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Abstract. We study some boundedness properties of radial solutions to the Cauchy problem
associated to the wave equation (8,2 — Ay)u(t, x) = 0 and meanwhile we give a new proof
of the solution formula.

Sunto. Studiamo delle proprieta di limitatezza per soluzioni radiali del problema di Cauchy
associato all’equazione delle onde (8,2 — Ay)u(t, x) = 0 e nel frattempo diamo anche una
nuova dimostrazione della formula risolutiva per tale equazione.
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In this paper we want to prove some norm estimates for radial solutions to the wave
equation and, in order to do this, we start by recalling the explicit form of these
solutions.

Let us consider the Cauchy problem for the wave equation in (¢, x) € R x RP,

2 D2

d d
2 (t,x) = Zyu (tx),

) =
u (0, x) = @ (x), %M(O,x)z\ll(x).

The d’ Alembert formula,

) _ () 1 X+t
(x—1) + u+0+_/

t,x) =
u(t, x) > >

W(s)ds,

—t

gives the solution when the space dimension is one, while the Poisson formula,

ad t t
u(t, x) == {E/“yl}CD(x - ty)dd(y)} + {E/[Ml}‘l’(x - ty)dd(y)} ,
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gives the solution in dimension three. The form of solutions in an arbitrary di-
mension is due to Tedone (see [10]). When the dimension is odd, D = 2N + 1,

then
a (1a\"! 2N—1
u(t,x) = b(N)§ <; 5) {t /{y:l}cb(x — ty)da(y)}

N—1
BN (13> {ﬂN-‘ / Wix - ty)do(y)},
t ot yl=1)

where b(N) =27'(1-3.5....- 2N — 1))~ '7z=V"12I(N + 1/2) and do(y) is
the surface measure on {|y| = 1}. When the dimension is even, D = 2N, by the
method of descent one has

3 /1a\"! 2N—1 dC )
u(t, x) = 2b(N)§ <;§) {t /UKuﬁdy

19 \N! W(x — 1)
+2b(N) [ == ZN*I/ —— T dy}.
( )<f3f> {t VTP

These formulas require approximately D/2 derivatives of the initial conditions,
hence they are not immediately applicable to non-smooth data. However, it is
known that when these data are radial then there exists a solution formula with no
derivatives involved. When the initial data are radial, writing |x| = r, ®(x) = ¢(r),
W(x) = ¥(r), with ¢(r) and ¥(r) even functions on R, and expressing the Laplacian
in polar coordinates, one is led to the Cauchy problem

2 82 D —
o tv = 5 ts - 5 tv )
8t2u( ) 8r2u( N+ r 8ru( )
(sk)

0
u@,r)=¢ (), gu((),r) =y ().
Assume now D = 3. Then one easily checks that » - u(t, r) satisfies the one-
2 2
0
dimensional wave equation P (ru (t,r)) = 57 (ru (¢, r)) with ru (0, r) = r¢ (r)
/8

B
and g(ru (0, 7)) = ry (r). Hence, by d’ Alembert’s formula,

u(t.r) = r—0ne(r—0+ T+ +1) N i/rﬂ

> > sy (s)ds.

—t

Observe that since sy (s) is an odd function, the above integration can be reduced
to the interval |r — t| < s < r + t. This formula does not contain derivatives of the
initial data, at least if » # 0, but taking the limit as r — 0+ a derivative appears,

ad
u(t,0) = t§¢ (@) + @) + 1y (d).
For an arbitrary dimension the formula of solutions is more complicated. It
involves terms of the form r('=2/2 |r 4 ¢|P=D/2 4+ 4 1) and integrals of the
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initial data against hypergeometric functions, but when the space dimension is odd
the hypergeometric functions reduce to polynomials and this makes things much
simpler. In particular, when D = 2N + 1, then the radial solutions to the wave
equation (k) are given by

r—0"pr—0D+C+"¢r+1)

u(tr) = S
1 r . 2,2 _p2
— —tr’N’lf sNIPy_ <L> P(s)ds
2 |r—t| 2rs
1 rt 24,2 _p2
+44/ WMH<LEL—)w®m
2 [r—t| 2rs

L)

where Py_1(z) is the Legendre polynomial of degree N — 1 and Py_;(z) is its
derivative. Since P_1(z) = Py(z) = 1, these formulas are consistent with d’ Alem-
bert’s formulas of radial solutions to the wave equation in dimensions one and
three.

As we have said, a solution formula for (xx) was already known. Indeed,
introducing the characteristic variables & = r + ¢, n = r — ¢, the wave equation
reduces to the Euler—Poisson—Darboux equation,

92 (D—-1)/2 9 (D-1)/2 d B
@M(S, n) + W%“(Ss n) + Wa—nu(év n) =0,

and a solution can be found by Riemann’s method. See, for example, [3, V.5]
or [11]. Anyhow, we shall present a different derivation which is based on Fourier
analysis, also because this will give us the opportunity to get familiar with some
special functions and to study the singularities of the kernels that give the solutions.
Indeed the main issue of the paper is on some norm estimates for radial solutions
to the wave equation, and we shall accomplish this task via the explicit formula of
solutions.

Since |x|"=P/2 x| £ t|P~Y/2 ¢(|x| £ 1) are in some sense the main terms of
radial solutions to (%), it is easily seen that for a fixed time ¢ the inequality

1/p 1/p
{/ Iu(t,x)lpdx} < c{/ |u(0,x)|"dx}
RD RP

holds only when p = 2 (see also [6]). However, one can obtain positive results by

averaging in time. In particular in [7] it is proved that if 2 < p < , then

D-1
0
spherically symmetric solutions to () with initial velocity Eu (0, x) = 0 satisfy

the estimate

1 T 1/p 1/p
{—/ / lu(t, x)|”dxdt} <c {/ |u(0, x)|”dx} .
T 0 RD RD
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At the critical index p = the above inequality may fail, but the authors

stated a restricted weak-type result, that is a weak-type inequality for characteristic

functions. Here we shall prove that at the critical index, p =

T the radial

solutions satisfy the weak-type inequality

x%// dxdi < CT/ (0, x)| T dx.
{t€(0.7),xeRP Ju(t,x)|>1} RD

2D
The weak-type estimate for p = D

7 together with the strong-type estimate

for p = 2, which follows from an integration by part or an application of the
Fourier transform, imply by interpolation the result of Miiller and Seeger. Again
the functions |x|1 272 [|x| & 1| P~D/2 ¢(|x| £ 1) show that the above results are

sharp.
We shall also consider solutions to () with non-vanishing initial velocity. In [9]
2 2D —4
it is proved that when < p < ——, for solutions with u (0, x) = 0 one
D+1 D-3

has the maximal inequality

{/ ( |u<t,x>|>” }”” {/
sup dx <c
RP \0<i<to00 1 RD

It also follows from [1] that at the critical index p =

P 1/p
dx} .

i 0, x)
510 x

7 one has a restricted

weak-type result. The above estimate holds for all solutions, not necessarily radial,

and as a consequence one obtains the almost everywhere convergenceas ¢t — 0+ of

ts
u(t, ) . Here

d
to —u (0, x), if the initial velocity is locally in L” (RP),
oatu( x), if the initial velocity is locally in L7 ( )p>D+l

0
we shall prove that if (0, x) = 0 and if Eu(O, x) is the characteristic function of
a spherically symmetric set, then one has the inequality

2D
A DHI dx
{XERD, sup L(lt”‘)l>k}

O<t<4o00
X tl/l , X

2D
This not only implies the restricted weak-type result at p = DIl but also
a weak-type inequality for functions with bounded support disjoint from the origin.

