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Abstract. Following the Euclidean example, we introduce the strong and weak mean value
property for finite variation measures on graphs. We completely characterize finite variation
measures with bounded support on radial trees which have the strong mean value property.
We show that for counting measures on bounded subsets of a tree with root o, the strong mean
value property is equivalent to the invariance of the subset under the action of the stabilizer
of o in the automorphism group. We finally characterize, using the discrete Laplacian, the
finite variation measures on a generic graph which have the weak mean value property and
we give a non-trivial example.
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1. Introduction

Harmonic functions are widely studied in classical analysis. One of the most typical
properties of complex harmonic functions is the so-called “mean value property”
(see [1, Definition 11.12]) which is also a characterization ([1, Theorem 11.13]).
A simple extension of this property says that the integral of a harmonic function
h on a measurable subset B of the complex plane, which is invariant under all the
rotations centred at a point x0, is equal to h(x0)m(B) (where m(B) is the Lebesgue
measure of the set B), that is∫

B
h dm = h(x0)m(B), (1)

for every harmonic function h.
Harmonic functions can also be defined on graphs (see Definition 1.1) and they

represent a consolidated branch of studies (see for instance [2] and [3] in the case
of trees and also [4], [5] for more general cases).

The mean value property is usually referred to functions (see [6] for a short
introduction and also [7]); on homogeneous trees TM with M ≥ 3 it characterizes
harmonic functions (see [8]). Here, we change the point of view: according to
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Definition 1.1 below, Equation (1) says that the measure m B(·) := m(B ∩ ·) has
the strong mean value property with respect to x0. The aim of this paper is to
characterize all the measures on a certain type of graphs X, which satisfy the
strong or the weak mean value property (see Definition 3.1) with respect to some
vertex.

We consider random walks (X, P) where X is the vertex set of a graph and
P = (p(x, y))x,y∈X is the stochastic transition operator which describes the one-
step transitions of a Markov chain {Zn}n∈N with state space X.

Given a graph (X, E(X)), a stationary random walk (X, P) is adapted to the
graph if

p(x, y) > 0 ⇐⇒ [x, y] ∈ E(X);
if (X, E(X)) is a non-oriented graph, an adapted random walk is usually called of
nearest neighbour type.

On the other hand, every stationary random walk (X, P) is adapted to a unique
graph (called associated graph).

Given a couple of vertices x, y of a non-oriented graph (X, E(X)), we say that
x and y are neighbours (and we write x ∼ y) if [x, y] ∈ E(X) (i.e. [y, x] ∈ E(X));
we define the degree of a vertex x as deg(x) := card{y ∈ X : [x, y] ∈ E(X)}.

Throughout this paper if we have a random walk on a graph, it will always be
an adapted random walk: its vertex set is then uniquely determined by the matrix
P of the transition probabilities. For this reason we will often indicate a graph as
X or (X, P) instead of (X, E(X)). In particular, with the exception of Section 6, if
not otherwise explicitly stated, we consider stationary, irreducible random walks
of nearest neighbour type on locally finite non-oriented (connected) graphs.

Definition 1.1. Given a random walk (X, P), we call a function h : X → R

harmonic (superharmonic, respectively) in x ∈ X if

h(x) = (Ph)(x) :=
∑
y∼x

p(x, y)h(y), (h(x) ≥ (Ph)(x), respectively). (2)

A function which is harmonic (superharmonic, respectively) in x for every x ∈ X
is called harmonic (superharmonic, respectively).

In Equation (2) we implicitly require that (P|h|)(x) < +∞, for every x ∈ X.
In the following paragraph we introduce the basic concepts and some results

concerning the general theory of random walks on graphs. In particular we discuss
some properties of a special class of trees: the radial trees (see Section 4).

In Section 3 we introduce the general idea of mean value property for a finite
variation measure on a graph (see Definition 3.1). We discuss some basic properties
and we give a non-trivial example of a family of finite variation measures on locally
finite trees which have the strong mean value property (see Proposition 3.3). This
result generalizes a previous one (see [8, Lemma 1]). Moreover, we give a necessary
and sufficient condition for a certain family of finite variation measures to have the
mean value property (Proposition 3.5 and Corollary 3.6), this condition involves the
representation of harmonic functions given by the Martin kernel (see Equation (6)).
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In Section 4 we characterize all the measures with finite support on radial trees
which have the strong mean value property, and we prove that, in this case, the
weak mean value property is equivalent to the strong one. To this aim we introduce
a particular class of measures that we call well distributed (see Definition 4.8). We
will show that there are measures which have the mean value property with respect
to some vertex o in spite of not being Γo-invariant (see Definition 2.2). We give an
explicit example of such a measure (see Example 4.7) on the homogeneous tree T3

with the simple random walk.
As a consequence of these results we prove (Section 5) that, if B is a (non-

empty) finite subset of an x0-radial tree T , then

1

|B|
∑
x∈B

h(x) = h(x0),

for every harmonic function h if and only if B is invariant under the action of Γx0

(that is, if and only if B is a finite union of spheres centred at x0; see Theorem 5.3).
In Section 6 we deal with generic random walks on oriented graphs, which

in general are not locally finite. In particular we characterize all the measures
which have the weak mean value property by using the pre-adjoint of the discrete
Laplacian (Theorem 6.3). Using this result we are able to give an explicit example
of a positive measure with infinite support which is not Γo-invariant but has the
weak mean value property (Example 6.4 on the homogeneous tree TM).

2. Preliminaries

Every connected, non-oriented graph X carries a natural distance d. By means of
this metric we define, for all x ∈ X, n ∈ N,

B(x, n) := {y ∈ X : d(x, y) ≤ n}, S(x, n) := {y ∈ X : d(x, y) = n}.

Given a connected graph X and x, y ∈ X there is always a path connecting x
and y (that is a subset {xi}n

i=1 of X such that x = x0 ∼ x1 ∼ · · · ∼ xn = y). A cycle
is a closed path of length at least 3, without repeated vertices (with the exception
of the first and the last one); a tree is a graph without cycles.

Given a random walk (X, P) and x, y ∈ X, we denote by p(n)(x, y) the transition
probability from x to y in n steps (by definition p(0)(x, y) = δx(y), where δx is the
Dirac measure on x). The generating function of the transition probabilities (called
the Green function) is defined as the following power series:

G(x, y|z) =
+∞∑
n=0

p(n)(x, y)zn, x, y ∈ X, z ∈ C, (3)

and its radius of convergence will be denoted by r. Given a general Markov chain
Zn described by the random walk (X, P), we set the hitting probabilities and their
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generating function:

f (n)(x, y) =Pr[Zn = y, Zk �= y, k = 1, . . . , n − 1|Z0 = x]
f (0)(x, y) = 0 (4)

F(x, y|z) =
+∞∑
n=0

f (n)(x, y)zn, x, y ∈ X, z ∈ C.

Strictly related to F is the function

U(x, y|z) :=
{

F(x, y|z) if x �= y

1 if x = y,
(5)

which is a probability generating function as well. We define U(x, y) := U(x, y|1).
We recall that a set function ν : P (X) → R is called a finite variation measure

if it is a σ–additive measure and if the measure |ν|(A) := ∑
x∈A |ν(x)| satisfies

|ν|(X) < +∞. We define its support as supp(ν) := {x ∈ X : ν(x) �= 0}.
We want to emphasize that we are dealing with measures which, in general,

are not positive. According to Theorem 6.2 of [1], |ν| is a positive measure.
We could look at a finite variation measure on X as a particular function on
X which belongs to l1(X) := { {αx}x∈X : ∑

x∈X |αx| < +∞} (that is l1(X) =
L1((X,P (X), µc);R), where µc is the counting measure on the set X and P (X)

is the set of all the subsets of X). It is easy to show that for every f ∈ L1(X, |ν|) we
have

∫
X f dν = ∑

x∈X f(x)ν(x), where the right-hand side of the previous equation
converges absolutely.

We denote by H(X, P) the linear space of all the real harmonic functions on
X and by H+(X, P) the positive cone of all the positive harmonic functions on X.

Let us consider a tree (T, P) and let the root be o, then for every x, y ∈ T
there exists a unique shortest path Π[x, y] connecting x to y. We define the vertex
x ∧ y ∈ T by Π[o, x] ∩ Π[o, y] = Π[o, x ∧ y]. The relation x ≥ y ⇔ y = x ∧ y
is a partial ordering on T .

Let (X, E(X)) be a graph, we say that a bijective function γ from X onto itself
is an automorphism if for all x, y ∈ X then

[x, y] ∈ E(X), if and only if [γx, γy] ∈ E(X),

and we denote the set of all the automorphisms from X onto itself by AUT(X).
In the next lemma we list some elementary properties of automorphisms.

