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Abstract. We simplify the Steinberg presentation of SL,(F;), where n > 1 and Fy is
any finite field with d elements. That presentation has the elementary matrices e;; (r), with
i,je{l,...,n},i # jandr € Fg4, as generators, and (E1)—(E3), described at the opening of
this work, as relations. The presentation that we shall obtain reduces the number of generators
e;j (r) and relations (E1)—(E3). In particular, relations (E3) are considerably reduced.
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Introduction

In this paper we study some presentations of the special linear groups SL, (Fy),
on a finite field F;, where n > 3 and d = p™, with m > 1 and p an odd
prime. A presentation of SL,, (F), obtained by determining an isomorphism among
these groups and the Steinberg’s ones St, (Fy), is described in [2]. Our work has
been devoted to simplifying and remarkably reducing in number the relations of
SL, (Fy) for the group presentations described in [2]. We notice that, obviously, the
presentations of SL, (F;) = SL(V), where V is a vector space of dimension n on
F,, depend upon the choice of a basis for V. In [1] and [4] suitable presentations for
the special linear groups and for the Steinberg’s groups are determined and these
do not depend upon the choice of a basis for V. In [2] it is proved that the group
SL,(Fg) has a presentation with abstract generators x;; (r) (Wherei, j € {1,...,n},
i # jandr € Fy) and relations (E1)—-(E3) are given at the beginning of that paper.
The abstract generator x;;(r) corresponds to the elementary matrix e;;(r), which
has r in the (i, j) entry, 1 on the whole principal diagonal and O in the other places.
Then, the obtained presentation simplifies and remarkably reduces the previous
relations, in particular (E3). In fact, if i, j, k € {1, ..., n} are fixed and distinct, the
number of relations in (E3) (after a reduction of the generators) is p*”; we reduce
such a number to m?. Such results are described in Proposition 3.

Let us fix the notation for the following: p will denote an odd prime, m an
integer > 1, and n an integer > 3. Moreover, we shall setd = p™.
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F, will denote a finite field with d elements.
In [2] it has been proved that

SL,(Fq) = St,(Fq). ey

Let us recall that St,(Fy) is an abstract group having generators x;;(r), where
reFyi,je{l,...,n}andi # j, with the following relations:

(E1)  xij(Mxii(s) = x;5(r +5);
(E2) [xij(r),xkl(s)] =1lifj#kandi #1
(B3)  [xij(r), xx(s)] = xi(rs) if i, j and k are distinct.

In the isomorphism (1) every generator x;;(r) of the abstract group St,(Fz)
corresponds, in SL,(Fy), to the elementary matrix e;;(r). Consequently, we can
consider the generator x;;(r) just as the matrix e;; (), and use all the matrix calculus
rules valid in SL, (Fy).

The field F, is a vector space of dimension m over the field F,, and it has
a basis having the form {1, «, .. ., oz’”’l}; so all elements of F; can be written in
the form

Ao+ Ao+ Apa™ ()

where the coefficients A, . .., A,,—1 are integers uniquely determined mod p.
Letnow i, j € {1,...,n} be fixed, withi # j.If r € F; is a generic element
expressed in the form (2), by relation (E1) one immediately has that

xij (r) = xy (D) 0x (@)™ (@At 3
and also
xij ()P = x;5(0) = 1. “4)

Obviously, (4) follows from the fact that the characteristic of Fy is p.

By (3) it follows that all the generators x;;(r) of SL, (Fy) are contained in the
subgroup generated by x;; (1), x;; (@), ..., x;j ()™ '; then all generators x;; (r) with
r ¢ {l,a,...,a™ '} can be eliminated from the presentation of SL, (Fy) given
in (1).

Now, we ask ourselves what relations (among (E1)—(E3)) remain between the
generators x;; (1), x; (), ..., xj (1), after we have eliminated the unnecessary
ones.

Ifi,je{l,...,n} andi # j, let us denote by ¢;; the matrix having 1 in the
place (i, j) and O elsewhere. The matrices ¢;; verify the following identities:

0, ifi i
€€ = ) .# / )
€1, if j=k.

We now set
A(i,j)={1+re,~j |reF,},

where [ is the identity matrix of order .
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Proposition 1. A(i, j) is a subgroup of SL,,(F), which is generated by the elem-
ents x; (1), x;i(0), ..., X (o"~1); moreover it is isomorphic to the direct product
Z'l’} =Z,x---x1Z,.

—_——

m =times
Proof. Since I + re;; = x;;(r), by relations (E1) it follows at once that A(i, j) is

a subgroup of SL, (Fy); it is generated by x;;(1), x;;(c), ..., x,-j(am’l) by virtue
of (3). A presentation for z, is

Zy=(yo,....yma |y =y ==y =1,
[y, vs1 =1 it rsef0,1,....,m—1}) (6)
By relations (E1), it follows at once that the elements x;; (1), ..., x;; (o1 verify

the relations given in (6); therefore the correspondence yo — x;;(1), y1 = x;j (o),
e Ym—1 > X (1) induces an epimorphism from Z’p” into the group A(i, j).
But A(i, j) has order p™ and p™ = |Z7|, therefore A(i, ) = Z,. O

Now, using the isomorphism established in Proposition 1 and the presentation
of Z7) given in (6), and using the standard properties of subgroup presentations
(see, e.g., [3]), we can replace all relations (E1) (those which involve only the
generators x;; (1), ..., x; (" 1)) by the following ones:

