Adriatic Sea (Adr) Persian Gulf (PGf)

Number of tide stations 11 27 40
Latitude ϑ (deg) 27.5◦N 43◦N 27◦N
Total basin lengtha L (km) 1,223 759 738
Basin width B (km) 166 141 219
Number of compartments J 2 3 2
Compartment lengths L j (km) 350, 873 280, 220, 259 150, 588
Subcompartment widthsb bj (km) −, − −, −, − −, 150 (69)
Water depthsb H j (m) 100, 1,200 50, 160, 600 30, 30 (50)
Rossby deformation radiib,c R j (km) 465, 1,611 223, 398, 771 259, 259 (335)
Truncation number M 16 16 16

Tidal component M2 S2 K1 O1 M2 S2 K1 O1 M2 S2 K1 O1

Elevation amplituded Z (m) 0.30 0.18 0.17 0.12 0.06 0.04 0.07 0.02 0.50 0.15 0.40 0.20
Kelvin wavelengthsc,e λ j,0 1.40 1.35 2.70 2.91 0.99 0.96 1.91 2.06 0.77 0.74 1.48 1.60

(×103 km) 4.85 4.69 9.35 10.1 1.77 1.71 3.41 3.68 0.80⊕ 0.78⊕ 1.56⊕ 1.68⊕
− − − − 3.43 3.31 6.61 7.13 0.88� 0.85� 1.70� 1.83�

Poincaré decay lengthsf,c,e λ j,1 (km) 54 54 53 53 46 46 44 44 80 82 70 70
53 53 53 53 45 45 45 45 86⊕ 87⊕ 75⊕ 74⊕
− − − − 45 45 45 45 86� 87� 75� 74�

Friction coefficientsb,e r j/(ωH j) 5.62 3.54 1.88 1.35 1.93 1.13 2.14 0.60 11.8 4.20 11.3 6.26
(×10−2) 0.05 0.03 0.04 0.03 0.20 0.11 0.46 0.14 12.4 4.33 19.7 12.1

− − − − 0.00 0.00 0.04 0.01 (7.25) (2.35) (12.1) (7.24)

Coriolis parameter f/ω (−) 0.48 0.46 0.92 1.00 0.71 0.68 1.36 1.47 0.47 0.46 0.91 0.98

⊕ and � symbols pertain to the modes propagating or decaying in the positive/negative x-direction (different in the case of a
transverse step)
aDistance from corner point to farthest (projected) tide station
bWidth b ′

j, depth H′
j, deformation radius R′

j and dimensionless friction coefficient r′
j/(ωH′

j) of upper subcompartment in brackets (in
the case of a transverse step)
cWithout bottom friction
dCoastal amplitude of the incoming Kelvin wave at x = L (point P)
eMore lines required here to account for two (GoC, PGf) or three compartments (Adr), noting that a transverse step gives two
subcompartments (PGf)
fe-folding decay distance of the first Poincaré mode (m = 1)

the shallow compartment (length L1, basin width B),
while taking the other parameter values from the Gulf
of California case (Table 1). Figure 5 shows the scaled
amplification rate A/A1D,max of four tidal constituents
(M2, S2, K1, and O1) as obtained with our model, rela-
tive to the one-dimensional maximum without bottom
friction introduced above. The figure shows the results
without (top row) and with bottom friction (bottom
row), where L1 and B have both been scaled against
the frictionless Kelvin wavelength λ1,0 = 2π/K1 in the
shallow part.

As can be seen from the curved contours in Fig. 5,
rotation introduces a width-dependency to the am-
plification rate, whereas the Kelvin resonance mech-
anism explained above can still be identified. As an
example of Kelvin resonance, Fig. 6c presents the
amphidromic system of the GoC-case without bot-
tom friction (dimensions corresponding to the circle in
Fig. 5a). In the limit B ↓ 0, we recover the analytical

amplification rates without rotation, i.e., Eq. 18 without
friction and Eq. 45 in Appendix B with friction. The
dependency on width is more apparent for wide basins
and for stronger rotation (larger f/ω-values). In partic-
ular, for B ≈ 1