Lemma 2.1. Let (X, E(X)) be a non-oriented graph, then

(i) γ ∈ AUT(X) if and only if γ is a bijective isometry;
(ii) γ ∈ AUT(X) if and only if γ is bijective and preserves all the geodesics;
(iii) if X is a tree and γ ∈ AUT(X) such that γ(oX) = oX then, for all x, y ∈ X,

γx ∧ γy = γ(x ∧ y).

Proof. The proof is straightforward and we omit it. ��
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Definition 2.2. Let X be a graph and x ∈ X be fixed, then an automorphism
γ ∈ AUT(X) is called a rotation centred at x if γ(x) = x; the subgroup of all the
rotations centred at x is denoted by Γx.

The graph X is said to be x-radial (x ∈ X) if Γx acts transitively on S(x, k), for
every k ∈ N. Given x ∈ X, then we write [y]x for the Γx-orbit of y ∈ X. A function
on X is Γx-invariant if and only if it is constant on every trajectory [y]x , for all
y ∈ X and B ⊂ X is Γx-invariant if and only if B = ∪y∈B[y]x .

The following assertions are clearly equivalent:

(i) for all y ∈ X, [y]x = S(x, d(x, y));
(ii) X is x-radial;
(iii) B ⊂ X is Γx-invariant if and only if there exists I ⊆ N such that B =

∪k∈I S(x, k).

We say that a tree T is of T{nk}-type if it is a tree branching from a root o such
that deg(x) = nd(o,x) , for all x ∈ T . We know (see e.g. [9]) that a tree T is radial
with respect to x ∈ T if and only if it is of T{nk}-type with respect to x.

Proposition 2.3. Let T be a tree such that card(T ) ≥ 2, then the following asser-
tions are equivalent:

(i) there exist x, y ∈ T, x �= y such that T is x-radial and y-radial;
(ii) T is w-radial for every w ∈ T.

Proof. (i) ⇒ (ii). We first observe that a T{nk}-type tree is radial with respect to
every x ∈ T if and only if nk = nk+2, for all k = 0, 1, . . . . Moreover, it is
not difficult to see that if (i) holds then T must be infinite. Let us suppose that
d(x, y) = r and let T be T{nk} with respect to x and T{mk} with respect to y. Then
for all k = 0, 1, . . . , r and for all p ≥ 0,

n p = mr+p,

nr+p = m p,

nk+p = mr−k+p.

We consider two different cases:

a) r = 1: then n0 = m1, m0 = n1, nl = ml+1 = ml−1 which implies ml+1 = ml−1

and nl = nl−2 and then T is x-radial for every x ∈ T ;
b) r > 1: then nl = nl−1+1 = mr−1+(l−1) = mr+l−2, but nl = ml+r then nl =

mr+l = mr+l−2 = nl−2, for every l ≥ 2.

(ii) ⇒ (i). It is trivial. ��
From the previous proposition we obtain that if T is a tree with card(T ) ≥ 2,
satisfying (i) or (ii) then it is an infinite bi-homogeneous tree.

Given a random walk (X, P) and a point o ∈ X, we define the Martin kernel to
be a function K : X × X → R defined as

k(x, y) := U(x, y)

U(o, y)
, ∀x, y ∈ X. (6)
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Let us remember that if T is a tree with root o and if we consider x, y, w ∈ T
such that w ∈ Π[x, y], then

U(x, y|λ) = U(x, w|λ)U(w, y|λ),

for every λ in the domain of convergence of the function U . Using this property
we can derive the following one:

k(x, y) = U(x, y)

U(o, y)
= U(x, x ∧ y)U(x ∧ y, y)

U(o, x ∧ y)U(x ∧ y, y)
= U(x, x ∧ y)

U(o, x ∧ y)
= k(x, x ∧ y). (7)

If we denote with T̂ the Martin compactification of T (cf. [2]) and M(T ) := T̂ \T ,
then, for all ξ ∈ M(T ), there exists a unique sequence {xn} ⊂ T such that x0 = o,
Π[o, xn] = {x0, . . . , xn}, for all n ∈ N, and xn → ξ in the topology of T̂ . We
represent this sequence as Π[o, ξ] and we can show that for every ξ1, ξ2 ∈ T̂ there
exists a unique ξ1∧ξ2 ∈ T̂ such that Π[o, ξ1∧ξ2] = Π[o, ξ1]∩Π[o, ξ2]. Moreover,
if ξ1 �= ξ2 then ξ1 ∧ ξ2 ∈ T ; if y ∈ T and if {xn} = Π[o, ξ] then there exists n0 ∈ N
such that for all n ≥ n0, ξ ∧ y = xn ∧ y. Using these properties we can extend the
Martin kernel to the Martin compactification as k(x, ξ) := k(x, ξ ∧ x), for every
ξ ∈ T̂ . This extension can be made for any random walk (X, P) (see [10] and [11]).
We will need the following lemma (see e.g. [12, Lemma 6.3]):

Lemma 2.4. Let (T, P) be an irreducible, transient random walk on a tree; if
ξ ∈ T̂ then the function x  → k(x, ξ) is superharmonic. Moreover, if ξ ∈ M(T )

and card{y : y ∼ x0} < +∞ then k(·, ξ) is harmonic in x0.

Let T be a tree with root o; for every x ∈ T we define

Tx := {y ∈ T : y ∧ x = x}, M(Tx) := {ξ ∈ M(T ) : x ∈ Π[o, ξ]}. (8)

We observe that Tx is the connected subtree of T branching from its root x,
constituted by all the vertices y satisfying x ∈ Π[o, y].
Remark 2.5. If we are dealing with a T{nk}-type tree T with root o then given
any couple of vertices x, y ∈ T such that d(o, x) = d(o, y), if Π[x ∧ y, x] =
{x ∧ y, x1, . . . , x} and Π[x ∧ y, y] = {x ∧ y, y1, . . . , y} then there exists a map
γ ∈ Γo such that:

(i) γ(Tx1) = Ty1 and γ(Tx) = Ty;
(ii) γ 2 = 1lT ;
(iii) γ(z) = z, for all z ∈ T \ {Tx1 ∪ Ty1};
where 1lT ∈ AUT(T ) is the identity map.

With the next proposition we want to point out a couple of properties of the
Martin kernel of a random walk on a tree, which will be very useful in the next
sections. If we have γ ∈ Γo and ξ ∈ M(T ) then there exists a unique ξ ′ ∈ M(T )

such that Π[o, ξ ′] = γ(Π[o, ξ]) := {γ(x0), γ(x1), . . . }, hence we extend the map
γ to the Martin boundary as γ(ξ) := ξ ′; this extension is bijective.
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Lemma 2.6. Let us consider a transient random walk (T, P) on a tree T with
root o. If ξ1, ξ2 ∈ T̂ , x ∈ T then:

a) if d(o, ξ1 ∧ x) > d(o, ξ1 ∧ ξ2) then k(x, ξ1) > k(x, ξ2);
b) if max (d(o, ξ1 ∧ x), d(o, ξ2 ∧ x)) ≤ d(o, ξ1 ∧ ξ2) then k(x, ξ1) = k(x, ξ2).

Moreover, if the random walk is Γo-invariant then k(x, ξ) = k(γ(x), γ(ξ)), for all
γ ∈ Γo, x ∈ T, ξ ∈ T̂ . In particular if T is a T{nk}-type tree then ξ1, ξ2 ∈ S(0, k)
implies k(ξ1, ξ2) = k(ξ2, ξ1).

Proof. a) If d(o, ξ1 ∧ x) > d(o, ξ1 ∧ ξ2) then ξ2 ∧ x = ξ1 ∧ ξ2 and

k(x, ξ1)

k(x, ξ2)
= k(x, ξ1 ∧ x)

k(x, ξ2 ∧ x)
= U(x, ξ1 ∧ x)U(o, ξ2 ∧ x)

U(x, ξ2 ∧ x)U(o, ξ1 ∧ x)

= U(x, ξ1 ∧ x)U(o, ξ1 ∧ ξ2)

U(x, x ∧ ξ1)U(x ∧ ξ1, ξ1 ∧ ξ2)U(o, ξ1 ∧ ξ2)U(ξ1 ∧ ξ2, x ∧ ξ1)

= 1

U(x ∧ ξ1, ξ1 ∧ ξ2)U(ξ1 ∧ ξ2, x ∧ ξ1)
≥ 1

F(x ∧ ξ1, x ∧ ξ1)
> 1,

since x ∧ ξ1 �= ξ1 ∧ ξ2 and the random walk is transient.
b) If d(o, x∧ξi) ≤ d(o, ξ1∧ξ2) for i = 1, 2 then x∧ξ1 = x∧ξ2 ∈ Π[o, ξ1∧ξ2],

hence
k(x, ξ1) = k(x, x ∧ ξ1) = k(x, x ∧ ξ2) = k(x, ξ2).

