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Abstract. We prove an a priori estimate and a universal bound for any global solution of
the nonlinear degenerate reaction-diffusion equation ut = ∆um + u p in a bounded domain
with zero Dirichlet boundary conditions.
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1. Introduction and main results

Consider the following problem:


ut = ∆um + u p, 0 < t < T, x ∈ Ω,

u(t, x) = 0, 0 < t < T, x ∈ ∂Ω,

u(0, x) = u0(x), x ∈ ∂Ω.

(1.1)

Throughout the paper, Ω is a C3-smooth bounded domain of RN , p > max(1, m)

and m > 0. We consider solutions which may change sign and define uk as
|u|k sign(u) for all real k > 0. We assume that the initial datum u0 ∈ L∞(Ω)

satisfies um
0 ∈ H1

0 (Ω).
It is well known that solutions of (1.1) blow up in finite time if u0 is suitably

large, while they exist globally and decay as t → ∞ if u0 is small. In view of
a classification of all solutions of (1.1), it is then a natural question to ask whether
unbounded global solutions may exist or not.

The question of the boundedness of global solutions of (1.1) was initiated in
[15] and further investigated in [4]. Denoting pS = (N +2)/(N −2) (∞ if N ≤ 2),
the result of [4] says that if p/m < pS, then any global solution of (1.1) is uniformly
bounded for t ≥ 0, that is,

sup
t≥0

‖u(t)‖∞ < ∞.(1.2)
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On the other hand, it is known from [15] that some unbounded global solutions do
exist if N ≥ 3 and p/m ≥ pS (see also [9]).

In the semilinear case m = 1, the conclusion of [4] had been obtained earlier
in [3]. A more precise result was given in [10] for m = 1 and u0 ≥ 0, where an
a priori estimate of the form

sup
t≥0

‖u(t)‖∞ ≤ C(‖u0‖∞,Ω, p)(1.3)

was established for p < pS. In [16], (1.3) was then proved for m = 1 without the
restriction u0 ≥ 0. It is to be noted that boundedness of global solutions does not
imply the a priori estimate (1.3) in general (see [9, 6] for some counter-examples).

Recently, the question of whether the bound in (1.3) might be independent of
u0 for t ≥ τ > 0 was raised in [7], and it was proved there that

sup
t≥τ

‖u(t)‖∞ ≤ C(τ,Ω, p), for all τ > 0,(1.4)

holds for all global solutions of (1.1), provided m = 1, u0 ≥ 0 and p < (N +
1)/(N − 1) or N = 1. We call (1.4) a universal bound. In other words, (1.4) says
that after any positive time τ , every global non-negative trajectory of (1.1) enters
into an absorbing bounded set Aτ . Shortly thereafter, it was shown in [17] that (1.4)
still holds for N ≤ 2 or N = 3 and p < 5 = pS (with m = 1 and u0 ≥ 0).

For more results on boundedness of global solutions and on a priori estimates
for other classes of evolution equations, we refer to the surveys [18, 5], to [13,
20] and to the references in [7]. Let us also mention the paper [19] which contains
some results on semilinear parabolic systems.

The aim of the present paper is to establish both a priori estimates and universal
bounds for global solutions of (1.1) in the degenerate case m > 1. By a solution of
(1.1), we mean a weak solution (see Section 2 below for a precise definition). Our
main results are the following:

Theorem 1 (a priori estimate). Assume that

1 < m < p < p1(m, N) :=
{

∞, if N = 1

m + 10m+2
3N−4 , if N ≥ 2.

(1.5)

Then any global solution of (1.1) satisfies

sup
t≥0

‖u(t)‖∞ ≤ C(‖u0‖∞,Ω, p, m),(1.6)

where the constant C(‖u0‖∞,Ω, p, m) > 0 remains bounded for ‖u0‖∞ bounded.

Theorem 2 (universal bound). Assume that

1 < m < p < p2(m, N) :=
{

∞, if N = 1
N+2

N m, if N ≥ 2.
(1.7)

Then, for all τ > 0, there exists a constant C(τ,Ω, p, m) > 0 such that any global
non-negative solution of (1.1) satisfies

sup
t≥τ

‖u(t)‖∞ ≤ C(τ,Ω, p, m).(1.8)
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Remark 1.1. It is easy to show that (1.8) implies (1.6). On the other hand, (1.8)
cannot be true for τ = 0, since there exist global solutions starting from unbounded
initial data in Lq (see, e.g., [1]). Furthermore, Theorem 2 cannot be true for solutions
of a mixed sign. Indeed, if 1 < p/m < pS, then there exist sign-changingstationary
solutions of arbitrary large sup norm.

