A priori and universal estimates for global solutions of superlinear degenerate parabolic equations

Received: October 1, 2001
Published online: July 9, 2002 - © Springer-Verlag 2002

Abstract

We prove an a priori estimate and a universal bound for any global solution of the nonlinear degenerate reaction-diffusion equation $u_{t}=\Delta u^{m}+u^{p}$ in a bounded domain with zero Dirichlet boundary conditions.

Mathematics Subject Classification (2000). 35K60, 35K65, 35B45
Key words. nonlinear degenerate parabolic equations - global solutions - a priori estimates - universal bounds

1. Introduction and main results

Consider the following problem:

$$
\left\{\begin{array}{lll}
u_{t}=\Delta u^{m}+u^{p}, & 0<t<T, & x \in \Omega, \tag{1.1}\\
u(t, x)=0, & 0<t<T, & x \in \partial \Omega, \\
u(0, x)=u_{0}(x), & x \in \partial \Omega . &
\end{array}\right.
$$

Throughout the paper, Ω is a C^{3}-smooth bounded domain of $\mathbb{R}^{N}, p>\max (1, m)$ and $m>0$. We consider solutions which may change sign and define u^{k} as $|u|^{k} \operatorname{sign}(u)$ for all real $k>0$. We assume that the initial datum $u_{0} \in L^{\infty}(\Omega)$ satisfies $u_{0}^{m} \in H_{0}^{1}(\Omega)$.

It is well known that solutions of (1.1) blow up in finite time if u_{0} is suitably large, while they exist globally and decay as $t \rightarrow \infty$ if u_{0} is small. In view of a classification of all solutions of (1.1), it is then a natural question to ask whether unbounded global solutions may exist or not.

The question of the boundedness of global solutions of (1.1) was initiated in [15] and further investigated in [4]. Denoting $p_{S}=(N+2) /(N-2)(\infty$ if $N \leq 2)$, the result of [4] says that if $p / m<p_{S}$, then any global solution of (1.1) is uniformly bounded for $t \geq 0$, that is,

$$
\begin{equation*}
\sup _{t \geq 0}\|u(t)\|_{\infty}<\infty \tag{1.2}
\end{equation*}
$$

[^0]On the other hand, it is known from [15] that some unbounded global solutions do exist if $N \geq 3$ and $p / m \geq p_{S}$ (see also [9]).

In the semilinear case $m=1$, the conclusion of [4] had been obtained earlier in [3]. A more precise result was given in [10] for $m=1$ and $u_{0} \geq 0$, where an a priori estimate of the form

$$
\begin{equation*}
\sup _{t \geq 0}\|u(t)\|_{\infty} \leq C\left(\left\|u_{0}\right\|_{\infty}, \Omega, p\right) \tag{1.3}
\end{equation*}
$$

was established for $p<p_{S}$. In [16], (1.3) was then proved for $m=1$ without the restriction $u_{0} \geq 0$. It is to be noted that boundedness of global solutions does not imply the a priori estimate (1.3) in general (see [9, 6] for some counter-examples).

Recently, the question of whether the bound in (1.3) might be independent of u_{0} for $t \geq \tau>0$ was raised in [7], and it was proved there that

$$
\begin{equation*}
\sup _{t \geq \tau}\|u(t)\|_{\infty} \leq C(\tau, \Omega, p), \quad \text { for all } \tau>0 \tag{1.4}
\end{equation*}
$$

holds for all global solutions of (1.1), provided $m=1, u_{0} \geq 0$ and $p<(N+$ 1) $/(N-1)$ or $N=1$. We call (1.4) a universal bound. In other words, (1.4) says that after any positive time τ, every global non-negative trajectory of (1.1) enters into an absorbing bounded set A_{τ}. Shortly thereafter, it was shown in [17] that (1.4) still holds for $N \leq 2$ or $N=3$ and $p<5=p_{S}$ (with $m=1$ and $u_{0} \geq 0$).

For more results on boundedness of global solutions and on a priori estimates for other classes of evolution equations, we refer to the surveys $[18,5]$, to [13, 20] and to the references in [7]. Let us also mention the paper [19] which contains some results on semilinear parabolic systems.