2λ1,0 in Fig. 5a, b, we obtain amplification
rates exceeding the one-dimensional maximum A1D,max

mentioned above.
A second resonance mechanism underlies these am-

plification rates, associated with a Poincaré mode that is
free in the shallow part yet evanescent in the deep part.
As an example of Poincaré resonance, Fig. 6d shows
the amphidromic system corresponding to the square
in Fig. 5a, which resembles a transverse sloshing mode.
Understanding this type of amplification in our Kelvin-
wave-forced problem is less straightforward than the
Kelvin resonance described above; it can best be under-
stood by considering the case of weak rotation ( f/ω �
1). According to Eqs. 27 and 28 in Appendix A, the
transverse structure of the elevation and longitudinal
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Fig. 5 Amplification factor A/A1D,max, as a function of the
dimensions of the shallow compartment, without (top row, i.e.,
a–d) and with bottom friction (bottom row, i.e., e–h). This has
been done for four tidal components: a and e M2, b and f S2,
c and g K1, d and h O1. Parameter values taken from the Gulf

of California (Table 1), the actual dimensions of the Gulf of
California’s shallow part in each plot being denoted with a circle.
The case denoted with a rectangle in (a) is shown in Fig. 6d. The
A/A1D,max = 1-contour is plotted as a black line in (a) and (b)

flow of the mth Poincaré mode is then dominated by
the part proportional to cos αm y (with αm = mπ/B).
Now let us consider a balance between a standing mth
Poincaré mode in the shallow part (i.e., a superposition
of two Poincaré modes that satisfies no normal flow
at the closed end according to Eq. 12) and the mth
Poincaré mode in the deep part. Requiring their contri-
butions proportional to cos αm y to satisfy the matching

conditions in Eq. 7 leads to a relationship between L1

and B:

tan k1,mL1 = iH2k2,m

H1k1,m
, ( f/ω � 1). (20)

Here, k1,m and k2,m are the wave numbers of the mth
Poincaré mode in the shallow and deep compartment,
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Fig. 6 Amplification in the (L1, B)-plane, as obtained from
a the theoretical resonance curves according to Eqs. 19 and 20,
and b the model results, i.e. the amplification factor A/A1D,max
for weak rotation ( f/ω = 0.09, corresponding to e.g., an M2-

tide at a latitude ϑ = 5◦N). Ratio of water depths H2/H1 = 12,
no friction. c and d provide examples of Kelvin and Poincaré
resonance, corresponding to the circle and square in Fig. 5a,
respectively
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respectively, according to Eq. 26 in Appendix A. As
shown in Fig. 6a, b, the agreement between these theo-
retical resonance curves and the model results is excel-
lent (for f/ω small). Increasing the value of f/ω, still
excluding bottom friction, leads to a more smoothed
amplification pattern with lower resonance peaks (see
top row of Fig. 5).

Comparison between the top row and bottom row in
Fig. 5 shows that including bottom friction leads to a
further overall damping of the amplification rate, also
smoothing the amplification rates associated with the
two resonance mechanisms explained above. Finally,
the circles in Fig. 5e–h show that the shallow part in the
Gulf of California experiences maximum amplification
for the semi-diurnal tides (M2 and S2), whereas it is
clearly further away from resonance for the diurnal
tides (K1 and O1).

5 Comparison with observations

5.1 Method

In this section, we will test our idealized model by com-
paring with tide observations in the Gulf of California,
the Adriatic Sea and the Persian Gulf. The comparison
will be carried out for the coastal amplitudes and phases
of four predominant tidal components: M2, S2 (semi-
diurnal), K1, and O1 (diurnal). The combined pattern

of elevation amplitudes and phases, observed at the tide
stations along the coastline, provides a clear footprint
of the tidal dynamics in the entire basin. Our procedure
consists of the following four steps.

1. Find, on the f plane around the basin’s center
(latitude ϑ), the rectangular model basin geome-
try PQRS that provides a best fit of the coastline
(Fig. 7). To this end, we choose the basin’s position,
width B and orientation such that the average dis-
tance from the available tide stations to the basin
boundaries is minimized.

