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Abstract. We prove the existence of solutions of nonlinear elliptic equations with first-
order terms having “natural growth” with respect to the gradient. The assumptions on the
source terms lead to the existence of possibly unbounded solutions (though with exponential
integrability). The domain Ω is allowed to have infinite Lebesgue measure.
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1. Introduction

In this paper we are interested in proving the existence of solutions of nonlinear
elliptic problems whose model is:

{−∆p(u)+ α0|u|p−2u = d(x)|∇u|p + f(x)− div g(x) in Ω,
u ∈ W1,p

0 (Ω) ,
(1)

where Ω is an open set of RN , possibly of infinite measure, p is a constant such
that p > 1, ∆p(u) = div (|∇u|p−2∇u) is the p-Laplace operator, α0 is a positive
constant, d(x) is a function in L∞(Ω). We assume the following hypotheses on the
source terms f and g (supposing p < N for simplicity):

f ∈ L N/p( {x ∈ Ω : | f(x)| > 1} )
, f ∈ L p′( {x ∈ Ω : | f(x)| ≤ 1} )

,

g ∈ L N/(p−1)(Ω; RN ) ∩ L p′
(Ω; RN ) .

It is clear that in the case of a domain having finite measure, these assumptions
become

f ∈ L N/p(Ω) , g ∈ L N/(p−1)(Ω; RN ) .

When Ω is a bounded open set of RN , this kind of problem with lower-order
terms H(x, u,∇u) having natural growth p with respect to the gradient has been
studied by Boccardo, Murat, Puel in [2], [3], where the source terms f , g are
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assumed to be in Lq(Ω), Lr(Ω; RN ), respectively, with q > N/p, r > N/(p − 1)
(an hypothesis which implies that u ∈ L∞(Ω)). The case of unbounded solutions
is treated in [1], where a sign condition on H(x, u,∇u) is assumed.

In Ferone and Murat [11], Ω is a bounded open set, while the data belong to the
“limit spaces”, i.e., f ∈ L N/p(Ω), g ∈ L N/(p−1)(Ω; RN ) with “sufficiently small”
norms, and α0 = 0 is allowed. No sign assumption is made on the term H . The
authors of that paper prove an existence result of an unbounded solution which
satisfies eλ|u| − 1 ∈ W1,p

0 (Ω) for some λ > 0. With respect to the results proved
in [11] we show that the presence of the term α0|u|p−2u allows us to drop the
assumption of smallness of the source terms f , g, as well as the assumption of
boundedness of Ω.

In the case of domains having infinite measures, one can proceed by solving
the problem on a sequence Ωn of bounded sets invading Ω. We look for uniform
(with respect to n) estimates of eλ|un | − 1 in W1,p

0 (Ωn) (for every positive λ),
un being solutions on Ωn . This is done in Section 3: to this aim, we cannot use
any embedding theorem between Ls spaces, since Ω may have infinite measure,
nor any argument involving the measure of Ωn. As in many of the cited papers, we
make use of test functions of exponential growth, which are, in some sense, natural
tools to get rid of the term H(x, u,∇u) in order to obtain any estimate on un .

After that, in Section 4 we pass to the limit in the approximating problems:
we need to prove a result of local strong convergence of the gradients ∇un , and
again this is done through exponential-type functions, using a local adaptation of
a technique by Ferone and Murat (see [11]).

In Section 5 we prove that any solution of (1) is bounded if f ∈ Lq(Ω)∩L p′
(Ω),

with q > N/p (or a weaker assumption, see (F′) of Section 2) and g ∈ Lr(Ω; RN ),
with r > N/(p − 1). This is in the spirit of the results of Stampacchia [16] and
Boccardo, Murat, Puel [3], but it requires particular care since the techniques of
Stampacchia rely heavily on the measure of the domain Ω.

It is worth noticing that, as far as we know, the only result concerning the case
of unbounded domains is proved in [9], where the principal part is a quasilinear
operator with linear growth (p = 2), and f(x) ∈ L2(Ω) ∩ L∞(Ω) (see also [10]
for results of existence of bounded solutions in the case of degenerate operators).

On the other hand, results concerning sets Ω of infinite measure and terms with
growth of order p − 1 with respect to the gradients have been proved in Bottaro,
Marina [4], Lions [14], [15], Chicco, Venturino [6] for the linear setting (p = 2)
and in Dall’Aglio, De Cicco, Giachetti, Puel [7] for the nonlinear one.

2. Main result

Let Ω be an open subset of RN , possibly of infinite measure. We are interested in
establishing an existence result for the following elliptic problem in Ω:{−div a(x, u,∇u)+ c(x, u)+ H(x, u,∇u) = f(x)− div g(x) in Ω,

u ∈ W1,p
0 (Ω).

(P)

where p satisfies p > 1. Let us focus our attention, for the moment, on the case
p < N. We assume the following hypotheses on the terms which appear in (P):
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Assumptions on a(x, s, ξ):

(A1) a(x, s, ξ) = (a1(x, s, ξ), . . . , aN(x, s, ξ)) : Ω×RN → RN is a Carathéodory
function, i.e., it is measurable with respect to x for every (s, ξ) ∈ R × RN ,
and continuous with respect to (s, ξ) for almost every x ∈ Ω;

(A2) there exists a constant Λ1 > 0 such that

|a(x, s, ξ)| ≤ Λ1
(
k1(x)+ |s|p−1 + |ξ|p−1)

for almost every x ∈ Ω and every (s, ξ) ∈ R × RN , where k1(x) is a positive
function in L p′

(Ω) ∩ Lr
loc(Ω), for some r > p′ (here p′ denotes Hölder’s

conjugate exponent of p, defined by 1
p + 1

p′ = 1);
(A3) there exists a constant α > 0 such that

a(x, s, ξ) · ξ ≥ α|ξ|p

for almost every x ∈ Ω and every (s, ξ) ∈ R × RN ;

(A4) [a(x, s, ξ)− a(x, s, η)] · (ξ − η) > 0

for almost every x ∈ Ω, for every s ∈ R and ξ, η ∈ RN , with ξ �= η.

