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Abstract. Following the ideas of Castelnuovo and Enriques, we classify the birational
equivalence classes of double planes which are rational or ruled surfaces. In order to do
this, we prove that the vanishing of the m-adjoint linear system to the branch curve of the
canonical resolution of a double plane, for m ≥ 2, is a necessary and sufficient condition
for the ruledness of the double plane.
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1. Introduction

A double plane is a double covering of the projective plane, i.e., a finite morphism
π : X → P2 of degree 2. We say that ρ : Y → P2 is birationally equivalent to π

if there exist two birational maps γ : P2 ��� P2 and φ : Y ��� X such that the
following diagram commutes:

Y
φ��� X�ρ

�π

P2 γ��� P2.

(1.1)

The goal of this paper is to classify the birational equivalence classes of double
planes which are rational or ruled surfaces. Indeed we will prove the following (see
Theorem 9.18 for a more precise statement):

Theorem 1.2. A double plane is a rational surface if and only if it is birationally
equivalent to a normal double plane branched along one of the following:

• a smooth quartic;
• a sextic with two infinitely near triple points; or
• a curve of degree 2d with a point of multiplicity 2d − 2.

Moreover a double plane is ruled of genus q > 0 if and only if it is birationally
equivalent to a double plane branched along 2q+ 2 distinct lines through a point.
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The first part of the previous theorem, concerning rational double planes, was
stated by Noether [18] in 1878. Castelnuovo and Enriques [7] claimed to have
proved Theorem 1.2 in 1900. Their proof, also improved by Conforto [10] in 1938,
has been commonly accepted, but it actually contains some small mistakes and
a serious gap, as we will see.

Let π : X → P2 be a normal double plane and π̃ : X̃ → S its canonical
resolution (see Sect. 3), which is a double covering branched along a smooth
curve B. If X has Kodaira dimension−∞, then we will see (Equation (3.4)) that:

|B + mKS| = ∅, for m ≥ 2.(1.3)

Castelnuovo and Enriques’ idea is that Condition (1.3) suffices to find a Cremona
transformation γ : P2 ��� P2 fitting in Diagram (1.1) where ρ : Y → P2 is one of
the double planes listed in Theorem 1.2, which are known to be rational.

The proof is done by induction on the so-called simplicity of the branch curve
of the canonical resolution of the double plane (see Sect. 6). In fact, if the branch
curve of the double plane is not already in the list of Theorem 1.2, then Condition
(1.3) enables us to find a series of quadratic transformations based at some of its
singular points in order to make it simpler, in a well-defined sense.

In order to handle irrational ruled double planes, it is necessary to apply a theo-
rem of De Franchis [11] (for a modern proof see Catanese and Ciliberto [8] or
Khashin [16]) and the birational classification of linear systems of rational plane
curves (see Appendix A).

The results contained in this work are part of the author’s Tesi di dottorato [4]
(Ph.D. dissertation), which has been defended successfully on March 1999. In
a forthcoming paper, we will study the rationality and ruledness of cyclic triple
planes by extending these techniques.

We remark that the classification of birational equivalence classes of rational
double planes is equivalent to Bertini’s classification of plane involutions, namely
Cremona transformations ι : P2 ��� P2 such that ι ◦ ι = 1

P2 (and ι = 1
P2)

modulo coniugacy: ι1 ∼ ι2 if and only if there is a Cremona transformation
γ with γ ◦ ι1 = ι2 ◦ γ (see [9, l. 2, Chap. IV] for the classical approach or
the very recent paper [3] by Bayle and Beauville for a modern proof via Mori
theory).

We consider projective surfaces defined over C, but all statements are equally
true over any algebraically closed field of characteristic zero. We refer to [15] for
the standard algebraic geometry dictionary.

Historical note. In 1900, Castelnuovo and Enriques observed that the adjoint lin-
ear systems to the branch curve of a rational double plane vanish. They considered,
however, not the branch curve itself, but one with virtual multiplicities instead of
the real ones. What they really had in mind is indeed the branch curve B of the
canonical resolution of the double plane. In fact, such virtual multiplicities are, in
general, equal to those of B; they differ only in the case of infinitely near points
with the same odd multiplicity (see Sect. 4). This is the reason why we call B the
virtual branch curve of the double plane.
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2. Notation

In this paper, σ : S → P2 will always be the composition of finitely many monoidal
transformations, i.e., σ = σ0 ◦ · · · ◦ σr for some r, where σi : Si → Si−1 is the
monoidal transformation with its center at a point xi ∈ Si−1, with S−1 = P2 and
S = Sr . Regarding the position of the xi’s, the classical notions of infinitely near,
proximate and satellite points are useful (see [12, v. 2, pp. 336–386], [15, p. 392],
[6, pp. 430–431], [13, 1.2.2] or [4, Sect. 2]). For the readers’ convenience, we recall
the very basic definitions.

The point x j is infinitely near to x j , and we write x j > xi , if

x j ∈ (σ j−1 ◦ σ j−2 ◦ · · · ◦ σi)
−1(xi) ⊂ Sj−1,

while x j is proximate to xi , and we write x j → xi , if x j lies on the strict transform
in Sj−1 of σ−1

i (xi). A proper (or infinitely near of order 0) point is a point x j ∈ S
which lies on no exceptional curve for σ and we write x j ∈ P2.

The infinitesimal order can be defined by induction. Suppose that x j > xi . If
x j ∈ σ−1

j−1(x j−1) and x j−1 is infinitely near of order s− 1 to xi , then x j is infinitely
near of order s to xi and we write x j >s xi . Otherwise, σ j−1(x j) >t xi for some t
and we set x j >t xi .

The point x j is satellite to xi , and we write x j � xi , if x j → xi and x j >s xi

with s > 1. A point is called satellite if it is satellite to some point, otherwise it is
said to be free.

Let Ei (E∗i , respectively) be the strict (total, respectively) transform in S of the
exceptional curve σ−1

i (xi) ⊂ Si . Recall that {Ei}0≤i≤n , as well as {E∗j }0≤ j≤n , is
a set of generators of Pic S/σ∗(PicP2) and the base change is given by

Ei = E∗i −
∑

j:x j→xi

E∗j .(2.1)

If we write a divisor C in Pic S as a linear combination of the E∗i ’s

C = dL −
n∑

i=0

ci E∗i ,(2.2)

where L is the total transform in S of a line in P2, we say that d is the degree of
C and ci is the multiplicity of C at xi . For strict transforms in S of plane curves,
these definitions coincide with the usual ones. We say that C verifies the proximity
inequality at xi if (C · Ei) ≥ 0, or equivalently, by (2.1), if

ci ≥
∑

j:x j→xi

c j .(2.3)
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Clearly the strict transform in S of a plane curve satisfies the proximity inequalities,
namely it verifies the proximity inequality at xi , for every i = 0, . . . , r (see [12,
v. 2, p. 381], [6, p. 431] or [4, Sect. 9]).

3. Preliminaries on double planes

A double plane π : X → P2, as any double covering over an algebraic surface
whose Picard group has no torsion, is uniquely determined by its branch curve C
(of even degree). We recall that X is normal if and only if C is reduced and a point
x ∈ X is singular if and only if C is singular at π(x). Moreover X is reducible if and
only if X splits into two copies of P2 which meet transversally, and this happens if
and only if there exists a divisor D in P2 such that C = 2D. Later on, we will deal
only with irreducible double planes.

We say that two double coverings ρ : Y → T and π : X → T over a smooth
surface T are strictly birationally equivalent if there exists a birational map φ :
Y ��� X such that ρ = π ◦ φ. It is easy to show (see [19, p. 19] or [4, Sect. 30])
that there is a one-to-one correspondence:{

strict birational equivalence
classes of double planes

}
←→ K∗

K∗2
,

where K is the field of rational functions on T and K∗ = K \ {0}. Furthermore
in each strict birational equivalence class there is one and only one normal double
covering over T . The normalization process consists of eliminating the even multi-
plicity components of the branch curve and then taking the reduced part of the rest.
Therefore, up to (strict) birational equivalence, it is convenient to assume a double
covering over T to be normal, or equivalently its branch curve to be reduced.

