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1. Introduction

The notion of smooth families of complex manifolds appeared in the study of
deformation of complex structures by Kodaira and Spencer [20]. Then Andreotti
and Grauert [1] used regular families of domains of holomorphy for which they
proved vanishing theorems for the sheaf of germs of smooth functions which
are holomorphic with respect to the complex variable. This idea of a “mixed
variable” (see also [5] and [24]) motivated the introduction of “mixed manifolds”
by Jurchescu [14]; the topic was further developed in a series of his papers ([16],
[17], [18]) as well as in ([4], [6], [8], [9]). Roughly speaking, a mixed manifold is
a smooth manifold which is foliated by locally closed complex manifolds of the
same dimension, called “complex leaves.”

Within the category of mixed manifolds one has the full subcategory of “Car-
tan manifolds” (they are analogies to Stein manifolds in the complex set-up) for
which several characterizations and properties have been established ([16], [17]);
e.g., vanishing theorems in the form of theorem B of Cartan (which suggested
the above appellation), embedding as mixed submanifolds into RM ×CN for suit-
able integers M and N which depend on the type of the source mixed manifold,
etc. In particular, every Cartan manifold admits a smooth exhaustion function
which is strongly plurisubharmonic along the complex leaves; hence is 1-complete
(see Definition 4). However, in contrast with the pure complex case, there are
1-complete mixed manifolds which are not Cartan (viz., Proposition 1 and Re-
mark 7).
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On the other hand, the complex analytic concept of coherence has to be adapted
accordingly due to the presence of real parameters. This, see Definition 3, goes
back to Grothendieck’s notion of pseudocoherence [13].

Jurchescu ([16], Section 5, Théorème 1), in an attempt to extend a well-known
result due, essentially, to Serre ([26], [27]), showed that if X is Cartan and F is
a coherent OX-module, then Hi

c(X,F ) = 0 for integers i < codhOX (F ) − k,
provided that X is a smooth family of complex manifolds over a smooth manifold
S with k = dim S. (Notice that in this case if X is of type (m, n) then k ≥ m.)

In this paper, following the bumping method of Andreotti and Grauert [1] we
drop the additional assumption on X (cf., Corollary 2) and prove a more general
result (Theorem 1). The same idea is applied for the cohomology with constant
coefficients. Our results are:

Theorem 1. Let X be a q-complete mixed manifold of type (m, n) and F a coherent
OX-module. Then the cohomology group Hi

c(X,F ) vanishes for every integer
i ≤ codhOX (F )− q − m.

Corollary 1. Let X be a q-complete mixed manifold of type (m, n) and E over X
a morphic complex vector bundle. Let E be the sheaf of germs of morphic sections
of E. Then Hi

c(X,E) = 0 for integers i < n.

Corollary 2. Let X be a Cartan manifold of type (m, n). If F is a coherent OX-
module, then Hi

c(X,F ) = 0 for integers i < codhOX (F )− m.

Theorem 2. If X is a q-complete mixed manifold of type (m, n), then the co-
homology group Hi

c(X,Z) vanishes for every integer i ≤ n − q, and is free for
i = n − q + 1.

We note that the “dual” result for homology is a simple consequence of Morse
theory (see Corollary 4 in Section 2). However, since X may not be orientable, we
cannot deduce Theorem 2 from it. As an application, we obtain a Lefschetz-type
result.

Corollary 3. Let X ⊂ PN be a Levi flat CR-submanifold of type (k, n). Also let
Σ ⊂ PN be a linear subspace of codimension q such that A := Σ ∩ X is smooth.
Then Hi(X, A;Z) = 0 for i ≤ n − q.

2. Preliminaries

2.1. Mixed manifolds

Let us briefly recall the elementary notions of mixed manifolds. For a detailed
discussion we refer the interested reader to [17].

(•) The category of mixed manifolds of type (m, n) is introduced starting with
local models of type (m, n), i.e., open subsets of Rm × Cn . We only say that
a function Φ ∈ C∞(U, V), where U and V are mixed models (not necessarily of
the same type), is morphic if the real components of Φ are locally independent
of the complex variable and the complex components of Φ are holomorphic with
respect to the complex variables.
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Remark 1. It can be shown that the category with mixed manifolds as objects
and morphic maps as morphisms coincides with that of Levi flat CR-manifolds as
objects and CR-mappings as morphisms. Also mixed manifolds are called “smooth
foliations with complex leaves” [8].

Remark 2. The category of mixed manifolds contains as full subcategories the
category of differentiable manifolds and the category of complex manifolds. Dif-
ferentiable manifolds of dimension m correspond to mixed manifolds of type (m, 0)
and complex manifolds of dimension n to mixed manifolds of type (0, n).