Remark 1. The assumption k1(x) ∈ L p′
(Ω)∩ Lr

loc(Ω), with r > p′, which appears
in (A2) instead of the more usual hypothesis k1(x) ∈ L p′

(Ω), will be used in the
proof of the strong convergence of the gradient of the approximate solutions, in
Section 4.

Assumptions on c(x, s):

(C1) c(x, s) : Ω × R → R is a Carathéodory function;
(C2) there exists a constant α0 > 0 such that, for almost every x ∈ Ω and every

s ∈ R
c(x, s)s ≥ α0|s|p;

(C3) there exists a constant Λ2 > 0 such that for almost every x ∈ Ω and every
s ∈ R

|c(x, s)| ≤ Λ2
(
k2(x)+ |s|p−1) ,

where k2(x) is a positive function in L p′
(Ω).

Assumptions on H(x, s, ξ):

(H1) H(x, s, ξ) : Ω × R × RN → R is a Carathéodory function;
(H2) there exists a constant d > 0 such that for almost every x ∈ Ω and every

(s, ξ) ∈ R × RN

|H(x, s, ξ)| ≤ d|ξ|p .

Remark 2. One can replace the last inequality with

|H(x, s, ξ)| ≤ d|ξ|p + h(x) ,

where h satisfies the same assumption as the source term f below.
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Assumptions on f(x):
f(x) : Ω → R is a measurable function satisfying

(F) f ∈ L N/p
( {x ∈ Ω : | f(x)| > 1} )

, f ∈ L p′( {x ∈ Ω : | f(x)| ≤ 1} )
.

From now on we use the compact notation {| f | > M} instead of {x ∈ Ω : | f(x)|
> M}.

Remark 3. It is easy to check that (F) holds if and only if it holds when 1 is replaced
by any M > 0.

Remark 4. If p is such that N/p ≥ p′, then (F) is equivalent to

f ∈ L N/p(Ω) ∩ L p′
(Ω) . (2)

On the other hand, if N/p < p′, then (2) implies (F), but not vice versa.

Remark 5. When Ω has finite measure, (F) means f ∈ L N/p(Ω).

Assumptions on g(x):
g(x) : Ω → RN is a measurable function satisfying

(G) g ∈ L N/(p−1)(Ω; RN ) ∩ L p′
(Ω; RN ) .

Remark 6. Since p < N, assumption (G) is equivalent to

|g| ∈ L N/(p−1)( {|g| > 1} )
, |g| ∈ L p′( {|g| ≤ 1} )

.

The main result we are going to prove is the following:

Theorem 1. Assume that 1 < p < N, and that hypotheses (A1)–(A4), (C1)–(C3),
(H1)–(H2), (F), (G) hold. Then there exists a solution u of problem (P) in the sense
that

∫
Ω

a(x, u,∇u) · ∇ψ +
∫

Ω

c(x, u)ψ +
∫

Ω

H(x, u,∇u)ψ

=
∫

Ω

fψ −
∫

Ω

g · ∇ψ, (3)

for every function ψ ∈ W1,p
0 (Ω) ∩ L∞(Ω). Moreover u satisfies

eλ|u| − 1 ∈ W1,p
0 (Ω), (4)

for every λ ≥ 0.
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Remark 7. In the proof of Theorem 1 we will show that (3) holds for every ψ ∈
C∞

0 (Ω). Therefore, by density, it holds for every ψ ∈ W1,p
0 (Ω) ∩ L∞(Ω). In

particular, if ϕ(s) : R → R is a locally Lipschitz function satisfying ϕ(0) = 0 and
|ϕ′(s)| ≤ ceλ|s| for some c, λ > 0, we can take ψ = ϕ(Tk(u)) in (3), where Tk is
the truncation defined by

Tk(s) =




k if s ≥ k,

s if |s| < k,

−k if s ≤ −k,

(5)

and then pass to the limit for k → ∞, using (4) and Lebesgue’s theorem. It follows
thatψ = ϕ(u) is admissible in (3). This will be used for the next result, Theorem 2.

Theorem 1 will be proved by approximating problem (P) with the following
problems on the bounded domains Ωn = Ω ∩ Bn(0):{−div a(x, un,∇un)+ c(x, un)+ Hn(x, un,∇un) = fn − div gn in Ωn,

un ∈ W1,p
0 (Ωn) ∩ L∞(Ωn) ,

(Pn)

where

Hn(x, s, ξ) = Tn(H(x, s, ξ)) , fn(x) = Tn
(

f(x)
)
, gn(x) = g(x)

1 + 1
n |g(x)| , (6)

and Tn is defined by (5). Since Hn, fn and gn are bounded, the existence of
a bounded solution of (Pn) is classical (see, for instance, Leray, Lions [12] or
Lions [13] for the existence, and Stampacchia [16] for the boundedness). Let us
remark, moreover, that |Hn| ≤ |H |, | fn| ≤ | f | and |gn| ≤ |g|, so that Hn, fn and
gn satisfy the same assumptions as H , f and g respectively.