Let π : X → P2 be a double plane. A Cremona transformation γ : P2 ��� P2

canonically induces a normal double plane πγ : Xγ → P2 birationally equivalent
to π, namely Xγ is the normalization of the double plane branched along the total
transform γ ∗(C), where C is the branch curve of π. Moreover, a birational mor-
phism σ : S → P2 canonically induces a normal double covering πσ : Xσ → S,
which is the normalization of the fibered product X ×

P2 S. We say that πσ is
a resolution of π if Xσ is smooth.

If X is not smooth, a resolution of π is obtained by applying a sequence
of monoidal transformations centered at singular points of the branch curve and
normalizing. In such a way, one gets the canonical resolution π̃ : X̃ → S, which
is uniquely determined up to isomorphism (see [2, Theorem III.7.2] or [5]).

Let B be the (smooth) branch curve of π̃. In the next section we will see that
A = B/2 is well defined in Pic S. Since π̃∗OX̃

∼= OS ⊕ OS(A), the projection
formula [15, Ex. II.5.1] implies that

Pm(X) = Pm(X̃) = h0(m A +mK )+ h0((m − 1)A +mK ),(3.1)

where K = KS and the cohomology groups are computed on S. For m = 1, (3.1)
becomes pg(X) = h0(A + K ). Moreover, the irregularity of X is

q(X) = q(X̃) = h1(−A) = pg(X)− pa(A).(3.2)
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If n is even and n > 2, then h0(n A+mK ) ≥ h0(B+mK ), because 2A = B is an
effective divisor, so (3.1) implies that

Pm(X) ≥ h0(B +mK ), for m ≥ 2.(3.3)

If X has Kodaira dimension−∞, then (3.3) forces

|B +mK | = ∅, for m ≥ 2,(3.4)

and (3.2) becomes q(X) = −pa(A). If X is rational, it follows that pa(A) = 0.

4. The virtual branch curve

Let π̃ : X̃ → S be the canonical resolution of a normal double plane π : X → P2,
where π̃ = πσ and σ : S → P2 is as in Sect. 2. If the branch curve C of π has odd
multiplicity at a point xi ∈ P2, then Ei is a component of the branch curve of π̃.
More precisely, if one writes the strict trasform of C in Pic S as

C̃ = σ∗C −
r∑

i=0

c′i Ei = σ∗C −
r∑

i=0

ci E∗i ,

where ci is the multiplicity of C at xi , then the branch curve of X̃ is

B = C̃ +
r∑

i=0

pi Ei = σ∗C −
r∑

i=0

b′i E∗i = σ∗C −
r∑

i=0

bi E∗i ,(4.1)

where pi = c′i mod 2 ∈ {0, 1}; hence b′i = c′i − pi is even and so are the bi’s
(see also [5]). Therefore, B/2 is well defined in Pic S. We define bi the virtual
multiplicity at xi of the virtual branch curve B of π. To avoid confusion, sometimes
we will say that C is the effective branch curve of π and ci is the effective multiplicity
at xi . Note that the bi’s equal the ci’s if and only if all the ci’s are even.

We may compute the virtual multiplicities of the branch curve from the effective
ones by plugging Formula (2.1) in (4.1). Namely,

bi =




ci − pi if xi ∈ P2,

ci + p j − pi, if xi >1 x j and xi is free,

ci + p j + pk − pi if xi >1 x j > xk and xi � xk.

(4.2)

Let us say that a point x j is defective if there exists xi >1 x j with bi > b j . Such xi

is called excessive and associated to x j . By (4.2), this may happen only if p j = 1
and ci = c j , so bi = b j + 2 and pi = 0. If xi is free, then ci = c j must be odd,
while if xi is satellite, say xi� xk, then ci = c j ≡ 1+ pk (mod 2). Since C verifies
the proximity inequalities, xi is the unique proximate point to x j .

Lemma 4.3. Suppose that C contains a line L ′ through a point xi and there exists
x j >1 xi with ci = c j (e.g., xi is defective). Then x j ∈ L ′.
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Proof. By the proximity inequality for C − L ′ at xi . ��
Lemma 4.4. Let x j be a defective point. For every m ≥ 0, if |B + mK | (the
m-adjoint linear system to B) is not empty, then E j is one of its fixed components.

Proof. Let xi be the excessive proximate point to x j . Then (2.1) becomes E j =
E∗j − E∗i , therefore for all m ≥ 0:

(E j, B + mK ) = (E∗j − E∗i ,−(b j − m)E∗j − (bi − m)E∗j ) = b j − bi = −2,

i.e., E j negatively intersects B +mK . ��
Thus, in general, B does not satisfy the proximity inequalities. However:

Lemma 4.5. Suppose that xi is not defective. Then, for m ≥ 2,

bi −m ≥
∑

j:x j→xi

(b j −m),(4.6)

namely B +mK verifies the proximity inequality at xi , for m ≥ 2.

Proof. We may assume that i = 2 and x3, . . . , xn+2 are the proximate points to
x2. It suffices to show (4.6) for m = 2, i.e., since the bi’s are even,

b2 >

n+2∑
j=3

(b j − 2).(4.7)

If n = 1, then (4.7) follows from the hypothesis that x2 is not defective. Now
assume n ≥ 2. There are many cases depending on the position of x2.

(a) If x2 is satellite, we suppose that x2 >1 x1 > x0, x2 � x0 and

xih >1 xih−1 >1 · · · >1 xih−1+1 >1 x2, for every h = 1, . . . , l,

where n + 2 = il > il−1 > · · · > i1 > i0 = 2,
(4.8)

and, moreover, x3 → x1, xi1+1 → x0. By (4.2), Formula (4.7) is equivalent to

c2 + p0 + p1 − p2 >

n+2∑
j=3

c j + p0 + p1 + n p2 −
l∑

h=1

pih − 2n.(4.9)

By the proximity inequality at x2, i.e., c2 ≥∑n+2
j=3 c j , Formula (4.9) follows from

(n + 1)p2 − 2n −
l∑

h=1

pih < 0,(4.10)

which is clearly true for n ≥ 2, because 0 ≤ p2 ≤ 1.

(b) If x2 is satellite as above, but x3 → x1 and (or, respectively) xi1+1 → x0, then
(4.7) is equivalent to (4.9), where p1 and (or, respectively) p0 are missing in the
right-hand side, and (4.9) is true again.

(c) If x2 is free, say x2 >1 x1 and (4.8), with x3 → x1 (x3 → x1, respectively), then
p0 is missing in both sides (and p1 is missing in the right-hand side, respectively)
of (4.9), so (4.9) holds once more.

(d) If x2 is proper and (4.8), then (4.7) is equivalent to (4.9), where p0 and p1 are
missing in both sides and we conclude as before. ��
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Corollary 4.11. Let B̄ = B −∑
j E j , where the sum runs over the j’s such that

x j is defective. Then B̄ +mK verifies the proximity inequalities for m ≥ 2.