Example 1. Given two natural numbers p and q, p + q ≥ 1, let Gl(p, q;R,C) be
the subgroup of Gl(p + q;C) consisting of matrices A of the form

A =
(

A2 0
A12 A1

)
,

where A1 ∈ Gl(q;C), A2 ∈ Gl(p;R), and A12 is a q × p matrix with complex
entries. It is easily seen that the above set identifies canonically with an open
subset of Rp2 × Cq(p+q), hence it is a model of type (p2, q(p + q)). In particular,
Gl(p;R) = Gl(p, 0;R,C) is purely real and Gl(q;C) = Gl(0, q;R,C) is purely
complex.

Note also that Gl(p, q;R,C) identifies with the set of all R-linear maps of
Aut(Rp ×Cq) which are morphic, i.e., given by (s, z) �→ (A2s, A1z + A12s).

This example allows us to introduce the notion of the morphic vector bundle E
with typical fiber Rp ×Cq over a mixed manifold X. If X has type (m, n), then E
has type (m+ p, n+q). See [17] for more details. morphic complex vector bundle.

Example 2. For every integer k ≥ 1 and every pair of integers m, n ≥ 0, such that
m + 2n = k + 1 there is a mixed structure of type (m, n) on S1 × Sk, where Sp

denotes the unit p-dimensional sphere in Rp+1; see [18].

Definition 1. A mixed manifold X of type (m, n) is said to be a smooth family of
complex manifolds (of dimension n) if there is a smooth manifold S and a morphic
map Φ : X −→ S of rank m at every point of X.

Remark 3. In general we have dim S ≥ m. Usually it is assumed that dim S = m,
e.g., in [20], [25], [19].

A more practical criterion is introduced in [17]:

Definition 2. A mixed manifold X of type (m, n) has enough real morphic functions
if for every point x ∈ X there is a morphic map Φ : X −→ Rp, p = p(x), which
is of rank m at x.

Remark 4. In the above definition, if there is a Φ for x, then the choice p(x) = m
is possible; moreover, if X is as in Definition 2, then there exists a morphic map
Φ : X −→ R2m of rank m at every point of X (see [17]).
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Example 3. Let X be the manifold which arises by factoring with respect to a dis-
crete group Γ of parallel translations in Rm × Cn . Then X is a mixed manifold
of type (m, n); it has sufficiently many real morphic functions if and only if the
projection Γo of the group Γ in the group of parallel translations ofRm is discrete.
(See [19, p. 68].)

Example 4. Let X be a mixed manifold and E −→ Z a morphic vector bundle
of type (p, q). If X has sufficiently many real morphic functions and p = 0, then
E has sufficiently many real morphic functions. However, this does not hold for
p �= 0. For instance, over X = C� as a mixed manifold of type (0, 1) we define
a morphic vector bundle E of type (1, 0) which does not have sufficiently many
real morphic functions. In order to show this, consider the covering of X given
by U1 := C \ (−∞, 0] and U2 := C \ [0,∞). Then U12 := U1 ∩ U2 has two
connected components U−

12 and U+
12. Let λ ∈ R� and consider the morphic map

g12 : U12 −→ R� given by 1 in U−
12 and λ in U+

12. Then the corresponding morphic
bundle Eλ thus obtained has sufficiently many real morphic functions if and only
if λ = 1, that is if it is trivial. To see this we notice that a morphic function
h : Eλ −→ R is given by two smooth functions hi : R −→ R, i = 1, 2, such
that h1(g12(x)t) = h2(t) for every x ∈ U12 and t ∈ R. Thus h1(λt) = h1(t) for
every t; hence for λ �= 1, the derivative of h1 vanishes at 0, and whence the desired
assertion.

We remark that here π1(X) = Z. There are also similar examples of mor-
phic vector bundles E of type (1, 0) over open subsets X of C with π1(X) = Z2

such that every real-valued morphic function on E is constant. For instance, for X =
C\{−1, 1}we have a covering by not-empty simply connected open setsU1, . . . ,U5

such that every intersection of two is simply connected (if not empty), the only
not-empty intersections are U1 ∩U2,U1∩U3,U2 ∩U3,U3∩U4,U3 ∩U5,U4∩U5,
and the intersection of any three of the Ui’s is empty. Consider the transition maps
g12 = g23 = g34 = g45 = 1, g31 = λ, g53 = µ, where λ,µ ∈ R�. These define
a real morphic bundle E −→ X of fiber R. Now, if h : E −→ R is morphic, then
the induced smooth map h3 : R −→ R satisfies h3(t) = h3(λt) = h3(µt), ∀ t ∈ R.
A proper choice of λ and µ implies that h3 is constant, hence so does h. (For
instance we choose λ andµ positive such that logλ, logµ are independent overZ.)

To see the complex leaves we regard E as the quotient of the disjoint union of
Ui × R by the obvious equivalence relation. Then the complex leaf of E, which
contains U3 × {t} for some t ∈ R�, has as its trace on U3 × R the union of
U3 × {tλmµn} over integers m, n.