The scheme of the proof of Theorem 1 is a classical one: we first find a priori
estimates in W1,p

0 (Ωn) for the functions eλ|un | −1, where un is any solution of (Pn).
This will be done in Section 3. Then we extract a weakly converging subsequence
and we try to pass to the limit in the weak formulation of (Pn). In order to do this
we need a result of local strong convergence of the gradients, which is proved in
Section 4, using a local version of the technique used in [11]. Finally, in Section 5,
we prove that, if f and g have higher integrability, or if p > N, then every solution
u of (P) is bounded. More precisely, we will assume that 1 < p < ∞, and that (F)
and (G) are replaced by

(F′) f ∈ Lq( {| f | > 1} )
, for some q > max

{
1,

N

p

}
, f ∈ L p′( {| f | ≤ 1} )

,

(G′) g ∈ Lr(Ω; RN ) ∩ L p′
(Ω; RN ) , for some r >

N

p − 1
,

respectively.

Remark 8. We point out that, in the case p > N, one can take r = p′ in (G′), and
therefore, in this case (G′) gives g ∈ L p′

(Ω; RN ).
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We now state the boundedness theorem:

Theorem 2. Assume that 1 < p < ∞, and that hypotheses (A1)–(A4), (C1)–(C3),
(H1)–(H2), (F′), (G′) hold. Then every solution u of (P) in the sense specified in
(3) and (4) is essentially bounded, and

‖u‖
L∞(Ω) ≤ C (N, p, α, α0, d, f, g) . (7)

The proof of Theorem 2 relies on the combined use of the well-known technique
by Stampacchia (see [16]) and suitable exponential test functions, as in [3].

The previous result can be used as an a priori estimate for the approximate
solutions un in the case p ≥ N. In this case Theorem 2 shows that the sequence
{un} is uniformly bounded in L∞(Ω) (this, by the way, simplifies dramatically the
proof of the strong convergence of the gradients, see Remark 10 below). Therefore
we can state the following existence result:

Theorem 3. Assume that N ≤ p < ∞, and that hypotheses (A1)–(A4), (C1)–
(C3), (H1)–(H2), (F′), (G′) hold. Then there exists a solution u ∈ W1,p

0 (Ω)∩L∞(Ω)
of (P) such that (3) holds for every ψ ∈ W1,p

0 (Ω) ∩ L∞(Ω).

3. A priori estimate

In this section we will prove a uniform estimate for the solutions un of (Pn).

Proposition 1. Under the hypotheses of Theorem 1, let un be any solution of (Pn).
Then for every λ > 0 there exists a positive constant C = C(N, p, α, α0, d, f, g, λ)
such that

‖eλ|un | − 1‖
W1,p

0 (Ωn)
≤ C . (8)

Remark 9. The previous estimate yields an estimate for the functions eλ|un | in
Lr

loc(Ω) for every r. More precisely, for every λ > 0, every r ∈ [1,+∞) and every
set Ω0 ⊂⊂ Ω, one has

‖eλ|un |‖
Lr (Ω0)

≤ c(r, λ,Ω0) .

Proof of Proposition 1. For simplicity of notation we will always omit the index
n of the sequence. For positive λ, let us define the function ϕ(s) = ϕλ(s) : R → R
by

ϕ(s) = (
eλ|s| − 1

)
sign s . (9)

We take ϕ(Gk(u)) as test function in (Pn), where

Gk(s) = s − Tk(s) =




s − k if s > k,

0 if |s| ≤ k,

k − s if s < −k,

(10)
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and k will be specified later. Using hypotheses (A3), (C2), (H2), we obtain

α

∫
Ω

|∇Gk(u)|pϕ′(Gk(u))+ α0

∫
Ω

|u|p−1|ϕ(Gk(u))|

≤ d
∫

Ω

|∇Gk(u)|p|ϕ(Gk(u))| +
∫

Ω

| f | |ϕ(Gk(u))| (11)

+
∫

Ω

|g| |∇Gk(u)| ϕ′(Gk(u))

= I + J + K .

It is easy to check that, if λ satisfies

λ ≥ 8d

α
, (12)

then

d|ϕλ(s)| ≤ α

8
ϕ′
λ(s) , for every s ∈ R. (13)

Therefore

I ≤ α

8

∫
Ω

|∇Gk(u)|pϕ′(Gk(u)) .

We now estimate the integral J , by splitting it as follows:

J =
∫

{| f |>H , |Gk(u)|≥1}
| f ||ϕ(Gk(u))|

+
∫

{| f |>H , |Gk(u)|<1}
| f ||ϕ(Gk(u))| +

∫
{| f |≤H}

| f ||ϕ(Gk(u))|

= J1 + J2 + J3 ,

where H is a positive constant to be chosen later. Before estimating J1, we remark
that, by Sobolev’s embedding,

∫
Ω

|∇Gk(u)|pϕ′(Gk(u))

=
∫

Ω

|∇Ψ(Gk(u))|p ≥ c1(N, p)

[∫
Ω

(
Ψ(Gk(u))

)p∗]p/p∗

, (14)

where p∗ = pN/(N − p) is the Sobolev exponent relative to p, and

Ψ(s) =
∫ |s|

0
ϕ′(t)1/p dt = p

λ1/p′
(
eλ|s|/p − 1

)
. (15)

Moreover, we observe that there exists a positive constant c2 = c2(p, λ) such that

|ϕ(s)| ≤ c2(Ψ(s))
p for every s such that |s| ≥ 1. (16)
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Therefore, by Hölder’s inequality, the term J1 can be estimated as follows (see
Remark 3)

J1 ≤ ‖ f ‖
L N/p({| f |>H})




∫
{|Gk(u)|≥1}

|ϕ(Gk(u))|
N

N−p




N−p
N

≤ c2‖ f ‖
L N/p({| f |>H})




∫
{|Gk(u)|≥1}

(
Ψ(Gk(u))

)p∗




p
p∗

.