The aim of the present paper is to establish both a priori estimates and universal bounds for global solutions of (1.1) in the degenerate case $m>1$. By a solution of (1.1), we mean a weak solution (see Section 2 below for a precise definition). Our main results are the following:
Theorem 1 (a priori estimate). Assume that

$$
1<m<p<p_{1}(m, N):= \begin{cases}\infty, & \text { if } N=1 \tag{1.5}\\ m+\frac{10 m+2}{3 N-4}, & \text { if } N \geq 2\end{cases}
$$

Then any global solution of (1.1) satisfies

$$
\begin{equation*}
\sup _{t \geq 0}\|u(t)\|_{\infty} \leq C\left(\left\|u_{0}\right\|_{\infty}, \Omega, p, m\right) \tag{1.6}
\end{equation*}
$$

where the constant $C\left(\left\|u_{0}\right\|_{\infty}, \Omega, p, m\right)>0$ remains bounded for $\left\|u_{0}\right\|_{\infty}$ bounded.
Theorem 2 (universal bound). Assume that

$$
1<m<p<p_{2}(m, N):= \begin{cases}\infty, & \text { if } N=1 \tag{1.7}\\ \frac{N+2}{N} m, & \text { if } N \geq 2\end{cases}
$$

Then, for all $\tau>0$, there exists a constant $C(\tau, \Omega, p, m)>0$ such that any global non-negative solution of (1.1) satisfies

$$
\begin{equation*}
\sup _{t \geq \tau}\|u(t)\|_{\infty} \leq C(\tau, \Omega, p, m) \tag{1.8}
\end{equation*}
$$

Remark 1.1. It is easy to show that (1.8) implies (1.6). On the other hand, (1.8) cannot be true for $\tau=0$, since there exist global solutions starting from unbounded initial data in L^{q} (see, e.g., [1]). Furthermore, Theorem 2 cannot be true for solutions of a mixed sign. Indeed, if $1<p / m<p_{S}$, then there exist sign-changing stationary solutions of arbitrary large sup norm.

Remark 1.2. The paper [4] on boundedness of global solutions also gives an a priori estimate similar to (1.6) under the condition $m<p<m+(m+1) \min (1,2 / N)$ (see [4, Remark 1.10 p. 236], where $m+1$ is substituted by 2 due to a misprint). Our condition (1.5) in Theorem 1 is weaker. However, we restrict to the "slowdiffusion" case $m>1$, while the results of [4] also work for the "fast-diffusion" case $m<1$, with $m>(N-2) /(N+2)$.

The proof of our a priori estimate relies on suitable modifications of ideas in [3], based on energy and interpolation arguments. For the proof of universal bounds, besides the previously established a priori estimate, we use suitable test functions and certain smoothing properties of solutions of (1.1).

The rest of the paper is organized as follows. Section 2 contains some useful preliminary material, including local existence and smoothing properties of solutions. Sections 3 and 4 are then devoted to the proofs of Theorems 1 and 2, respectively.

2. Preliminaries

For $u_{0} \in L^{\infty}(\Omega), u_{0}^{m} \in H_{0}^{1}(\Omega)$, by a (weak) solution of (1.1) on [0, T], we mean a function u such that

$$
\left\{\begin{array}{l}
u \in C\left([0, T] ; L^{2}(\Omega)\right) \cap L^{\infty}\left(0, T ; L^{\infty}(\Omega), \quad u^{m} \in L^{\infty}\left(0, T ; H_{0}^{1}(\Omega)\right),\right. \tag{2.1}\\
\int_{0}^{t} \int_{\Omega}\left(u \varphi_{t}-\nabla u^{m} \cdot \nabla \varphi+u^{p} \varphi\right)=\int_{\Omega} u(t) \varphi(t)-\int_{\Omega} u_{0} \varphi(0) \\
\quad \quad \quad \text { or all } t \in(0, T] \text { and } \varphi \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) \cap H^{1}\left(0, T ; L^{2}(\Omega)\right)
\end{array}\right.
$$