In order to stress another property of this example we note the following fact.
Let α ∈ R and C > max(1, α). Let A := {(m, n) ∈ Z2 ; |m + nα| < C}. Then for
every (m, n), (m ′, n′) ∈ A there are (ai, bi) ∈ A, i = 1, . . . , k, with the folllowing
properties:

1) (a1, b1) = (m, n) and (ak, bk) = (m ′, n′);
2) |ai+1 − ai | + |bi+1 − bi | = 1 for i = 1, . . . , k − 1.

(The proof is easy and is left to the reader!) Now, coming back to the example,
we observe the following interesting property. We identify X with its zero section
in E. Then one has:
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For every open neighborhoodΩ of X there exists a non-empty open neighbor-
hoodΩ′ of X,Ω′ ⊂ Ω, such that every real morphic function onΩ is constant
onΩ′.

This will follow by standard arguments from the next discussion. Consider simply
connected non-empty open sets U ′

i � Ui such that U ′
1, . . . ,U

′
5 have similar proper-

ties as Ui’s. Given a morphic function h : Ω −→ R this induces morphic functions
hi : Ωi −→ R, where Ωi ⊂ Ui × R corresponds to Ω ∩ π−1(Ui) via the bimor-
phismΦi between π−1(Ui) and Ui ×R. Choose now ε > 0 sufficiently small such
that U ′

i ×(−ε, ε) � Ωi . We get smooth functions h′i : (−ε, ε) −→ R and the com-
patibility conditions imply that h′3 is constant. Now takeω := ∪Φ−1

i (U ′
i ×(−ε, ε)),

hence h is constant on ω.

The coherence on mixed manifolds is based on Grothendieck’s notion of pseu-
docoherence [13]. Following Jurchescu [14] we give:

Definition 3. An OX-module F is said to be coherent if for every point x of X
and for every integer d ≥ 0 there exist an open neighborhood U of x and an exact
sequence of OU -modules

O
pd
U −→ · · · −→ O

p0
U −→ F |U −→ 0,

where OU = OX |U and pi are integers ≥ 0.

Let X be a mixed manifold of type (m, n) and F a coherent OX-module. We define
the homological dimension of F by setting

dhOX (F ) := sup
x∈X

dhOX,x (F x).

Then 0 ≤ dhOX (F ) ≤ m + n. (By convention, here the zero sheaf is considered
locally free of rank 0.) We refer to [16] and [17] for these facts. Define the
homological codimension of F by codhOX (F ) = m + n − dhOX (F ). Therefore,
one has 0 ≤ codhOX (F ) ≤ m + n; moreover, if X is connected, the equality
codhOX (F ) = m + n holds if and only F is locally free.

2.2. Cartan and q-complete mixed manifolds

Let X be a mixed manifold of type (m, n). From [17] we quote:

Definition 4. X is said to be Cartan if the following three conditions hold:

1) X is O(X)-convex, i.e., for every compact subset K ⊂ X its morphic hull K̂ is
compact, where

K̂ := {x ∈ X ; | f(x)| ≤ max
K

| f |, ∀ f ∈ O(X)};

2) O(X)-separates the points of X;
3) X has enough real morphic functions.
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Clearly, if X is of pure complex type, we recover the definition of Stein manifolds.
For a topological characterization of Cartan open subsets of R × C see [23]. The
third condition from above is not easy to verify as we have just seen in Example 4.
For some cohomological conditions, see [18].

The canonical sheaf OX is a Fréchet sheaf. To see this, we firstly consider
X = U ⊂ Rm ×Cn be a local model. For every compact set K ⊂ U and j ∈ N we
define the semi-norm pK, j on O(U) by setting:

pK, j( f ) :=
∑
|α|≤ j

‖Xα
s f ‖K , f ∈ O(U),

where α := (α1, . . . , αm) ∈ Nm , |α| := α1 + · · · + αm , and Xα
s denotes the

derivative ∂|α|/∂sα1
1 · · · ∂sαm

m with respect to the real variables. These semi-norms
{pK, j} give a Fréchet topology on O(U). It is then a standard fact to make out of
OX a Fréchet sheaf.

An open subset D of a Cartan manifold X is said to be Runge if D itself is
Cartan and the restriction map O(X) −→ O(D) has dense image.

Definition 5. ([8]) Let X be a mixed manifold of type (m, n).

1) A function ϕ ∈ C∞(W,R), where W ⊂ X is an open subset, is said to be
q-convex if the restriction of ϕ along the complex leaves is q-convex.

2) We say that X is q-complete if there exists an exhaustion functionϕ ∈ C∞(X,R)
which is q-convex on X.

(Recall that if Z is a complex manifold of pure dimension n, then ψ ∈ C∞(Z,R)
is called q-convex if its Levi form has at least n − q + 1 positive (> 0) eigenvalues
at every point of Z , see [1].)

It is straightforward to see that Cartan manifolds are 1-complete. However, the
converse does not hold as shown by the subsequent proposition.