Finally, we shall show that for radial solutions to () with u(0, x) = 0, the almost

u(t, x)
t

D+1

2D 2D
1p |0 D+1
<c / |x|T‘—u(O,x) dx}
RD 8t

everywhere convergence of to gu(o, x) holds as soon as this initial value

is locally integrable.
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We mentioned before that when the space dimension is odd, then both state-
ments and proofs of the results became simpler. This is perhaps related to the
Huygens phenomenon. However, since the method of descent does not preserve
spherical symmetry, it is not clear how to deduce the even case from the odd one.
Indeed to consider only odd dimensions would have reduced the size of the paper
by more than a half.

1. Radial solutions to the wave equation

In this section we give the explicit solution of the Cauchy problem (), where we
write 2« 42 for the space dimension D. Since it is not necessary to assume in what
follows that this number is an integer, we work in this more general context.

Theorem 1.1. Let « > —1/2 and 0 < t,x < +00. The solution of the Cauchy
problem
92 92 20+ 1 0

ﬁu (tax) = ﬁu (tax)+ au (t7-x)7

d
u©.x) =), Su®.x)=9x,

is given by

+00

+o00 P
u (tv x) = 0 K(tsxv Y)‘/f(Y)dY‘i‘/o gK(f,x, y)¢()’)dy

(=02 (x — ) + (+ 0" 2P (x4 1)
2 xet1/2

if0<t <y,
+
—sin(ma)(t — x)*H12¢ (1 — x) + (¢ + )20 (t + x)
2 xa+l/2

if0<x <t
a ;
The two kernels K(t, x, y) and &K(t’ X, y) are expressed in terms of hyper-
geometric functions.

0
i) Ify<x—torify>x+t,thenK(t,x,y):gK(t,x,y)zo.
ii) If|lx —t| <y <x+t, then

1 2 - (x— )2
Kt x,y) = ~x 12y 12F (12 —a, 1/2 4+ o5 1; ooy
2 4xy
and
i K@, x, y)
oY
1/2 — 1/2 2 (x—v)?
— ( / Ol) ( / + Ol) t)c70(73/2))0171/2}11‘l 3/2 —a, 3/2 + o 2’ ()C )’) .
4 4xy
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iii) If y <t — x, then

a+1/2

2l m
X
T(1/2—a)T(a+1)

4xy a+1/2F e 1/2 a0t I 4xy
2= (x—y)? ST e ST T )2

K, x,y) = y

and

272(172\/; tx7a73/2
F—12—o)T'(a+1)

4xy «t+3/2 dxy
| F 3/2, 1/2;2 1l ——).
<t2—(x—y>2> <“+/ at1/22a+ r2—<x—y>2>

a—1/2

9
=K, x,y) =
o ( x,y) y

When the space dimension 2« 4 2 is not an odd integer, at y = t — x the
kernel K(#, x, y) has a logarithmic singularity, K(z, x, y) =~ log|t — x — y|, and

+00
under mild assumptions on the function 1/(y) the integral / K, x, y)¥(y)dy
0
0
is well defined. On the other hand, QK(I, X, y) has at y = t — x a non-integrable

0
singularity, gK(t, x,y) &~ (t —x — y)~!, and the integral against this kernel has
to be defined in the principal value sense,

+o00 9 ) 9
/ IRt x, yoGdy = lim / O Rt x, pyd(y)dy-
0 ot =04 J{0<y<+oo,[t—x—y|>¢} ot

When the space dimension is an odd integer greater than one, 2o +2 = 2N + 1,
thatis « = N — 1/2, then 1/T'(£1/2 — a) = 0, so that the kernels K(z, x, y)

ad
and a—K(t, X, y) have support in {|x — ¢| < y < x + t}. Also, the hypergeometric

functions reduce to Legendre polynomials and the solution formula takes a simpler
form.

Corollary 1.2. If 20 + 2 = 2N + 1 is an odd integer greater than one, then

x=—0"px—0+x+DVp(x+1)

u(t,x) = N
1 Xt . N
e [ (P
2 lx—1| 2)Cy
1 paw Vg
+xN / yNPy_ <7> Y(y)dy.
2 1] 2xy
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If 20+ 2 =1 then
px—D+ox+1)

u(t,x) = 2
1 X+t
5 Y(y)dy if0<t<x,
2 x—t
+
t—x 1 t+x .
/ Y(dy + 3 Y(ydy if0<x <t
0 t—x
Observe that
1 ° 2 2 t2
NNy (2 T Rk = x""2NA@, x, y),
2 2xy
1 2 2_p
—x NPy yrx-r — xX'2VB(1, x, y),
2 2xy

with A(z, x, y) and B(¢, x, y) polynomialsin (¢, x, y), odd and of degree 2N — 3 and
2N — 1 in the y variable. A repeated integration by parts then gives the following:

Corollary 1.3. If2«a + 2 = 2N + 1 is a non-negative odd integer, then

2N-2

u(t,x) = x'72N Y7 (a;(t, )P (x = 1) + b (6, 0 (x + 1))

j=0
2N

+ x0T (= 1) + di 6 )Y (x+ 1)
j=1

where a;(t, x), bj(t, x), ¢;(t,x), d;(t,x), are polynomials in (t,x), ¢V (y) =
o), ¥ O(y) = ¥(y), and ¢~ (y) and ¥~ (y) are primitives of $"'~7(y) and
Y= (y).

See also [4] for a result related to this last corollary. As we said, a proof of the
theorem based on Riemann’s method can be found in [3] or [11], moreover in [2]
there is a different proof for odd dimensions. Let us now give our proof.

Proof. The approach is straightforward: we write the solution to the wave equation
using Fourier integrals and then explicitly compute these integrals.

Lemma 1.4. Let J,(2) be the Bessel function of the first kind and order o. Then

+oo +00
u(t, x) = / cos (1) </ Ja(2y) ¢(y)y2°‘+1dy> Ja (xi) L2kl g, 4
0 o (zy* (x2)

N /+oo sin (12) </+oo Jo,(zy) w(y)y2“+ldy) Jo (x2) Z2a+1dz_
0 z o @y (x2)*
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Proof. For « > —1/2 and suitable test functions on R, one has the Fourier—
Bessel-Hankel transform and the inversion formula

. +ocJ +00J
(z) = / (Zy) ¢(y) 2a+1dy, d(x) = / (xi)d)( ) 20{+1dZ
o @y o (x2)

Since the functions x —— (xz)™% J, (xz) are eigenfunctions of the radial

Laplacian,
92 N 20+1 9 Jo x2)\ 5 Ja(x2)
ax2 X  ox (x2)* ) ¢ (x2)* '

by taking the Fourier—Bessel-Hankel transform with respect to the space variable
one reduces the partial differential equation to an ordinary differential equation in
the time variable,