Proof. It suffices to prove the thesis for m = 2. Let b̄i be the multiplicity of B̄ at
xi , for every i = 0, . . . , r. Note that b̄i = bi if and only if xi is either defective or
excessive. Clearly B̄, hence B̄ + 2K , verifies the proximity inequality at defective
points: if xi is defective, then xi has only one proximate point x j , which is excessive,
and b̄i = b̄ j = bi + 1 = b j − 1. Let xi not be defective. As in Lemma 4.5, we
assume i = 2, x j → x2 for j = 3, . . . , n + 2 and (4.8). We must show that

b̄2 − 2 ≥
n+2∑
j=3

b̄ j − 2n.(4.12)

If x j is defective and x j → x2, then either j = ih for some h, or x j+1 is excessive
and x j+1 → x2. In the former case, b̄ih = bih + 1 and pih = 1, while in the latter
case b̄ j + b̄ j+1 = b j + b j+1. Since b̄2 = b2 − 1 = c2 + p0 (b̄2 = b2, respectively)
if x2 is (is not, respectively) excessive, the same proof of Lemma 4.5 shows that
B̄ + 2K verifies the proximity inequality at x2. Note that if x2 is excessive, say
x2 >1 x1, then p2 = 0 and x3 → x1 and we may conclude more easily. ��

The multiplicity of B̄ at a point xi is the virtual multiplicity of the branch curve
of a double plane π according to Castelnuovo and Enriques [7]. The divisor B̄+2K
may be useful to compute the so-called adjoint conditions (see [5]).

5. Double planes and quadratic transformations

A quadratic transformation is a birational application α : P2 ��� P2 such that the
net of lines in the domain is carried in a net of generically irreducible conics in the
target, whose base point, say x0, x1 and x2, are called the fundamental points of α

and we write α = c(x0, x1, x2). We also assume that the net of conics through x0,
x1 and x2 in the domain is transformed in the net of lines in the target. Let us say
that the lines L0 = x1x2, L1 = x0x2 and L2 = x0x1 (whenever defined) are the
exceptional lines for α. Recall that a quadratic transformation c(x0, x1, x2) is well
defined if x0, x1, x2 are not aligned and (after re-ordering the points):

• x0 ∈ P2, x1 ∈ P2 and x2 ∈ P2; or
• x0 ∈ P2, x1 ∈ P2 and x2 >1 x0; or
• x0 ∈ P2, x2 >1 x1 >1 x0 and x2 � x0.

We remark that, given a birational morphism σ : S → P2, a quadratic transform-
ation α = c(x0, x1, x2) canonically induces a birational morphism σα : Sα → P2

and a birational application α̃ : Sα ��� S such that α ◦ σα = σ ◦ α̃, thus α̃ co-
incides with α over the proper points of Sα. In particular, if σ decomposes in the
monoidal transformations with centers at x0, x1, x2, x3, . . . , xr , then σα is the com-
position of the monoidal transformations centered at y0 = x0, y1 = x1, y2 = x2,

y3, . . . , yr , where yi = α−1(xi) if xi lies on no exceptional line for α.
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Noether-Castelnuovo’s Theorem (see [17, Theorem 6]) says that a Cremona
transformation decomposes in the product of an automorphism and finitely many
quadratic transformations. Thus, for our purposes, it suffices to know, given a nor-
mal double plane π : X → P2 and a quadratic transformation α : P2 ��� P2, what
is the branch curve of the induced normal double plane πα : Xα → P2.

Let πσ : Xσ → S be a resolution of a double plane π : X → P2, where
σ : S → P2 is a birational morphism. We say that the branch curve Bσ of πσ is
in good position with respect to a quadratic transformation α : P2 ��� P2 if Bσ

transversally meets (the strict transfom in S of) any exceptional line for α which is
not a component of the branch curve of π.

Lemma 5.1. Let π : X → P2 be a normal double plane and α = c(x0, x1, x2)

a quadratic transformation. Then there exist a birational morphism σ : S → P2

such that the branch curve Bσ of πσ : Xσ → P2 is in good position with respect
to α. In Pic S, one writes Bσ as

Bσ = 2dL − b0 E∗0 − b1 E∗1 − b2 E∗2 −
r∑

j=3

b j E∗j ,(5.2)

where L is the total transform in S of a line in P2. Moreover, σα : Sα → P2 induces
a resolution πσα

α : Xσα
α → Sα of πα : Xα → P2 and its branch curve in Pic Sα is

Bσα
α = (2d + e)L̄ −

2∑
i=0

(bi + e)Ē∗i −
r∑

j=3

b j Ē∗j ,(5.3)

where e = 2d − b0 − b1 − b2 and L̄ (Ē∗i , respectively) is the total transform in Sα

of a line in P2 (of the point yi , respectively).

Proof. In order to get πσ , we may start from the canonical resolution and apply
monoidal transformations centered at the points where the branch curve does not
transversally meet the strict transforms of the exceptional lines for α. After finitely
many such transformations, the total inverse image of the branch curve has only
normal crossings and contains the branch locus of the induced normal double
covering. Then σ and α canonically determine σα. Furthermore, (5.3) follows from
(5.2) by computing the total transform α̃∗(Bσ ) of Bσ in Sα, removing its even
multiplicity components and taking the reduced part (cf. [4, 36.2]). ��

6. The simplicity of the branch curve

We keep the same notation as the previous sections, namely π : X → P2 is
a normal double plane and B its virtual branch curve. We re-order the points x0,
. . . , xr according to the following rules:

b j > bi  ⇒ i < j, and bi = b j, x j > xi  ⇒ i < j.(6.1)

Thus x0 is a point where B has the maximal multiplicity. We choose x0 ∈ P2, or, if
all the maximal multiplicity points are excessive, we may choose x0 >1 xi ∈ P2.
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Setting a j = b j/2 for every j = 1, . . . , r, i.e., a j is the multiplicity of A = B/2
at x j , let us define the simplicity of B as the triplet (k, h, s), where

2k = 2d − b0 = 2(d − a0), bh > k ≥ bh+1,(6.2)

and s is the number of satellite points among x1, . . . , xh (by convention, set
b−1 = ∞ and br+1 = 0). Lexicographically ordering the triplets defining the
simplicity, we say that π is simpler than another double plane ρ : Y → P2 if the
simplicity of B is less than the simplicity of the virtual branch curve of ρ.

Lemma 6.3. Let α = c(x0, xi, x j) be a quadratic trasformation. Suppose that
either bi ≥ b j > k or bi > b j = k. Then πα is simpler than π.

Proof. By Lemma 5.1, the virtual branch curve of πα is

Bα = (2d + e)L − (b0 + e)E∗0 − (bi + e)E∗i − (b j + e)E∗j − · · · ,

where e = 2k − bi − b j < 0 by hypothesis. The point x0 is not of maximal
multiplicity for Bα if and only if there exists a point xl with bl > b0+ e, i.e., if and
only if

kα = 2d + e− bl

2
<

2d + e− b0 − e

2
= d − a0 = k,(6.4)

where (kα, hα, sα) is the simplicity of Bα. If Bα has the maximal multiplicity at x0,
then

multxi (Bα) = bi + e = 2d − b0 − b j = 2k − b j ≤ k = kα,

therefore kα = k and hα < h. ��
Lemma 6.5. Assume x j >1 xi >1 x0 ∈ P2, x j� x0, bi ≥ k > 0 and b j > k. Apply
β = c(x0, xi, xr+1), where xr+1 is a general point in P2. Then πβ is simpler than π.

Proof. Set e = 2d − b0 − bi = 2k − bi ≤ k, the virtual branch curve of πβ is

Bβ = (2d + e)L − (b0 + e)E∗0 − (bi + e)E∗i − · · · − eE∗r+1.

Let (kβ, hβ, sβ) be the simplicity of Bβ. Like in the proof of Lemma 6.3, either
kβ < k as (6.4) or Bβ has the maximal multiplicity at x0. In the latter case, it
follows that kβ = k, hβ = h and sβ = s − 1, for multxi (Bβ) = 2kβ > kβ,
multxr+1 (Bβ) = e ≤ kβ and β(x j) is not satellite (cf. [4, Remark 15.3]). Roughly
speaking, we ‘eliminated’ a satellite point. In both cases, πβ is simpler than π. ��
Lemma 6.6. Suppose that x0, xi and x j are aligned, with 0 < i < j ≤ h, x0 ∈ P2,
xi ∈ P2 (or xi >1 x0) and x j ∈ P2 (or x j >1 xi). Then b0 = c0, bi = b j = k + 1
and the line L ′ = x0xi x j is a component of the branch curve C of π.