Proposition 1. There is a 1-complete mixed manifold X of type (1, 1) such that
every real morphic function on X is constant, a fortiori X is not Cartan.

Proof. Let G be the group of translations ofR×C generated by the vectors (
√

2, 1)
and (1, 0). Set X := (R × C)/G. Clearly X is a mixed manifold of type (1, 1).
Let ϕ̃ : R × C −→ [0,∞) be defined by ϕ̃(s, z) = y2, where z = x + iy with
x, y ∈ R. Obviously ϕ̃ is smooth and 1-convex, and since it is invariant under the
action of G it descends to a smooth function ϕ : X −→ [0,∞) which is proper
and 1-convex on the complex leaves. Therefore X is 1-complete. However, every
real-valued morphic function on X is constant (exercise!). ��
Remark 5. There exists a Cartan mixed submanifold X of a mixed manifold Y
which does not admit a Cartan open neighborhood. (Take, in Example 4 (see the
last part of it), X := the zero section in E =: Y ; see also Remark 6.)

From [4] we quote:

Theorem 3. A mixed manifold is Cartan if and only if it is 1-complete and has
enough real morphic functions.
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Proposition 2. Let X be a Cartan manifold and D an open subset of X such that
Hi(D,OX ) = 0 for every i > 0. Then D is a Cartan manifold.

Proof. It sufficient to check that D is morphically convex. For this, we first remark
that for every point xo ∈ ∂D there exist f1, . . . , fk ∈ O(X) such that { f1 =
· · · = fk = 0} = {xo}. Then by [22], there are morphic complex-valued functions
g1, . . . , gk ∈ O(D) such that f1g1 + · · · + fkgk = 1 on D. From this we infer that
for every compact K ⊂ D, K̂ is contained in D. ��
(•) As a way to produce new q-complete mixed manifolds from given ones, we
show:

Proposition 3. Let π : E −→ X be a morphic vector bundle over a mixed
manifold X. If X is q-complete, then E is q-complete, too.

Proof. Since the proof is “standard”, we give only a sketch. Let ϕ : X −→ R be an
exhaustion function which is q-convex. Fix an arbitrary hermitean metric h on E.
Then one shows that there χ ∈ C∞(R,R�+) is rapidly increasing and convex such
that the function ψ : E −→ [0,∞) given by ψ(ξ) := log(1 + ‖ξ‖2) + χ(ϕ(x)),
where x = π(ξ), is q-convex. (Note that ψ is always proper.) This is done by
straightforward computations using the homogenity of ‖ξ‖ and the very useful
inequality ε|u|2 +|v|2/ε ≥ 2|uv| valid for ε > 0 and any complex numbers u, v. ��
Remark 6. This proposition, together with Example 4, furnishes new examples of
1-complete mixed manifolds which are not Cartan.

Proposition 4. Let π : X̃ −→ X be a (topological) covering of a mixed mani-
fold X. Then the following statements hold:

1) If X is Cartan, then X̃ is Cartan.
2) If X is q-complete, then X̃ is q-complete.

Proof. We remark that if Y is an arbitrary mixed manifold which has enough
real morphic functions, then the same conclusion holds for any mixed manifold M
which is a spread over Y (by this we mean that there is a morphic map p : M −→ Y
which is locally homeomorphic). Therefore, according to Theorem 3, it remains to
verify 2). This is done using an idea from [21] (see also [28, p. 494]) and it suffices
to produce a smooth function θ : X̃ −→ R+ such that:

a) θ is a vertical exhaustion function, this means that, for every compact set
K ⊂ X, the restriction of θ to π−1(K ) is exhaustive.

b) The eigenvalues of the Levi form of θ with respect to the coordinates coming
from X are uniformly bounded from below.

Then we construct a q-convex exhaustion function defined on X̃ in the form
χ(ϕ ◦ π)+ θ , where ϕ ∈ C∞(X,R) is q-convex and exhaustive, and the function
χ ∈ C∞(R,R) is rapidly increasing and convex.

So it remains to construct θ . Let {Ui}i be a locally finite open covering of X
such that Ui � X and each Ui is bimorphic to a simply connected model (so Ui

is evenly covered). We get a decomposition π−1(Ui) = ∪kWik into disjoint open
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sets Wik bimorphic to Ui via the projection map. Let {ρi}i be a partition of unity
corresponding to {Ui} and define θ : X̃ −→ R as follows: fix some Wioko and
define lik as the length of the shortest chain Wioko ,Wi1k1 , . . . ,Wisks such that each
Wir kr intersects Wir+1 kr+1 and (is, ks) = (i, k). We then set

θ :=
∑
i,k

lik · (ρi ◦ π).