It is known (see, e.g., [12]) that there exists $T^{*}=T^{*}\left(u_{0}\right) \in(0, \infty]$ such that for each $T \in\left(0, T^{*}\right),(\mathrm{P})$ admits a unique solution on $[0, T]$. If $T^{*}<\infty$, then $\|u(t)\|_{\infty} \rightarrow \infty$ as $t \rightarrow T^{*}$. Moreover, u satisfies the energy inequality

$$
\begin{equation*}
E\left(t_{1}\right)+m \int_{t_{0}}^{t_{1}} \int_{\Omega}|u|^{m-1} u_{t}^{2} \leq E\left(t_{0}\right), \quad 0 \leq t_{0} \leq t_{1}<T^{*}, \tag{2.2}
\end{equation*}
$$

where the energy is defined by

$$
\begin{equation*}
E(t):=\int_{\Omega}\left(\frac{1}{2}\left|\nabla u^{m}(t)\right|^{2}-\frac{m}{p+m}|u(t)|^{p+m}\right) . \tag{2.3}
\end{equation*}
$$

In particular, the energy is non-increasing in time. Also, we have the useful identity

$$
\begin{equation*}
\frac{d}{d t} \int_{\Omega} \frac{|u|^{m+1}}{m+1}=-\int_{\Omega}\left|\nabla u^{m}(t)\right|^{2}+\int_{\Omega}|u(t)|^{p+m}, \quad \text { a.e. } t \in\left(0, T^{*}\right) . \tag{2.4}
\end{equation*}
$$

(This follows from (2.1) with the test function $\varphi=u^{m}$ - note that $\varphi_{t} \in L^{2}(0, T$; $L^{2}(\Omega)$) is due to (2.2) and $u \in L^{\infty}\left(0, T ; L^{\infty}(\Omega)\right)$.)

Finally, in what follows, $C(\ldots)$ will denote positive constants which may vary from line to line and depend only on the indicated arguments.

In the proof of Theorems 1 and 2, we will need the following two lemmas which give useful regularizing properties for local solutions of (1.1). In particular Lemma 2.2 (i), which is essentially a consequence of results in [1], provides smoothing properties from L^{q} into L^{∞}.
Lemma 2.1. Assume $p>m>1$. For all $t \in\left(0, T^{*}\right)$, it holds

$$
\begin{equation*}
\left\|\nabla u^{m}(t)\right\|_{2}^{2} \leq C(p, m) \cdot\left(t^{-1}\left\|u_{0}\right\|_{m+1}^{m+1}+\sup _{s \in(0, t)}\|u(s)\|_{m+p}^{m+p}\right) . \tag{2.5}
\end{equation*}
$$

Moreover, we have

$$
\begin{equation*}
T^{*}>T_{1}:=C(p)\left\|u_{0}\right\|_{\infty}^{1-p}, \quad\|u(t)\|_{\infty} \leq 2\left\|u_{0}\right\|_{\infty}, \quad 0<t \leq T_{1} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\nabla u^{m}\left(T_{1}\right)\right\|_{2}^{2} \leq C(p, m)|\Omega|\left\|u_{0}\right\|_{\infty}^{p+m} . \tag{2.7}
\end{equation*}
$$

Lemma 2.2. Assume $p>m>1$ and $q \geq 1, q>\frac{N}{2}(p-m)$.
(i) There exist positive constants $L_{1}, L_{2}, \alpha, \beta, \gamma$ depending only on N, p, m, q, such that $T^{*}>T_{0}:=L_{2}\left(1+\left\|u_{0}\right\|_{q}\right)^{-\gamma}$ and

$$
\begin{equation*}
\|u(t)\|_{\infty} \leq L_{1}\left\|u_{0}\right\|_{q}^{\beta} t^{-\alpha}, \quad 0<t \leq T_{0} \tag{2.8}
\end{equation*}
$$

(ii) For all $M>0$, there exists $C(M, N, p, m, q)>0$ such that if

$$
0<T \leq T^{*}, \quad\left\|u_{0}\right\|_{\infty} \leq M \quad \text { and } \quad \sup _{t \in(0, T)}\|u(t)\|_{q} \leq M
$$

then

$$
\|u(t)\|_{\infty} \leq C(M, N, p, m, q), \quad 0 \leq t<T
$$

Proof of Lemma 2.1. Integrating (2.4) over $(0, t)$, we have

$$
\int_{0}^{t} \int_{\Omega}\left|\nabla u^{m}(s)\right|^{2} \leq \int_{0}^{t} \int_{\Omega}|u(s)|^{m+p}+\int_{\Omega} \frac{\left|u_{0}\right|^{m+1}}{m+1}
$$