2. Perform an orthogonal projection of each tide sta-
tion onto the basin boundaries. This allows us to
consider the observed elevation amplitudes and
phases as a function of a single coordinate: the
distance along the perimeter PQRS. The longi-
tudinal distance from corner point to the farthest
(projected) tide station defines the basin length L.

3. Based on bathymetric charts, roughly choose the
remaining geometrical parameters, i.e., the number
of compartments as well as their lengths L j and
depths H j. In the case of a compartment with a
transverse step (PGf), this also involves specifying
the location y = b j of the transverse step as well as
the two depths H j and H′

j of the lower and upper
subcompartment, respectively.

4. Make simulations by varying the amplitude Z (and
phase ϕ) of the incoming Kelvin wave. Herein, the
Coriolis parameter f is based on the basin’s central
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Fig. 7 Coastlines and model geometries of the basins used
in the comparison: a Gulf of California, b Adriatic Sea, and
c Persian Gulf. Also shown are the tide stations (solid circles),

their projections onto the model basin boundary (open circles)
and the topographic steps (dashed lines)
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latitude ϑ , the friction coefficients r j are calculated
iteratively as explained in Section 3.3.

The parameter settings and other information relevant
to the model validation are shown in Table 1. The
Kelvin wavelength and e-folding decay distance of the
first Poincaré mode are given by

λ j,0 = 2π

|�{k j,0}| , λ j,1 = 1

|�{k j,1}| , (21)

respectively (where � denotes the real part and �
the imaginary part). In the case of a transverse
step, the symbols ⊕ and � are used to distinguish
the modes propagating or decaying in the positive
x-direction from those propagating or decaying in
the negative x-direction. Furthermore, the dimension-
less friction coefficient r j/(ωH j) quantifies the rel-
ative importance of bottom friction with respect to
inertia.

The observed amplitudes and phases are taken from
several sources: Carbajal and Backhaus (1998) for
the Gulf of California, Janeković et al. (2003) and
Janeković and Kuzmić (2005) for the Adriatic Sea, and
British Admiralty (2009) for the Persian Gulf.

5.2 Gulf of California

The Gulf of California has mixed semi-diurnal tides and
one of the largest tidal ranges on Earth, particularly
in the northern region. The geometry with a shallow
Northern Gulf and a deeper Southern Gulf is repre-
sented using two compartments of depths 100 m and
1,200 m (Fig. 7a), the topographic step located near the
two large islands. To guarantee a proper basin shape
in the Gulf of California, where only 11 tide stations
are available, we included the coordinates of nine other
coastal locations.

The results are plotted in Fig. 8, showing good agree-
ment regarding both amplitude and phase. The phase
curves in Fig. 8e, f contains a maximum, which is indica-
tive of a virtual amphidromic point, which in turn is due
to strong friction. Note that the diurnal components
are much weaker than the semi-diurnal ones, hardly
showing any phase variations.

5.3 Adriatic Sea

Unlike the rest of the Mediterranean Sea, where tides
are weak, the Adriatic Sea has moderate tides of
the mixed type. The bathymetry of the Adriatic Sea
shows three rather distinct compartments (Fig. 7b): the
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Fig. 8 Comparison of model results (solid line) and observations
(circles) for four tidal components in the Gulf of California:
M2, S2, K1, and O1. The plots show amplitudes (top) and

phases (bottom), both as a function of the perimeter coordinate
along PQRS. The points Q′ and R′ indicate the transitions from
deep to shallow and vice versa, respectively
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Fig. 9 Same as Fig. 8, but now for the Adriatic Sea. The points Q′′ and R′′ mark the transition from deep to shallow and vice versa at
the second topographic step

relatively shallow Northern Adriatic (north of the
100 m-isobath), the mid-Adriatic Pit and the Southern
Adriatic Pit (with depths exceeding 1,000 m). In our

comparison, we have neglected the tide stations located
on islands in the basin’s interior (Vis, Komiza, Svetac
and Palagruza).
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Fig. 10 Same as Fig. 8, but now for the Persian Gulf
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As shown in Fig. 9, we obtain good agreement,
except for the amplitudes at the tide stations in the
northeast of the Adriatic (near point Q). The semi-
diurnal phase curves in Fig. 9e, f show a continuous in-
crease along the basin perimeter, which is indicative of
an amphidromic point inside the basin, in turn showing
that dissipation is weak. Like in the Gulf of California,
the phase variations of the diurnal components are
much weaker than the semi-diurnal ones. Malačič et al.
(2000) stated that the diurnal tides in the Adriatic Sea
cannot be explained by Taylor’s approach, but rather
as topographic waves propagating across the basin.
However, our extension of Taylor’s model, by adding
longitudinal topographic steps, gives good agreement
also for diurnal tides.