If γ ∈ Γo then deg(x) = deg(γ(x)) and p(x, y) = p(γ(x), γ(y)), for all x, y ∈ T ,
this implies that U(x, y|λ) = U(γ(x), γ(y)|λ) and then

k(x, ξ) = U(x, x ∧ ξ)

U(o, x ∧ ξ)
= U(γ(x), γ(x ∧ ξ))

U(γ(o), γ(x ∧ ξ))

= U(γ(x), γ(x)∧ γ(ξ))

U(γ(o), γ(x)∧ γ(ξ))
= k(γ(x), γ(ξ)). (9)

Finally if T is a T{nk}-type tree and γ is defined as in Remark 2.5 then k(ξ2, ξ1) =
k(γ(ξ2), γ(ξ1)) = k(ξ1, ξ2). ��

3. Mean value properties

Let us look at the mean value property of harmonic functions on Euclidean spaces
as we described it in Section 1. If we take a measurable subset B of the complex
plane, which is invariant under all the rotations centred at a point xo then the
measure mB (which is the Lebesgue measure on B) satisfies∫

h dmB = h(x0)m(B),

for every harmonic function h. The previous equation suggests the basic idea of
mean value property of a measure on a graph. If not otherwise explicitly stated, the
σ-algebra on the vertex set of a graph will always be the set P (X).
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Definition 3.1. Let (X,ΣX) be a measureable space, o ∈ X and let ν be a measure
on (X,ΣX) with finite variation. If F is a family of functions in L1(|ν|) then we
say that ν has the mean value property with respect to F and o if

L(h, ν)(o) = 0, ∀h ∈ F , (10)

where

L(h, ν)(x) :=
∫

X
h dν − ν(X)h(x), ∀x ∈ X. (11)

In particular, if (X, P) is a graph with an adapted random walk, we say that ν has
the strong mean value property with respect to o (resp. weak mean value property
with respect to o) if Equation (10) holds with F ≡ H(X, P) ∩ L1(|ν|) (resp.
F ≡ H∞(X, P) := H(X, P)∩l∞(X), where l∞(X) := L∞((X,P (X), µc);R)).
If X is a tree with root o then a mean value property will always be with respect
to o.

Obviously if ν has the strong mean value property then it has the weak mean
value property.

We note also that if ν(X) = 0 then it has the mean value property with respect
to F and x if and only if F ⊆ { f ∈ L1(|ν|) : ∫

X f dν = 0}. Obviously if ν(X) �= 0
and ν has the mean value property with respect to F and x, then it has the mean
value property with respect to F and y if and only if F does not separate x and y
(that is h(x) = h(y) for every h ∈ F ). Then if ν(X) �= 0 we easily see that ν has
the mean value property with respect to F and x for every x ∈ X if and only if F
is a set of constant functions.

Moreover, the weak mean value property is relevant only in the transient case.
More precisely if H∞(X, P) is exactly the set of all the constant functions on X, as
in the recurrent case (but not only in this case, take for instance Zd with the simple
random walk, see [13, Theorem 7.1]), then every finite variation measure has the
weak mean value property with respect to any point o ∈ X. Obviously if every
finite variation measure has the weak (strong, respectively) mean value property
with respect to any point o ∈ X then H∞(X, P) (H(X, P), respectively) is the set
of all the constant functions.

This means that, in general, the weak mean value property does not imply
the strong one. Let (X, P) be a random walk such that H∞(X, P) is the set of
all the constant functions and H(X, P) \ H∞(X, P) �= ∅ (take for instance Zd

the d-dimensional grid with the simple random walk), then every finite variation
measure has the weak mean value property with respect to any point but there exists
a couple of points x, y such that δx does not have the strong mean value property
with respect to y.

In this paragraph we will consider only strong and weak mean value properties
or the case F = {k(·, ξ)}ξ∈M(T ), where T is a tree.

We observe that the map (h, ν)  → L(h, ν) is bilinear where it is defined; in
particular if h is harmonic so is L(h, ν). It is useful to note that if ν is a finite
variation measure and h, k ∈ L1(|ν|) such that h(x0) = k(x0) (where x0 ∈ X) then,

L(h, ν)(x0) − L(k, ν)(x0) =
∫

X
h dν −

∫
X

k dν. (12)
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Proposition 3.2. Let {νn} be a sequence of finite variation measures on a graph X
such that

∑
n∈N |νn|(X) < +∞. Then for all A ⊆ X, ν(A) := ∑

n∈N νn(A) con-
verges absolutely to a finite variation measure ν such that |ν| ≤ ∑

n∈N |νn| =: µ.
Moreover, if h ∈ L1(µ) then, for all x ∈ X,

L(h, ν)(x) =
∑
n∈N

L(h, νn)(x).

Proof. If we take h ∈ L1(µ) then
∑

y∈X

∑
n∈N |h(y)||νn(y)| ≤ ∫

X |h| dµ < +∞;
using Fubini’s Theorem we have∫

X
h dν =

∑
y∈X

∑
n∈N

h(y)νn(y) =
∑
n∈N

∑
y∈X

h(y)νn(y) =
∑
n∈N

∫
X

h dνn. (13)

Since µ is of finite variation by hypothesis, for every A ⊆ X, χA ∈ L1(µ) (where
χA is the characteristic function of A), and Equation (13) becomes

ν(A) =
∫

X
χA dν =

∑
n∈N

∫
X

χA dνn =
∑
n∈N

νn(A).

Hence, taking A = X,

L(h, ν)(x) =
∑
y∈X

∑
n∈N

h(y)νn(y) −
∑
n∈N

νn(X)h(x)

=
∑
n∈N

∑
y∈X

h(y)νn(y) − νn(X)h(x)

 =
∑
n∈N

L(h, νn)(x).

The absolute convergence of
∑

n∈N νn(A) holds since νn(A) ≤ |νn |(X), which is
summable. ��

Now we want to find a class of finite variation measures on trees which have
the strong mean value property.

From now on, let (T, P) be a random walk on a tree T with root o. Let us take
x ∈ S(o, k) and suppose Π[o, x] ≡ {o = x0 ∼ x1 ∼ · · · ∼ xk = x}. We remember
that, since T is a tree, we have

p(k)(o, x) =
k−1∏
n=0

p(xi, xi+1),

moreover, if y ∈ S(o, k + 1) and y ∼ x, then p(k+1)(o, y) = p(k)(o, x)p(x, y).
We say that a finite variation measure ν is of type 1 if and only if there exists

a sequence {αk}k∈N such that for every x ∈ T ,

ν(x) := p(d(o,x))(o, x)αd(o,x).
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Proposition 3.3. Let T be a locally finite tree carrying an adapted random walk
such that the function

x  −→
∑
y∼x

d(o,y)=d(o,x)+1

p(x, y)p(y, x) (14)

is constant on S(o, k), for all k ∈ N. If ν is a finite variation measure of type 1 on
T then for all h ∈ H(T, P) ∩ L1(|ν|) we have L(h, ν)(o) = 0.

Proof. Note that ν = ∑
n∈N νn and |ν| = ∑

n∈N |νn|, where νn(x) := ν(x)χS(o,n)(x).
Hence, by Proposition 3.2, it is enough to prove the statement when supp(ν) ⊆
S(o, n) for some n ∈ N.

We use induction on n. If n = 0 there is nothing to prove. If n = 1 then for all
h ∈ H(T.P) ∩ L1(|ν|) we have

L(h, ν)(o) =
∑

x∈S(o,1)

h(x)ν(x)−
∑

x∈S(o,1)

ν(x)h(o)

= α1

 ∑
x∈S(o,1)

h(x)p(o, x)−
∑

x∈S(o,1)

p(o, x)h(o)

 = 0.

We suppose now that the proposition holds for every n′ ≤ n. If supp(ν) ⊆ S(o, n)

and h ∈ H(T, P) we have∑
x∈S(o,n)

h(x)ν(x) =
∑

y∈S(o,n+1)
x∈S(o,n)

p(x, y)h(y)ν(x) +
∑

y∈S(o,n−1)
x∈S(o,n)

p(x, y)h(y)ν(x).