2

Pl Ut z)=—72u(tz),

~ ~ 9 -
u0,z) =¢ (), Eu(O,z)ﬂﬂ(Z),

with the solution

sin (tz)

U(t,2) = ¢ (z) cos(tz) + ¥ (2)
The inversion formula then gives the desired result. O

Interchanging the order of integration in the previous lemma, we formally
obtain

+oo +oo
w(t x) = f ( f cos (1z) 2 (xﬁ)M(yz)zaHdz) d(y)dy+
0 0 (x2)*  (zy)*

+o0 toosin (12) Jy (x2) Ju(z) 2a+1 >
o+l g d
+f </o 2 G 2T E)YO®

+0o0

+0o0
_ fo HOx 0000+ [ KGex vy,

Since J,(2) & /2/mz cos(z — am/2 — m/4), the integral that defines Hi(z, x, y)
is divergent. Indeed we will see that the associated operator is singular and gives
rise to the terms x =%~ 1/2(x £ n**1/2¢(x £ r). However, formally we have

+00

a +o00
H(z, x, o (y)dy = 5 ( ; K(, x, y)¢(y)dy>,

and it turns out that the kernel K(#, x, y) is an integrable function which can be
computed explicitly in terms of Legendre functions.
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Lemma 1.5. Assuming t, x, y > 0, we have

“+o00
K (, x, y) = x~oy+! / T (¥2) Ja(y2) sin (12) dz
0

+o00
71/2x_°‘y°‘+]/ Ju (x2) Jo(y2) J12 (12) (12)"/* dz
0

0 ify<x—tory>x-+t,
1 P+t -1
| zxeizyeripp, (220 flx—tl<y<x+r1,
=13 2xy
cos (ma) tz_xz_yz .
—————x a2yt 2Q, (7 fy<t—x
4 2xy

where Py_1/2 (2) and Qq—1/2 (z) are the Legendre functions of the first and second
kind respectively.

Proof. See [12, (13.46)]. O

Observe that K(7, x,y) = 0 if |[y— x| > ¢, or if y + x < ¢ and the space
dimension 2« 42 is an odd integer. This is also a consequence of the Paley—Wiener
theorem since z —> (wz)~“ J, (wz) is an even entire function of exponential
type w.

When n is a non-negative integer, then PP, (z) is the Legendre polynomial and,
ifa=N-—1/2,

1 2 —
—x NyNPy_, (%) iflx —tl<y<x+t,
K, x,y) = *y

0 otherwise.

Moreover, since P, (1) = 1 and P, (—1) = (—1)",

1
lim K@ x,y)=—xVx-n",
y—(t—x)+ 2

1
lim K@ x,y)=-xY¥x-0n",

y—> =+
lim K@ x,y)==xNx+0nV.
y—=>(x+)—
9 1 X+t 2 2 _ t2
Differentiating — —x‘N/ YWPy_ yoaxr-or ¢(y)dy | we obtain
ot \ 2 Jx—1] 2)Cy

the formula in the first corollary. The proof of the theorem is a bit more complicated.
If v is not an integer, then P, (z) is regular in the complex plane cut along
[—o0, —1]; one has P, (1) = 1, but there is a logarithmic singularity in z = —1.
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Indeed it is possible to write the Legendre functions in terms of hypergeometric
functions,

1—
Pv(z)=F<—v,v+l;l; 2Z),

JAC W+ 1) - B
(@)= ———— Q22T F(v/24+1/2,v/2 4+ 1; 3/2:272).
Q@ =T33 @ FOR2+1/2v/24 15v+3/227)
See [5, (7.3)]. Hence, if |x — f| < y < x 4+ ¢ we have
1 2 2_p2
K(, x, y) = —x @12y t12p, ) Yy +x
2 2xy
1 2 (x—v)?
= e 2y (172 — 0 12 4 1; T U,
2 4xy

Similarly, by applying a quadratic transformation to the hypergeometric func-
tion, see [5, (9.6.17)],if 0 < y < t — x we obtain

cos (am) 2 —x?—y?
K(t, x, y) = ————x "0 12yet12Q,_ » <7
T 2xy

_ 27 m xme1/2 et/ 4xy iz
Fra2—-a)r@+1) 12— (x — y)?

Flat+1/2a+1/2 20+ 1; — 2
Flo o 20+ 1 ——— .
= (x—y)?

As it will be seen in a moment, the kernel K(#, x, y) is locally integrable and
J +0o +00 P
when differentiated, % < / K(z, x, y)q)(y)dy) gives / &K(t’ x, Y)o(y)dy
0 0
plus some terms related to the singularities of the kernel at the points y = +x £ 7.

a
To evaluate &K(t’ x, y) it is enough to differentiate the hypergeometric func-
tions,

0 b
a—]F(a,b;C;Z)=a—]F(a-i-l,b+l;C+1;z),
Z C

d
% (z°F(a,b;c;2)) =az* 'Fa+1,b;c;2).
74

Finally, we need to understand the behavior of the kernel K(#, x, y) in a neigh-
borhood of the singular points y = x +¢, y = x —t, y = t — x. In order to do
this, we recall thatif a, b # 0, —1, —2, ... and z — 1—, then the hypergeometric
function has the asymptotic expansion
Fabiat b = P (Clog (1= 2)+20(1) — W (@) — ¥ (B) + (1)

a,b;a+b;7) = ———— (—1lo — —V(a) — o(1)),
YTTawre . BUTF
where I'(z) is the gamma function and W(z) is its logarithmic derivative (see [5,
9.7)].
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Lemma 1.6. Assume that 2o + 2 is not an odd integer.
i)LetO <t < x. Then, if y — (x—t)+

lim K(l‘ X, y) x o 1/2 (x — )a+1/2’
y= =0+

and, if y — (x +)—,

1
lim K@, x,y) = —x @ V2 (x 4 1)*+1/2,

y—=(x+1)—
ii) Let 0 < x < t. Then, if y — (t—x)+,
K, x,y)
t_
- W}c—"_]/z (t — x)+1/2 (— log(y — (t — x)) + log (M)

+log2 +2W (1) — W (1/2 —a) — W (1/2 4 a) +o(l)>,

and, if y = (t — x) —
K, x,y)

— L(jm)x—a—lﬂ (t —x)*t1/2 (_ log((t — x) — y) + log <M>
2 t

+1og2 +2W (1) — 2W (1/2 + ) +o(l)>.

Vg
Proof. When > = (x — y)? one has 27 = 1, and since P, (1) = 1, i)
Xy
follows.
Va2
When 7> = (x 4+ y)?, one has 27 = —1, and P, () has a logarithmic
Xy
. o . r—(x—y?
singularity in z = —1. Indeed if y — (f — x) +, then BET— — 1— and
Xy
we have

1 2= (x—y)?
K(t, x, y) = 2x-e-12yet12R (1/2 w124l #)
_ cos (na)xfafl/ZyaJrl/Z
2w

22
~<—10g (%) +2\Il(1)—\11(1/2—(1)—\1-'(1/2+a)+0(1)>

cos ()

_ x—1/2 (p _ pyetl/2 (_ log (y — (1 — x)) + log <x (r— x)>
2 t

+1og2 +2W (1) — W (1/2 —a) — W(1/2 4 a) +o(1)>.
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4
Similarly, if y — (f — x) —, then _ Yy — 1— and we have

2—(x—y’

—2a—1
K(tox,3) = =2 YT a2
ra/2—a)r@+1)

4xy atl/2 dxy
(2 F 1/2.a4+1/2:204+1: ——¥
(ﬂ—(x—yﬂ) Ry

a+1/2

y

2
_ cos (yroz)x_a_]/zyoﬂrl/2 dxy a+l/
27 12— (x — y)?