We choose H = H(N, p, α, f, λ) large enough so that

c2‖ f ‖
L N/p ({| f |>H}) ≤ c1α

8
, (17)

and, therefore, J1 satisfies

J1 ≤ c1α

8




∫
{|Gk(u)|≥1}

(
Ψ(Gk(u))

)p∗




p
p∗

.

On the other hand

J2 ≤ ϕ(1)
∫

{| f |>H}
| f | ≤ ϕ(1)

H
N−p

p

∫
{| f |>H}

| f |N/p .

Finally

J3 ≤ H
∫

{| f |≤H}
|ϕ(Gk(u))| ,

therefore, if we choose k = k(N, p, α, α0, f, λ) such that

α0k p−1 ≥ 4H , (18)

we can write

J3 ≤ α0

4

∫
Ω

|u|p−1|ϕ(Gk(u))| .
We now estimate the term K . By Young’s inequality

K ≤ α

8

∫
Ω

|∇Gk(u)|pϕ′(Gk(u))+ c3(p, α)
∫

Ω

|g|p′
ϕ′(Gk(u)) = K1 + K2 .

The integral K2 can be estimated as follows:

K2 ≤ c3λeλ
∫

Ω

|g|p′ + c3

∫

{|g|>H̃,|Gk(u)|>1}

|g|p′
ϕ′(Gk(u))+ c3 H̃ p′

∫

{|g|≤H̃ ,|Gk(u)|>1}

ϕ′(Gk(u))

= K2,1 + K2,2 + K2,3 ,
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where H̃ is a positive number to be chosen hereafter. Since ϕ′(s) ≤ c(λ, p)(Ψ(s))p

for every s such that |s| > 1, one has, by Hölder’s inequality,

K2,2 ≤ c4(p, α, λ)




∫

{|g|>H̃}

|g|N/(p−1)




p
N




∫
{|Gk(u)|≥1}

(
Ψ(Gk(u))

)p∗




p
p∗

.

Choosing H̃ = H̃(N, p, α, g, λ) large enough, so that

c4(p, α, λ)




∫

{|g|>H̃}

|g|N/(p−1)




p
N

<
αc1

8
, (19)

we obtain

K2,2 ≤ αc1

8

[∫
Ω

|Ψ(Gk(u))|p∗
] p

p∗
.

Finally, using inequality

ϕ′(s) ≤ c5(λ)|ϕ(s)| , for every s such that |s| ≥ 1, (20)

and choosing k = k(p, α, α0, λ, H̃ ) such that

α0k p−1

4
≥ c3c5 H̃ p′

, (21)

we obtain

K2,3 ≤ α0

4

∫
Ω

|u|p−1|ϕ(Gk(u))| .
In conclusion, putting all the estimates together, we get

α

2

∫
Ω

|∇Gk(u)|pϕ′(Gk(u))+ α0

2

∫
Ω

|u|p−1|ϕ(Gk(u))| (22)

≤ c6(λ)

H (N−p)/p

∫
{| f |>H}

| f |N/p + c7(α, λ)

∫
Ω

|g|p′ = c8(N, p, α, α0, f, g, λ),

for every λ, H , k satisfying (12), (17), (18) and (21), where H̃ verifies (19). Note
that (22) implies an estimate in W1,p

0 (Ω) for Gk(u), when k is large enough.
We now fix λ, H , k such that (22) holds, and we use ϕ(Tk(u)) as a test function

in (Pn). Then we obtain

α

∫
Ω

|∇T k(u)|pϕ′(Tk(u))+ α0

∫
Ω

|u|p−1|ϕ(Tk(u))|

≤ d
∫

Ω

|∇T k(u)|p|ϕ(Tk(u))| + dϕ(k)
∫

Ω

|∇Gk(u)|p (23)

+
∫

Ω

| f ||ϕ(Tk(u))| +
∫

Ω

|g||∇Tk(u)|ϕ′(Tk(u))

= L1 + L2 + L3 + L4 .
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As before, by (13),

L1 ≤ α

4

∫
Ω

|∇T k(u)|pϕ′(Tk(u)) , (24)

while, using (22), we obtain

L2 ≤ c9(N, p, α, α0, f, g, λ) . (25)

Let us remark that the integral L3 is very easy to estimate if meas(Ω) is finite, or
more generally if f ∈ L1(Ω), since in this case

L3 ≤ ϕ(k) ‖ f ‖
L1(Ω)

.

In the general case, we write

L3 =
∫

{| f |>1}
| f | |ϕ(Tk(u))| +

∫
{| f |≤1}

| f | |ϕ(Tk(u))| (26)

≤ ϕ(k)
∫

{| f |>1}
| f | + ε

∫
Ω

|ϕ(Tk(u))|p + c(ε)
∫

{| f |≤1}
| f |p′

,

where ε will be chosen hereafter. Since

|ϕ(Tk(u))|p ≤ c10(p, λ, k)|u|p−1|ϕ(Tk(u))| ,
choosing ε such that εc10 < α0/2, we obtain

L3 ≤ α0

2

∫
Ω

|u|p−1|ϕ(Tk(u))| + c11(p, α0, f, λ, k) . (27)

Finally, one has

L4 ≤ α

4

∫
Ω

|∇T k(u)|pϕ′(Tk(u))+ c12(α, λ, k)
∫

Ω

|g|p′
. (28)

Putting all the inequalities (23)–(28) together, we get

α

2

∫
Ω

|∇Tk(u)|pϕ′(Tk(u))+ α0

2

∫
Ω

|u|p−1|ϕ(Tk(u))| ≤ c13(N, p, α, α0, f, g, λ, k) .