Due to the non-increasing property of the energy, it follows that

$$
t E(t) \leq \int_{0}^{t} E(s) d s \leq \frac{1}{2} \int_{0}^{t} \int_{\Omega}\left|\nabla u^{m}(s)\right|^{2}
$$

By combining these two inequalities, we deduce that

$$
\begin{aligned}
\int_{\Omega}\left|\nabla u^{m}(t)\right|^{2} & =2 E(t)+\frac{2 m}{m+p} \int_{\Omega}|u(t)|^{m+p} \\
& \leq \frac{1}{t}\left(\int_{0}^{t} \int_{\Omega}|u(s)|^{m+p}+\int_{\Omega} \frac{\left|u_{0}\right|^{m+1}}{m+1}\right)+\frac{2 m}{m+p} \int_{\Omega}|u(t)|^{m+p}
\end{aligned}
$$

which implies (2.5).

On the other hand, by comparing with the solution of the ODE $y^{\prime}=y^{p}$ for $y(0)=\left\|u_{0}\right\|_{\infty}$, we get

$$
\begin{gathered}
\|u(t)\|_{\infty} \leq y(t)=\left(\left\|u_{0}\right\|_{\infty}^{1-p}-(p-1) t\right)^{-1 /(p-1)} \\
0<t<\min \left(T^{*},(p-1)^{-1}\left\|u_{0}\right\|_{\infty}^{1-p}\right)
\end{gathered}
$$

which immediately yields (2.6).
Finally, (2.7) follows from (2.6) and (2.5) with $t=T_{1}$.
Proof of Lemma 2.2. (i) For each $u_{0} \in L^{q}(\Omega)$ with $u_{0} \geq 0$, it follows from [1, Theorem 3.1 and Remark 3.3] that there exists (at least) a solution v of (1.1) which exists on $\left[0, T_{0}\right]$ with $T_{0}:=L_{2}\left(1+\left\|u_{0}\right\|_{q}\right)^{-\gamma}$ and satisfies (2.8). However, the notion of solution in [1] is weaker than (2.1), so that we cannot immediately identify v with our solution u.

To do so, we note that the solution v in [1] is constructed as a limit, pointwise on ($0, T_{0}$) $\times \Omega$, of solutions of the approximating problems

$$
\begin{cases}v_{n, t}=\Delta v_{n}^{m}+\min \left(v_{n}^{p}, n\right), & t>0, \quad x \in \Omega, \tag{2.9}\\ v_{n}(t, x)=0, & t>0, \quad x \in \partial \Omega \\ v_{n}(0, x)=\min \left(u_{0}(x), n\right), & x \in \partial \Omega\end{cases}
$$

For each $n \geq 1,(2.9)_{n}$ admits a unique (global) solution v_{n} in the sense of (2.1). For each $0<T^{\prime}<T^{*}\left(u_{0}\right)$, since $u_{0} \in L^{\infty}$ and $u \in L^{\infty}\left(\left(0, T^{\prime}\right) \times \Omega\right)$, it follows by uniqueness for $(2.9)_{n}$ that $v_{n}=u$ on $\left(0, T^{\prime}\right) \times \Omega$ for all $n \geq n_{0}\left(T^{\prime}\right)$ large enough. Passing to the limit, we deduce that $v=u$ on $\left(0, \min \left(T^{\prime}, T_{0}\right)\right) \times \Omega$, hence on $\left(0, \min \left(T^{*}\left(u_{0}\right), T_{0}\right)\right) \times \Omega$. Since v satisfies (2.8), we conclude that u satisfies (2.8).