Now if ν is a finite variation measure of type 1 such that supp(ν) ⊆ S(o, n + 1),
using the previous equation we have∑

y∈S(o,n+1)

h(y)ν(y) =
∑

x∈S(o,n)

h(x)ν(x) −
∑

y∈S(o,n−1)

h(y)
∑

x∈S(o,n)

p(x, y)ν(x),

where, if x ∈ S(o, n) and y ∼ x, y ∈ S(o, n + 1), then ν(x) = ν(y)/p(x, y) ≡
αp(n)(o, x) and hence ν is of type 1 and supp(ν) ⊆ S(o, n). If we define now, for
every y ∈ S(o, n − 1), ν̂(y) := ν(x)/p(y, x), where x ∈ S(o, n), x ∼ y (which is
well defined and of type 1 as well) then∑
y∈S(o,n+1)

h(y)ν(y) =
∑

x∈S(o,n)

h(x)ν(x)−
∑

y∈S(o,n−1)

h(y)
∑

x∈S(o,n)

p(x, y)p(y, x)̂ν(y)

=
∑

x∈S(o,n)

h(x)ν(x) −
∑

y∈S(o,n−1)

h(y)β ν̂(y),

where β = ∑
x∈S(o,n) p(y, x)p(x, y), which is independent of y.

If h ≡ 1, from the previous equation, we obtain

ν(T ) = ν(T ) − β ν̂(T ),
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then by induction hypothesis

L(h, ν)(o) =
∑
x∈T

h(x)ν(x)− ν(T )h(o)

=
∑
x∈T

h(x)ν(x) − β
∑
x∈T

h(x)̂ν(x) − (ν(T ) − β ν̂(T ))h(o)

= L(h, ν)(o) − βL(h, ν̂)(o) = 0. ��
The previous result extends, using a slightly different technique, a result ob-

tained by Picardello and Woess [8, Lemma 1]; see also [3] and [5].

Remark 3.4. If T is a tree and P is an isotropic random walk (see [9, Defin-
ition 1.1]), then a finite variation measure is of type 1 if and only if it is constant
on every sphere. If T is a tree of T{nk} type and P is the simple random walk,
then every finite variation measure which is Γo-invariant has the strong mean value
property (Equation (14) is easily verified).

We now consider a general irreducible, transitive random walk (X, P). Let
Mmin ≡ Mmin(X) := {ξ ∈ M(X) : k(·, ξ) ∈ H(X, P)}. For every Borel measure
ν on the Martin compactification X̂ if

h(x) :=
∫

X̂
k(x, ξ) dν(ξ), ∀x ∈ X, (15)

then

(Ph)(x) :=
∫

X̂
(Pk)(x, ξ) dν(ξ), ∀x ∈ X,

where (Pk)(x, ξ) := ∑
w∈X p(x, w)k(w, ξ). In particular, if supp(ν) ⊆ Mmin then

Equation (15) defines an harmonic function.
If (νx)x∈X is the family of harmonic measures (see [14, Paragraph 20] or [12,

Paragraph 6.D]) then νx(B) = ∫
B k(x, ξ) dνo(ξ), where B ⊆ X̂ is a Borel set

and o ∈ X is the same point involved in the definition of the Martin kernel k. If
ϕ ∈ L1(M, νo) then

h(x) :=
∫

Mmin

ϕ(ξ)k(x, ξ) dνo(ξ) ≡
∫

Mmin

ϕ(ξ) dνx(ξ), ∀x ∈ X, (16)

is a well-defined harmonic function (for every fixed x ∈ X, ξ  → k(x, ξ) is a contin-
uous function on the compact space X̂). In particular Equation (16) defines a linear,
bicontinuous map from L∞(Mmin, νo) onto H∞(X, P) (it is clearly bounded, the
boundedness of the inverse map is guaranteed by the Open Mapping Theorem).

Proposition 3.5. Let (X, P) be an irreducible, transient random walk and let us
fix o ∈ X, ∆ a family of finite variation Borel measures on M and ν a finite
variation measure on X such that the Martin kernel k ∈ L1(X × Mmin, |ν| × |µ|)
for every µ ∈ ∆. If we define F∆ := {h : h(x) := ∫

Mmin
k(x, ξ) dµ(ξ), µ ∈ ∆}

then L(k(·, ξ), ν)(o) = 0 |µ| a.e. on Mmin for every µ ∈ ∆ implies that ν has
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the mean value property with respect to F∆ and o. Vice versa, let us suppose that
∆ ⊇ {δξ : ξ ∈ Mmin} then if ν has the mean value property with respect to F∆

and o we have that L(k(·, ξ), ν)(o) = 0 for every ξ ∈ Mmin.

Proof. Let us note first, using Fubini’s Theorem and the continuity of ξ  → k(x, ξ),
that F∆ ⊆ H(X, P) ∩ L1(X, |ν|). If h ∈ F∆ (represented by µ) and f(x, ξ) :=
k(x, ξ) − k(o, ξ), then f ∈ L1(X × M, |ν| × |µ|) hence, by Fubini’s Theorem
(applied to the positive measures ν+, ν− and µ+, µ−),

L(h, ν)(o) =
∫

X

∫
Mmin

(k(x, ξ) − k(o, ξ)) dµ(ξ) dν(x)

=
∫

Mmin

∫
X
(k(x, ξ) − k(o, ξ)) dν(x) dµ(ξ) = 0.

Vice versa, if we choose µ=δξ then k(·, ξ)∈F∆ and hence L(k(·, ξ), ν)(o)=0
for every ξ ∈ Mmin. ��
Corollary 3.6. Let (X, P) be an irreducible, transient random walk and let us fix
o ∈ X and ν a finite variation measure on X such that k(·, ξ) ∈ L1(X, |ν|) νo

a.e. (where νo is the harmonic measure). If L(k(·, ξ), ν)(o) = 0 νo a.e. on Mmin

then ν has the weak mean value property with respect to o.

Proof. It is enough to apply the first part of the previous theorem to ∆ := {µ :
µ(B) := ∫

B ϕ(ξ)νo(ξ), B ⊆ Mmin Borel set, ϕ ∈ L∞(M, νo)} recalling that, in
this case, F∆ ≡ H∞(X, P). ��

4. The mean value property for measures with finite support

In this paragraph we deal only with signed measures with bounded support (which,
of course, are of finite variation) on radial trees. Our goal is to find a necessary and
sufficient condition for such measures to have the strong or the weak mean value
properties (we will see that in this case there is no difference between the two).

Remark 4.1. By Lemma 2.4 and Equation (7), for all ξ ∈ M(T ),

k(x, ξ) = k(x, ξk), ∀x ∈ T c
ξk
∪ {ξk},

where {ξk} = Π[o, ξ] ∩ S(o, k). Moreover, every positive harmonic function (and
hence every bounded harmonic function) on T admits an integral representation.
Therefore, using this integral representation, we see that a finite variation measure
ν on a tree T with supp(ν) ⊆ B(o, k) has the strong mean value property with
respect to x ∈ T if and only if L(k(·, ξ), ν)(x) = 0 for every ξ ∈ S(o, k).

In order to be able to compare the value of the map L(·, ν) corresponding to
two different Martin kernels k(·, ξ1) and k(·, ξ2) we need the following proposition:
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Proposition 4.2. Let (T, P) be a Γo-invariant random walk on a T{nk}-type tree
with root o and ν a finite variation measure such that supp(ν) ⊆ B(o, k). If we take
ξ1, ξ2 ∈ S(o, k), then:

(i) L(k(·, ξ1), ν)(o) − L(k(·, ξ2), ν)(o) = ∫
T k(·, ξ1) dν − ∫

T k(·, ξ2) dν;
(ii)

∫
T k(·, ξ1) dν − ∫

T k(·, ξ2) dν = ∑
x∈Tx1

[k(x, ξ1) − k(x, ξ2)](ν(x) − ν(γ(x))),
where xi ∈ Π[ξ1 ∧ ξ2, ξi ], d(xi, ξ1 ∧ ξ2) = 1 (i = 1, 2) and γ ∈ Γo is exactly
as in Remark 2.5 and γ(ξ1) = ξ2. Moreover, if ξ1 �= ξ2 then for all x ∈ Tx1 we
have that k(x, ξ1) − k(x, ξ2) > 0.

Proof. (i) It is an easy consequence of k(o, ξ1) = k(o, ξ2) = 1 and of Equa-
tion (12).

(ii) If ξ1 = ξ2 there is nothing to prove, hence we may suppose that ξ1 �= ξ2.
Using Lemma 2.6 we obtain∫

T
(k(·, ξ1) − k(·, ξ2)) dν =

∫
Tx1∪Tx2

(k(·, ξ1) − k(·, ξ2)) dν. (17)

Then if γ ∈ Γo satisfies the hypotheses and recalling Equation (9), we have∫
Tx1∪Tx2

(k(·, ξ1) − k(·, ξ2)) dν

=
∑

z∈Tx1

k(z, ξ1)ν(z) −
∑

z∈Tx1

k(z, ξ2)ν(z) +
∑

z∈Tx2

k(z, ξ1)ν(z) −
∑

z∈Tx2

k(z, ξ2)ν(z)

=
∑

z∈Tx1

(k(z, ξ1) − k(z, ξ2))ν(z) +
∑

z∈Tx2

(k(γ(z), γ(ξ1)) − k(γ(z), γ(ξ2)))ν(z).