(29)

Let us show that (22) and (29) imply estimate (8). Indeed they yield∫
{|u|≤k}

|∇u|peλ|u| ≤ c14 ,

∫
{|u|>k}

|∇u|peλ(|u|−k) ≤ c14 ,

for every λ, k large enough (see (12), (17) and (18)), where c14 depends on λ, k
and the data. Since∫

Ω

|∇u|peλ|u| =
∫

{|u|≤k}
|∇u|peλ|u| + ekλ

∫
{|u|>k}

|∇u|peλ(|u|−k) ≤ c14(1 + ekλ) = c15 ,
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if we fix the value of k (depending on λ, see (17), (18), (19) and (21)), we obtain an
estimate on ∇(eλ|u|/p − 1) in L p(Ω) (depending on λ). This implies, by Sobolev’s
embedding, that

∫
Ω

(
eλ|u|/p − 1

)p∗ ≤ c16 , (30)

for every λ ≥ 8d/α (and a fortiori for every λ > 0), where c16 depends on λ and
on the data of the problem. Note that (30) does not imply an estimate in L p(Ω) for
eλ|u|/p − 1, since meas(Ω) may be infinite. To obtain such an estimate, we have to
combine (29) and (30), since, for every k > 0, one has the inequalities

∫
{|u|≤k}

(
eλ|u|/p − 1

)p ≤ c17(p, λ, k)
∫

Ω

|u|p−1|ϕ(Tk(u))| ,

∫
{|u|>k}

(
eλ|u|/p − 1

)p ≤ c18(p, λ, k)
∫

Ω

(
eλ|u|/p − 1

)p∗
.

Therefore, if k = k(λ) is such that (29) holds, we can write

∫
Ω

(
eλ|u|/p − 1

)p =
∫

{|u|≤k}

(
eλ|u|/p − 1

)p +
∫

{|u|>k}

(
eλ|u|/p − 1

)p ≤ c19 , (31)

where c19 depends on λ and on the data of the problem. ��

4. Strong convergence and proof of the main theorem

This section is devoted to the proof of Theorem 1. Let {un} be any sequence of
solutions of problems (Pn); we extend them to zero in Ω \ Ωn . By (8), there exist
a subsequence (still denoted by {un}) and a function u ∈ W1,p

0 (Ω) such that

un ⇀ u weakly in W1,p
0 (Ω). (32)

We wish to show that u is a solution of (P) in the sense of (3) and (4). The
main difficulty to be overcome consists of proving the strong convergence of the
gradients of un in L p

loc(Ω; RN ); to this aim we follow the technique used by Ferone
and Murat in [11].

Proposition 2. For every open set Ω0 ⊂⊂ Ω,

∇un → ∇u strongly in L p
(
Ω0; RN

)
. (33)

Proof. We limit ourselves to the case where g ≡ 0, since the additional term −div g
in (P) can be treated easily.
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Step 1. We will show that, for every k > 0,

∇T k(un) → ∇T k(u) strongly in L p
(
Ω0; RN

)
. (34)

This will be proved if we show that

lim
n→+∞

∫
Ω0

[a(x, un,∇T k(un))− a(x, un,∇T k(u))]

·(∇T k(un)− ∇T k(u)) dx = 0 (35)

(see [12]). Let Ψ(x) be a cut-off function such that

Ψ ∈ C∞
0 (Ω) , 0 ≤ Ψ(x) ≤ 1 , Ψ ≡ 1 in Ω0.

We define

zn(x) = Tk(un)− Tk(u) ;
we know that ∇zn ⇀ 0 weakly in L p(Ω; RN ), and zn → 0 strongly in L p

loc(Ω).
We take

w = ϕ(zn)e
δ|un |Ψ (36)

as a test function in (Pn), where ϕ = ϕλ is defined by (9), and the positive constants
λ, δ will be chosen below. We will always omit the explicit dependence on x of
a(x, s, ξ) and c(x, s). Using (C2) and (H2), we obtain

∫
Ω

a(un,∇un) · ∇znϕ
′(zn)e

δ|un|Ψ +
∫

Ω

c(un)ϕ(zn)e
δ|un|Ψ

≤ d
∫

Ω

|∇un|p|ϕ(zn)|eδ|un|Ψ +
∫

Ω

| f ||ϕ(zn)|eδ|un|Ψ

− δ

∫
Ω

a(un,∇un) · ∇unϕ(zn)e
δ|un |sign(un)Ψ (37)

+
∫

Ω

|a(un,∇un)| |∇Ψ| |ϕ(zn)|eδ|un|

= Cn + Dn + En + Fn .

Moreover, we set

An =
∫

Ω

a(un,∇un) · ∇znϕ
′(zn)e

δ|un |Ψ , Bn =
∫

Ω

c(un)ϕ(zn)e
δ|un |Ψ .
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We have

An =
∫

{|un|≤k}
a(Tk(un),∇T k(un)) · ∇znϕ

′(zn)e
δ|Tk(un)|Ψ

+
∫

{|un |>k}
a(un,∇un) · ∇znϕ

′(zn)e
δ|un |Ψ

=
∫

{|un|≤k}

[
a(Tk(un),∇T k(un))− a(Tk(un),∇T k(u))

] · ∇znϕ
′(zn)e

δ|Tk(un)|Ψ

+
∫

{|un |≤k}
a(Tk(un),∇T k(u)) · ∇znϕ

′(zn)e
δ|Tk(un)|Ψ

+
∫

{|un |>k}
a(un,∇un) · ∇znϕ

′(zn)e
δ|un |Ψ

= A(1)n + A(2)n + A(3)n .