Finally, in the case when u_{0} changes sign, it suffices to compare u with the solutions $u^{ \pm}$corresponding to the initial data $\pm\left|u_{0}\right|$.
(ii) Let $T_{2}=\min \left(T_{0}, T_{1}\right)$, where T_{0} is defined in Lemma 2.2 (i) and T_{1} is defined in (2.6). By Lemma 2.1 and Lemma 2.2 (i), we have

$$
\|u(t)\|_{\infty} \leq \begin{cases}2\left\|u_{0}\right\|_{\infty}, & \text { if } 0 \leq t \leq T_{2} \\ L_{1}\left\|u\left(t-T_{2}\right)\right\|_{q}^{\beta} T_{2}^{-\alpha}, & \text { if } T_{2} \leq t<T\end{cases}
$$

and the result follows.
Remark 2.1. The result of Lemma 2.2 (ii) can also be found in [8] under the assumption $q>\max (1, N / 2)(p-m)$ (stronger if $N=1)$. Under this assumption, the result of Lemma 2.2 (i) can be proved alternatively by combining the arguments in [4, Lemma 1.6] and [14, pp. 46-48] with [11, Théorème 1].

3. Proof of Theorem 1

The proof of Theorem 1 relies on a suitable adaptation of the arguments in [3], based on energy estimates and interpolation.

Proof of Theorem 1. Let u be a global solution of (1.1). From (2.4) and (2.3) we have, for a.e. $t \geq 0$,

$$
\begin{equation*}
\frac{d}{d t} \int_{\Omega} \frac{|u|^{m+1}}{m+1}=-2 E(t)+\frac{p-m}{p+m} \int_{\Omega}|u(t)|^{p+m} \tag{3.1}
\end{equation*}
$$

By Hölder's inequality and the non-increasing property of the energy, it follows that for each $t_{0} \geq 0$,

$$
\frac{d}{d t} \int_{\Omega} \frac{|u|^{m+1}}{m+1} \geq C(p, m, \Omega)\left(\int_{\Omega}|u(t)|^{m+1}\right)^{\alpha}-2 E\left(t_{0}\right), \quad \text { a.e. } t \geq t_{0}
$$

where $\alpha=\frac{m+p}{m+1}>1$. Since u exists globally, this implies

$$
\begin{equation*}
E\left(t_{0}\right) \geq 0, \quad \text { for all } t_{0} \geq 0 \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\Omega}|u(t)|^{m+1} \leq C(p, m, \Omega) E^{\frac{m+1}{m+p}}(0), \quad \text { for all } t \geq 0 \tag{3.3}
\end{equation*}
$$

On the other hand, by (2.2) and (3.2), we have

$$
\begin{equation*}
\int_{0}^{\infty} \int_{\Omega}|u|^{m-1} u_{t}^{2} \leq \frac{E(0)}{m} \tag{3.4}
\end{equation*}
$$

Now using (3.1) and $E(t) \leq E(0)$, we get

$$
\frac{p-m}{p+m} \int_{\Omega}|u(t)|^{p+m} \leq 2 E(0)+\int_{\Omega}|u(t)|^{(m+1) / 2}|u(t)|^{(m-1) / 2} u_{t}
$$

hence, by Cauchy-Schwarz's inequality and (3.3),

$$
\begin{align*}
\left(\int_{\Omega}|u(t)|^{p+m}\right)^{2} & \leq 2\left(\frac{p+m}{p-m}\right)^{2}\left(4 E^{2}(0)+\int_{\Omega}|u(t)|^{m+1} \int_{\Omega}|u(t)|^{m-1} u_{t}^{2}\right) \tag{3.5}\\
& \leq C(p, m, \Omega)\left(E^{2}(0)+E^{\frac{m+1}{m+p}}(0) \int_{\Omega}|u(t)|^{m-1} u_{t}^{2}\right)
\end{align*}
$$

By integrating over $(t, t+1)$, setting $a=\frac{p+2 m+1}{p+m}$, it follows from (3.4) that

$$
\begin{equation*}
\int_{t}^{t+1}\left(\int_{\Omega}|u|^{p+m}\right)^{2} \leq C(p, m, \Omega)\left(E^{2}(0)+E^{a}(0)\right), \quad t \geq 0 \tag{3.6}
\end{equation*}
$$