2 2
: <—log (ﬂ) F2U () —2W(1/2 +a) +0(1)>

r?—(x—y)?
= Mx*“*”z (t — x)“T1/? (— log ((t — x) —y) + log <x(t7—x)>
2w t
+log2+2\I/(1)—2\11(1/2+oz)+0(1)>. O

In particular, when y passes from (f — x) — to (f — x) +, the function

cos (o
Kt )+ S 12 et 2 og | — 1) —
makes a jump of sin (r) x 12 (1 — x)**12 from
cos (T[Ol)xfafl/Z (t — x)* 12
2

: <1og (@) Flog2 4+ 2W (1) — 2w (1/2 + a))

to
cos () X2 (1 2
2

l‘ J—
: <log (M) Flog2 +2W (1) — W (1/2 —a) — \I/(1/2+oz)> .
When differentiated with respect to ¢, the term log |(# — x) — y| gives the singular
kernel (t — x — y)~!, while the jump produces the term

sin (o) o172
2
Similarly, when differentiated, the jumps at y = x £ ¢ produce the terms

(t — x)“T2 (1 — x).

1
PRI ()

The proof of the theorem is then completed. O
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Remark 1. The Legendre functions satisfy the three terms recurrence relations

v+ DP(z) — Qv+ DzPy(2) + vPy_1(z) = 0,

vIE”,,H(z) - Qv+ l)z]f”,,(z) + O+ 1)]&%1(2) =0,

and the same for Q, (z). See [5, (7.8)]. From this it follows that solutions to the wave
equation in dimension 2« + 2 can be expressed in terms of solutions in dimensions
200 and 2o — 2.

Remark 2. Whena+1/2 = N is an integer, then the kernel K(#, x, y) vanishes out-

side {|x —t| <y < x4t} and |K(t, x, y)| < 27 'x"NyN If, for every § > ¢ > 0,
§ +o00

we have / [Y(y)|dy < 400, then the integral / K, x, )Y (y)dy is well

&
defined and it gives a continuous function in {0 < ¢ # x < +o00}. Moreover, if
+00

/ v (y)| yNdy < 400, then / K(t, x, y)¥(y)dy is well defined and it gives

a continuous function in all {0 < ¢, x < +o00}.
When o + 1/2 is not an integer then the situation is a bit more complicated,
since K(t, x, y) is supported in {max{0, x —t} < y < x + ¢t} with a logarithmic
s

singularity at y = r — x. Anyhow, if/ [Y(y)| y**1/2dy < 400 and, for every z,
0

+0o0

/ llog |z — Yl W dy < +o00, then | K(t, x, y)ur(»)dy is well de-
{lz—yl<lzl/2} 0

fined for every ¢ and x.

s
Remark 3. When o + 1/2 = N is an integer and / [p(y)|dy < +oo for every
+00 P ¢
8 > ¢ > 0, then the integral / gK(t, x, y)¢(y)dy is well defined and it gives
0
s
a continuous function in {0 < f # x < 4o0}. If / lp(M| YN ~ldy < +o0, then
0

+0o0 9

/ gK(t, x, V)¢(y)dy is well defined and it gives a continuous function in all
0

{0 <t,x < +o00}.

d
When o+ 1/2 is not an integer, then gK(t, X, v) has a singularity (f—x—y) . If

) +00 P
forevery § > 0 we have/ ()| y**Tldy < 400, then / gK(t, x, V)o(y)dy
0 0
can be defined almost everywhere in a principal value sense.

s 8
Remark 4. Assume that/ ()| dy < +o0 and/ lp(y)| y?*tldy < +00. By

& 0
the previous remarks, if 0 < x < 400 and t — 04 we have
+o00

+00 a
im [ K@ x y)y()dy =0, lim / O Rt, x. p(y)dy = 0
0 t—0+ 0 8t

t—0+
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Also, if ¢(y) is continuous at x, then

e NG (x — 1) + (x + TP (x + 1)
,%1%1 2xa+l/2

= ¢(x).

Hence u(t, x) — ¢(x) when t — 0-+. Similarly, if ¢(y) is differentiable at x

. . u(t,x) —u(0, x)
and y(y) is continuous at x, then T E— — Y(x).

2. Weak-type estimates

As an application of the above theorem, in this section we prove a weak-type
estimate for spherically symmetric solutions to the wave equation with zero initial
velocity. See [8] for the definition and some properties of operators of strong-type,
weak-type, restricted weak-type, and for the relation between these definitions and
Lorentz spaces.

Theorem 2.1. Let o« > —1/2. Then there exists a constant ¢ such that for every
A > 0 and every test function ¢(x), the solution of the Cauchy problem

92 %) 92 (. x) + 2+ 1 9 . %)
—u(t,x) = —u(tx —u(t,x),
or? ox2 ox

ad
M(O,X)=¢(X), &M(O,X)ZO,

satisfies the weak-type inequality

2041

- +oo datd 5y
A datd x“*Tdxdt < cT [Pp(x)[ 24T x=T dx.
{0<t<T,0<x<+00,|u(t,x)|>1} 0

d
Proof. In order to prove the theorem we first estimate the kernel gK(t, x,y) and

when 2« + 2 = 2N + 1 is an odd integer this is easy. Indeed if [x — ] < y <

2 22 2 22
+x°—t L +x°—t
x +t, then —1 < yrxr-—v < 1 and |Py_ yrxr-—rv < c¢. Hence
2xy 2xy
0
‘&K(I’ X, )| < ctx’“’3/2y°"l/2. When o + 1/2 is not an integer the estimates are

more delicate.

Lemma 2.2. i) LetO <t <xandx —t <y < x -+t Then

0
’—K(r, x, | < ctx“"—3/2y°‘_]/2.

ot

When o + 1/2 is an integer this estimate also holds in the range |x —t| < y <
X+t
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B £ —(x—y)> ,
ii)Let0 <x <tand0 < S T— <1—¢ewith0 <& < 1. Then
Xy
9 —a—3/2 a—1/2
—K(@, x, y)| <ctx™® /y”‘ 2,
ot
4xy
i) Let0 < x <tand) < ————— < 1 —¢. Then
?—(x—y)?
a+3/2
EK(,’ x, y)| < ctxme32ye-12 _Axy )
ot - 12— (x —y)?
2 (x — )2
v)LetO <x <tand1 —¢ < M < 1. Then
4xy
d cos (r
—K(l‘, X, y) + Jx—a—lﬂ (l _ x)a+l/2 (t —x = y)—l
ot 2

< 32012100 <4)“7y> _

(x+y*—1
4xy
v)Let0 <x <tandl —e < ———— < 1. Then
= (x—y)?

d
—K(, x,y) + M)f&flﬂ (t — x)a+1/2 (t—x — y)fl
ot 2w

i y)2>

< ctx_‘"—3/2 a—1/2 lo oo
= y g t2 _ (.X + y)2

Proof. We recall that the hypergeometric functions are singular only at one and
infinity, in particular these functions are bounded on the intervals [0, 1 — ¢].

r—x—y’
WhenO <t <xandx—t<y<x+t,then0 < S F— < 1/2. Hence
Xy

d
—K(@, x,
‘8t (t, x y)‘

1/2—w)(1/2 ?—(x—y)?
_ (/ 05)(/ +Ol)tx_a_3/2ya_1/2F 3/2_057 3/2+Ol; Z;M

4 4xy

< ctx—a32ye 172,

This proves i) and the proofs of ii) and iii) are similar.
In order to prove iv) we recall that

F(a,b;c;z) = (1 —2)“"F(c—a,c—b;cz),
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and, ifa,b #0,—1,—-2,...and 7z —> 1—,
F(a,b;a+b+1;2)

_ Tla+b+1 Fa+b+1)
T Ta+Dr+1) I'(a)T'(b)

(1—=2)log(1 —2)+0O( —2z).