Let us show that A(2)n tends to zero. Indeed A(2)n = ∫
Ω
µn · ∇zn , where

µn = a(Tk(un),∇T k(u))ϕ
′(zn)e

δ|Tk(un)|Ψχ{|un |≤k} .

Since ∇zn → 0 weakly in L p(Ω; RN), it is enough to show that µn → µ

strongly in L p′
(Ω; RN), where µ = a(Tk(u),∇T k(u))ϕ′(0)eδ|Tk(u)|Ψχ{|u|≤k}. In-

deed, µn → µ almost everywhere in Ω: the only difficulty is on the set where
|u(x)| = k, but for almost every x in this set a(Tk(un),∇T k(u)) = a(Tk(un), 0) =
0 = a(Tk(u),∇T k(u)). Moreover, by (A2),

|µn| ≤ Λ1
(
k1(x)+ k p−1 + |∇u|p−1)ϕ′(2k)eδkΨ ,

which is a fixed function in L p′
(Ω). Therefore the strong convergence of µn

follows from Lebesgue’s theorem. Similarly, A(3)n → 0, since ∇znχ{|un|>k} =
−∇T k(u)χ{|un|>k} → 0 strongly in L p(Ω; RN), while a(un,∇un)ϕ

′(zn)eδ|un|Ψ is
bounded in L p′

(Ω; RN), by hypothesis (A2), estimate (8) and Remark 9. Therefore,
we have proved that

An = A(1)n + o(1) . (38)

Let us examine the term Bn:

Bn =
∫

{|un|≤k}
c(Tk(un))ϕ(zn)e

δ|Tk(un)|Ψ +
∫

{|un |>k}
c(un)ϕ(zn)e

δ|un |Ψ

≥
∫

{|un|≤k}
c(Tk(un))ϕ(zn)e

δ|Tk(un)|Ψ ,
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since ϕ(zn) has the same sign as c(un) on the set where |un| > k. On the other
hand, the last integral goes to zero, since the integrand converges pointwise and is
bounded by Λ2(k2(x)+ k p−1)ϕ(2k)eδkΨ. Therefore, we have proved that

Bn ≥ o(1) . (39)

Moreover,

Cn + En ≤ d

α

∫
Ω

a(un,∇un) · ∇un|ϕ(zn)|eδ|un|Ψ

− δ

∫
Ω

a(un,∇un) · ∇unϕ(zn)e
δ|un | sign unΨ (40)

≤
(

d

α
+ δ

) ∫
{|un|≤k}

a(Tk(un),∇T k(un)) · ∇T k(un)|ϕ(zn)|eδ|Tk(un)|Ψ

+
(

d

α
− δ

) ∫
{|un|>k}

a(un,∇un) · ∇un|ϕ(zn)|eδ|un|Ψ ,

since ϕ(zn) sign un = |ϕ(zn)| on the set {|un| > k}. We first fix δ such that

δ >
d

α
,

so that the last term of (40) is negative. Therefore,

Cn + En ≤
(

d

α
+ δ

) ∫
{|un |≤k}

a(Tk(un),∇T k(un)) · ∇T k(un)|ϕ(zn)|eδ|Tk(un)|Ψ

=
(

d

α
+ δ

) ∫
{|un |≤k}

[
a(Tk(un),∇T k(un))− a(Tk(un),∇T k(u))

]

· ∇zn|ϕ(zn)|eδ|Tk(un)|Ψ

+
(

d

α
+ δ

) ∫
{|un|≤k}

a(Tk(un),∇T k(un)) · ∇T k(u)|ϕ(zn)|eδ|Tk(un)|Ψ

+
(

d

α
+ δ

) ∫
{|un|≤k}

a(Tk(un),∇T k(u)) · ∇zn|ϕ(zn)|eδ|Tk(un)|Ψ .

It is easy to see that the last two integrals converge to zero as n → ∞. We now
choose λ such that

λ ≥ 2

(
d

α
+ δ

)
,

so that (
d

α
+ δ

)
|ϕ(s)| ≤ ϕ′(s)

2
, for every s ∈ R,
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and therefore,

Cn + En ≤ 1

2
A(1)n + o(1) . (41)

As for the two remaining terms Dn and Fn , it is easy to see that

Dn → 0 , Fn → 0 ; (42)

for the term Dn , use Remark 9, and for the term Fn , observe that |∇Ψ| |ϕ(zn)|
converges strongly to zero in Lr(Ω) for every r ≥ 1, while |a(un,∇un)|eδ|un | is

bounded in L p′
loc(Ω) (see (A2) and (8)).

From (37), (38), (39), (41), (42) we obtain that

A(1)n =
∫

{|un |≤k}

[
a(Tk(un),∇T k(un))− a(Tk(un),∇T k(u))

]

·∇znϕ
′(zn)e

δ|Tk(un)|Ψ → 0 . (43)

On the other hand it is easy to see that∫
{|un |>k}

[
a(Tk(un),∇T k(un))− a(Tk(un),∇T k(u))

]∇znϕ
′(zn)e

δ|Tk(un)|Ψ

=
∫

{|un |>k}
a(k,∇T k(u)) · ∇T k(u)ϕ

′(−Tk(u))e
δkΨ → 0 . (44)

Convergence (35) follows from (43) and (44). This proves convergence (34).