Remark 1.2. The paper [4] on boundedness of global solutions also gives an a priori
estimate similar to (1.6) under the condition m < p < m + (m + 1) min(1, 2/N)

(see [4, Remark 1.10 p. 236], where m + 1 is substituted by 2 due to a misprint).
Our condition (1.5) in Theorem 1 is weaker. However, we restrict to the “slow-
diffusion” case m > 1, while the results of [4] also work for the “fast-diffusion”
case m < 1, with m > (N − 2)/(N + 2).

The proof of our a priori estimate relies on suitable modifications of ideas in [3],
based on energy and interpolation arguments. For the proof of universal bounds,
besides the previously established a priori estimate, we use suitable test functions
and certain smoothing properties of solutions of (1.1).

The rest of the paper is organized as follows. Section 2 contains some use-
ful preliminary material, including local existence and smoothing properties of
solutions. Sections 3 and 4 are then devoted to the proofs of Theorems 1 and 2,
respectively.

2. Preliminaries

For u0 ∈ L∞(Ω), um
0 ∈ H1

0 (Ω), by a (weak) solution of (1.1) on [0, T ], we mean
a function u such that


u ∈ C([0, T ]; L2(Ω)) ∩ L∞(0, T ; L∞(Ω), um ∈ L∞(

0, T ; H1
0 (Ω)

)
,∫ t

0

∫
Ω

(
uϕt − ∇um · ∇ϕ + u pϕ

) = ∫
Ω

u(t)ϕ(t) − ∫
Ω

u0ϕ(0)

for all t ∈ (0, T ] and ϕ ∈ L2
(
0, T ; H1

0 (Ω)
) ∩ H1(0, T ; L2(Ω)).

(2.1)

It is known (see, e.g., [12]) that there exists T ∗ = T ∗(u0) ∈ (0,∞] such that
for each T ∈ (0, T ∗), (P) admits a unique solution on [0, T ]. If T ∗ < ∞, then
‖u(t)‖∞ → ∞ as t → T ∗. Moreover, u satisfies the energy inequality

E(t1) + m
∫ t1

t0

∫
Ω

|u|m−1u2
t ≤ E(t0), 0 ≤ t0 ≤ t1 < T ∗,(2.2)

where the energy is defined by

E(t) :=
∫

Ω

(
1

2
|∇um(t)|2 − m

p + m
|u(t)|p+m

)
.(2.3)

In particular, the energy is non-increasing in time. Also, we have the useful identity

d

dt

∫
Ω

|u|m+1

m + 1
= −

∫
Ω

|∇um(t)|2 +
∫

Ω

|u(t)|p+m, a.e. t ∈ (0, T ∗).(2.4)
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(This follows from (2.1) with the test function ϕ = um – note that ϕt ∈ L2(0, T ;
L2(Ω)) is due to (2.2) and u ∈ L∞(0, T ; L∞(Ω)).)

Finally, in what follows, C(. . . ) will denote positive constants which may vary
from line to line and depend only on the indicated arguments.

In the proof of Theorems 1 and 2, we will need the following two lemmas
which give useful regularizing properties for local solutions of (1.1). In particular
Lemma 2.2 (i), which is essentially a consequence of results in [1], provides
smoothing properties from Lq into L∞.

Lemma 2.1. Assume p > m > 1. For all t ∈ (0, T ∗), it holds

‖∇um(t)‖2
2 ≤ C(p, m).

(
t−1‖u0‖m+1

m+1 + sup
s∈(0,t)

‖u(s)‖m+p
m+p

)
.(2.5)

Moreover, we have

T ∗ > T1 := C(p)‖u0‖1−p
∞ , ‖u(t)‖∞ ≤ 2‖u0‖∞, 0 < t ≤ T1(2.6)

and

‖∇um(T1)‖2
2 ≤ C(p, m)|Ω| ‖u0‖p+m

∞ .(2.7)

Lemma 2.2. Assume p > m > 1 and q ≥ 1, q > N
2 (p − m).