Recalling that z ∈ Tx2 if and only if γ(z) ∈ Tx1 and that γ 2 = 1l, then the last
equation can be rewritten as∑

z∈Tx1

(k(z, ξ1) − k(z, ξ2))ν(z) +
∑

z∈Tx1

(k(z, ξ2) − k(z, ξ1))ν(γ(z))

=
∑

z∈Tx1

(k(z, ξ1) − k(z, ξ2))(ν(z) − ν(γ(z))).

Moreover, z ∈ Tx1 if and only if d(o, z ∧ ξ1) ≥ d(o, x1) = d(o, ξ1 ∧ ξ2)+ 1, hence
Lemma 2.6 implies that k(z, ξ1) − k(z, ξ2) > 0.

Finally we note that the all these sums are finite since ν is a finite support
measure. ��
Remark 4.3. It follows from Nash–Williams’ recurrence criterion (see [15]) that
the simple random walk on a Tnk -type tree T is transient if and only if

+∞∑
i=1

i∏
j=1

1

n j − 1
< +∞. (18)
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For the rest of this section we consider only T{nk}-type trees with a transient
simple random walk.

Using the next theorem we will derive a necessary and sufficient condition for
a certain type of measures to have the strong mean value property.

Theorem 4.4. Let T be a transient T{nk}-type tree and ν a finite variation meas-
ure such that supp(ν) ⊆ S(o, k), k ≥ 1. If for all ξ1, ξ2 ∈ S(o, k) we have∫

T k(·, ξ1) dν = ∫
T k(·, ξ2) dν then ν is Γo-invariant.

Proof. Let us suppose by contradiction that ν is not Γo-invariant, then we can
choose ξ, ξ1 ∈ S(0, k) such that ν(ξ1) ≥ ν(z), for all z ∈ S(o, k) and ν(ξ1) > ν(ξ).
We define r = min{d(ξ1, ξ) : ξ ∈ S(o, k), ν(ξ) < ν(ξ1)} (note that r is even and
r ≥ 2) and we fix ξ2 ∈ S(0, k) satisfying d(ξ1, ξ2) = r and ν(ξ2) < ν(ξ1). Let
Π[ξ1 ∧ ξ2, ξi] = {ξ1 ∧ ξ2, xi, . . . , ξi}, i = 1, 2 (it is possible that xi = ξi) and let
us define T̃xi := Txi ∩ S(o, k), i = 1, 2. If z ∈ T̃x1 then d(z, ξ1) < d(ξ1, ξ2), hence,
recalling the definition of r, we have ν(z) = ν(ξ1). By Proposition 4.2,∫

T
k(·, ξ1) dν −

∫
T

k(·, ξ2) dν =
∑

x∈T̃x1

[k(x, ξ1) − k(x, ξ2)](ν(x) − ν(γ(x))) > 0,

since for every x ∈ T̃x1 , ν(x) − ν(γ(x)) = ν(ξ1) − ν(γ(x)) ≥ 0 and k(x, ξ1) −
k(x, ξ2) > 0. Besides if x = ξ1 then ν(ξ1)− ν(γ(ξ1)) = ν(ξ1)− ν(ξ2) > 0 and this
contradicts the hypothesis. ��

This theorem has many consequences.

Corollary 4.5. Let T be a transient T{nk}-type tree and ν a finite variation measure
such that supp(ν) ⊆ S(o, k), k ≥ 1. If ν is not Γo-invariant then there exists
ξ1, ξ2 ∈ S(o, k) such that both

∫
T k(·, ξ1) dν �= 0 and L(k(·, ξ2), ν)(o) �= 0.

Proof. By Theorem 4.4 we can choose ξ, ζ ∈ S(o, k) such that
∫

T k(·, ξ) dν �=∫
T k(·, ζ) dν, then by Proposition 4.2(i) it is not possible that L(k(·, ξ), ν)(o) = 0

and L(k(·, ζ), ν)(o) = 0. ��
Corollary 4.6. Let T be a transient T{nk}-type tree and ν a finite variation measure
such that supp(ν) ⊆ S(o, k), k ≥ 1; the following assertions are equivalent:

(i) ν is Γo-invariant;
(ii) ν has the strong mean value property;
(iii) for all ξ ∈ M(T ), we have that L(k(·, ξ), ν)(o) = 0.

Proof. (i) ⇒ (ii). It is an easy consequence of Remark 3.4.
(ii) ⇒ (iii). It is obvious.
(iii) ⇒ (i). It is by Corollary 4.5, recalling that, according to Lemma 2.4 and

Equation (7) it is enough to consider ξ ∈ S(o, k). ��
We may easily note that the previous corollary gives us a necessary and suf-

ficient condition for a measure ν with supp(ν) ⊆ S(o, k) to have the strong mean
value property and the weak mean value property as well.

What happens if supp(ν) �⊆ S(o, k) for any k ∈ N? It is possible to find many
examples of finite variation measures having the strong mean value property which
are not Γo-invariant.



The mean value property for harmonic functions on graphs and trees 119

Example 4.7. On the homogeneous treeT3, we define the measureν with supp(ν) ⊆
B(o, 2) as follows (see Figure 1).

ν(o) := 0, ν(xij) :=
{

1 if i = 1, j = 1, 2

0 if i �= 1, j = 1, 2
, ν(xi) :=

{
3 if i �= 1

0 if i = 1.

Fig. 1. The homogeneous tree T3

In fact if h ∈ H(T3) then, by Equation (2),

L(h, ν)(o) =
∫
T3

h dν− ν(T3)h(o) = 3h(x2)+ 3h(x3)+ h(x11)+ h(x12)− 8h(o)

= 3(h(x2) + h(x3) + h(x1)) − h(o) − 8h(o) = 0.

Definition 4.8. Let T be a tree with root o and ν a finite variation measure on T
such that supp(ν) ⊆ B(o, k) and there exists x ∈ S(o, k) with ν(x) �= 0. We call
ν a well-distributed measure (with respect to o) if k = 0 or if k ≥ 1 and for all
x, y ∈ S(o, k) such that x ∧ y ∈ S(o, k − 1) we have ν(x) = ν(y).

We observe that in this definition only the values of the measure on S(o, k) are
involved. If ν1 and ν2 are well distributed and α, β ∈ R, then αν1 + βν2 is well
distributed (note that in this case supp(ν1) ⊆ B(o, k1) and supp(ν2) ⊆ B(o, k2)

and we do not necessarily suppose that k1 = k2). Obviously, if supp(ν) ⊆ B(o, 1)

then ν is a well-distributed measure if and only if it is constant on S(o, 1).
We now introduce an operator which could be regarded as a contraction of the

measure. If we are dealing with a finite variation measure ν with supp(ν) ⊆ B(o, k),
we want to construct a suitable new measure whose support is a subset of B(o, k−1);
we denote this new measure by Kk(ν).

Definition 4.9. If ν is a finite variation measure on a T{nk}-type tree with supp(ν) ⊆
B(o, k), k ≥ 1, then we define a new measureKk(ν) such that supp(ν) ⊆ B(o, k−1)

as follows:
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a) if k = 0 then K0(ν) := ν;
b) if k = 1, then,

K1(ν)(x) :=


∑
y∈B(o,1)

ν(y) if x = o

0 if x �= o;
c) if k ≥ 2, then,

Kk(ν)(x) :=



0 if x �∈ B(o, k − 1)

ν(x) + nk−1

nk−1 − 1

∑
y∼x

y∈S(o,k)

ν(y) if x ∈ S(o, k − 1)

ν(x) − 1

nk−1 − 1

∑
y∈Tx∩S(o,k)

ν(y) if x ∈ S(o, k − 2)

ν(x) if k ≥ 3, x ∈ B(o, k − 3).

Moreover, if n∈{2, . . . , k},K(n)
k (ν) :=Kk−n+1◦Kk−n+2◦· · ·Kk(ν), besides if n=1

(n = 0, respectively) we defineK(1)
k (ν) := Kk(ν) (K(0)

k (ν) := ν, respectively).

We note immediately that if ν(x) = 0 for all x ∈ S(o, k) then Kk(ν) ≡ ν. The
measureKk(ν) has two important properties: the first one (Proposition 4.10) holds
for every finite variation measure ν, while for the second one (Proposition 4.11)
we must suppose that ν is well distributed.