Step 2. Let us prove that

sup
n

∫
Ω

|∇Gk(un)|p k→∞−→ 0 , (45)

where Gk is defined by (10). From estimate (22), which holds for all un , we obtain
∫

Ω

|∇Gk(un)|p ≤ 1

λ

∫
Ω

|∇Gk(un)|pϕ′(Gk(un)) ≤ c(α, λ)

H
N−p

p

∫
{| f |>H}

| f |N/p . (46)

This holds for every λ satisfying (12), for every H sufficiently large to verify (17),
and for every k such that

α0k p−1 ≥ 2H (47)

(see (18)). If η is an arbitrary positive number, let us choose H such that (17)
holds and the right-hand side of (46) is smaller than η. It follows that, for every k
satisfying (47) and every n ∈ N,∫

Ω

|∇Gk(un)|p < η ,

which proves (45).
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Step 3. Let Ω0 be an open set compactly contained in Ω, and let η > 0. Since

‖∇un − ∇u‖
L p(Ω0;RN )

≤ ‖∇T k(un)− ∇T k(u)‖
L p(Ω0;RN )

+ ‖∇Gk(un)‖
L p(Ω;RN )

+ ‖∇Gk(u)‖
L p(Ω;RN )

,

using (45), we can choose k such that the last two terms are both smaller than η/3,
for every n ∈ N. Once k is fixed, by (34), the first term can be made smaller than
η/3 choosing n large enough. This proves (33). ��

Using Proposition 2, it is now very easy to pass to the limit in the distributional
formulation of problem (Pn), obtaining (3). Finally, statement (4) follows easily
from (8) and Proposition 2, using Fatou’s lemma.

Remark 10. If the approximate solutions un are uniformly bounded in L∞ (this
happens, for instance, under the assumptions of Theorem 2), then the proof of the
strong convergence of the gradients can be achieved in a simpler way, indeed it is
sufficient to takew = ϕ(u − un)Ψ in (36) (thus avoiding the use of truncations and
taking δ = 0).

5. Boundedness of solutions

This section is devoted to the proof of Theorem 2. We will use an adaptation of
a classical technique due to Stampacchia. We need the following lemma (see [16]):

Lemma 1. Let φ be a non-negative, non-increasing function defined on the half-
line [k0,∞). Suppose that there exist positive constants A, γ , β, with β > 1, such
that

φ(h) ≤ A

(h − k)γ
φ(k)β,

for every h > k ≥ k0. Then φ(k) = 0 for every k ≥ k1, where

k1 = k0 + A1/γ2β/(β−1)φ(k0)
(β−1)/γ .

Proof of Theorem 2. In what follows we will denote the constants which appear
in the formulas as c̃i , i = 1, 2, . . . Let us begin with the case p < N. Following
the method used in the first part of the proof of Proposition 1 (see (22)), one easily
obtains an estimate for

∫
Ω

|u|p−1|ϕλ(Gk0 (u))|, when k0 = k0(λ) is large enough.
This implies that, for some larger value of k0,

meas(Ak0) ≤ 1 , (48)

where we have set

Ak = {x ∈ Ω : |u(x)| > k} .
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Moreover, with the same choice of test function ϕ(Gk(u)), with λ = 4d/α, and
k ≥ k0(λ), using (A3), (C2) and (H2) one has

α

∫
Ak

|∇Gk(u)|pϕ′(Gk(u))+ α0k p−1
∫

Ak

|ϕ(Gk(u))|

≤ d
∫
Ak

|∇Gk(u)|p|ϕ(Gk(u))| +
∫

Ak∩{| f |>1}
| f | |ϕ(Gk(u))| (49)

+
∫

Ak∩{| f |≤1}
|ϕ(Gk(u))| +

∫
Ak

|g| ϕ′(Gk(u))|∇Gk(u))| .

As in the proof of Proposition 1, since λ = 4d/α, the first term of the right-hand
side of (49) is absorbed by the first term of the left-hand side. Choosing k0 such
that

α0k p−1
0 ≥ 2 , (50)

we can get rid of the term ∫
Ak∩{| f |≤1}

|ϕ(Gk(u))| .

Moreover, one has∫
Ak

|g|ϕ′(Gk(u))|∇Gk(u))|

≤ α

4

∫
Ak

|∇Gk(u)|pϕ′(Gk(u))+ c̃1(α)

∫
Ak

|g|p′
ϕ′(Gk(u)) .

This gives

α

2

∫
Ω

|∇Gk(u)|pϕ′(Gk(u))+ α0k p−1

2

∫
Ak

|ϕ(Gk(u))| (51)

≤
∫

Ak∩{| f |>1}
| f | |ϕ(Gk(u))| + c̃1

∫
Ak

|g|p′
ϕ′(Gk(u)) .

By (51), using (14) and (15) of Section 3, it is easy to check that

c̃2

[∫
Ak

(
Ψ(Gk(u))

)p∗
] p

p∗
+ α0k p−1

2

∫
Ak

|ϕ(Gk(u))|

≤
∫

(Ak\Ak+1)∩{| f |>1}
| f | |ϕ(Gk(u))| +

∫
Ak+1∩{| f |>1}

| f | |ϕ(Gk(u))| (52)

+ c̃1ϕ
′(1)

∫
Ak\Ak+1

|g|p′ + c̃1

∫
Ak+1

|g|p′
ϕ′(Gk(u)) ,
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where Ψ is defined by (15), and c̃2 = αc1/2, where c1(N, p) is the constant which
appears in (14). Let us estimate the right-hand side of (52): one has

∫
(Ak\Ak+1)∩{| f |>1}

| f | |ϕ(Gk(u))| ≤ ϕ(1)
∫

Ak∩{| f |>1}
| f | ≤ ϕ(1) ‖ f ‖

Lq({| f |>1}(meas(Ak))
1/q′
.