Proof. The line L ′ cannot be double for C, so c0 + ci + c j ≤ 2d + 2. By the
hypothesis, b0 + bi + b j > b0 + 2k = 2d. By (4.2), c0 + ci + c j ≥ b0 + bi + b j .
Hence,

2d + 2 ≥ c0 + ci + c j ≥ b0 + bi + b j ≥ 2d + 2,

therefore, b0 = c0 and bi + b j = 2k + 2. ��
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Similarly, one can prove the following:

Lemma 6.7. Suppose that x0, xi and x j are aligned, with x0 >1 xi ∈ P2, b0− 2 =
bi ≥ k and b j > k. Then b0 = b j = c j = k + 2 and x j ∈ P2. ��

7. Irrational ruled double planes

The analysis of double planes that are irrational ruled surfaces is based on a theorem
by De Franchis, which is remarkable on its own.

Theorem 7.1 (De Franchis). A double plane π : X → P2 is an irregular surface
(i.e., q(X) > 0) if and only if, after adding possibly a double curve, its branch
curve consists of 2q(X)+ 1 or 2q(X)+ 2 curves belonging to a pencil.

Proof. See [8, Remark 3.5, Theorem 3.8 and after Corollary 4.9] or [16]. ��
The key fact in the proof of De Franchis’ Theorem is the following diagram:

X ←− X̃
a−→ E�π

�π̃

�φ

P
2 ←− S

τ−→ P1,

(7.2)

where π̃ : X̃ → S is the canonical resolution of π, a : X̃ → E is the Albanese
map, E is a smooth hyperelliptic curve of genus q(X) and φ is the double covering.
The fibres of τ are connected, as those of a are, so the virtual branch curve of π is
contained in the union of fibres of τ .

Theorem 7.3. A double plane is ruled of genus q > 0 if and only if it is birationally
equivalent to a normal double plane branched along a curve C of degree 2q+ 2 =
2d with a point x0 of multiplicity 2d, i.e., C splits into 2d distinct lines through x0.

Proof. In Diagram (7.2), the fibres of a are rational curves, because X̃ is a ruled
surface. So the branch curve of π, as that of π̃, is made of rational curves in a
(rational) pencil Γ. Then there exists a Cremona transformation γ such that the
strict transform of Γ via γ is a pencil of lines through a point, as follows from the
classification of pencils of rational plane curves (see Theorem A.10). Conversely,
suppose that x0 is the point at ∞ of the y-axis, where x, y are affine coordinates
of P2. Then C is defined by an equation

∏2q+2
i=1 (x − ai) = 0, where ai = a j for

i = j , and π is birationally equivalent to the following surface in P3:

z2 = (x − a1)(x − a2) · · · (x − a2q+2),(7.4)

that is clearly the cone with vertex in x0 over the hyperelliptic curve of genus q
defined in the plane x, z by the same Equation (7.4). ��

8. Rational double planes

Now we study the three types of double planes listed in Theorem 1.2.
Let W be a smooth cubic surface in P3. Recall that W is the plane P2 blown-up

in six general points and W contains exactly 27 lines. Choose a point q ∈ W which
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belongs to no line of W . Let τ : X → W be the monoidal transformation with
center at q. The projection from q over a plane P2 (not passing through q) defines
a rational map W ��� P2 and a double covering π : X → P2. In affine coordinates,
assuming that q is the point at∞ of the z-axis and z = 0 is the plane on which we
project (with coordinates x, y), then W is defined by

a1(x, y)z2 + 2a2(x, y)z + a3(x, y) = 0,(8.1)

where ai is a polynomial of degree i. Hence the branch curve of π is the discriminant
of (8.1) with respect to z

a2
2 − a1a3 = 0,(8.2)

that is a quartic, which is smooth as X is.

Lemma 8.3. Any smooth plane quartic is the branch curve of a double plane
π : X → P2, where X is (isomorphic to) the blow-up of P2 at 7 general points.

Proof. (Noether) It suffices to show that any smooth quartic C can be written as
(8.2), so C will be the branch curve of a double plane X → P2, where X is the blow-
up at a point of the cubic surface given in P3 given by (8.1). Let L1 = q1q2 : a1 = 0
be a bitangent line to C (there are 28 of them [14, p. 282]). Choose an irreducible
conic D : a2 = 0 through q1 and q2. The pencil Γ = C + 2D is made of quartics
which are bitangent to C in q1 and q2. Imposing on a curve G ∈ Γ the condition
to pass through a general point of L1, then G splits in L1 and a residual cubic, say
a3 = 0. Therefore C : a1a3 − λa2

2, for a certain λ ∈ C. ��
Proposition 8.4. A double plane π : X → P2 branched along a sextic C, whose
singularities are only two infinitely near triple points x0, x1, is a rational surface.

Proof. Let x0 >1 x1. The virtual branch curve of π is

B = C + E1 = 6L − 4E∗0 − 2E∗1 = 2(3L − 2E∗0 − E∗1),

where L is the total transform in S of a line. Since |B + 2K | = |0L − 2E∗0| = ∅
and |B/2 + 2K | = | − 3L + E∗1| = ∅, it follows that P2(X) = 0. Moreover,
q(X) = −pa(B/2) = 0, so X is rational by Castelnuovo’s criterion. For a direct
proof of the rationality of X, see [9, pp. 419–439] or [19, n. 14]. ��
Lemma 8.5. Let π : X → P2 be a normal double plane branched along a sextic
C with two infinitely near triple points x0 >1 x1. Then π is birationally equivalent
to a double plane branched along either a quartic curve or an irreducible sextic
with two infinitely near triple points and no other singularities.

Proof. We may suppose that the line x1x0 is not a component of C. Indeed, if
x1x0 ⊂ C, choose a general point x2 ∈ P2 and apply α = c(x0, x1, x2): the branch
curve of πα is again a sextic with two infinitely near triple points and it does
not contain x1x0. If C has no singularity, other than x1 and x0, then C is surely
irreducible. If C has another singularity, say at x3, then x3 cannot lie on x1x0

(otherwise x1x0 would be a component of C) and, if x3 >1 x0, then x3 � x1, by
the proximity inequality at x1. Therefore, β = c(x1, x0, x3) is well defined and πβ

is branched along a quartic. ��
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Lemma 8.6. A normal double plane branched along a curve C of degree 2d with
a point x0 of multiplicity c0 = 2d − 1 or 2d − 2 is a rational surface.

Proof. (Noether) Let π : X → P
2 be the double plane and π̃ : X̃ → S its

canonical resolution, branched along the smooth curve B. The strict transform L̃
in S of a general line L ⊂ P2 through x0 meets B in two distinct points, namely
the intersections of L with C outside x0 (if c0 = 2d − 1, then one intersection lies
on E0 ⊂ B and it is the direction of L at x0). Then π̃−1(L̃) is a double covering
over a smooth rational curve branched along two points, hence it is a rational curve
in X̃ by the Hurwitz formula. So the pencil of lines through x0 corresponds to
a (rational) pencil of rational curves in X̃ . Therefore X̃, and X too, is a rational
surface by a well-known theorem of Noether [14, p. 513]. ��
Proposition 8.7. Let π : X → P2 be a normal double plane branched along
a curve C of degree 2 f with a point x0 of multiplicity 2 f − 1 or 2 f − 2. Then π

is birationally equivalent to a double plane branched along either a smooth conic
or an irreducible curve of degree 2d with an ordinary singularity of multiplicity
2d − 2, possibly one node and no other singularities.