Property a) is straightforward. Now, since θ = li′k′ + ∑
i,k(lik − li′k′ )(ρi ◦ π) and

θ = λ ◦ π locally, we easily conclude, by computing ∂2λ/∂z j∂zs, that b) holds. ��
Remark 7. Gilligan [11] suggested the question that a kind of Oka theorem for
spreads over Cartan manifolds might hold. More precisely, assume that (D, π) is
a spread over a mixed manifold X. Suppose that (D, π) is locally Cartan, i.e., every
point of X has an open neighborhood U such that π−1(U) is Cartan. Then we ask:

Does it follow that D is Cartan if X itself is Cartan?

We show that, pointing out, again, the discrepancy between the pure complex case
and the mixed one, even in the most trivial set-up of the inclusion, one cannot have
such a result. Take X := R× C, D := R× C \ ({0} × S1), and π : D −→ X the
inclusion map. Then (D, π) is as desired.

In order to verify this, we let A ⊂ C be a closed subset and define DA =
R×C \ ({0} × A).

Lemma 1. DA is Cartan if and only if A has no compact connected component.

Proof. In a more general set-up this can be found in [23]. However, because of its
simplicity, we supply one ad hoc proof. First we recall a well-known topological
result.

Lemma 2. Let T be a locally compact, Hausdorff topological space with countable
topology and A ⊂ T be a closed set. Then every compact connected component of
A has a neighborhood system of open sets V in T such that A ∩ ∂V = ∅.

Coming back to the proof of Lemma 1, for the “if” part we note that D is a regular
family of domains of holomorphy (see Section 2.3; we take Ω = C and V = R).
For the “only if”, we argue by contradiction, using Lemma 2 and the Cauchy–
Pompeiu formula. ��

Now the example concludes as follows. Note that for zo ∈ S1 and for r ∈ (0, 2),
if B := {|z−zo| < r}, then there is an embedding γ : R −→ Cwith B∩Γ = B∩S1,
where Γ = γ(R). Therefore, D ∩ (R× B) = DΓ ∩ (R× B) is Cartan since DΓ is
Cartan. ��

The next lemma is well known for complex manifolds (see [30]).

Lemma 3. Let X be a mixed manifold of type (m, n) and ϕ ∈ C∞(X,R) a q-
convex function. If xo is a non-degenerate critical point of ϕ, then the index of ϕ at
xo is ≤ m + n + q − 1.
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On the other hand, since q-convexity is stable under perturbations with smooth
functions whose second-order derivatives are sufficeintly small, and taking into
account the density of Morse functions in the C2-topology we obtain in a standard
way:

Proposition 5. Let X be a mixed manifold and ϕ ∈ C∞(X,R) a q-convex proper
function. Then, given an arbitrary η ∈ C0(X,R), η > 0, there is ϕ̃ ∈ C∞(X,R)
such that:

1) ϕ̃ is a Morse function;
2) ϕ̃ is q-convex; and,
3) |̃ϕ− ϕ| < ε.
In particular, if ϕ is exhaustive, then ϕ̃ can be chosen exhaustive, too.

From [2, Lemma 2, p. 503] we quote:

Lemma 4. Let X be a topological space with a countable base and K a compact
subset of X such that X \ K is a differentiable manifold. Let ϕ ∈ C∞(X \ K,R).
Assume that the sets

Bc := K ∪ {x ∈ X \ K ; ϕ(x) ≤ c},
for c ∈ R are compact and that ϕ has only non-degenerate critical points of index
≤ k on X \ K. Then, if c is such that K ⊂ int(Bc), we have

Hr(X, Bc;Z) = 0 if r > k and Hk(X, Bc;Z) is free.

Corollary 4. If X is a q-complete mixed manifold of type (m, n), then Hi(X,Z)
vanishes for i ≥ m + n + q and is free for i = m + n + q − 1.

Proof. This is a simple consequence of Lemmas 3 and 4, and Proposition 5. ��
Definition 6. We say that an open subset Ω of a mixed manifold X is q-Runge if
for every compact set K ⊂ Ω there exists a q-convex exhaustion function on X (of
course, ϕ may depend on K) such that

K ⊂ {ϕ < 0} � Ω.

For instance, X is q-complete if and only if the empty set is q-Runge in X. Also,
if X is a Cartan manifold, then an open set Ω ⊂ X is Runge if and only if Ω is
1-Runge.

Lemma 5. LetΩ be a q-Runge domain in a mixed manifold X of type (m, n). If G
is an arbitrary abelian group, then Hi(X,Ω;G) = 0 for all integers i ≥ m+n+q.

Proof. By definition, Proposition 5, and Corollary 4, there exists a sequence of pairs
of open subsets of X, (Xk,Ωk), with the following properties: a) {Ωk}k increases
to Ω, b) {Xk}k increases to X, and c) Hi(Xk,Ωk;G) = 0 for i ≥ m + n + q. As
a matter of fact, we take Ωk := {ϕk < 0} ⊂ Ω and Xk := {ϕk < Ck} for suitable
Morse exhaustion functionsϕk on X which are q-convex. Then the proof concludes
easily by passing to the limit. ��
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Corollary 5. Let X be a Cartan manifold of type (m, n) andΩ ⊂ X a Runge open
set. Then the relative homology group Hi(X,Ω;Z) vanishes for i > m + n and is
torsion free for i = m + n.