(i) There exist positive constants L1, L2, α, β, γ depending only on N, p, m, q,
such that T ∗ > T0 := L2(1 + ‖u0‖q)

−γ and

‖u(t)‖∞ ≤ L1‖u0‖β
q t−α, 0 < t ≤ T0.(2.8)

(ii) For all M > 0, there exists C(M, N, p, m, q) > 0 such that if

0 < T ≤ T ∗, ‖u0‖∞ ≤ M and sup
t∈(0,T )

‖u(t)‖q ≤ M,

then

‖u(t)‖∞ ≤ C(M, N, p, m, q), 0 ≤ t < T.

Proof of Lemma 2.1. Integrating (2.4) over (0, t), we have∫ t

0

∫
Ω

|∇um(s)|2 ≤
∫ t

0

∫
Ω

|u(s)|m+p +
∫

Ω

|u0|m+1

m + 1
.

Due to the non-increasing property of the energy, it follows that

tE(t) ≤
∫ t

0
E(s) ds ≤ 1

2

∫ t

0

∫
Ω

|∇um(s)|2.
By combining these two inequalities, we deduce that∫

Ω

|∇um(t)|2 = 2E(t) + 2m

m + p

∫
Ω

|u(t)|m+p

≤ 1

t

(∫ t

0

∫
Ω

|u(s)|m+p +
∫

Ω

|u0|m+1

m + 1

)
+ 2m

m + p

∫
Ω

|u(t)|m+p,

which implies (2.5).
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On the other hand, by comparing with the solution of the ODE y′ = y p for
y(0) = ‖u0‖∞, we get

‖u(t)‖∞ ≤ y(t) = (‖u0‖1−p
∞ − (p − 1)t

)−1/(p−1)
,

0 < t < min
(
T ∗, (p − 1)−1‖u0‖1−p

∞
)
,

which immediately yields (2.6).
Finally, (2.7) follows from (2.6) and (2.5) with t = T1. ��

Proof of Lemma 2.2. (i) For each u0 ∈ Lq(Ω) with u0 ≥ 0, it follows from
[1, Theorem 3.1 and Remark 3.3] that there exists (at least) a solution v of (1.1)
which exists on [0, T0] with T0 := L2(1 + ‖u0‖q)

−γ and satisfies (2.8). However,
the notion of solution in [1] is weaker than (2.1), so that we cannot immediately
identify v with our solution u.

To do so, we note that the solution v in [1] is constructed as a limit, pointwise
on (0, T0) × Ω, of solutions of the approximating problems


vn,t = ∆vm

n + min(v
p
n , n), t > 0, x ∈ Ω,

vn(t, x) = 0, t > 0, x ∈ ∂Ω,

vn(0, x) = min(u0(x), n), x ∈ ∂Ω.

(2.9)n

For each n ≥ 1, (2.9)n admits a unique (global) solution vn in the sense of (2.1).
For each 0 < T ′ < T ∗(u0), since u0 ∈ L∞ and u ∈ L∞((0, T ′)×Ω), it follows by
uniqueness for (2.9)n that vn = u on (0, T ′) × Ω for all n ≥ n0(T ′) large enough.
Passing to the limit, we deduce that v = u on (0, min(T ′, T0)) × Ω, hence on
(0, min(T ∗(u0), T0))×Ω. Since v satisfies (2.8), we conclude that u satisfies (2.8).

Finally, in the case when u0 changes sign, it suffices to compare u with the
solutions u± corresponding to the initial data ±|u0|.
(ii) Let T2 = min(T0, T1), where T0 is defined in Lemma 2.2 (i) and T1 is defined
in (2.6). By Lemma 2.1 and Lemma 2.2 (i), we have

‖u(t)‖∞ ≤
{

2‖u0‖∞, if 0 ≤ t ≤ T2

L1‖u(t − T2)‖β
q T−α

2 , if T2 ≤ t < T ,

and the result follows. ��
Remark 2.1. The result of Lemma 2.2 (ii) can also be found in [8] under the
assumption q > max(1, N/2)(p − m) (stronger if N = 1). Under this assumption,
the result of Lemma 2.2 (i) can be proved alternatively by combining the arguments
in [4, Lemma 1.6] and [14, pp. 46–48] with [11, Théorème 1].