5.4 Persian Gulf

The tidal pattern in the Persian Gulf varies from
being primarily semi-diurnal to diurnal (Proctor
et al. 1994). Semi-diurnal constituents have two am-
phidromic points in the north-western and southern
ends of the Gulf; diurnal constituents have a single
amphidromic point in the center. Hydrodynamic sim-
ulations predict tidal flows exceeding 0.5 m s−1.

The topography of the Persian Gulf is modeled as
in Fig. 7c, i.e., by a combination of the configurations
discussed in Section 4 (Fig. 4b, c). The shallow zone
near the closed end extends all the way along the
southern part of the basin, leading to a strongly asym-
metrical cross-sectional depth profile of the main part.
The depth difference between the shallow (30 m) and
the deeper part (50 m) is less pronounced than in the
other basins under consideration.

The results are plotted in Fig. 10, generally showing
good agreement regarding amplitude and phase. Two
large-scale complications of the coastline are Qatar
Peninsula (giving some scatter when plotting tide ob-
servations in Fig. 10) and the coastline near the United
Arab Emirates and the Strait of Hormuz (tide stations
not included). We have furthermore excluded the tide
stations located far into the basin’s interior, i.e., on is-
lands or oil rigs, and those located at upstream locations
in rivers or estuaries.

6 Discussion

6.1 Model approach and method

The model approach is computationally efficient (al-
lowing us to make large numbers of simulations as

required in e.g., Figs. 5 and 6) and can in principle
be applied to any semi-enclosed basin with roughly a
rectangular basin shape. We have elaborated the case
of a single transverse step, which is suitable for the
central part of the Persian Gulf. The extension to-
wards two or more transverse steps is straightforward:
wave solutions can be found in a way analogous to
Appendix B. In the collocation method, one should
avoid collocation points exactly at the position of a
transverse step, because the longitudinal velocity is not
uniquely defined.

Within our approach of compartments separated by
longitudinal depth steps, it is perhaps tempting to allow
for steps in basin width, as well (Godin 1965). However,
this introduces reflex angles in the coastline where the
solution may not be smooth. This is likely to be a
manifestation of Gibbs’ phenomenon.

Our open boundary condition (an incoming Kelvin
wave, while allowing other waves to radiate outward)
neglects the precise geometry and flow properties near
the basin’s open end PS, where it connects to the outer
sea (Mediterranean, Pacific, Strait of Hormuz/Gulf of
Oman). The role of Poincaré modes, generated near the
open end, is therefore neglected, as well. The influence
of these modes is restricted to a few Poincaré decay
lengths from the line PS, roughly 50–100 km (Table 1).
In that region, it is therefore not meaningful to strictly
compare our model results with observations. How-
ever, the solution in the other parts is not affected by
the open end.

We realize that there is some freedom in the choice
of basin geometry for the comparison with obser-
vations. In the spirit of our idealized approach, the
number of (sub)compartments is minimized, while ac-
counting for the major topographic elements in the
basins under consideration. Including more detail by
adding more compartments is likely to improve the
agreement with observations, but we did not undertake
this exercise as it does not add to our understanding.
Next, the results turn out not to be very sensitive to the
choice of depth and the positions of the topographic
steps, which we based on bathymetric charts (e.g., see
Fig. 1). An indication of the sensitivity to the various
geometric parameters can be found in Fig. 5.