Proof. (a) First we will show that if multx0(C) = 2 f − 1, then π is birationally
equivalent to a double plane branched along a smooth conic. If f = 1 there is
nothing to prove. Assume f > 1, the branch curve C is

C = C̄ + L1 + L2 + · · · + L2 f−e,(8.8)

where C̄ is irreducible, deg(C̄) = e ≤ 2 f , multx0 (C̄) = e − 1, and the Li’s are
distinct lines through x0. Let xi >1 x0 be a point on C and choose a general point
xr+1 ∈ C̄, so α = c(x0, xi, xr+1) is well defined. Then πα is branched along

Cα = C̄α + L ′1 + · · · + L ′2 f−e + L ′2 f−e+1,(8.9)

where C̄α (L ′i , respectively) is the strict transform of C̄ (of Li, for i = 1, . . . , 2 f−e,
respectively) and deg C̄α = e− 1. If x0xi is not a component of C, then L ′2 f−e+1 =
x0xi , otherwise Ei is a component of the virtual branch curve of π and L ′2 f−e+1 =
x0xr+1. Hence, repeating this argument, after e−1 such quadratic transformations,
we may assume the branch curve to be as (8.8), where C̄ = L0 is a line not passing
through x0. Now let x j = L0 ∩ L2 f−1 and xl >1 x0 such that L2 f−2 = x0xl.
Applying c(x0, x j, xl), one gets a double plane branched along 2 f − 2 distinct
lines, all of them but one (the strict transform of L0) passing through x0. Therefore,
by induction on f , we may suppose that C splits in two lines, say C = L1 ∪ L2.
Choose a general point x1 ∈ L1 and let x2 >1 x1 such that L1 = x1x2. Choose
a general point x3 ∈ P2, then α = c(x1, x2, x3) is well defined and πα is branched
along a smooth conic, that is the strict transform of L2.

(b) Suppose that C has multiplicity 2 f − 2 at x0 and C is irreducible. The other
singularities of C, if they exist, must be double points, say at x1, . . . , xh .

(b1) If h = 0 and the singularity at x0 is not ordinary, choose a general point
xr+1 ∈ C and let xr+2 >1 xr+1 be such that the line xr+1xr+2 is tangent to C.
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The double plane πα, where α = c(x0, xr+1xr+2), is branched along an irreducible
curve of degree 2 f with only an ordinary singularity of multiplicity 2 f − 2.

(b2) If h = 1, x1 ∈ P2 and the multiplicity at x0 or at x1 is not ordinary, then
choose a general point xr+1 ∈ P2. Applying c(x0, x1, xr+1), one gets a double plane
branched along an irreducible curve of degree 2 f with an ordinary singularity of
multiplicity 2 f − 2, a node and no other singularities.

(b3) If h = 1 and x1 >1 x0, choose a general point xr+1 ∈ C and let xr+2 >1 xr+1

be such that xr+1xr+2 is tangent to C. Applying c(x0, x1, xr+1), the branch curve
has degree 2 f , an ordinary singularity of multiplicity 2 f − 2 and a double point.
If the double point is a node, we conclude, otherwise we proceed with (b2).

(b4) If h ≥ 2, we claim that there exists a Cremona transformation γ such that πγ

is branched along an irreducible curve of degree 2 f −2 with a point of multiplicity
2 f − 4 and h− 2 double points, namely πγ is simpler than π. Hence, by induction
on h, we reduce to the case (b1), (b2) or (b3). Now we prove our claim.

(b4
1) Suppose that there is a proper point xi among x1, . . . , xh . Since h ≥ 2, there

is also x j such that x j ∈ P2, or x j >1 x0 or x j >1 xi . In all the cases, x j does
not lie on the line x0xi , otherwise it would be a component of C contradicting the
assumption that C is irreducible. Setting γ = c(x0, xi, x j), πγ is simpler than π.

(b4
2) If there is no proper point among x1, . . . , xh , it means that they are all infinitely

near to x0. Choose a general point xr+1 ∈ C and let xr+2 >1 xr+1be such that the
line xr+1xr+2 is tangent to C. Applying c(x0, xr+1, xr+2), we reduce to the case (b4

1).

(c) Suppose that C has multiplicity 2 f − 2 at x0 and C is reducible. Let C̄ be an
irreducible component of C with the highest degree. Then C̄ has degree e, with
0 < e < 2 f , and multiplicity either e− 2 or e− 1 at x0.

(c1) If multx0 (C̄) = e−1, then C−C̄ consists of an irreducible curve C′ of degree g
and 2 f − e− g distinct lines through x0, where 0 < g ≤ e and multx0 (C

′) = g−1.
Choose a general point xr+1 ∈ C′ and let xr+2 >1 xr+1 be such that the line
xr+1xr+2 is tangent to C′. Applying α = c(x0, xr+1, xr+2), the branch curve of πα

splits in 2 f − e− g distinct lines through x0 and two irreducible curves C̄α and C̄′
(the strict transforms of C̄ and C′), with deg C̄α = e + 1 = multx0(C̄α) + 1 and
deg C′α = g−1 = multx0 (C

′
α)+1. Repeating this argument, after g such quadratic

transformations, one gets a double plane branched along a curve which splits in
2 f − e− g distinct lines through x0 and an irreducible curve (the strict transform
of C̄) of degree e + g and multiplicity e + g − 1 at x0. Then we conclude as in
part (a).

(c2) If multx0(C̄) = e − 2, then C is like (8.8), where the Li ’s are distinct lines
through x0. Proceedings as in part (b), namely applying quadratic transformations
with x0 and double points of C̄ as fundamental points, we may assume that x0 and
possibly a node are the only singular points of C̄. Choose xi in C̄ ∩ L2 f−e (maybe
xi >1 x0). Then either multxi (C̄) = 1 or multxi (C̄) = 2. In the former case, choose
a general point xr+1 ∈ P2 and apply α = c(x0, xi, xr+1). In the latter case, xi is
proper and we may choose x j in C̄ such that x j >1 xi . In particular multx j (C) = 1
and x j does not lie on L2 f−e = x0xi , otherwise L2 f−e should be a component of C,
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hence α = c(x0, xi, x j) is well defined. In both cases, the branch curve of πα is

Cα = C̄α + L ′1 + · · · + L ′2 f−e−1,(8.10)

where C̄α (L ′i , respectively) is the strict transform of C̄ (of Li , respectively) and
deg C̄α = e+ 1 = multx0 (C̄α)+ 2. Therefore, by induction on 2 f − e, the branch
curve is irreducible, has degree 2 f and multiplicity 2 f − 2 at x0, that is part (b). ��

The statement of Proposition 8.7 is the same as [19, Lemma p. 61], but we
proved it here because the proof in [19] is incorrect.

9. The classification theorem

The following theorem is the key step towards the classification of double planes
which are surfaces with Kodaira dimension−∞.

Theorem 9.1. Let π : X → P2 be a normal double plane. Suppose that its virtual
branch curve B is such that (3.4) holds. Then π is birationally equivalent to
a double plane whose virtual branch curve is a conic, a quartic or a curve of
degree 2d′ with a point of multiplicity at least 2d′ − 2.

Proof. By induction on the simplicity, it suffices to show that if

d > 2 and k = d − b0/2 > 1,(9.2)

then there exists a Cremona transformation γ : P2 → P2 such that the double
plane πγ : Xγ → P2 is simpler than π. This will be done in Propositions 9.4
and 9.12: the former amends the “proof” of Castelnuovo and Enriques (see [7],
[9, l. 2, n. 27]), while Proposition 9.12 fills the remaining gap.

Lemma 9.3. Suppose that (3.4) and (9.2) hold. If x0 ∈ P2, then b0 > k.

Proof. Let m = [2d/3], i.e., m is the largest integer smaller or equal to 2d/3. Then
m ≥ 2 by (9.2), so (3.4) forces

∅ = |B +mK | = |εL − (b0 −m)E∗0 − · · · |,
where ε = 0, 1 o 2. Thus, b0 > m, so 3b0 > 2d = b0 + 2k, that is the thesis. ��
Proposition 9.4. Suppose that (3.4) and (9.2) hold. Then either there exists a Cre-
mona transformation γ : P2 ��� P2 such that πγ is simpler than π or we may
order the points x j in such a way that

(9.5) x0 is proper and, for every i = 1, . . . , h, xi is excessive, xi >1 xh+i ,
bi = k + 2 and x0, xi, xh+i are aligned.