Proposition 4.10. If ν is a finite variation measure on a T{nk}-type tree T with
supp(ν) ⊆ B(o, k) then Kk(ν)(T ) = ν(T ).

Proof. If k = 0 there is nothing to prove and the very easy case k = 1 is left to the
reader. We can suppose k ≥ 2.

Kk(ν)(T ) =
∑

x∈B(o,k−1)

ν(x) +
∑

y∈S(o,k−1)

∑
x∼y

x∈S(o,k)

nk−1

nk−1 − 1
ν(x)

−
∑

x∈S(0,k−2)

∑
y∈Tx∩S(o,k)

ν(y)

nk−1 − 1

=
∑

x∈B(o,k−1)

ν(x)+
∑

x∈S(o,k)

nk−1

nk−1 − 1
ν(x)−

∑
z∈S(o,k)

ν(z)

nk−1 − 1
=

∑
x∈B(o,k)

ν(x) = ν(T ).

��
The case when ν is a well-distributed measure is very important and it is worth

looking to the explicit expression of Kk(ν) in this case.

a) if k = 0 thenK0(ν) := ν;
b) if k = 1 then

K1(ν)(x) :=


∑
y∈B(o,1)

ν(y) if x = o

0 if x �= o;
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c) if k ≥ 2 then

Kk(ν)(x) :=



0 if x �∈ B(o, k − 1)

ν(x) + nk−1ν(yx) if x ∈ S(o, k − 1)

ν(x) −
∑
z∼x

z∈S(o,k−1)

ν(yz) if x ∈ S(o, k − 2)

ν(x) if k ≥ 3, x ∈ B(o, k − 3),

where yz ∼ z, yz ∈ S(o, k) (the definition does not depend on the choice of yz

since ν is constant on {y ∼ z : y ∈ S(o, k)} when z ∈ S(o, k − 1) is fixed).

Proposition 4.11. Let ν be a well-distributed measure on a T{nk}-type tree T with
supp(ν) ⊆ B(o, k). If ν̃ := Kk(ν) and h ∈ H(T, P) then∫

T
h dν =

∫
T

h d̃ν, (19)

and

L(h, ν)(x) = L(h, ν̃)(x), ∀x ∈ T. (20)

Proof. If k = 0 there is nothing to prove and if k = 1 the proposition follows
immediately from Definition 1.1. If k ≥ 2 and if ν1 := ν̃ − ν then∫

T
h d̃ν =

∑
x∈B(o,k−1)

h(x)̃ν(x)

=
∑

x∈S(o,k−1)

h(x)ν(x)+
∑

x∈S(o,k−1)

∑
y∼x

y∈S(o,k)

h(y)

nk−1
ν1(x)+

∑
x∈S(o,k−1)

∑
y∼x

y∈S(o,k−2)

h(y)

nk−1
ν1(x)

+
∑

x∈S(o,k−2)

h(y)̃ν(y) + r(h) =
∑

x∈S(o,k−1)

h(x)ν(x)

+
∑

x∈S(o,k)

h(x)ν(x) +
∑

y∈S(o,k−2)

h(y)

 ∑
x∼y

x∈S(o,k−1)

ν1(x)

nk−1
+ ν̃(y)

 + r(h)

=
∑

x∈B(o,k)

h(x)ν(x) =
∫

T
h dν,

where

r(h) :=


∑
x∈B(o,k−3)

h(x)̃ν(x) ≡
∑

x∈B(o,k−3)

h(x)ν(x) if k ≥ 3

0 if k = 2.

This proves Equation (19).
Equation (20) is an immediate consequence of Equation (19) and Proposi-

tion 4.10. ��
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We have proved that the contracted measure has the same total mass as the
original measure (Proposition 4.10) and, in the case of a well-distributed measure,
the integrals of all the harmonic functions are invariant (Proposition 4.11). This
last property does not hold for general measures; if we take, for instance, the
homogeneous tree T3, the Dirac measure ν(x) := δx11 (x) and h(x) := k(x, x11)

(see Remark 4.1) then ν̃ := Kk(ν) = (3/2)δx1 − (1/2)δo. Therefore
∫

T h dν = 4,
while

∫
T h d̃ν = 2 (see Figure 1).

Now we are able to characterize all the finite variation measures with finite
support on a T{nk}-type tree which have the strong mean value property.

Lemma 4.12. Let ν be a finite variation measure with supp(ν) ⊆ B(o, k) on a
T{nk}-type tree with transient simple random walk. If L(k(·, ξ), ν)(o) = 0 for every
ξ ∈ S(o, k) then ν is well distributed.

Proof. If ν is not well distributed, then there exist ξ1, ξ2 ∈ S(o, k) such that
ν(ξ1) > ν(ξ2) and d(ξ1, ξ2) = 2 and, by Proposition 4.2,

L(k(·, ξ1), ν)(o) − L(k(·, ξ2), ν)(o) =
∫

T
(k(·, ξ1) − k(·, ξ2)) dν

= [k(ξ1, ξ2) − k(ξ2, ξ1)](ν(ξ1) − ν(ξ2)) > 0,

which contradicts the hypothesis. ��
Proposition 4.13. Let ν be a finite variation measure with supp(ν) ⊆ B(o, k) on a
T{nk}-type tree with a transient simple random walk. The following assertions are
equivalent:

(i) ν has the weak mean value property;
(ii) ν has the strong mean value property;
(iii) L(k(·, ξ), ν)(o) = 0 for every ξ ∈ S(o, k);
(iv) K(n)

k (ν) is well distributed for all n = 0, 1, . . . k.

Proof. (i) ⇒ (ii). It is enough to note that since T is a transient Tnk -type tree, it is
possible to extend h|B(o,k) (h ∈ H(T, P)) to a function g ∈ H∞(T, P).

If k = 0 then we can choose g ≡ h(o). Let k ≥ 1. Then T \ B(o, k − 1) =⋃
x∈S(o,k) Tx , where Tx ∩ Ty = ∅ if x, y ∈ S(o, k), x �= y. It is enough to consider

each Tx separately; therefore, we fix x0 ∈ S(o, k), ak := h(x0) while ak−1 := h(z0)

(where z0 ∈ S(o, k − 1), z0 ∼ x0). We look for a harmonic function g which is
constant on S(o, r) ∩ Tx0 , for all r > k (i.e. g(x) := ad(o,x) for every x ∈ Tx0 ). By
Equation (2),

ai+1 = aini − ai−1

ni − 1
, ∀i > k, (21)

then
ai+1 − ai = ai − ai−1

ni − 1
, ∀i > k,

hence

ai+1 − ai =
 i∏

j=k

1

n j − 1

 (h(x0) − h(z0)),
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and finally using Remark 4.3 and Equation (18),

|ai+1 − h(x0)| =
 i∑

l=k

l∏
j=k

1

n j − 1

 |h(x0) − h(z0)| < +∞.

The function g is bounded since S(o, k) is finite.
(ii) ⇒ (i). It is obvious.
(ii) ⇒ (iii). It is an easy consequence of Remark 4.1.
(iii) ⇒ (iv). Lemma 4.12 implies that ν is well distributed; besides, using

Proposition 4.11, we have that L(k(·, ξ),Kk(ν))(o) = 0, for all ξ ∈ S(o, k) and
again from Lemma 4.12 we obtain thatKk(ν) is well distributed. Now ifK(n)

k (ν) is
such that L(k(·, ξ),K(n)

k (ν))(o) = 0, for all ξ ∈ S(o, k) then by Lemma 4.12 it is
well distributed, hence by Proposition 4.11, since K(n+1)

k (ν) = Kk−n ◦K(n)
k (ν) we

have that L(k(·, ξ),K(n+1)
k (ν))(o) = L(k(·, ξ),K(n)

k (ν))(o) = 0, for all ξ ∈ S(o, k).
This proves (iv).

(iv) ⇒ (ii). IfK(n)
k is well distributed for all n then, using Proposition 4.11, we

have that

L(h, ν)(o) = L(h,Kk(ν))(o) = L
(
h,K

(n)
k (ν)

)
(o),

∀h ∈ H(T, P), ∀n = 0, 1, . . . , k.

If we take n = k − 1 then supp(K
(k−1)
k (ν)) ⊆ B(o, 1) and it is well distributed

(i.e. constant on S(o, 1)), then, by Proposition 3.3, we have that

0 = L(h, ν)(o) = L
(
h,K

(k−1)
k (ν)

)
(o), ∀h ∈ H(T, P). ��

The meaning of the previous proposition is that the set of finite variation
measures on a T{nk}-type tree with finite support which have the strong mean value
property is the maximal K-invariant subset of the set of all the finite variation
measures with finite support.