See[5,(9.5),(9.7)]. When0 < x < tandt—x < y < t+x,thenif y — (t—x)+
we have

a
_Ktv B
o (. %, y)

1/2 — 1/2
_ W a)4( / +a)tx_"‘_3/2y°‘_l/2F (3/2—01, 3/2 + a3 2;

= (x— y)2>
4xy

_ 42— 12+ fx—a=3/2ya-172 <1 _ £ —(x— y)2>_]
4 4xy

2 — (x — )2
F <1/2+a,1/2—a; 2; M)
4xy

_12-0d/2+ pr—a=3/2ya=1/2 <4X7y>
4 (x+y?—1

1 N 1 (x+y)? =1
'<F(3/2—a)r(3/2+a) F(1/2—oz)r‘(1/2+oz)< 4xy )

x+y)?2—1 (x+y)?2 =1
Jog( dxy >+(9< 4xy >>

1
“TA/2-al(1/2 +a)

tx—a—l/Zya+]/2(y + x4+ t)_] (y +x— t)_]

12—a)(1/2+ @) fxe-3/2a-1/2 o <(x +y)? — t2>
4T(1/2 —a)[(1/2 + @) 4xy

+0 (tx7a73/2ya71/2)

cos (ma)
—x
2

4xy
o t7a73/2 a—1/2 1 1 . .
" (x ' ( " °g<<x+y>2—r2>>>

In this computation we have substituted r — x to y and a careful checking shows
that the error is of the order of + — x — y. This proves iv).

—a /2 (p )t /2 ¢y )]
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Similarly, when 0 < y <t —x and y — (f — x)— we have

0
— K, x,
o (#, x,y)
o +3/2
_ N fx—o=3/2ya=1/2 dxy “
F(=1/2—a)T(@+1) 12— (x—y)?
4
F<ot+3/2,a+ 1/2: 20 + 1 %)
= (x—=y
o at3)2
_ 272w fx—e3/2ya=1/2 4xy
F=12-a)l'(@+1) —(x—y)?

4xy -1 4xy
A I F 1/2, 0 —1/2;2 1l —
( 2—<x—y)2) ((”/ e-ln2tl o

= ST i (et 12—y
2

P —(x-y?
ol —a—=3/2 a—1/2 141 R ]
- (x g M Ve ranss
Again, we have substituted ¢ — x to y, with an error of the order of r — x — y.
This proves v). O

By the explicit formula of solutions, u (z, x) is surn of terms of the form

x~¢12(x £ )**t1/2¢ (x £ ¢) and an integral term / —K(t X, Y)o(»)dy.

By the previous lemma, when 0 < ¢ < x, then

x+t
< ey / Y12 16(y)  d.
.

t

+00 a
‘ /0 ZK(@ 5 )P0y

2 — (x —y)?

< 1 — ¢, then
4xy

Similarly, when 0 < x < fand 0 <

+x
< ctx 32 / Y2 ()| dy.
r—x

9
‘/ &ﬂiih4§K@Lwﬂw@

4xy

——— <1 —¢,then
?—(x—y)? ’

When O < x <tand 0 <

’ / 4 T y)¢(y)dy‘
0< aal 5 <l— s}

2—(x—

4xy a+3/2
<e / e () ) ay
{0<2())2<1 e 3 —(X—y)

< ct(t — x)-=-? / (t 4 x — y) 32525 | g3 dy.
{O<12 - )2<] s}
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2 (x — )2

Finally, when0 < x <fand 1 — ¢ < x =) , then

4xy 1—e¢
LKt x, DO
{17£<,2_(x_‘.)2<#} o , X, Y)oly)ady
4xy T—¢

- cosz(nol)xfafl/z (t— x)a+]/2/ 2 2 d(y) dy‘

v {1 <t 74(3(;))) <ﬁ}t_x_y

4xy
+ctx*°‘*3/2/ a=1/21, <7> J
{178<w<1}y g (x+y)2 _2 |¢(y)| y

+ctx“"_3/2/
{]—s<

Define

= (x —y)?

a—1/2
<1}y og <7t2 S y)2> lp()|dy.

4xy
2—(x—y)?

Ap(t,x) = x7 V2 |x £ |p (x £1)],
x4+t

Bo( x) = tx-e32 f W12 g ()] dy.

[x—1]

Co(t, x) = 1t — x)-a-32 / (t+x — y) 32y g(y)] dy,
{0< 5 Axy 2<17.9}
12— (x—y)
?— (x — y)?
Dg(t, x) = tx*“*3/2/ ¥~ 12 log (7 lp()| dy,
{1—5<t27i%v)2<]} tz_(x+y)2

4xy
E f, -t 7(173/2\/ (171/21 .y d ,
@(t, x) = tx {1fs<12-5§;>'>2<1}y og Gry—r lp(y)| dy

Fp(t.x) = x~ V2t — 02 0,
(1oeaPotor 1 )T —x—y
4xy T—¢

In order to prove the theorem it suffices to prove that these operators satisfy
weak-type estimates, but observe that if 2« + 2 is an odd integer one has to consider
only the first two operators. The rescaling v(z, x) = u(Tt, Tx) shows that we can
assume 7 = 1 and we can also assume ¢ positive but small.

Lemma 2.3. Let
Ap(t, x) = x 2 |x £ |p (x £ 1))

Then

+00
4a+4 4a+4
A 20+ // X2t dxdr < c/ |p(x) | 2041 x 2
{0<r<1,0<x<+400,Ap(t,x)>1} 0
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Proof. Split ¢(x) into {(x) + 6(x), with {(x) = ¢(x) - xx=3;(x) and O(x) =
@(x) - x(x|>3) (x). It suffices to consider the contributions of £(x) and 6(x) separately.
Since O(x) = 0 when |x| < 3,if 0 < t < 1 we have

X2 x £1T2 10 (x £ 1) < |0 (x £ 1)),

and, for every p,

// x> dxdt
{0<r<1,0<x<400,A0(t,x)>A}

< // x2et dxdr
{0<r<1,0<x<400,|0(xx1)|>cA}

+0o0
< c)f”/ 16(x)|P x2* 1 dx.
0

Now consider the contribution of ¢(x). Since ¢(x) = 0 when |x| > 3, we have
x2a+2 |§- (x)|(4a+4)/(2(x+1) < 3x2a+1 |§ (x)|(4a+4)/(2a+1) and

// x22Fdxdt
{0<r<1,0<x<400,A(t,x)>A}

+o00
/ </ dt>x2°‘+1dx
0 {—oo<t<+00, |x+t|*T1/2| ¢ (x1)|>Axe+1/2}

_dara [T 2043
= c\ 2o+ dy 7 201 dz
0 {—oo<y<00,ly[¥F1/2|¢(y)|>z)

+00 do+4
4a+4 s
= CcA 2a+1 / (|x|a+1/2 Iy (x)|)2a+1 dx

o0

IA

IA

+00
dat4
c)\_%/ s (x)|% x2etl gy,
0

Lemma 2.4. Let
X+t

Be(t, x) = tx—*73/2 / ¥y 2 |p(y)| dy.