We do not know if, in the above set-up, Hm+n(X,Ω;Z) is free.

2.3. Regular families of domains of holomorphy

Let π : Rm × Cn −→ Rm be the canonical projection and D ⊂ Rm × Cn a non-
empty open subset. Put Ds := {z ∈ Cn ; (s, z) ∈ D}, s ∈ π(D). We may regard D
as a family {Ds}s∈π(D) of open subsets of Cn .

Following [1] we say that {Ds}s∈π(D) is a regular family of domains of holo-
morphy if for every point so ∈ π(D) there exist an open set Ω ⊂ Cn and an open
neighborhood V of so in π(D) such that:

1) Dso ⊂ Ω and the pair (Ω, Dso) is Runge.
2) π−1(V ) ⊂ V ×Ω.

From [1] we easily get that in this case D is Cartan. However, there are Cartan
open subsets of R× C which are not regular families of domains of holomorphy.
For instance, if we consider D := R×C \Γ , where Γ is the graph of the function
γ : R −→ C, γ(s) = s + is, s ∈ R, then by [10] D is Cartan and, however, D is
not a regular family in the above sense.

Proposition 6. Let D′ ⊂ D be two open sets of Rm × Cn, each of which being
a regular families of domains of holomorphy such that, for any s ∈ Rm, the pair
(Ds, D′

s) is Runge. Then:

1) Hi
c(D,O) = Hi

c(D
′,O) = 0 for i < n and the canonical extension map

Hn
c (D

′,O) −→ Hn
c (D,O) is injective.

2) For an arbitrary abelian group G one has Hi
c(D,G) = Hi

c(D
′,G) = 0 for

i < n and the extension map Hn
c (D

′,G) −→ Hn
c (D,G) is injective.

Proof. The first statement is proved in [1]. For 2) note that the pair (D, D′) is
1-Runge. Then we conclude by using the Poincaré duality and Lemma 5. ��

Subsequently we show how one applies Proposition 6 locally. First we extend
the notion of q-convexity to continuous functions as follows (see also [3]). Let X
be a mixed manifold of type (m, n).

Definition 7. We say that finitely many functions ϕ1, . . . , ϕk ∈ C0(X,R) are q-
convex with the same positivity directions, and we write this by {ϕ1, . . . , ϕk}
∈ P 0(X; q), if for every point xo ∈ X there are: a local model D ! xo (we
view D as an open subset of Rm × Cn), a complex vector space E ⊂ Cn, and
ψij ∈ C∞(W,R), i = 1, . . . , k; j = 1, . . . , p, such that, for every i, one has:

1) ϕi|W = max(ψi1, . . . , ψ1p);
2) for every s ∈ Rm with Ws �= ∅ and z ∈ Ws the restriction of every ψij(s, ·) to

Ws ∩ ({z} + E) is strictly plurisubharmonic.

If k = 1 we say that ϕ1 is q-convex.
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Now consider D be a model of type (m, n) and {ϕ,ψ} ∈ P 0(D; q) be such that
ϕ ≤ ψ. Then every point xo ∈ D has a Cartan neighborhood U� in D (sufficiently
small) such that for every Runge open set U ⊂ U�, the pair ({x ∈ U; ϕ(x) < 0},
{x ∈ U; ψ(x) < 0}) is a Runge family of domains of holomorphy in Cn−q+1 over
R

m+2q−2 (after some morphic coordinates changes).

Proposition 7. Let X be a mixed manifold and ϕ ∈ P 0(X; q). Then, for every
η ∈ C0(X,R), η > 0, there exists a (smooth) q-convex function ϕ̃ on X such that

|̃ϕ − ϕ| ≤ η.

Proof. This is done by a perturbation argument and a “max regularization” pro-
cedure as in [33]. ��

3. The proofs

3.1. The bumping method

Let X be a mixed manifold of type (m, n) together with a continuous q-convex
exhaustion function ϕ and G is a sheaf of abelian groups over X. Suppose we want
Hi

c(X,G) = 0 for indices i ≤ p (in our case we will have p = n − q).
The first natural step is to show that Hi

c(Xλ,G) = 0 for i ≤ p and every
λ ∈ R. As usual, Xλ := {x ∈ X ; ϕ(x) < λ}. This is proved by showing a stronger
assertion, namely,

(�) for every λ,µ ∈ R, λ < µ, the canonical extension map,

Hi
c(Xλ,G) −→ Hi

c(Xµ,G),

is bijective for i ≤ p and injective for i = p + 1.