5. The case of counting measures with finite support

In this paragraph we are interested in a particular class of measures: the counting
measures on finite subsets of a T{nk}-type tree T , given a non-empty finite subset
B ⊂ T and a measure νB defined by

νB(A) := card(A ∩ B), ∀A ∈ P (T ). (22)

In particular, we want to characterize all the counting measures with finite support
which have the strong mean value property.
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We recall that, since T is a T{nk}-type tree, then

card(S(o, k)) =


1 if k = 0

n0 if k = 1

n0

k−1∏
i=1

(ni − 1) if k ≥ 2,

card(B(o, k)) =


1 if k = 0

n0 + 1 if k = 1

1 + n0 + n0

k∑
j=2

j−1∏
i=1

(ni − 1) if k ≥ 2.

(23)

The next lemma compares the cardinality of a ball of radius k with the cardi-
nality of the sphere of radius k + 1.

Lemma 5.1. If T is a T{nk}-type tree with n0 ≥ 2 and nk ≥ 3 for all k ≥ 1 then

card(S(o, k)) ≥ 1 + card(B(o, k − 1)), ∀k ≥ 1. (24)

Proof. If k = 1 then card(S(o, k)) = n0 ≥ 2 = 1 + card(B(o, 0)). We will prove
the lemma by induction on k: let it be true for k − 1 then

card(B(o, k − 1)) = 1 +
∑
x∼o

card(Tx ∩ B(o, k − 1))

= 1 + n0card(Tx0 ∩ B(o, k − 1))

card(S(o, k)) = 1 +
∑
x∼o

card(Tx ∩ S(o, k))

= 1 + n0card(Tx0 ∩ S(o, k)), (25)

where x0 ∼ o is fixed. If one looks at Tx0 as a tree of T{mk}-type with root x0,
where m0 = n1 − 1 ≥ 2 and mi = ni+1 ≥ 3 for all i ≥ 1 then Tx0 ∩ S(o, k) and
Tx0 ∩ B(o, k − 1) are, respectively, the sphere of radius k − 1 and the ball of radius
k − 2 of Tx0 . Applying the induction hypothesis

card(Tx0 ∩ S(o, k)) ≥ 1 + card(Tx0 ∩ B(o, k − 1)), (26)

hence, using Equations (25) and (26), we have

card(S(o, k)) ≥ n0 + card(B(o, k − 1)) > 1 + card(B(o, k − 1)).

��
Estimate (24) can be improved but it is sufficient for our purpose. Before

proving the main result of this section (Theorem 5.3) we need another lemma.
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Lemma 5.2. Let T be a T{nk}-type tree with n0 ≥ 2 and nk ≥ 3 for all k ≥ 1 and
let us take x, y ∈ T such that x �= y, d(o, x) = d(o, y) = r ≥ 1. If B ⊂ B(o, k) is
such that ν := νB (see Equation (22)) has the mean value property and ν(x) = 1,
for all x ∈ Tx ∩ S(o, k) while ν(y) = 0, for all y ∈ Ty ∩ S(o, k) then

K
(k−r)
k (ν)(x) > K

(k−r)
k (ν)(y). (27)

Proof. If k = r this is obvious. Let us prove the statement by induction on k − r. If
k > r, Definition 4.9 implies thatK(k−r−1)

k (ν)(x) = ν(x) for every x ∈ B(o, r −1),
whence

K
(k−r−1)
k (ν)(Tx) = ν(Tx), K

(k−r−1)
k (ν)(Ty) = ν(Ty). (28)

Moreover, by Proposition 4.13, ν̃ := K(n−r−1)
k (ν) is well distributed (since ν has

the mean value property) and Equation (28) implies that there exists p, q ∈ R such
that

ν̃(x) :=



0 if x ∈ S(o, s), s > r + 1

p if x ∈ S(o, r + 1) ∩ Tx

q if x ∈ S(o, r + 1) ∩ Ty

ν(Tx) − (nr − 1)p if x = x

ν(Ty) − (nr − 1)q if x = y.

Let x̃ ∼ x such that x̃ ∈ S(o, r + 1) and ỹ ∼ y such that ỹ ∈ S(o, r + 1). By
induction hypothesis (on Tx̃ and Tỹ) we have that

p = ν̃(x̃) = K(n−r−1)
k (ν)(x̃) > K

(n−r−1)
k (ν)(ỹ) = ν̃(ỹ) = q. (29)

If we applyKr+1 to ν̃ we obtain

K
(k−r)
k (ν)(x) = ν(Tx) + p, K

(k−r)
k (ν)(y) = ν(Ty) + q.

Hence, by Lemma 5.1 (note that the trees Tx and Ty satisfy all the hypotheses of
the lemma),

ν(Tx) ≥ card(Tx ∩ S(o, k)) > card(Tx ∩ B(o, k − 1))

= card(Ty ∩ B(o, k − 1)) ≥ ν(Ty), (30)

and finally, from Equations (29) and (30), we obtain

K
(k−r)
k (ν)(x) = ν(Tx) + p > ν(Ty) + q = K(k−r)

k (ν)(y). ��
Theorem 5.3. Let νB be the counting measure on a finite non-empty subset B of
a T{nk}-type tree T with n0 ≥ 2 and nk ≥ 3 for all k ≥ 1. If B ⊆ B(o, k) and
B ∩ S(o, k) �= ∅ then νB has the strong (⇐⇒ weak) mean value property if and
only if B is Γo-invariant.
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Proof. Proposition 4.13 guarantees the equivalence between weak and strong mean
value property.

If B is Γo-invariant then Proposition 3.3 implies that νB has the strong mean
value property.

Let us suppose that νB has the strong mean value property. We use induction
on k. We first recall that on a T{nk}-type tree, a measure is of type 1 if and only if it
is Γo-invariant (see Remark 3.4).

If k = 1 then Corollary 4.6 implies the result. Let us suppose it holds for k− 1:
we already know (Proposition 4.13) that (i) is equivalent to K(n)

k (νB) being well
distributed for all n = 0, 1, . . . k. Let us suppose also, by contradiction, that νB is
not Γo-invariant, then there exist x, y ∈ S(o, k′) (k′ ≤ k) such that νB(x) = 1 and
νB(y) = 0.

If k′ < k then for all r > k′ and for all z, w ∈ S(o, r), we have that νB(z) =
νB(w): let us consider the measure ν′(x) := νB(x)χB(o,k′). It is easy to show that
νB − ν′ is Γo-invariant, hence by Proposition 3.3 it has the strong mean value
property. By induction hypothesis, ν′ (which is not Γo-invariant) has not the strong
mean value property, then νB cannot have the strong mean value property as well
and this is a contradiction.

If k′ = k we define r := min{d(x, y) : x, y ∈ S(o, k), νB(x) = 1, νB(y) = 0}
(obviously r is even and r ≥ 2), we fix x1, y1 ∈ S(o, k) such that d(x1, y1) = r,
νB(x1) = 1 and νB(y1) = 0. Let Π[x1 ∧ y1, x1] = {x1 ∧ y1, x, . . . , x1} and
Π[x1 ∧ y1, y1] = {x1 ∧ y1, y, . . . , y1}; hence for every z ∈ Tx ∩ S(o, k) (w ∈
Ty ∩ S(o, k), respectively) we have d(z, x) ≤ r − 2 (d(w, y) ≤ r − 2, respectively)
and then νB(z) = 1 (νB(w) = 0, respectively).

Since d(x, o) = d(y, o) = d(x1 ∧ y1, o) + 1 = k − r/2 + 1 ≥ 1 then by
Lemma 5.2 we have

K
(r/2−1)

k (νB)(x) > K
(r/2−1)

k (νB)(y). (31)

Again we obtained a contradiction, since d(x, y) = 2, d(x, o) = d(y, o) and
K

(n)
k (νB) is well distributed for all n = 0, 1, . . . , k. ��

6. A remark on the mean value property for a general Markov chain

Let (X, P) be an irreducible random walk with state space X (please note that the
random walk is not required to be of nearest neighbour type). We could think of X
as the associated oriented graph (x  → y if and only if p(x, y) > 0). We already
introduced, in Section 1, the Banach space of the finite variation measures on X as
l1(X) = L1((X,P (X), µc);R) (with the usual norm ‖ν‖1 := ∑

x∈X |ν(x)|) whose
(topological) dual is l∞(X) := L∞((X,P (X), µc);R); the duality relationship is
as follows: l ∈ l1(X)∗ if and only if there is h ∈ l∞(X) such that, for all f ∈ l1(X),

l( f) = lh( f) :=
∑
x∈X

h(x) f(x). (32)

In this paragraph we want to characterize all the finite variation measures
which have the weak mean value property with respect to a fixed point o ∈ X (see
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Definition 3.1). To this aim we need some definitions and some elementary result
of the Banach space theory.