[x—1]
Then

4a+4

2at1 e dotd ol
22041 x“Thdxdt < ¢ |p(x)]20+T x“* T dx.
{0<r<1,0<x<+00,Bep(t,x)>A} 0

Proof. We split the domain of integration into {x < t/2}, {t/2 < x < 2t}, and
{2t < x}.
If x > 2¢, then

x+1 c x+1 1
tx*‘H/z/ Y2 ()l dy < ;/ lp(y|dy = C/ lp (x + 1z)] dz.
| x -1

x—t| —t
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Hence for every p, by Minkowski’s inequality,

// 2a+ldxdt
O<t<1,2t<x<+00,Bp(t,x)>A}
p
<A "/ / (/ | (x +tz)|dz> x2+ dxdt
2t
1/p P
< c)»"’(/ {/ / lp (x + 12)]P (x + tz)2°‘+1dxdt} dz)
—1 0 J2t

—+o00
<onr f B IP Y2+ dy,
0

If /2 < x < 2t, then, by Holder’s inequality,

X+t
e / Y2 gy dy
|

x—t|

X+t
< o112 f Y12 ()| dy
|

x—t|

g ER (e R
scr—“—'/z{ / —} { / |¢><y>|2a+1y2“+1dy}
lx—t| Y lx—1|

2a+1

+00 raid o

) { / ()| yZ““dy} -
0

Az / / X2 dxdt
{O0<t<I1,t/2<x<2t,Bp(t,x)>1}
1 X+ it
< / / (tx—ot—3/2/ ya—1/2 |¢(y)| dy> x2(x+]dxdt
0 Jr/2 |x—1]
datd
<c / / =12 logﬁgﬁ X+t x2o 1 gy dt
[/ X —1
: (/ By 2““61)’)
0

oo dotd
<c / p(y) |55 gy,
0

X+t
—t

2043
< 12 ]og4g+4 <

Hence

Finally, if x < #/2 and if ® > 0, then

x+t
tx*“’m/ Y2 gy dy
\

x—t|

1 t+x
< ex—o12patl/2-0 (—/ ¥ o)l dy)
2x Jix

< x1PQ),
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where Q(f) = ct*T/2=*M[y?¢p(y)](1) and M denotes the Hardy—Littlewood
maximal operator which is applied to the function y“¢(y) and evaluated at the
point #. Now let w be such that —1 < (¢ + 1/2 —w)da +4)/Qa+ 1) — 1 <
(4o +4)/(2a+ 1) — 1. Then

1 4o+4

Q (1) 24T dt

0

(et1/2-w)(atd) |
20+1

+oe " dotd
<[ Mo E
0
+OO o —w, O
scf e yEE g
0
+00
—c / G B Yty
0

and we get

/ / x>+ dxdt
{0<t<1,0<x<t/2,Be(t,x)>1}

< // x2et dxdr
{0<t<1,0<x<+00,x~ " 1/252/Q(n}

1
< C)\—(4a+4)/(20t+1)/ Q1) %51 dr
0

+o00
< ot / B 55 2t gy,
0
O

As we said, if 2+ 2 is an odd integer it suffices to estimate the two operators A
and BB, and the proof of the theorem stops here. The general case is more involved,
since one has to consider also the operators C, D, E, F.

Lemma 2.5. Let

Co(t, x) = t(t — x)~23/2 / (t +x — y) @32y g (y)| dy.

{O<t2:(lx%y)2<]—s}

Then

4a+4

Qa1 e Jobd 2atl
A2t x* T ldxdt < ¢ |p(x)| 2041 x=* T dlx.
{0<r<1,0<x<1,Cp(t,x)>1} 0

4xy
£ —(x—y?
then 0 < y < (1 — 8)(t — x) for some § > 0 and #(t + x — y) @732 < ex~~1/2,

Proof. When0 < x <t <8xand0 < < 1 — ¢ for some ¢ > 0,
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Hence

1 — x)-o=302 /{ (t 4 x — y) 325251 | ()| dy

4xy }
< <l—e
2—(x=y)?

—x
< foafl/Z(t _ x)a+l/2 <(t _ x)72a72/ |¢(y)| y2a+1dy>
0

< ex 2t — x) M PMg(r — x),

where M is the Hardy—Littlewood maximal operator on 0 < y < 400 with measure
2a+1
yerdy,

b —1 b
M¢(z)=o supb{</ yz““dy) </ |¢(y)|y2°‘“dy>}-

Similarly, when 0 < 8x < ¢, we have

1t — X)a3/2/{ }(f +x — )02yt g(y) | dy
0<—2Y _<l—g

4y
2—(x—y)?2
—x
<ct(t —x)7*3/2 < / (t+x—y) 2yz"*‘dy> Me(t — x)
0
< ex 12t — ) 2Mg(r — x).

We have used the fact that the integral of |¢(y)| against a positive kernel «(y)
decreasing around ¢ — x is bounded by the Hardy-Littlewood maximal function
Me(r — x) times the integral [ «(y)y***+'dy.

Hence, with the notation of Lemma 2.3 we have C¢(z, x) < cAMg(x, ) and,
by that lemma and the boundedness of the Hardy—Littlewood maximal operator,

4a+4

A2a+1// x> dxdt
{0<t<1,0<x<+00, AMep(t,x)>1}

i fotd ot
<c |Migp(x)|2e+T x2*1dx
0

+o00
4o+4
< c/ |p(x)| 2041 x2eH] gy,
0

Lemma 2.6. Let

De¢(t, x) = tx’“’3/2/

{1_8<24X73’
1=—(x—y)

_ r—(x—y?
a—1/2
2<]]y 10g<t2_(x+y)2>l¢(y)ldy-

Then

4o+4

Qa1 e Jobd 2atl
) 2e+1 x= T dxdt < ¢ |p(x)| 24T x““T dx.
{0<r<1,0<x<1,Dp(t,x)>1} 0
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4
Proof. Assume 0 <x <t <8x.Then, forsomed>0,{1 —¢ < Y <1
= (x—y)?
is contained in {(1 — §)(t — x) < y <t — x}, and

r—(x—y)?
e 12 log <7 () dy
{1*8<12_?:iv)2 <l} t2 - (-x + y)2

t—x 2 w2
< C)Ciail/z(t _ x)afl/Z/ IOg (M) |¢(y)|dy

(1=8)(1—) 22— (x+y)?
< 7(171/2(1‘ )a*l/z (/’x 1 <t2 — (X - y)z) 4 )M¢(t )
< cx —x og | =————= | dy —x
(1=8)(1—) 22— (x+y)?