The procedure according to which we fit the basin
geometry is affected by the number and distribution of
the available tide stations. As it turns out, tidal phases
are reproduced more accurately than the amplitudes.
Apparently, the phase suffers relatively little from the
schematizations in the idealized model and projection
procedure. The amplitudes are more sensitive to irreg-
ularities in coastline, the presence of islands and local
depth variations.
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6.2 Topographic steps and wave dynamics

The presence of longitudinal and transverse topo-
graphic steps introduces new elements to the wave
dynamics. First of all, depth affects the properties of
the fundamental wave solutions in the compartments
with a uniform depth (Appendix A). This includes the
properties of the Kelvin mode (wavelength, dissipation,
Rossby deformation radius and other aspects of the
transverse structure) and Poincaré modes (e-folding
decay distance or wavelength, dissipation, transverse
structure).

The interface conditions to be satisfied at the longi-
tudinal topographic steps also introduces new aspects
to the wave dynamics. For example, Hendershott and
Speranza (1971) use the term “edge waves” to denote
waves that may ‘travel across the zone of rapid shoaling
towards the end of the bay’, i.e., along the longitu-
dinal topographic step. The possibility for such wave
behavior is contained in our model; it is expressed by
the Poincaré waves generated on either side of the
step. The Poincaré resonance mechanism identified in
our study is in fact an extreme manifestation of this
phenomenon. In the next subsection, the relevance of
Kelvin and Poincaré resonance will be discussed.

Our analysis has furthermore shown that, in com-
partments with a transverse step, Kelvin and Poincaré
modes continue to exist (Appendix B), with the trans-
verse step modifying their properties. The most striking
example is perhaps the difference in wavelength of
the incoming and reflected Kelvin wave (Section 4).
In addition, one may expect to encounter a wave so-
lution acting as the channel-type counterpart of a so-
called double Kelvin wave. These waves, as shown by
Longuet-Higgins’s (1968) analysis for an unbounded
sea, may propagate along discontinuities in depth. The
periods associated with double Kelvin waves, how-
ever, are well above those of the semi-diurnal and
diurnal tides investigated in our study, particularly for
relatively small depth ratios (H′

2/H2 < 2 for PGf; cf.
Fig. 3 in Longuet-Higgins 1968). This explains why such
modes are not encountered in our analysis.

6.3 Relevance of topographic resonance mechanisms

The model results for the Gulf of California clearly
express the combined effect of topographically in-
duced (Kelvin) resonance and bottom friction (whereas
Hendershott and Speranza (1971) mention only the
latter). Inclusion of the shallow zone is necessary to ob-
tain the amplified amplitudes near the basin’s head. In
turn, only these amplified amplitudes over the shallow

zone are capable of inducing the dissipation required
to obtain a virtual amphidromic point (at the correct
position). These considerations are supported by simu-
lations for a uniform depth (graphs not reported here),
carried out for different depths and amplitudes, which
fail to reproduce the amphidromic system of the Gulf
of California. These simulations either show too little
dissipation and hence a real amphidrome or require
unrealistically large elevation amplitudes for a virtual
amphidrome to occur. For the Adriatic Sea, where
dissipation is almost negligible, simulations with a uni-
form depth fail to reproduce the observed amplification
near the basin’s head, and miss important details of
the observed amplitude and phase curve (associated
with errors in local wave speed). In their comparison
between the semi-diurnal tides in the Gulf of California
and the Adriatic sea, Hendershott and Speranza (1971)
discuss the importance of bottom friction without men-
tioning the topographically induced amplification.

Poincaré resonance, the second mechanism iden-
tified in Section 4.2, is less likely to be observed in
semi-enclosed basins in reality. This is because it re-
quires rather large basin widths, for semi-diurnal and
diurnal tides. For higher harmonics (e.g., M4, M6),
these critical widths are smaller. Note that the Poincaré
resonance mechanism identified in our study, triggered
by an incoming Kelvin wave and involving a Poincaré
mode that is free in the shallow part yet evanes-
cent in the deep part, differs from that analyzed by
Buchwald (1980) in the context of ocean-shelf reso-
nance. He described the quarter-wavelength resonance
of an incident, free wave without any lateral structure
in a domain with a longitudinal topographic step but
without lateral boundaries.