3. Proof of Theorem 1

The proof of Theorem 1 relies on a suitable adaptation of the arguments in [3],
based on energy estimates and interpolation.
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Proof of Theorem 1. Let u be a global solution of (1.1). From (2.4) and (2.3) we
have, for a.e. t ≥ 0,

d

dt

∫
Ω

|u|m+1

m + 1
= −2E(t) + p − m

p + m

∫
Ω

|u(t)|p+m .(3.1)

By Hölder’s inequality and the non-increasing property of the energy, it follows
that for each t0 ≥ 0,

d

dt

∫
Ω

|u|m+1

m + 1
≥ C(p, m,Ω)

(∫
Ω

|u(t)|m+1
)α − 2E(t0), a.e. t ≥ t0,

where α = m+p
m+1 > 1. Since u exists globally, this implies

E(t0) ≥ 0, for all t0 ≥ 0(3.2)

and ∫
Ω

|u(t)|m+1 ≤ C(p, m,Ω)E
m+1
m+p (0), for all t ≥ 0.(3.3)

On the other hand, by (2.2) and (3.2), we have∫ ∞

0

∫
Ω

|u|m−1u2
t ≤ E(0)

m
.(3.4)

Now using (3.1) and E(t) ≤ E(0), we get

p − m

p + m

∫
Ω

|u(t)|p+m ≤ 2E(0) +
∫

Ω

|u(t)|(m+1)/2 |u(t)|(m−1)/2ut;

hence, by Cauchy–Schwarz’s inequality and (3.3),

(∫
Ω

|u(t)|p+m
)2 ≤ 2

(
p + m

p − m

)2(
4E2(0) +

∫
Ω

|u(t)|m+1
∫

Ω

|u(t)|m−1u2
t

)

≤ C(p, m,Ω)
(

E2(0) + E
m+1
m+p (0)

∫
Ω

|u(t)|m−1u2
t

)
.

(3.5)

By integrating over (t, t + 1), setting a = p+2m+1
p+m , it follows from (3.4) that

∫ t+1

t

(∫
Ω

|u|p+m
)2 ≤ C(p, m,Ω)

(
E2(0) + Ea(0)

)
, t ≥ 0.(3.6)

Let v = u(m+1)/2 and r = 2(m+p)

m+1 > 2. In the rest of the proof, k will denote
various positive constants depending only on p and m. Rewrite the inequalities
(3.4) and (3.6) as ∫ ∞

0

∫
Ω

v2
t ≤ C(m)E(0)
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and ∫ t+1

t

(∫
Ω

|v|r
)2 ≤ C(p, m,Ω)

(
1 + Ek(0)

)
, t ≥ 0,

hence, in particular,

‖v‖L2r (t,t+1;Lr (Ω)) + ‖v‖H1(t,t+1;L2(Ω)) ≤ C(p, m,Ω)(1 + Ek(0)), t ≥ 0.

By interpolation (see [3, Appendice] or also [2] for more general results), it follows
that

‖v‖L∞(t,t+1;La(Ω)) ≤ C(p, m,Ω, a)(1 + Ek(0)), t ≥ 0,

for all a ∈ [1, a0), where a0 = r − r−2
3 = 2(r+1)

3 > 2, so that

‖u‖L∞(0,∞;Lq(Ω)) ≤ C(p, m,Ω, q)(1 + Ek(0)),(3.7)

for all q ∈ [1, q0), where q0 = (m+1)(r+1)
3 = 3m+2p+1

3 > 1.
By combining (2.6) and (2.7) from Lemma 2.2 with (3.7) (shifting the origin

of time from 0 to T1 in (3.7)), we obtain

‖u‖L∞(0,∞;Lq(Ω)) ≤ C(p, m,Ω, q)
(
1 + ‖u0‖k

∞
)
, for all q ∈ [1, q0).

Finally, since the assumption (1.5) implies that q0 > N
2 (p − m), the conclusion

follows from Lemma 2.2 (ii). ��
Remark 3.1. By using the estimates (3.5), (3.4), Lemma 2.2 (i) and arguing simi-
larly as in the proof of [3, Proposition 6], we obtain a new proof of the boundedness
of global solutions of (1.1) under the assumption 1 < p/m < pS, m > 1. This
proof is completely different from that in [4] (note, however, that the proof in [4]
works also for (N − 2)/(N + 2) < m < 1).

4. Proof of Theorem 2

In this section, we denote, respectively, by λ1 > 0 and ϕ1(x) > 0 the first eigenvalue
and first eigenfunction of −∆ in Ω with Dirichlet boundary conditions, satisfying


−∆ϕ1 = λ1ϕ1, x ∈ Ω,

ϕ1 ∈ H1
0 (Ω),∫

Ω
ϕ1 = 1.