< ex @12 = ) 2 (1 + [log(r — )|) Mp(t — x),

where, as in the previous lemma, M is the Hardy-Littlewood maximal operator on
0 < y < +oo with measure y>**!dy.
4x
Assume now 0 < 8x < t. Thenifeissmall, 11 — ¢ < Ky < 1tis
£ —(x—y)?
contained in { —2x < y < t — x}, and

?—(x-y?
e / «-1/21, <7 4
{178< 4xy <1}y g 1‘2 _ (.X + y)2 |¢(y)| y

12— (x—y)?
t—x l2 _ (x _ )7)2
< ex* 32 — x 0‘+1/2/ lo <7) d
< (t—x) AP Py lp()|dy
t—x 1‘2 _ (x _ y)2
< ex—@3/2( — x)atl/2 / lo < >d >M t —
<cx (t—x) ( AL Py Loj ¢t — x)

< ex 12t — )T I2Mg(r — x).

Hence we have D¢ (z, x) < cx~*~12(t — x)*F1/2(1 4 |log(t — x))Me(t — x).
Let O(y) = y**1/2(1 + |log(y)|)Me¢(y). We thus have

4o+4

A2atl / / x> dxde
{0<r<1,0<x<1,D¢p(t,x)>1}

4o+4

5)@%1// x>t dxdy
{O<y<1,O<x<1,cx_"‘_]/2®(y)>)‘}

s 1 [OG)/1)/CFD
< AW/ / x2Fdxdy
0 JO

! datd
<c| em¥dy
0

: 12 Erast
<c / (21 + [log(DDM(»)) 541 dy
0
1
sc/ Mgy |55 214y
0

—+o00
dortd
<c f () |35 y2er g
0
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Lemma 2.7. Let

Eo(t, x) = tx’“’3/2/

2—(x—y)?
{]—8<T<] }

_ 4xy
a—1/2
y log < G t2> l¢(y)| dy.

Then

4o+4

2ot e datd ol
A 2e+1 x*dxdt < ¢ [p(x)| 24T x=“Tdlx.
{0<r<1,0<x<t,Ep(t,x)>A} 0

Proof. The proof of this lemma is analogous to the previous one. O

Lemma 2.8. Let S be a sublinear operator on test functions on 0 < x < 400 and
assume that there exist constants 0 < ¢ < § such that the value S¢(x) depends
only on the values of ¢(y) in the interval ex < y < §x. Also, let 0 < p < 400 and
—00 < B,y < +00. Then, if the operator S is bounded on L? (R, xPdx), it is also
bounded on IL” (R, x¥dx).

Proof. Decompose ¢(x) into Y/ °° ¢ (x), with ¢ (x) = p(x) if 2F < x < 2¢+!
and ¢ (x) = 0 otherwise. Then [S¢(x)| < ,ji oo IS¢k (x)| and by the assumptions
on the supports of these functions we have

+0o0
f ISPCOI” x7 dx
0

oo +o00
<cy / IS (x)|” x dx
0

k=—o00

oo +o0
<3 2 [ ol st
0

k=—o0
oo +o0
<c 3 20 / I6(O1? xPdx
> 0

k=—00

o 40 +00
<o) [ s =c [ oo

k=—o00
Lemma 2.9. Let

Fot, 0 = vV = [ IO

12—(,\'—v)2 1 — —
{ l—e< Iy <1= } t X y

Then

4o+4

2at1 e dotd oatl
A Zotl x2Hldxdt < ¢ |@(x)| 20T x2* 1y,
{o<r<1.0<x<tFp0>2} 0
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Proof. Let us consider the integral Ly)
{178<—12_£§;‘V)2 <L} r—x—y

I—¢

dy. The inter-

12— (x—y)? 1
<
4xy 1—¢
integration over the symmetric part is a truncated Hilbert transform, while the
integration over the remaining part can be controlled by the Hardy-Littlewood
maximal operator.
Given 0 < n < 1, let

(x—Y)
Hyp() =  sup H / udyH,
O<v<v<nx {v<|y|<?d} y

1
My = sup { - /{ el dy} ,

be the truncated maximal Hilbert transform and the truncated maximal Hardy—
Littlewood operator respectively. These operators are bounded on L7 (R, dx),
1 < p < +o00. See [8, (2.3), (6.1)]. Hence, by the above lemma, they are also
bounded on L”(R,., x***!dx).

Given a small ¢ > 0, there exists 0 < n < 1 such that

a1/ (t_x)aJrl/Z/ o(y) dy|

2 _(x—v)2
{178<7l i’;y“) <L}t_x -y

val {1 —&< } is not symmetric around y = ¢ — x. The

I—¢

< ex V2t — )TV (Hyp(t — x) + Myd(t — x))
<cA (Hn¢ + Mn¢) (t, x),

where A is the operator defined in Lemma 2.3. Hence,

4a+4

k2a+l// x>+ dxdt
{0<r<1,0<x<t,Fp(t,x)>1}

4a+4
< )\, 20+1

// x2+dxdy
{0<t<1,0<x<+00,cA(Hyp+Mye)(t,x)>1}

+oo dartd
< c/ |H,,¢(x) + Mn¢(x)| 2T yatl/2 0y
0

+o00
datd
<cf 100 aax
0
The proof of the theorem is then complete. O

3. Restricted weak-type estimates

In this section we prove a restricted weak-type estimate for spherically symmetric
solutions to the wave equation with non-zero initial velocity.
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Theorem 3.1. Let « > —1/2 and let

92 %) 92 (. x) + 2+ 1 9 . %)
—u(t,x) = —u(tx —u(t,x),
or? ox2 x  0x

u(0,x) =0, %u(O,x):l//(x).

. . lu(t, x)|
Then the maximal function sup
O<t<+o00

satisfies the weak-type inequality

4a+4
A 203

/ x2a+ldx
{0<x<+oo, sup M>A}

O<t<+o00

4a+4
2043 2a+3

e +eo 4a+4 da+4
<ol [ e ras e | [ o ea)
0 0

t,
Proof. Observe that when « = —1/2 then, by d’Alembert’s formula, u(t, x) =

x+t

1
% Y(y)dy. In this case the maximal operator is controlled by the Hardy—
xX—t

Littlewood maximal function and the required weak-type inequality follows. In
+00

the following we assume o > —1/2. Since u (¢, x) = / K, x, Y (y)dy, we

0
start by estimating the kernel K(z, x, y) and, as before, when 2t +2 = 2N + 1 is
an odd integer, the estimates are immediate. Indeed if [x — 7| < y < x + ¢, then

2 2 0
yo+xT—t
Py_1 (7>
2xy

not an integer the estimates are more delicate.