Then (�) is further implied by:

(�) for every λ ∈ R there is ε > 0 such that (�) holds for µ ∈ [λ, λ+ ε].
We consider this last reduction more closely. Choose a finite open covering
{Ui}i=1,... ,k (sufficiently fine, this will be clear from the context) of L := Xλ+1

which is “adapted to G” (in a sense that can be precisely specified according to the
case we are dealing with, that is, either G is a coherent OX-module or G = Z);
then select smooth functions ρi ∈ C∞

o (X,R) such that ρi ≥ 0, Supp(ρi) ⊂ Ui , and
ρ1 + · · · + ρk > 0 on L. In practice we choose these ρi’s with sufficiently small
derivatives up to order 2.

Then ε > 0 is chosen by ε < minL(ρ1 + · · · + ρk) and ε < 1. We further
reduce (�) to a local question using the Mayer–Vietoris sequence as follows. Let
µ ∈ (0, ε]. Define Wr := {x ∈ X ; ϕ(x) < λ + ρ1(x) + · · · + ρr(x)} ∩ Xµ for
r = 1, . . . , k and Wo = X0. Then we have Xo = W0 ⊂ W1 ⊂ · · · ⊂ Wr = Xµ,
Wr \ Wr−1 � Ur and Wr = Wr−1 ∪ (Wr ∩ Ur), for r = 1, . . . , k.

Now, taking into account Section 2.3, in order to get (�) one should prove that,
for every r = 1, . . . , k, the following statements hold:
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a) Hi
c(Wr−1 ∩ Ur,G) = Hi

c(Wr ∩ Ur,G) = 0 for i ≤ p;
b) the map H p+1

c (Wr−1 ∩ Ur,G) −→ H p+1
c (Wr ∩ Ur,G) is injective.

From Section 2.3 we obtain immediately the proof of Theorem 1. ��
Remark 8. We note that the injectivity in (�) was used for the first time in [32].

Remark 9. Let X be a mixed manifold of type (m, n) and F a coherent OX-module.
Then for every family of supports Φ on X, one has the vanishing of Hi

Φ(X,F )
for integers i > n. (This follows from a general result due to Reiffen [25]; see
also [6].)

3.2. Proofs of Theorem 2 and Corollary 3

First we note that Sections 2.3 and 3.1 give the vanishing of Hi
c(X,G) for i ≤ n−q

and every abelian group G. To conclude, choose a Morse exhaustion function ϕ
on X which is q-convex, then select a sequence {cν} which increases to +∞ and
each cν is not a critical value for ϕ. Set Xν := {ϕ < cν}. The Universal Coefficient
Theorem (UCT) gives that Hn−q+1

c (Xν,Z) is torsion free for every ν. On the other
hand, the homology groups Hn−q+1

c (Xν,Z) are finitely generated, hence free. Once
more using UCT we get the injectivity of

Hn−q+1
c (Xν,Z)⊗ G −→ Hn−q+1

c (Xν+1,Z)⊗ G.

Now, from [32] we quote:

Lemma 6. Let B be a subgroup of a free abelian group A of finite rank such that
the natural map B ⊗ G −→ A ⊗ G is injective for every abelian group G. Then
B is a direct summand of A.

Coming back to the proof of Theorem 2, we deduce that Hn−q+1
c (Xν,Z) embeds

into Hn−q+1
c (Xν+1,Z) as a direct summand; hence Hn−q+1

c (X,Z) is free, and hence
the theorem is completed. ��
(•) Here we prove Corollary 3. Let S := X ∩ Σ. Since Hk(X, S;Z) is finitely
generated for every k, Corollary 3 is equivalent to Hi(X, S;Z) = 0 for i ≤ n−q and
Hn−q+1(X, S;Z) is free (see [12, p. 136]). On the other hand, since Hk(X, S;Z) #
Hk

c (X \ S;Z) for every k, the proof concludes easily from Theorem 2. ��

4. Further remarks and open questions

In the circle of ideas presented up to now, we would like to mention some interesting
questions.

1) Let X be a q-complete mixed manifold and E −→ X a complex morphic
vector bundle. Denote by E the sheaf of germs of morphic sections in E. Then
Hi(X,E) = 0 for every integer i ≥ q.



Cohomology with compact supports for q-complete mixed manifolds 361

Notice that a similar statement for the sheaf of germs of sections in an arbitrary
morphic vector bundle E over X does not hold in general. For instance, if X is of
type (0, n) (that is, X is a complex manifold) and E := X × R is the trivial real
morphic vector bundle of rank (1, 0) over X, then the vanishing of some Hi(X,E)
is equivalent to Hi(X,R) = 0, as it can be easily checked.

On the other hand, if E = X ×C and X is a real-analytic Levi flat hypersurface
ofCn+1 (hence X is mixed of type (1, n)) the above vanishing theorem is established
in [8].

2) Let X and Y be mixed manifolds such that X is a mixed submanifold of Y. If X
is q-complete, does X always admit a basis of q-complete open subsets in Y?