Let $v=u^{(m+1) / 2}$ and $r=\frac{2(m+p)}{m+1}>2$. In the rest of the proof, k will denote various positive constants depending only on p and m. Rewrite the inequalities (3.4) and (3.6) as

$$
\int_{0}^{\infty} \int_{\Omega} v_{t}^{2} \leq C(m) E(0)
$$

and

$$
\int_{t}^{t+1}\left(\int_{\Omega}|v|^{r}\right)^{2} \leq C(p, m, \Omega)\left(1+E^{k}(0)\right), \quad t \geq 0
$$

hence, in particular,

$$
\|v\|_{L^{2 r}\left(t, t+1 ; L^{r}(\Omega)\right)}+\|v\|_{H^{1}\left(t, t+1 ; L^{2}(\Omega)\right)} \leq C(p, m, \Omega)\left(1+E^{k}(0)\right), \quad t \geq 0
$$

By interpolation (see [3, Appendice] or also [2] for more general results), it follows that

$$
\|v\|_{L^{\infty}\left(t, t+1 ; L^{a}(\Omega)\right)} \leq C(p, m, \Omega, a)\left(1+E^{k}(0)\right), \quad t \geq 0
$$

for all $a \in\left[1, a_{0}\right)$, where $a_{0}=r-\frac{r-2}{3}=\frac{2(r+1)}{3}>2$, so that

$$
\begin{equation*}
\|u\|_{L^{\infty}\left(0, \infty ; L^{q}(\Omega)\right)} \leq C(p, m, \Omega, q)\left(1+E^{k}(0)\right) \tag{3.7}
\end{equation*}
$$

for all $q \in\left[1, q_{0}\right)$, where $q_{0}=\frac{(m+1)(r+1)}{3}=\frac{3 m+2 p+1}{3}>1$.
By combining (2.6) and (2.7) from Lemma 2.2 with (3.7) (shifting the origin of time from 0 to T_{1} in (3.7)), we obtain

$$
\|u\|_{L^{\infty}\left(0, \infty ; L^{q}(\Omega)\right)} \leq C(p, m, \Omega, q)\left(1+\left\|u_{0}\right\|_{\infty}^{k}\right), \quad \text { for all } q \in\left[1, q_{0}\right)
$$

Finally, since the assumption (1.5) implies that $q_{0}>\frac{N}{2}(p-m)$, the conclusion follows from Lemma 2.2 (ii).

Remark 3.1. By using the estimates (3.5), (3.4), Lemma 2.2 (i) and arguing similarly as in the proof of [3, Proposition 6], we obtain a new proof of the boundedness of global solutions of (1.1) under the assumption $1<p / m<p_{S}, m>1$. This proof is completely different from that in [4] (note, however, that the proof in [4] works also for $(N-2) /(N+2)<m<1)$.

4. Proof of Theorem 2

In this section, we denote, respectively, by $\lambda_{1}>0$ and $\varphi_{1}(x)>0$ the first eigenvalue and first eigenfunction of $-\Delta$ in Ω with Dirichlet boundary conditions, satisfying

$$
\left\{\begin{array}{l}
-\Delta \varphi_{1}=\lambda_{1} \varphi_{1}, \quad x \in \Omega \\
\varphi_{1} \in H_{0}^{1}(\Omega) \\
\int_{\Omega} \varphi_{1}=1
\end{array}\right.
$$

Let u be a non-negative global solution of (1.1). We first claim that

$$
\begin{equation*}
\int_{\Omega} u(t) \varphi_{1} \leq C\left(p, m, \lambda_{1}\right), \quad t \geq 0 \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{\tau} \int u^{p} \varphi_{1} \leq C\left(p, m, \lambda_{1}, \tau\right), \quad \tau>0 \tag{4.2}
\end{equation*}
$$

Indeed, taking $\varphi=\varphi_{1}$ in (2.1), we get for a.e. $t \geq 0$,

$$
\frac{d}{d t} \int_{\Omega} u(t) \varphi_{1}=\int_{\Omega} u^{p}(t) \varphi_{1}-\lambda_{1} \int_{\Omega} u^{m}(t) \varphi_{1}
$$

hence, by Young's and Jensen's inequalities, and since $p>m$,

$$
\begin{align*}
\frac{d}{d t} \int_{\Omega} u(t) \varphi_{1} & \geq \frac{1}{2} \int_{\Omega} u^{p}(t) \varphi_{1}-C\left(p, m, \lambda_{1}\right) \tag{4.3}\\
& \geq \frac{1}{2}\left(\int_{\Omega} u(t) \varphi_{1}\right)^{p}-C\left(p, m, \lambda_{1}\right)
\end{align*}
$$