7 Conclusion

We have extended Rienecker and Teubner’s (1980)
frictional version of Taylor’s (1922) classical model of
Kelvin wave reflection in a semi-enclosed, rectangular,
rotating basin of uniform depth to account for the
presence of longitudinal and lateral topographic steps.
In doing so, the model’s idealized nature has been
retained, allowing the solution in the various compart-
ments to be written as a superposition of wave solu-
tions. These wave solutions are available analytically
from earlier studies in the case of a compartment with
a uniform depth (Rienecker and Teubner 1980); they
have now been derived semi-analytically in the case
of a transverse step. A collocation method is used to
satisfy no-normal flow across the basin’s closed end and
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continuity of surface elevation and longitudinal flux
across the longitudinal topographic steps.

The model results indicate slower tide propagation,
enhanced dissipation and the possibility of amplified
amplitudes in the shallow part. In particular, two res-
onance mechanism have been identified. Kelvin res-
onance occurs when the length of the shallow end is
roughly an odd multiple of a quarter Kelvin wave-
length. Alternatively, also Poincaré waves may become
resonant, but this requires rather wide basins. A trans-
verse step mainly causes the incoming and reflected
Kelvin wave to have different wavelengths. Conserva-
tion of wave power then leads to increased amplitudes
in shallow regions and a shift of amphidromic points in
the direction of the deeper part.

We compared our idealized model results with tide
observations (coastal elevation amplitudes and phases)
in the Gulf of California, the Adriatic Sea and the Per-
sian Gulf. Despite the strong simplifications regarding
geometry (rectangular basin) and topography (combi-
nation of longitudinal and lateral topographic steps),
we obtain good agreement for both the semi-diurnal
and diurnal constituents. We conclude that capturing
the Kelvin resonance mechanism is essential herein.

Finally, our idealized model can be used as a quick
tool to assess the impact (order of magnitude, area
of influence) of human intervention before perform-
ing simulations using detailed numerical models with
a more realistic geometry. Examples of human in-
tervention that may affect tidal dynamics in semi-
enclosed basins are various long-term future scenarios
of (extremely) large-scale dredging operations and land
reclamation.
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Appendix

A Wave solutions in a channel of uniform depth

This appendix contains analytical expressions of the
wave solutions in an infinitely long channel of uniform

width B and uniform depth H j (with j = 1, 2), including
bottom friction:⎛
⎝ ζ⊕

j,m

u⊕
j,m

v⊕
j,m

⎞
⎠ = Z ′

⎛
⎜⎝

ζ̃⊕
j,m(y)

ũ⊕
j,m(y)

ṽ⊕
j,m(y)

⎞
⎟⎠ exp(i[ωt − k⊕

j,mx]), (22)

with amplitude factor Z ′ (in m), wave number k⊕
j,m

and lateral structures ζ̃⊕
j,m(y), ũ⊕

j,m(y) and ṽ⊕
j,m(y). For

the Kelvin mode (m = 0) propagating in the positive x-
direction, we obtain

k⊕
j,0 = γ jK j, (23)⎛

⎜⎝
ζ̃⊕

j,m(y)

ũ⊕
j,m(y)

ṽ⊕
j,m(y)

⎞
⎟⎠ =

⎛
⎝ 1

γ −1
j

√
g/H j

0

⎞
⎠ exp

( −y
γ jR j

)
, (24)

respectively. Here, we have used the reference wave
number K j, the Rossby deformation radius R j (both
typical for a classical Kelvin wave without friction) and
a frictional correction factor, given by

K j = ω√
gH j

, R j =
√

gH j

f
, γ j =

√
1 − ir j

ωH j
,

(25)

respectively.
The wave number and lateral structures of the

mth Poincaré mode (m > 0) propagating (if free) or
decaying (if evanescent) in the positive x-direction are
given by

k⊕
j,m =

√
γ 2

j K2
j − γ −2

j R−2
j − α2

m, (26)

ζ̃⊕
j,m(y) = cos(αm y) − f k⊕

j,m

αmγ 2
j ω

sin(αm y), (27)

ũ⊕
j,m(y) = gk⊕

j,m

γ 2
j ω

cos(αm y) − f

αmγ 2
j H j

sin(αm y), (28)