On the other hand, since, by (F′), 1 < q′ < p∗/p, using Hölder’s and the interpo-
lation inequalities and (16), we can write

∫
Ak+1∩{| f |>1}

| f | |ϕ(Gk(u))| ≤ ‖ f ‖
Lq ({| f |>1})‖ϕ(Gk(u))‖

Lq′
(Ak+1 )

≤ ‖ f ‖
Lq ({| f |>1})‖ϕ(Gk(u))‖

N
pq

L p∗/p(Ak+1 )
‖ϕ(Gk(u))‖1− N

pq

L1(Ak+1)

≤ c̃2

4
‖Ψ(Gk(u))‖p

L p∗
(Ak )

+ c̃3‖ f ‖ pq
pq−N

Lq ({| f |>1})
‖ϕ(Gk(u))‖

L1(Ak+1 )
,

where c̃3 = c̃3(N, p, q, α, λ). Therefore, choosing k0 such that

α0k p−1
0

2
≥ c̃3‖ f ‖ pq

pq−N

Lq ({| f |>1})
, (53)

the second integral in the right-hand side of (52) can be absorbed by the left-hand
side. Finally, as far as the last two terms in (52) are concerned, one has, with similar
calculations, using inequality (20),

c̃1ϕ
′(1)

∫
Ak

|g|p′ ≤ c̃1ϕ
′(1)‖g‖p′

Lr(Ω;RN )
(meas(Ak))

1−p′/r ,

c̃1

∫
Ak+1

|g|p′
ϕ′(Gk(u))

≤ c̃2

4
‖Ψ(Gk(u))‖p

L p∗
(Ak )

+ c̃4(N, p, α, λ) ‖g‖
rp

r(p−1)−N

Lr (Ω;RN )
‖ϕ(Gk(u))‖

L1(Ak )
.

Therefore, by taking k0 satisfying (48), (50), (53) and the further condition

α0k p−1
0

2
≥ c̃4(N, p, α, λ) ‖g‖

rp
r(p−1)−N

Lr (Ω;RN )
, (54)

one obtains, for every k ≥ k0,

c̃2

2

[∫
Ak

(
Ψ(Gk(u))

)p∗] p
p∗

≤ ϕ(1)‖ f ‖
Lq({| f |>1})(meas(Ak))

1/q′ + c̃1ϕ
′(1)‖g‖p′

Lr(Ω;RN )
(meas(Ak))

1−p′/r

≤ c̃5(p, α, f, g, λ)(meas(Ak))
m ,
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where m = min{1/q′, 1 − p′/r} (here we have used (48)). We now take h > k and
recall that there exists c̃6 = c̃6(λ, p) such that |Ψ(s)| ≥ c̃6|s| for every s ∈ R, so
that ∫

Ak

|Ψ(Gk(u))|p∗ ≥
∫

Ah

|Ψ(Gk(u))|p∗ ≥ [c̃6(h − k)]p∗
meas(Ah) .

Then it follows from (55) that

meas(Ah) ≤ c̃7

(h − k)p∗ (meas(Ak))
m p∗/p

for every h and k such that h > k ≥ k0, where c̃7 = c̃7(N, p, α, d, f, g). Since, by
(F′), (G′),

m p∗

p
> 1 ,

Lemma 1 applied to the function φ(h) = meas(Ah), for k0 satisfying (48), (50),
(53) and (54), gives

‖u‖
L∞(Ω) ≤ C1 = C1 (N, p, α, k0, d, f, g) .

In the case p = N, one can repeat the same choice of test functions in (P) ( i.e.,
ϕλ(Gk(u))), since one can check that the left-hand side of (51) is greater than

α

2

∫
Ω

|∇Ψ(Gk(u))|N + c̃8(N, λ)α0

2

∫
Ω

|Ψ(Gk(u))|N ,

where Ψ is the function defined in (15). Using the embedding of W1,N (RN ) into
Ls(RN ), which holds for every s ≥ N, one can easily follow the same arguments
used above to obtain the conclusion.

Let us show briefly how the proof can be achieved in the case p > N. For
sake of brevity, we take g ≡ 0. Once again, using ϕλ(Gk(un)) as a test function
in (Pn), with λ = 2d/α, and employing the same techniques used in the proof of
Proposition 1, one obtains (we again omit the index n):

α

2

∫
Ω

|∇Gk(u)|pϕ′(Gk(u))+ α0k p−1

2

∫
Ω

|ϕ(Gk(u))| (55)

≤
(
ϕ(1)+ c̃2‖Ψ(Gk(u))‖p

L∞(Ω)

) ∫
{| f |>H}

| f | ,

where c̃2 is the same constant appearing in (16), H = H(N, p, α, α0, f ) > 0 will
be chosen hereafter and k = k(H ) is such that k p−1 = max{2H/α0, 1}. On the
other hand, it is easily checked that

|ϕ(s)| ≥ c̃9(p, λ)
(
Ψ(s)

)p
, for every s ∈ R,

and therefore, if k ≥ 1, one has

α0k p−1
∫

Ω

|ϕ(Gk(u))| ≥ c̃9(p, λ)α0

∫
Ω

(
Ψ(Gk(u))

)p
.
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Therefore, using (55) and Sobolev’s embedding theorem of W1,p
0 (Ω) into L∞(Ω),

one obtains

‖Ψ(Gk(u))‖p

L∞(Ω)
≤ c̃10(N, p, α, α0, λ)

(
ϕ(1)+‖Ψ(Gk(u))‖p

L∞(Ω)

)∫
{| f |>H}

| f | ,

so that, choosing H = H(N, p, α, α0, f ) sufficiently large, one gets an estimate
for Ψ(Gk(u)) in L∞(Ω). ��
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linéaires par les méthodes de Minty-Browder. Bull. Soc. Math. France 93, 97–107
(1965)
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