This implies (4.1) since otherwise $\int_{\Omega} u(t) \varphi_{1}$ would blow up in finite time, contradicting $T^{*}=\infty$. Integrating (4.3) over $(0, \tau)$ and using (4.1) we deduce

$$
\frac{1}{2} \int_{0}^{\tau} \int_{\Omega} u^{p}(t) \varphi_{1} \leq C\left(p, m, \lambda_{1}\right) \tau+\int_{\Omega} u(\tau) \varphi_{1} \leq C\left(p, m, \lambda_{1}, \tau\right)
$$

which is (4.2).
We next claim that there exists $t_{0} \in(0, \tau / 2)$ such that for all $l \in(0, p / 2)$,

$$
\begin{equation*}
\int_{\Omega} u^{m}\left(t_{0}\right)+\int_{\Omega} u^{l}\left(t_{0}\right) \leq C(p, m, l, \Omega, \tau) \tag{4.4}
\end{equation*}
$$

To this end, we introduce the solution χ of the problem

$$
\left\{\begin{array}{l}
-\Delta \chi=1, \quad x \in \Omega \\
\chi \in H_{0}^{1}(\Omega)
\end{array}\right.
$$

Using (2.1) with test function χ, we get

$$
\int_{0}^{\tau} \int_{\Omega} u^{m}=\int_{0}^{\tau} \int_{\Omega} u^{p} \chi+\int_{\Omega} u_{0} \chi-\int_{\Omega} u(\tau) \chi
$$

Since

$$
c \chi(x) \leq \operatorname{dist}(x, \partial \Omega) \leq c^{-1} \varphi_{1}(x), \quad x \in \Omega
$$

for some $c=c(\Omega)>0$, we deduce from (4.1) and (4.2) that

$$
\int_{0}^{\tau}\left(\int_{\Omega} u^{m}+\int_{\Omega} u^{p} \varphi_{1}\right) \leq C(p, m, \Omega, \tau) .
$$

In particular, there exists $t_{0} \in(0, \tau / 2)$ such that $\int_{\Omega} u^{m}\left(t_{0}\right)+\int_{\Omega} u^{p}\left(t_{0}\right) \varphi_{1} \leq$ $C(p, m, \Omega, \tau)$. Now, by Hölder's inequality,

$$
\int_{\Omega} u^{l}\left(t_{0}\right)=\int_{\Omega} u^{l}\left(t_{0}\right) \varphi_{1}^{l / p} \cdot \varphi_{1}^{-l / p} \leq\left(\int_{\Omega} u^{p}\left(t_{0}\right) \varphi_{1}\right)^{l / p}\left(\int_{\Omega} \varphi_{1}^{-l /(p-l)}\right)^{(p-l) / p} .
$$

Since $l /(p-l)<1$ and $\varphi_{1}(x) \geq c \operatorname{dist}(x, \partial \Omega)$, we have $\int_{\Omega} \varphi_{1}^{-l /(p-l)}<\infty$ and (4.4) follows.

Now, let us first consider the case $N \geq 2$, for which $p<p_{2}(N, m)$ implies that $m>\frac{N}{2}(p-m)$. We may thus apply Lemma 2.1 (i) with $q=m$. From $\left\|u\left(t_{0}\right)\right\|_{m} \leq C(p, m, \Omega, \tau)$ (see (4.4)), we then deduce that

$$
\begin{equation*}
\left\|u\left(t_{1}\right)\right\|_{\infty} \leq C(p, m, \Omega, \tau) \quad \text { for some } t_{1} \in\left(t_{0}, \tau\right) \tag{4.5}
\end{equation*}
$$

In the case $N=1$, we have $p / 2>\frac{N}{2}(p-m)$ and since $m>1$, we can choose $\tilde{m} \geq 1$ such that $\frac{N}{2}(p-m)<\tilde{m}<\max (m, p / 2)$. We may thus apply Lemma 2.1 (i) with $q=\tilde{m}$. Since $\left\|u\left(t_{0}\right)\right\|_{\tilde{m}} \leq C(p, m, \Omega, \tau)$ due to (4.4), we then deduce that (4.5) is still true.