ṽ⊕
j,m(y) = −iω

αmγ 2
j H j

[
γ 2

j − k⊕2
j,m

K2
j

]
sin(αm y), (29)

respectively, with αm = mπ/B.
The modes propagating or decaying in the negative

x-direction are defined analogous to Eq. 22, but now
using a superscript � instead of a superscript ⊕. By
symmetry, the two type of modes φ̃⊕

j,m and φ̃�
j,m satisfy

the following relationships:

φ̃�
j,m(y) =

⎛
⎜⎜⎝

ζ̃⊕
j,m(B − y)

−ũ⊕
j,m(B − y)

−ṽ⊕
j,m(B − y)

⎞
⎟⎟⎠ , k�

j,m = −k⊕
j,m. (30)
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This symmetry does not hold in the case of a transverse
step, which is elaborated in Appendix B.

B Wave solutions in a channel with a transverse step

Wave solutions in an infinite channel with a transverse
step at y = bj consist of a solution in the lower com-
partment and one in the upper compartment, the latter
denoted with a prime:

φ̂ j(x, y) =
{

φ̃ j,m(y) exp(−ik j,mx) (0 ≤ y ≤ b j),

φ̃′
j,m(y) exp(−ik j,mx) (b j ≤ y ≤ B),

(31)

with wave number k j,m, which is the same for
both subcompartments, and lateral structures φ̃ j,m(y)

and φ̃′
j,m(y). Both solutions must satisfy the model

Eqs. 1–3, the channel boundary conditions in Eq. 5
and the matching conditions across the transverse step
according to Eq. 8. Apart from different depths H j �=
H′

j, the lower and upper compartment are also allowed
to have different friction coefficients r j �= r′

j. For a given
wave number k j,m, the lateral structure of the lateral
velocity is given by

ṽ j,m(y) = Cm sinh(β j,m y)

H j sinh β j,mb j
, (32)

ṽ′
j,m(y) = −Cm sinh(β ′

j,m[y − B])
H′

j sinh β ′
j,mb ′

j
, (33)

automatically satisfying the no-normal flow condition
at the closed channel boundaries y = 0 and y = B, and
the continuity of flux across the topographic step at y =
b j. In Eqs. 32 and 33, we have introduced an arbitrary
constant Cm, the upper subcompartment width b ′

j =
B − b j as well as the coefficients

β j,m =
√

k2
j,m − γ 2

j K2
j + γ −2

j R−2
j . (34)

The reference wave number K j, the Rossby deforma-
tion radius R j (both typical for a classical Kelvin wave
without bottom friction) and the frictional correction
factor γ j have been defined in Eq. 25. The quantities
β ′

j,m, K′
j, R′

j and γ ′
j are defined analogous to Eqs. 34

and 25.
Continuity of surface elevation across the topo-

graphic step implies

ζ̃ j,m(b j) = ζ̃ ′
j,m(b j), (35)

where the lateral structure of the surface elevation is
given by

ζ̃ j,m(y) = −iCm(ω2
j − f 2)

2gH j sinh β j,mb j

[
eβ j,m y

ω jβ j,m + f k j,m

+ e−β j,m y

ω jβ j,m − f k j,m

]
, (36)

ζ̃ ′
j,m(y) = iCm(ω j

′2 − f 2)

2gH′
j sinh β ′

j,mb ′
j

[
eβ ′

j,m(y−B)

ω′
jβ

′
j,m + f k j,m

+ e−β ′
j,m(y−B)

ω′
jβ

′
j,m − f k j,m

]
, (37)

with ω j = γ 2
j ω and ω′

j = γ j
′2ω. The condition in Eq. 35

acts as a solvability condition for the existence of
nontrivial wave solutions. A numerical search rou-
tine, minimizing | ˜ζ ′

j,m(b j) − ˜ζ j,m(b j)|, then leads to
the wave numbers k j,m, which indirectly defines the
coefficients β j,m and β ′

j,m according to Eq. 34.
We thus obtain modified versions of the Kelvin (m =

0) and Poincaré modes (m = 1, 2, . . . ), distinguishing
those propagating or decaying in the positive and neg-
ative x-direction. These modes are characterized by
wave numbers k⊕