Proof. It splits in two parts, depending whether x0 is proper or excessive.

(a) Let x0 ∈ P2. Then b0 > k by Lemma 9.3. Since k ≥ 2 by (9.2), then (3.4)
forces
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∅ = |B + kK | =
∣∣∣∣∣(b0 − k)(L − E∗0)−

h∑
i=1

(bi − k)E∗i

∣∣∣∣∣+ · · · ,(9.6)

hence h ≥ 2, otherwise (9.6) would contradict (6.1). We want to find xi and x j

among x1, . . . , xh such that we can apply either Lemma 6.3 or Lemma 6.5, thus
there will exist a quadratic transformation α such that πα is simpler than π. The
proof splits again in two sub-parts, depending on the parity of k.

(a1) Suppose that k is odd. Excessive points of multiplicity k+ 1 do not contribute
to make |B + kK | empty. More precisely, let p be the number of such points and
h̄ = h − p; we may order x1, . . . , xr in such a way that bh̄+1 = k + 1, for every
i = 1, . . . , p, xh̄+i is excessive and xh̄+i >1 xh+i . Thus (9.6) becomes

∅ =
∣∣∣∣∣∣(b0 − k)(L − E∗0)−

h̄∑
i=1

(bi − k)E∗i

∣∣∣∣∣∣+
2h−h̄+1∑
j=h+1

E j + · · · ,(9.7)

therefore, h̄ ≥ 2 as above. Moreover, the proximity inequalities imply that

xi >1 xl and i ≤ h̄  ⇒ l ≤ h̄.(9.8)

The proof splits once more depending on the position of x1, . . . , xh̄ .

(a1
1) Suppose that there is j ≤ h with x j ∈ P2. If a point xg lies on L ′ = x0x j , with

g ≤ h̄, then bg = b j = k + 1 by Lemma 6.6. Hence (9.7) is

∅ =
∣∣∣∣∣∣(b0 − b j)L −

∑
xi /∈L ′

(bi − k)E∗i

∣∣∣∣∣∣+ (b j − k)L ′ + · · ·

and there exists l ≤ h̄ such that xl does not lie on L ′. We claim that we may
choose xl such that c(x0, xi, xl) is well defined, and thus we conclude by using
Lemma 6.3. Suppose that xl >1 x f , for f = 0, j . By (9.8), f ≤ h̄. If x f ∈ L ′,
then b f = k + 1 by Lemma 6.6 and xl ∈ L ′ too by Lemma 4.3. Thus L ′ would be
a double component of the effective branch curve C, contradicting the assumption
that C is reduced. Therefore, x f /∈ L ′ and we may choose x f instead of xl .

(a1
2) Suppose that xi > x0 for every i = 1, . . . , h̄. If xi >1 x0 for every i =

1, . . . , h̄, then (9.7) holds only if b0 − k <
∑h̄

i=1(bi − k), which contradicts
Lemma 4.6 for m = k. Thus there exist j, l ≤ h̄ such that x j >1 xl >1 x0,
by (9.8). We claim that we may choose such j, l with x j /∈ x0xl . Thus we will
conclude by Lemma 6.5 (by Lemma 6.3, respectively), if x j is (is not, respectively)
satellite to x0. It remains to prove our claim. By Lemma 6.6, x j ∈ x0xl implies that
b j = bl = k+1 and x j is the unique point infinitely near to xl. Let q be the number
of points like x j (possibly q = 0). Setting h̃ = h̄ − 2q, we may order x1, . . . , xh̄
in the following way: bh̃+1 = k+ 1, for every i = 1, . . . , q, xh̃+i >1 xh̃+q+i >1 x0
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and xh̃+i ∈ x0xh̃+q+i . Hence, we cannot find such j, l only if either h̃ = 0 or
xi >1 x0 for i = 1, . . . , h̃. In both cases, (9.7) becomes

∅ =
∣∣∣∣∣∣(b0 − k − q)(L − E∗0)−

h̃∑
i=1

(bi − k)E∗i

∣∣∣∣∣∣+
q∑

j=1

x0xh̃+q+ j xh̃+ j + · · · ,

which holds only if b0 − k − q <
∑h̃

i=1(bi − k), contradicting (4.6), that is

b0 − k ≥
h̃+q∑
i=1

(bi − k) = q +
h̃∑

i=1

(bi − k).

Thus our claim is proved and sub-parts (a1
2) and (a1) are done.

(a2) Suppose that k is even. Now the proximity inequalities imply that

xi >1 xl and i ≤ h  ⇒ either l ≤ h or xi is excessive and bi = k + 2.(9.9)

The proof splits in three cases depending on the position of x1, . . . , xh .

(a2
1) Suppose that there is j ≤ h with x j ∈ P2. A point xl, with l ≤ h̄ and l = 0, j ,

cannot lie on L ′ = x0x j by Lemma 6.6. Now (9.6) is

∅ =
∣∣∣∣∣∣(b0 − b j)L −

∑
xi /∈L ′

(bi − k)E∗i

∣∣∣∣∣∣+ (b j − k)L ′ + · · · ,

which holds only if there exists l ≤ h̄ such that xl /∈ L ′. We claim that we may
choose xl in such a way that either α = c(x0, x j, xl) is well defined or xl >1 x f ,
with b f = k and α = c(x0, x j, x f ), is well defined. In both cases, πα is simpler
than π by Lemma 6.3. Suppose that xl >1 x f , for f = 0, j . If f ≤ h, then we
may choose x f instead of xl. If f > h, then xl is excessive and bl = k+ 2 by (9.9).
Moreover, xl >1 x f with b f = k. If x f ∈ L ′, then xl ∈ L ′ by Lemma 4.3 and L ′
would be a double component of the effective branch curve C, contradicting the
assumption that C is reduced. Therefore x f /∈ L ′ and our claim is proved.

(a2
2) Suppose that there exists j ≤ h such that x j > x0. Clearly x j is excessive,

x j >1 xl and bl = k. We may choose xl ∈ P2, because if xl >1 x f then x f is
excessive and f ≤ h. Suppose that we cannot find a quadratic transformation γ

such that πγ is simpler than π. We claim that either (9.5) holds or there exists

(�) xg >1 x f >1 x0 such that bg = k + 2, xg is excessive and satellite to x0.

If (�) occurs, choose a general point xr+1 ∈ P2 and apply α = c(x0, x f , xr+1).
The simplicity of πα is (k, h + 1, s − 1) and the point x ′g, corresponding to xg, is
such that x ′g >1 x0 (cf. Lemma 6.5). Choose another general point xr+2 ∈ P2 and
apply β = c(x0, x ′g, xr+2). Then (πα)β is simpler than π, because its simplicity
is (k, h, s − 1) by Lemma 6.3. It remains to prove our claim. We suppose that
(9.5) does not hold and we cannot find γ as above. Thus, if there is x j as at the
beginning of (a2

2), then x j ∈ L ′ = x0xl , otherwise γ = c(x0, x j , xl) is well defined.
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Moreover b0 = c0, L ′ is a component of the effective branch curve C and x j is the
unique point infinitely near to xl (cf. Lemma 6.6). Similarly for any xi > x0 with
i ≤ h. Hence there exists xg > x0 with g ≤ h, otherwise (9.5) holds. Moreover
xg >1 x0, otherwise γ = c(x0, xg, xl) is well defined. By (9.9), xg is excessive
with bg = k + 2 and we may choose xg >1 x f >1 x0. Then γ = c(x0, x f , xg) is
not defined only if either xg ∈ x0x f or xg is like (�). Therefore our claim is proved.