< cand [K(t, x, y)| < ctx " 1/2y2+1/2 When o + 1/2 is

Lemma 3.2, i) LetO <t <xandx —t <y < x4+t Then
K@, x, y)| < cx—o71/2yatl/2,

When o + 1/2 is an integer this estimate also holds in the range |x —t| < y <
X+t
ii)Let0 <x <tandt—x <y <t+x. Then

4xy
—a—1/2,0+1/2 -
|K(t7x1y)|fcx o1/ yOI <1+]0g((x—|—y)2—t2>>

iii)Let 0 <x <tand(0 <y <t — x. Then

4xy atl/2 ?—(x — y)?
K(, x. < py—o—1/2vet1/2( M 1+1 > ||
1K, x, )| < ex y <t2—(x—y)2) < * Og<t2—(x+y)2)>
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r b
Proof. Since F (a,b;a+b;z7) = —%

K(t, x, y) in a neighborhood of y = 7 — x has a logarithmic singularity and the
lemma follows. O

log (1 —z) + O (1), the kernel

. . . . u(t, x u(t, x

We split the maximal function into  sup jutt. )| and  sup jutt. )|
0<r<x/2 t x/2<t<+00 t

turns out that the first piece is controlled by a truncated Hardy-Littlewood maximal

operator, while the second is dominated by a multiple of x~%~3/2,

It

Lemma 3.3.

400 1 x+t
sup f_l/ K@ x, nIY(ldy <c sup — () dy
0<t<x/2 0 0<r<x/2 2t x—t

and

4a+4
A 2043

2a+1 i Jott gt
X dx <c |r(x)]| 2043 x dx.
{O<x<+oc, sup M>A} 0

0<r<x/2

Proof. f0 <t <x/2andx —t <y < x +1t, then |K(¢, x, y)| < c and

x+t

+o00
! /O K Woldy <5 [ woldy

Since the Hardy-Littlewood maximal operator is bounded on L7 (R, dx) if
1 < p < 400, by Lemma 2.8 the truncated Hardy-Littlewood maximal operator
is bounded on L7 (R, x22+1 gx) and the lemma follows. m]

Lemma 3.4.

+o00
— / K, x, )] 9] dy
x/2<t<+00 0

2043

A 12 e dotd ol o4
< ex—Y (f W)y 2dy + {f () Byt dy} )
0 0

and

4o+4
A 2a+3

x2a+ldx

\/%0<x<+oq sup |14(i.x)\ >)\}

x/2<t<+o00
2043 datd

+00 +oo « Joa+d \ 2013
< c(/ ()| @+ 2dx + {/ |1//(x)|wx2“+ldx} > .
0 0

Proof. If x/2 <t < x, then |K(¢, x, y)| < cx~®~1/2y2+1/2 and

+00 +00
! / K, x, )| [WO)] dy < ex—e=3/2 / Y2 g dy.
0 0
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Ifx <tandif 0 < ¢ < 1, we split the domain of integration 0 < y < ¢ + x

4
a2 Then

into four pieces using the increasing function y —> —————.
£ —(x—y?

+00
t“/{ , } K, x, I y(nldy < cx“"‘”/ Y2 ()| dy,
0< S 0

2—(x—y)2

: 0

+o00
t“/ , K, x, )| [y dy < cx“"‘3/2/ Y2 1)l dy.
{l+s< X <+oo}

2—(x=y)?

4xy

If x < tand ¢is small, thentheset {1 —e < ————
£ —(x—y?

< 1} is contained

. {t—x }
in <y<t—x¢and
2
! /{ IR Y] dy
l—e<

4xy
22 T 1}

r—(x—y)?
< Ctil x7a71/2 a+1/2 10 <7 d
- /{1‘8<,zgyv)z<‘} ’ GEIE »? e

t—x t2 _ ()C _ y)2
—a-3)2 —a—1)2 ==y 2at1
< cx [ y 10g<t2—(x+y)2>|w(y)|y dy

2

i (12— (x— )P dy | R
< Cx—a—S/z{/ logZat1 <4 J >_y}
B = ?—x+y*)y

o0 do-+4 Tt
: {f [y ()| 243 yz““dy}
0

Hoe dotd
<cxTe3? / [y ()| 23 y2tidy
0

20+3
da+4

4xy

Similarly, if x < ¢ and ¢ is small, then {1 < —————
©?—(x—y?

<1 —i—g} is con-

tained in {r — x < y < min{¢, 2(t — x)}} and

o Eer ol
{]< t2,(X;y)2 <1+8}

s min{r,2(t—x)} 12 4xy 2a41
< oy~ = log| ————— “d
- /H ' g((x+y)2—t2)|w(y)|y ’

20+3
da+4

Hoe datd
<cx 2 f [y (y)| 2253 y*@tldy
0
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Since
(Z/)‘)Z/(Z(H—})
4at+4 dot+4 dat+d
A2g13/ x2otl gy = )ngi3/ x2etl gy — cz 2213 ,
{0<x<+oo,zx*‘)‘*3/2 >A} 0
the lemma follows. O
The proof of the theorem is then complete. O

Corollary 3.5. Let

— jut, )

O<t<+00

be the maximal operator defined in the previous theorem. If xg(x) is the charac-
teristic function of a measurable set & in (0, +00), then

4a+4
)L 2a+3

x2tlgy < c/x2“+]dx.

\/{O<x<+oo,Wxg(x)>)»} &

In particular, this operator maps the Lorentz space L2+ 1 (R, x2*1dx) into

Lo dotd oo 2a+1
the Marcinkiewicz space L2¢+3 ™ (R, x dx) boundedly.

Proof. By the theorem,

Ja+4
2013\ o3
Ao 4 2t at1/2 2at1 g, | <
A2043 x“*Tldx <c X dx + X dx ,
{0<x<+400,Wyg (x)>1} & &

2043
da+4

but it is easy to see that /x“+1/2dx <c {/x2“+1dx
13 I3
Indeed,let D > 0,1 < p,q < 400, 1/p+1/q = 1. Given a set § in R,

define the set U in R, via the equality xy(x”) = xg(x), so that |U| = / dt =
U

D/xD’ldx. Then
I3

Ul 1/p
D/XD/Pd_x — / t‘/l’ﬂ 5/ t~Vage = p|‘l,(|l/P = p{D/xD_ldx} .
& X U t 0 & 0

0
It follows from the above corollary that if # (0, x) = 0 and if % u(0, x) is locally

4 4
in L” (R, x>t dx), ot
20+ 3

u(t, x) —u(0, x) 0 .
m ———— = o u(0, x). However, this almost everywhere convergence

< p < 400, then for almost every x in R one has

t—>0+ t
holds for every 1 < p < 4-o00.
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Corollary 3.6. If the function (x) is integrable in any interval a < x < b,

b
/ [V (x)| dx < 400, then, for almost every x in this interval one has
a

. u(t, x
lim @ x) =Y (x).
t—0+ t
u(t, x)
Proof. In order to prove the almost everywhere convergence of ast —

0+, it suffices to obtain the boundedness of the truncated maximal operator
u(t, x)

, where e(x) is some positive function. Now recall that waves
O<t<e(x)

propagate with finite speed and that u(#, x) depends only on values of ¥(y) in the
interval x — ¢ < y < x + t. Moreover, we have seen in Lemma 3.3 that when
0 <t < x/2,then |[K(¢, x, y)| <c, so thatif e(x) < x/2 we have

x+t

1
<c sup — Y (x)|dy.
O<t<e(x) 2t x—t

u(t, x)
t

O<t<e(x)

Since this truncated Hardy—Littlewood maximal operator is of weak-type (1, 1),
the corollary follows. O
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