j,m and the transverse coefficients β⊕
j,m

and β j,m
′⊕ (and k�

j,m, β�
j,m, β j,m

′�). The constant C0 of
the Kelvin modes is chosen such to ensure a maxi-
mum (coastal) amplitude equal to one: ζ̃⊕

j,0(0) = 1 and

ζ̃�
j,0(B) = 1, assuming f > 0. Compared to the modes

obtained analytically for a uniform depth H j or H′
j

(Appendix A), the wave numbers have experienced
a shift in the complex plane. Note that the symmetry
between modes propagating or decaying in the positive
and negative x-direction is disrupted by the asymmetric
cross-sectional depth profile. In particular, the Kelvin
waves propagating to the left and right have different
wavelengths.

Finally, the longitudinal flow velocity is found to be

ũ j,m(y) = −iCm

2H j sinh β j,mb j

[
(ω jk j,m + β j,m f )eβ j,m y

ω jβ j,m + f k j,m

+ (ω jk j,m − β j,m f )e−β j,m y

ω jβ j,m − f k j,m

]
, (38)

ũ′
j,m(y) = iCm

2H′
j sinh β ′

j,mb ′
j

[
(ω′

jk j,m + β ′
j,m f )eβ ′

j,m(y−B)

ω′
jβ

′
j,m + f k j,m

+ (ω′
jk j,m − β ′

j,m f )e−β ′
j,m(y−B)

ω′
jβ

′
j,m − f k j,m

]
. (39)

Note that Hendershott and Speranza (1971) followed
a nearly similar procedure to obtain Kelvin waves
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without bottom friction in an infinite channel with a
sequence of transverse steps. They translated this into
a generalized Kelvin wave that was used for the fit with
observations in the basin’s central part.

C Analytical solution without rotation

In the absence of rotation ( f = 0), the problem posed
by Eqs. 1–3 and boundary/matching conditions in
Eqs. 5–7 becomes one-dimensional: ∂/∂y = 0 and v =
0. We consider the case of a single longitudinal step at
x = s1 = L1, noting that the inclusion of a transverse
step is not meaningful here.

The complex amplitudes of elevation and flow field,
as defined in Eq. 9, are found to be

ζ̂1(x) = Z ′′ cos(k1x), (40)

ζ̂2(x) = Z ′′ [cos(k1 L1) cos(k2[x − L1])
− ξ sin(k1L1) sin(k2[x − L1])

]
, (41)

and, using û j = igγ −2
j ∂ζ̂ j/∂x,

û1(x) = −igZ ′′k1

γ 2
1

sin(k1x), (42)

û2(x)= −igZ ′′k2

γ 2
2

[
cos(k1 L1) sin(k2[x − L1])

+ ξ sin(k1L1) cos(k2[x−L1])
]
, (43)

respectively. Here, Z ′′ is the elevation amplitude at x =
0 (due to the incoming and the reflected wave) and k j

the shallow water wave number (identical to the Kelvin
wave number k j,0 in Eq. 23). The coefficient ξ in Eqs. 41
and 43, which follows from continuity of flux across the
step, is given by

ξ = γ2

γ1

√
H1

H2
, (44)

in which γ j is as defined previously in Eq. 25.
The amplification factor A, defined in Section 4 as

the ratio of the elevation amplitude averaged across the
closed end (x = 0) and the elevation amplitude of the
incoming Kelvin wave at the topographic step (x = L1),
is given by

A = 2

| cos k1L1 + iξ sin k1L1| . (45)

In the frictionless case (r1 = r2 = 0), the wave num-
bers k j = K j are real and γ j = 1 ( j = 1, 2). As a re-
sult, the amplification factor reduces to Eq. 18 in
Section 4.2.
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Janeković I, Kuzmić M, Bobanović J (2003) The Adriatic
Sea M2 and K1 tides by 3D model and data assimila-
tion. Est Coast Shelf Sci 57(5-6):873–885. doi:10.1016/S0272-
7714(02)00417-1

Longuet-Higgins MS (1968) On the trapping of waves along a
discontinuity of depth in a rotating ocean. J Fluid Mech
31(3):417–434
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