Obviously, the condition “X is a mixed submanifold of Y” is necessary since
there are simple examples when, without it, the conclusion fails. For instance,
take X := R × C as a closed submanifold of Y := C2 in an obvious way. It
is straightforward to see that X is 1-complete and, however, it does not admit
a Stein neighborhood basis. Here X is mixed of type (1, 1) and Y of type (0, 2).
As a matter of fact, note the following property. Let A ⊂ Cn be a closed set. Then
A × C has a fundamental system of Stein neighborhoods in Cn+1 if and only if
A is completely pluripolar in Cn (that is, there exists a plurisubharmonic function
u : Cn −→ R ∪ {−∞} such that A = {u = −∞}.)
3) Let D be given as the union of an increasing sequence {Dk}k of Cartan open
subsets of a Cartan manifold X of type (m, n). Does it follow that D is Cartan?

If each consecutive pair (Dk+1, Dk) is Runge, i.e. the restriction maps
O(Dk+1) −→ O(Dk) have dense range, then D follows Cartan.

On the other hand, if X = Rm ×C, then the answer is “Yes” as it follows from
[10]. For the covenience of the reader, we give a sketch. First, we letΩ ⊂ Rm ×C
be an open set. Consider δ : Ω −→ R+ ∪ {∞} the distance from the boundary.
We say that δ satisfies the minimum principle in the complex direction if for every
s ∈ Rm and every compact set K ⊂ Ωs := {z ∈ C; (s, z) ∈ Ω},

min
z∈K

δ(s, z) = min
z∈∂K

δ(s, z).

Then by [10], Ω is Cartan if, and only if, δ satisfies the minimum principle in the
complex direction.

We also remark that one cannot characterize Cartan open submanifolds Ω of
Rm × Cn for m > 0 via the distance function as in the pure complex case. For
instance, let Ω := R× C \ Γ , where Γ is the graph of the function γ : R −→ C

given by γ(s) = (s, s + is), s ∈ R. By [10], Ω is Cartan. On the other hand, if
δ : Ω −→ R is the usual boundary distance function computed with respect to the
euclidean metric on R× C # R3, then

δ2(s, z) = 2(x2 + y2 + s2 − xy − xs − ys)/3, (s, z) ∈ Ω, z = x + iy.

The condition that − log δ be subharmonic in the complex fibres at the point (s, z)
is x2 + y2 − 4xy+ 2xs+ 2ys− 2s2 ≥ 0, which is not always fulfilled. See also [8]
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for some other considerations concerning the relation between distance functions
and “Stein foliations”, or Cartan set according to the terminology used here.

4) Find a topological characterization for a mixed manifold X of type (m, n) to be
n-complete.

For the case n = 1 and X an open subset of R× C we refer to [23].
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Note added in proof: In the meantime we solved Question 2 from above.
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14. Jurchescu, M.: Variétés mixtes. In: Proc. of the III-rd Romanian-Finnish seminar on

Complex Analysis, Bucharest, Romania, June 27–July 2, 1976. Lecture Notes in Math.
743, Springer-Verlag 1979, pp. 431–438

15. Jurchescu, M.: A theorem on C∞-families of complex manifolds. Rev. Roumaine Math.
Pures Appl. 27, 981–988 (1982)

16. Jurchescu, M.: Variétés mixtes et cohomologie. Riv. Mat. Univ. Parma (4) 10∗, 55–79
(1984)

17. Jurchescu, M.: Coherent sheaves on mixed manifolds. Rev. Roumaine Math. Pures
Appl. 1–2, 57–81 (1988)

18. Jurchescu, M.: The Cauchy-Riemann complex on a mixed manifold. Rev. Roumaine
Math. Pures Appl. 39, 951–971 (1994)



Cohomology with compact supports for q-complete mixed manifolds 363

19. Kirillov, A.A.: Elements of the theory or representations. Grundlehren der math. Wiss.
220, Springer–Verlag 1976

20. Kodaia, K., Spencer, D.C.: On deformations of complex analytic structures I. Annals
of Math. 67, 328–399 (1958)

21. Le Barz, P.: A propos des rêtements ramifiés d’espaces de Stein. Math. Ann. 222, 63–69
(1976)

22. Nagel, A.: Cohomology, maximal ideals, and point evaluations. Proc. Amer. Math. Soc.
42, 47–50 (1974)

23. Pascu, E., Timotin, D.: A topological characterization of Cartan open subsets ofR×C.
Rev. Roumaine Math. Pures Appl. 33, 309–316 (1988)

24. Rea, C.: Levi flat submanifolds and biholomorphic extension of foliations. Ann. Sc.
Sup. Norm. Pisa 26, 664–681 (1972)

25. Reiffen, H.-J.: Riemannsche Hebbarkeitssätze für Cohomologieklassen mit kompaktem
Träger. Math. Ann. 164, 272–279 (1966)

26. Serre, J.P.: Quelques problèms globaux relatifs aux variétés de Stein. Colloque sur les
fonctions de plusieurs variables complexes, Bruxelles, 1953, pp. 55–68
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