We recall that if {vα}α∈A ⊂ B (where B is a Banach space) then span({vα}α∈A)

is the smallest closed linear subspace of B which contains {vα}α∈A. If v ∈ B and
{vα}α∈A ⊂ B we say that v is independent of {vα}α∈A if

∑
α∈A aαvα + av = 0

implies a = 0. Moreover, we say that {vα}α∈A is a family of independent vectors
if and only if each one is independent of the others (that is

∑
α∈A aαvα = 0 if and

only if aα = 0, for all α ∈ A). Let us recall that if Y ⊂ B and B∗ is the (topological)
dual space of B, then Y⊥ := {l ∈ B∗ : l(v) = 0,∀v ∈ Y}: it is easy to show that
Y⊥ = span(Y)⊥ and that Y⊥ it is a closed linear subspace of B∗. An important
result is the following (see [16, Proposition II.12]):

Proposition 6.1. If B is a Banach space and M ⊂ B, N ⊂ B∗ are linear subspaces,
then

(M⊥)⊥ = M, (N⊥)⊥ ⊇ N, (33)

where M and N are the topological closures of M and N.

It is well known that if w = ∑
α∈A aαvα (where the sum is strong convergent

in B) and l ∈ B∗ then l(w) = ∑
α∈A aαl(vα).

Remark 6.2. We note immediately that H∞(X, P) is a linear closed subspace of
l∞(X): in fact it is easy to show that H∞(X, P) = {νx}⊥x∈X = span({νx}x∈X)⊥,
where

νx(y) :=
{

p(x, x)− 1 if y = x

p(x, y) if y �= x.
(34)

We note that, for every x ∈ X

‖νx‖1 =
∑
y∈X

|νx(y)| = 2(1 − p(x, x)), (35)

then, if the graph has at least two points, νx is not the null measure for any x,
since (X, P) is irreducible. Equation (34) could also be written as νx :=∑

y∈X p(x, y)δy − δx which converges in l1(X). Moreover, H∞(X, P) = Ker(P −
I∞), where P is defined by Equation (2) and is a bounded operator from l∞(X) into
itself, I∞ is the identity operator on l∞(X) and P − I∞ is the discrete Laplacian.
If we consider the linear bounded operator Q from l1(X) into itself

(Qν)(x) :=
∑
y∈X

ν(y)p(y, x), ∀x ∈ X,

then Q∗ = P (where Q∗ is the adjoint operator of Q), that is Q is the pre-adjoint
of P.

We are ready to state and prove the main theorem of this section.
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Theorem 6.3. Let (X, P) be a random walk and let o ∈ X be a fixed point in X. If
{νx}x∈X is defined by Equation (34) and ν is a finite variation measure on X, then
the following assertions are equivalent:

(i) ν has the weak mean value property with respect to o;
(ii) there exist a ∈ R, ν ∈ span({νx}x∈X) such that ν = aδo + ν (in this case

a = ν(X) and ν is uniquely determined);
(iii) ν − ν(X)δo ∈ Rg(Q − I1) (where I1 is the identity operator on l1(X)).

Proof. (i) ⇔ (ii) Let us define 1l ∈ l∞(X) as the constant function 1l(x) := 1, for
all x ∈ X. Obviously ν has the mean value property with respect to o if and only if

ν ∈ A := {
ν1 ∈ l1(X) : lh(ν1) = l1l(ν1)lh(δo),∀h ∈ H∞(X, P)

}; (36)

since l1l(ν) = ν(X) and lh(δo) = h(o) (see Equation (32)). Using the linearity of lh

and l1l, it is easy to show that

lh(ν) = l1l(ν)lh(δo), ∀h ∈ H∞(X, P) ⇐⇒
lh(ν − l1l(ν)δo) = 0, ∀h ∈ H∞(X, P), (37)

which is equivalent to

ν − l1l(ν)δo ∈ H∞(X, P)⊥ = span({νx}x∈X)

by Proposition 6.1 and Remark 6.2. From the last equation we finally derive that ν

has the mean value property with respect to o if and only if there exists (a unique)
ν ∈ span({νx}x∈X) such that

ν = l1l(ν)δo + ν = ν(X)δo + ν.

(i)⇔ (iii) Since H∞(X, P) = Ker(P−I∞) = Ker((Q−I1)∗), Corollary II.17
of [16] and Equation (37) imply that {ν ∈ l1(X) : lh(ν − l1l(ν)δo) = 0, ∀h ∈
H∞(X, P)} = Rg(Q − I1). ��

If λ ∈ l1(X) then
∑

y∈Y λ(y)νy is well defined and convergent in l1(X). Obvi-
ously if x ∈ X,∑

y∈X

λ(y)νy

 (x) =
∑
y∈X

λ(y)p(x, y)− λ(x) = (Qλ)(x) − λ(x);

this equation describes the relationship between the set {νx}x∈X and the pre-adjoint
of the Laplacian operator Q − I1.

Obviously if (X, P) is recurrent we know (see Section 4) that every finite
variation measure has the weak mean value property with respect to any point o,
then Rg(Q − I1) = span({νx}x∈X ∪ {δo}) = l1(X).

Using elementary techniques of Banach space theory and some basic properties
of the Green function, we can show that:

(i) δo �∈ span({νx}x∈X);
(ii) if (X, P) is transient {νx}x∈X ∪ {δo} are independent.
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Moreover one can show (in a similar way as in [12, Theorem 3.9]) that Q − I1
is not injective if and only if P is a positive-recurrent transition operator.

We note that Theorem 6.3 characterizes all the finite variation measures which
have the weak mean value property, while Proposition 4.13 characterizes only those
with finite support. ν has the weak mean value property with respect to x if and
only if ν = limn→∞ νn where νn(y) = aδx(y)+∑

w∈X µn(w)p(w, y) for a suitable
sequence {µn}n∈N ⊆ l1(X) (the previous limit is with respect to the l1-norm).

It is easy to understand the connection between the operatorK (Definition 4.9)
and the set {νx}x∈X . First of all it is clear that νx (δo, respectively) is well distributed,
for every x ∈ X. Let us now take a T{nk}-type tree T , if ν is well distributed on T
and supp(ν) ⊆ B(o, k) (for some k ≥ 1) then for every x ∈ S(o, k − 1) there exists
{cx}x∈T ⊂ R such that

ν(y) = cx, ∀y ∈ S(o, k), y ∼ x.

We easily verify that

ν −Kk(ν) =
∑

x∈S(o,k−1)

cxnk−1νx . (38)

By means of the last equation, ν could be written as

ν = ν(X)δo +
∑
x∈J

axνx,

where J is a finite subset of X.
Theorem 6.3 also allows us to find explicit examples of finite variation measures

with unbounded support which have the weak mean value property with respect to
a vertex o without being Γo-invariant.

Example 6.4. We construct a positive finite variation measure with unbounded
support on TM which has the weak mean value property with respect to the root o.
Let us fix x0 ∈ S(o, 1) and let us define

ν(x) :=


(M − 1)/Mn+2 if x ∈ S(o, n) ∩ Tx0

1/M if x ∈ S(o, 1) \ {x0}
1 if x = o

0 if x ∈ B(o, 1)c ∩ T c
x0

,

it is easy to show that ν = (2−1/M2)δo+
∑

x∈Tx0∪{o}
νx/Md(o,x) . One can immediately

see that ν is not Γo-invariant.

Here are some questions which, as far as we know, are still open:

(i) Is there a more explicit characterization of the set span({νx}x∈X) (i.e.
Rg(Q − I1))? To this aim it could be useful to understand when {νx}x∈X (or
equivalently {νx}x∈X ∪{δo}) is a basis of span({νx}x∈X) (span({νx}x∈X ∪ {δo}),
respectively); in this case {νx}x∈X is called a basic sequence (see [17, Defin-
ition 4.5]).
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(ii) One could easily show that if a finite variation measure ν has the weak mean
value property with respect to o and f ∈ L1(X; |ν|) such that there ex-
ists a sequence {hn}n∈N ⊂ H∞(X, P) satisfying |hn(x)| ≤ | f(x)| |ν|-a.e.,
limn→+∞ hn(x)= f(x) |ν|-a.e. and limn→+∞ hn(o)= f(o) then L( f, ν)(o)=0.
It could be interesting to find non-trivial examples of graphs where any har-
monic function could be approximated by a sequence of bounded harmonic
functions as described above. In these cases the weak and the strong mean
value properties are completely equivalent.
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