Finally, since $p_{1}(N, m)>p_{2}(N, m)$, we conclude from (4.5) and Theorem 1 that

$$
\sup _{t>\tau}\|u(t)\|_{\infty} \leq C(p, m, \Omega, \tau) .
$$

Remark 4.1. The control on $\int_{\Omega} u^{l}\left(t_{0}\right)$ for all $l<p / 2$ (cf. (4.4)) does not enable one to improve the value of $p_{2}(N, m)$ if $N \geq 2$.

References

1. Andreucci, D., DiBenedetto, E.: On the Cauchy problem and initial traces for a class of evolution equations with strongly nonlinear sources. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 18, 363-441 (1991)
2. Amann, H.: Linear and Quasilinear Parabolic Problems, vol. 2. In preparation
3. Cazenave, T., Lions, P.-L.: Solutions globales d'équations de la chaleur semi linéaires. Commun. Partial Differ. Equations 9, 955-978 (1984)
4. Fila, M.: Boundedness of global solutions of nonlinear diffusion equations. J. Differ. Equations 98, 226-240 (1992)
5. Fila, M.: Boundedness of global solutions of nonlinear parabolic problems. Preprint
6. Fila, M., Poláčik, P.: Global solutions of a semilinear parabolic equation. Adv. Diff. Equations 4, 163-196 (1999)
7. Fila, M., Souplet, Ph., Weissler, F.: Linear and nonlinear heat equations in L_{δ}^{p} spaces and universal bounds for global solutions. Math. Ann. 320, 87-113 (2001)
8. Filo, J.: L^{∞}-estimate for nonlinear diffusion equation. Appl. Anal. 37, 49-61 (1990)
9. Galaktionov, V.A., Vázquez, J.L.: Continuation of blow-up solutions of nonlinear heat equations in several space dimensions. Comm. Pure Appl. Math. 50, 1-67 (1997)
10. Giga, Y.: A bound for global solutions of semilinear heat equations. Commun. Math. Phys. 103, 415-421 (1986)
11. Kawanago, T. Estimation $L^{p}-L^{q}$ des solutions de $u_{t}=\Delta \phi(u)+f$. C. R. Acad. Sci. Paris, 317, Série I, 821-824 (1993)
12. Levine, H.A., Sacks, P.E.: Some existence and nonexistence theorems for solutions of degenerate parabolic equations. J. Differ. Equations 52, 135-161 (1984)
13. Lieberman, G.M.: Study of global solutions of parabolic equations via a priori estimates. Part II: porous medium equations. Comm. Appl. Nonlin. Anal. 1, 93-114 (1994)
14. Nakao, M.: L^{p}-estimates of solutions of some nonlinear degenerate diffusion equations. J. Math. Soc. Japan 37, 41-63 (1985)
15. Ni, W.-M., Sacks, P.E., Tavantzis, J.: On the asymptotic behavior of solutions of certain quasilinear parabolic equations. J. Differ. Equations 54, 97-120 (1984)
16. Quittner, P.: A priori bounds for global solutions of a semilinear parabolic problem. Acta Math. Univ. Comenianae 68, 195-203 (1999)
17. Quittner, P.: Universal bound for global positive solutions of a superlinear parabolic problem. Math. Ann. 320, 299-305 (2001)
18. Quittner, P.: A priori estimates of solutions of superlinear problems. Math. Bohemica 126, 483-492 (2001)
19. Quittner, P., Souplet, Ph.: A priori estimates of solutions of superlinear parabolic problems without variational structure. To appear in Discrete Contin. Dynam. Systems
20. Suzuki, R.: Boundedness of global solutions of one dimensional quasi-linear parabolic equations. J. Math. Soc. Japan 50, 119-138 (1998)

[^0]: P. Souplet: Département de Mathématiques, INSSET, Université de Picardie, 02109 St-Quentin, France and Laboratoire de Mathématiques Appliquées, UMR CNRS 7641, Université de Versailles, 45 avenue des Etats-Unis, 78035 Versailles, France,
 e-mail: souplet@math.uvsq.fr