(a2
3) Suppose that xi > x0 for every i = 1, . . . , h. If xi >1 x0 for every i =

1, . . . , h, we get a contradiction as in part (a1
2). Suppose that

(·) x j >1 xl >1 x0, x j is defective, satellite to x0 and bl > b j = k.

Choose a general point xr+1 in the plane and apply α = c(x0, xl, xr+1). Then πα

is as simple as π and (the points corresponding to) x1, . . . , xh are still all > x0,
but (the point corresponding to) x j is >1 x0 (cf. Lemma 6.5). Hence, repeating this
argument, by applying at most h/2 quadratic transformations we may assume that
there is no x j like (·). Suppose that we cannot find a quadratic transformation γ

such that πγ is simpler than π. We claim that if (9.5) does not hold, then there is
xg like (�) and we conclude as in part (a2

2). Let j ≤ h be such that x j > xl >1 x0.
If l ≤ h, then x j /∈ x0xl by Lemma 6.6 and we find γ either by Lemma 6.3 or by
Lemma 6.5. Hence x j is excessive and b j = k + 2 by (9.9). Either x j is like xg

in (�) or x j ∈ L ′ = x0xl, because otherwise γ = c(x0, xl, x j) is well defined. If
x j ∈ L ′, then b0 = c0, L ′ is a component of the effective branch curve C and x j is
the unique infinitely near point to xl (cf. Lemma 6.6). Similarly for all j ≤ h such
that x j >2 x0. Therefore we may order x1, . . . , xr in such a way that: xi >1 x0 for
every i = 1, . . . , h̄ ≤ h, bh̄+1 = k+ 2, for every i = h̄+ 1, . . . , h, xi is excessive,

xi >1 xh−h̄+i >1 x0 and xi ∈ x0xh−h̄+i . Set p = h − h̄, then p < h, otherwise
(9.5) holds, and (9.7) becomes:

∅ =
∣∣∣∣∣∣(b0 − k − p)(L − E∗0)−

h̄∑
i=1

(bi − k)E∗i

∣∣∣∣∣∣+
h+p∑

i=h+1

x0xi + · · · ,(9.10)

that holds only if

b0 − k − p <

h̄∑
i=1

(bi − k),

which contradicts the proximity inequality for C at x0; that is,

b0 − k = c0 − k ≥
∑

i:xi→x0

ci − k ≥
h̄∑

i=1

(ci − k)+ p.

This concludes part (a2
3), (a2) and (a).

(b) Let x0 >1 x j ∈ P2, i.e., all the maximal multiplicity point are excessive. Recall
that x0 is the unique proximate point to x j . Setting m = [ 2d

3 ], Formulae (9.2) and
(3.4) imply m ≥ 2 and

∅ = |B +mK | = E j + |εL − (b0 −m − 1)(E∗0 − E∗j )− · · · |,
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where ε = 0, 1 or 2. Thus b0 > m + 1, or equivalently b0 > k+ 1. Since k ≥ 2 by
(9.2), then (3.4) forces:

∅ = |B + kK | = E j + (b0 − k − 2)L ′ + |2L − E∗0 − E∗j |,(9.11)

where L ′ = x j x0. We remark that xi /∈ L ′ for 0 < i ≤ h, i = j . In fact, if xi ∈ L ′,
then b0 = bi = k+2 and xi ∈ P2 by Lemma 6.7, contradicting the assumption (b).
If j = 1, set l = 2, otherwise set l = 1. Then l ≤ h, otherwise (9.11) does not hold.
Moreover xl ∈ P2, or xl >1 x0, or xl is excessive. In the first two cases, c(x0, x j, xl)

is well defined and we conclude by Lemma 6.3. In the last case, xl >1 x f , with
either x f ∈ P2 or x f >1 x0. By Lemma 4.3, x f /∈ L ′, thus α = c(x0, x j, x f ) is well
defined. If b f > k, then we conclude by Lemma 6.3. Otherwise, if b f = k, then πα

is as simple as π and Bα has the maximal multiplicity at the point corresponding
to xl , which now is proper, therefore we continue with part (a). ��
Proposition 9.12. Suppose that (3.4), (9.2) and (9.5) hold. Then either X is irra-
tional ruled or b0 = b1 = k + 2 and h = 3. In both cases there exists a Cremona
transformation γ such that πγ is simpler than π.

Proof. Formula (3.4) implies that pg(X) = 0. Then it is well known (see [14,
p. 558]) that either X is irrational ruled or q(X) ≤ 1. In the former case,
De Franchis’ Theorem 7.1 implies that there exists a Cremona transformation
γ : P2 ��� P2 such that πγ is branched along 2q(X) + 2 distinct lines through
a point, so πγ is simpler than π, because its simplicity is (0, 0, 0). In the latter case,
we claim that b0 = k+2 and h = 3. We know that k = 2l is even, because so is b0.
By (9.2) and (3.4),

∅ = |B + kK | =
h∑

i=1

(Eh+i + x0xh+i xi)+ |(b0 − k − h)(L − E∗0)| + · · ·

that may hold only if h > b0 − k, or equivalently if

h ≥ 2a0 − 2l + 1.(9.13)

On the other hand, pa(A) = −q(X) ≥ −1 implies that

d2 − 3d + 4− a0(a0 − 1) ≥
r∑

i=1

ai(ai − 1) ≥
2h∑

i=1

ai(ai − 1) = 2hl2,(9.14)

where the latter equality follows from (9.5). Since d = a0 + 2l, the left-hand side
of (9.14) is 4l2−6l+4−2a0+4la0. Therefore, dividing by 2 and applying (9.13),
Formula (9.14) forces

2l2 − 3l + 2− a0 + 2la0 ≥ hl2 ≥ l2(2a0 − 2l + 1),(9.15)

which (forgetting the middle term) may be rewritten as:

2l3 + l2 − 3l + 2 ≥ a0(2l2 − 2l + 1).(9.16)
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Recall that a0 > k/2 = l by Lemma 9.3. If a0 ≥ l + 2, then (9.16) implies that

2l3 + l2 − 3l + 2 ≥ (l + 2)(2l2 − 2l + 1) = 2l3 + 2l2 − 3l + 2,

that is absurd, for l > 0. Therefore a0 = l + 1 and (9.15) become

4l2 − 2l + 1 ≥ hl2 ≥ 3l2,

which forces h = 3. Thus our claim is proved. The effective branch curve splits in
three lines x0xi xi+3, for i = 1, 2, 3, and a curve of degree 6l − 1 with multiplicity
2l − 1 at x0 (2l at x1, . . . , x6, respectively). Hence x4, x5 and x6 are proper and
not aligned, otherwise this line would be a double component of C, contradicting
the assumption that C is reduced. Similarly x0 does not lie on the lines x4x5, x4x6

and x5x6. Apply α = c(x1, x4, x5) and let y j be the point corresponding to x j , for
j = 0, 2, 3, 6. Then πα is as simple as π. Moreover y2 ∈ P2 \ y6y3, thus we may
apply β = c(y2, y3, y6) and (πα)β is simpler than πα by Lemma 6.3, and therefore
is simpler than π too. ��

The branch curve as (9.5) in the statement of Proposition 9.12 may appear quite
unusual. Nevertheless there are interesting double planes with such a branch curve.

Example 9.17 (Bagnera–De Franchis). Let L1, L2, L3 and L4 be lines through
a point x0 and L5 be a line not passing through x0. Choose two smooth cubics C1

and C2 in the pencil spanned by L1 + L2 + L3 and L4 + 2L5 and let π : X → P2

be the double plane branched along C = C1 + C2 + L1 + L2 + L3 + L4. Then X
is a hyperelliptic (sometimes called bielliptic) surface (see [1, Sect. 7, n. 14]).