Let u be a non-negative global solution of (1.1). We first claim that∫
Ω

u(t)ϕ1 ≤ C(p, m, λ1), t ≥ 0(4.1)

and ∫ τ

0

∫
u pϕ1 ≤ C(p, m, λ1, τ), τ > 0.(4.2)



434 P. Souplet

Indeed, taking ϕ = ϕ1 in (2.1), we get for a.e. t ≥ 0,

d

dt

∫
Ω

u(t)ϕ1 =
∫

Ω

u p(t)ϕ1 − λ1

∫
Ω

um(t)ϕ1;

hence, by Young’s and Jensen’s inequalities, and since p > m,

d

dt

∫
Ω

u(t)ϕ1 ≥ 1

2

∫
Ω

u p(t)ϕ1 − C(p, m, λ1)(4.3)

≥ 1

2

(∫
Ω

u(t)ϕ1

)p − C(p, m, λ1).

This implies (4.1) since otherwise
∫
Ω

u(t)ϕ1 would blow up in finite time, contra-
dicting T ∗ = ∞. Integrating (4.3) over (0, τ) and using (4.1) we deduce

1

2

∫ τ

0

∫
Ω

u p(t)ϕ1 ≤ C(p, m, λ1)τ +
∫

Ω

u(τ)ϕ1 ≤ C(p, m, λ1, τ),

which is (4.2).
We next claim that there exists t0 ∈ (0, τ/2) such that for all l ∈ (0, p/2),∫

Ω

um(t0) +
∫

Ω

ul(t0) ≤ C(p, m, l,Ω, τ).(4.4)

To this end, we introduce the solution χ of the problem{
−∆χ = 1, x ∈ Ω,

χ ∈ H1
0 (Ω).

Using (2.1) with test function χ, we get∫ τ

0

∫
Ω

um =
∫ τ

0

∫
Ω

u pχ +
∫

Ω

u0χ −
∫

Ω

u(τ)χ.

Since

cχ(x) ≤ dist(x, ∂Ω) ≤ c−1ϕ1(x), x ∈ Ω,

for some c = c(Ω) > 0, we deduce from (4.1) and (4.2) that∫ τ

0

(∫
Ω

um +
∫

Ω

u pϕ1

)
≤ C(p, m,Ω, τ).

In particular, there exists t0 ∈ (0, τ/2) such that
∫
Ω

um(t0) + ∫
Ω

u p(t0)ϕ1 ≤
C(p, m,Ω, τ). Now, by Hölder’s inequality,∫

Ω

ul(t0) =
∫

Ω

ul(t0)ϕ
l/p
1 .ϕ

−l/p
1 ≤

(∫
Ω

u p(t0)ϕ1

)l/p(∫
Ω

ϕ
−l/(p−l)
1

)(p−l)/p
.

Since l/(p − l) < 1 and ϕ1(x) ≥ c dist(x, ∂Ω), we have
∫
Ω

ϕ
−l/(p−l)
1 < ∞ and

(4.4) follows.
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Now, let us first consider the case N ≥ 2, for which p < p2(N, m) implies
that m > N

2 (p − m). We may thus apply Lemma 2.1 (i) with q = m. From
‖u(t0)‖m ≤ C(p, m,Ω, τ) (see (4.4)), we then deduce that

‖u(t1)‖∞ ≤ C(p, m,Ω, τ) for some t1 ∈ (t0, τ).(4.5)

In the case N = 1, we have p/2 > N
2 (p − m) and since m > 1, we can choose

m̃ ≥ 1 such that N
2 (p−m) < m̃ < max(m, p/2). We may thus apply Lemma 2.1 (i)

with q = m̃. Since ‖u(t0)‖m̃ ≤ C(p, m,Ω, τ) due to (4.4), we then deduce that
(4.5) is still true.

Finally, since p1(N, m) > p2(N, m), we conclude from (4.5) and Theorem 1
that

sup
t≥τ

‖u(t)‖∞ ≤ C(p, m,Ω, τ).

��
Remark 4.1. The control on

∫
Ω

ul(t0) for all l < p/2 (cf. (4.4)) does not enable
one to improve the value of p2(N, m) if N ≥ 2.
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