In particular C is as that in (9.5), with 2d = 10, b0 = 6, k = 2 and h = 4.
Moreover, it can be shown that C has the smallest degree among the branch curves
of the double planes in the birational equivalence class of π. This example also
shows that Theorem 2 in [21], which states that a hyperelliptic surface cannot be
birationally equivalent to a double plane, is incorrect.

Now we can prove the classification theorem:

Theorem 9.18. A double plane is a rational surface if and only if it is birationally
equivalent to a double plane branched along one of the following:

1. a smooth conic;
2. a smooth quartic;
3. a curve C of degree 10 with four ordinary singularities: one of multiplicity 6

and three aligned of multiplicity 4; moreover, C splits in the line through the
three quadruple points and an irreducible curve of degree 9;

4. an irreducible curve of degree 2d > 2 with an ordinary singularity in a point
x0 of multiplicity 2d − 2 and:
(a) no other singularities;
(b) a node and no other singularities.

Moreover, Types 1–4 of double planes are birationally distinct.



384 A. Calabri

Proof. Type 3 is birationally equivalent to a double plane branched along an
irreducible sextic with two infinitely near triple points, by applying c(x0, x1, x2),
where x0 is the point of multiplicity 6 and x1, x2 of multiplicity 4. We showed
in Sect. 8 that Types 1–4 of double planes are rational surfaces. Conversely, let
π : X → P

2 be a double plane such that X is a rational surface. Up to strict
birational equivalence, we may assume that X is normal. By Theorem 9.1, π is
birationally equivalent to a double plane whose virtual branch curve B is a conic,
a smooth quartic, or a curve of degree 2 f with a point x0 of multiplicity at least
2 f − 2. If B is a conic, then π belongs to Type 1, even if B is reducible, by part
(a) of the proof of Proposition 8.7. If deg B = multx0(B) = 2 f > 2, then X would
be irrational ruled by Theorem 7.3. Hence, if f > 2, the (virtual) multiplicity
of B at x0 is 2 f − 2. Either x0 is proper or x0 is excessive. In the former case,
Proposition 8.7 implies the thesis. In the latter one, x0 >1 x1 ∈ P2 with bi = 2 f −4
and c0 = ci = 2 f − 3. If f > 3, then 2(2 f − 3) > 2 f + 1, thus x0x1 would be
a double component of the branch curve, contradicting the assumption that X is
normal. Therefore f = 3 and the branch curve belongs to Type 3. It remains to
show that Types 1–4 are birationally distinct. Recall that the genus of an irreducible
plane curve is preserved by Cremona transformations. A curve of Type 1, 2, 3, 4.a,
4.b has genus, respectively, 0, 1, 4, 2d − 2, 2d − 3. Finally, a curve of Type 4 is
hyperelliptic, while Types 2 and 3 are not hyperelliptic. ��

A. Pencils of rational plane curves

This appendix has been included in this paper because we have not found any
modern reference about the birational classification of linear systems, in particular
pencils, of rational plane curves (see [9, pp. 286–298] for the classical approach).

A complete linear system Γ = |C| of plane curves is the set of effective divisors
on S which are linearly equivalent to a fixed divisor C on S, where S is as in Sect. 2.
Writing C in Pic S as (2.2), we say that the complete linear system

Γ = |dL − c0 E∗0 − · · · − cr E∗r |(A.1)

has degree d and multiplicity ci at xi , for every i = 0, . . . , r. Suppose that Γ is an
irreducible pencil of rational curves, namely dim Γ = 1 and its generic element is
irreducible and rational, so:

pa(C) = (d − 1)(d − 2)−
r∑

i=0

ci(ci − 1) = 0.(A.2)

Hence, by the Riemann-Roch Theorem, Γ is regular (i.e., h1(S,OS(C)) = 0),
therefore Γ2 = 0, or equivalently,

d2 =
r∑

i=0

c2
i .(A.3)

Order the points xi in such a way that ci > c j implies i < j . Since C verifies the
proximity inequalities, we may choose x0 ∈ P2. Let us define the simplicity of Γ
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as the triplet (k, h, s), where k = d − c0, ch > k
2 > ch+1, and s is the number

of satellite points among c1, . . . , ch (by convention, we assume c−1 = ∞ and
cr+1 = 0, so −1 ≤ h ≤ r).

Let α = c(x0, x1, x2) : P2 ��� P2 be a quadratic transformation. The strict
transform of Γ via α is again an irreducible pencil of rational plane curves. More-
over, setting e = d − c0 − c1 − c2, its general element has degree d + e and
multiplicity ci + e at xi , for i = 0, 1, 2, while the multiplicity at x j , for j > 2, does
not change.

Lemma A.4. Let Γ as above. Suppose that k > 0. Then h ≥ 2 and

h∑
i=1

ci > c0.(A.5)

Proof. For any m > 0, add m times (A.2) to (1−m) times (A.3):

d(d − 3m) < d(d − 3m)+ 2m =
r∑

i=0

ci(ci − m).(A.6)

Replacing m with c0, the right-hand side of (A.6) must be ≤ 0, therefore d − 3c0

must be negative, or equivalently,

c0 > k/2,(A.7)

which implies h ≥ 0. Plugging m = k/2 in (A.6) and moving the term of the sum
for i = 0 to the left-hand side, it follows that

k

(
c0 − k

2

)
= (d − c0)

(
d − 3k

2

)
<

r∑
i=1

ci

(
ci − k

2

)
.(A.8)

We remark that k ≥ c1, otherwise the line x0x1 would be a fixed component of Γ.
Thus, forgetting the term of the sum for i > h, (A.8) forces

k

(
c0 − k

2

)
<

h∑
i=1

ci

(
ci − k

2

)
≤

h∑
i=1

k

(
ci − k

2

)
.

Dividing by k, the previous formula implies that

(
c0 − k

2

)
<

h∑
i=1

(
ci − k

2

)
.(A.9)

If h = 0, then (A.9) denies (A.7). Hence h > 0 and (A.5) follows from (A.9). If
h = 1, (A.5) becomes c0 < c1, contradicting the way we ordered the xi’s. ��
Theorem A.10. Let Γ be an irreducible pencil of rational plane curves. Then there
exists a Cremona transformation γ : P2 ��� P2 such that the strict transform of Γ

via γ is a pencil of lines through a fixed point.
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Proof. Setting Γ as in (A.1), let (k, h, s) be the simplicity of Γ. If k = 0, then d = c0

and the irreducibility assumption implies d = 1, that is the thesis. If k > 0, then
h ≥ 2 by Lemma A.4. We claim that we may choose x j and xl among x1, . . . , xh

such that either (a) the quadratic transformation α = c(x0, x j, xl) is well defined
or (b) xl is satellite to x0 and xl >1 x j >1 x0. In case (a), the strict transform of Γ

via α is simpler than Γ (the proof is mutatis mutandis the same of Lemma 6.3). In
case (b), having chosen a general point xr+1 ∈ P2, the strict transform of Γ via the
quadratic transformation c(x0, x j , xr+1) is simpler than Γ (cf. Lemma 6.5). In both
cases, we conclude by induction on the simplicity. It remains to show that there
exist x j and xl as we claimed. If there exists j ≤ h with x j ∈ P2, then set l = 1
(l = 2, respectively) if j > 1 ( j = 1, respectively). Then xl ∈ P2, or xl >1 x0,
or xl >1 x j . Anyway xl /∈ L ′ = x0x j , otherwise L ′ should be a fixed component
of Γ, and case (a) occurs. If xi /∈ P2 for every 0 < i ≤ h, then xi > x0 for every
0 < i ≤ h. If xi >1 x0 for every 0 < i ≤ h, then (A.5) would contradict the
proximity inequality at x0. Hence there exists j and l such that 0 < j < l ≤ h and
xl >1 x j >1 x0. If xl is satellite to x0, then case (b) occurs. If xl is not satellite,
then α is well defined, that is case (a), because xl /∈ x0x j , as before. ��
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