(El)  x;(DP = x;()f =+ = x; (@™ HP,
(E1) [xif(“r)’xij(as)] =1 if r,se{0,1,...,m—1}.
Since i and j are generic, relations (E1’) and (E1”) replace relations (E1) for

all pairs of indices i, j € {1, ..., n}, withi # j.
Let us point out that relations (E2) amount to the following ones:

(B2) [xj@), xu(@)]=1 if j#k and i#1,

where r, s € {0, 1,...,m — 1}. In fact, if p, o are two generic elements of F,
wehave p = Ao+ A1 4+ -+ A1o' 0 = po + pia + - - - 4+ o™, for
suitable integer coefficients A, . . ., Ay—1, Mo, - - -» Um—1 considered mod p; hence,
by (3) it follows that

[x5(0), X1 (0)] = [x3(ho + Ao + -+ + Ay—go™ 1),
X (o + 1+ -+ 1™ )]
m—1Am—
B

X (DM0xg (@)1 ("] (7)

Then, if relations (E2") hold, it is clear that all powers and all possible products
made by combining the elements x;; (1), x;; (), .. ., xjj (@Y, xg (1), xp (), ...,
xx(@"~!) commute with each other. Consequently, relations (E2’) and (7) imply
that [x;;(p), xi(0)] = 1, for all p, 0 € F;. Therefore, (E2) are a consequence
of (E2)).
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Let us now examine relations (E3). By virtue of (3), relations (E3) take the
following form:
[xij(l))‘oxij(a)’\] .. .xl:]'(Olm_]))Lmil, Xjk(l)ﬂox]'k(d)m .. .x.jk(am_l)ﬂmil] =
N
= xie(1)xi (@) . xp (@)™, (8)
if i, j, k are distinct. Here Ao, A1, - .oy Am—1s 0> K1y -« s Bm—1s L0s L1y ooy =1
are integers considered mod p and ly, [y, ..., [,—1 are uniquely determined by
condition
(o +Aa 4+ A1 Do + i+ -+ g =
:lO+lla+"'+lm—]am_]- 9
In other terms, the left-hand side in (9) is an element of F; and consequently, as
such, can be written uniquely in the form /o + [joe + - - - + Ly_1o™ 1 where Iy, I,
. .» Iy—1 are integers considered mod p.
Notice that, for each fixed i, j, k € {1, ..., n}, with i, j, k distinct, the number
of relations (8) which involve x;; (1), ..., xij(a'”_l), Xp(1), ..., xjk(oz’”_]), xix(1),
o xi(e™ Y s pzm.

Now let i, j, k € {1, ...n} be fixed and distinct; let us consider the following
3m elements:

xii(e),  xp(a’),  xp(a’), (10)

wheres =0,1,...,m — 1.
The relations that involve only elements in (10) are:

xi(DP = = x @ = xp (D = = xp@H =1, (11)

[xi (@), x; ()] = [xi (@), xp(@®)] = 1, 12)
ifr,se€{0,1,...m—1};

[xij (@), xix(a®)] = 1, (13)
ifr,s€{0,1,...m—1};
xp(D? = = xp@mH =1, (14)
[x ("), x(a’)] =1, (15)
ifr,s €{0,1,...m — 1}; finally,
[xix ("), x (@] =1, (16)

ifr,s €{0,1,...m—1};

—I\Mm— —1\Hm—
[ (D2 oxg @D (DML x (e =

RN
= xa (D0 xp (™ 17
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where
o+ M+ A1 D (o + proe+ -+ i) =
h+ho+---+ lm—]am_]v
and Ao, ..., Am—1, Ko, -+ , m—1 are integers considered mod p which uniquely
determine the elements [y, - - - , [,,—1 in F .

Our next aim is to prove that the subgroup of SL,(F,) generated by the elements
in (10) is isomorphic to a suitable semidirect product. After we have proved the
existence of such an isomorphism, we shall proceed to a substantial reduction of
relations (17), corresponding (for 7, j, k fixed and distinct) to relations (E3) which
involve the elements in (10) only. Notice that relations (11) and (12) are part of
relations (E1’) and (E1”), just as (14) and (15) are. Relations (13) and (16) are part
of relations (E2).

Leti, j, k be fixed and distinct elements of {1, ..., n}, and let

P(iajak)={I+xeij+y€ik+zejk|-xay7Z€Fd}' (18)

P(i, j, k) is the set of matrices of SL, (F;) that have 1 on the principal diagonal
and 0 in the other places, except in the places (i, j), (J, k), and (i, k): in all such
places the elements in F; can be chosen freely.

Proposition 2. P(i, j, k) is a subgroup of SL,(F;) which has order d*> = p*"
and is generated by the elements x;;(1), x;j(@), ..., X ("1, xi (D), xix (@), ...,
xik (@), x (D), x (@), ..o, xpla™ ).

Proof. If I 4 re;; + sey +tej € P(i, j, k), by (5) it follows that

1+ r€jj + S€ix + 1€k
=+ re,-j)(l + (s — rt)eik) (I + tejy)
= x5 ()X (s — r)x (). (19)

Let us observe that x;;(r) € A(, j), xi(s — r1) € A(i, k), xji(t) € A(J, k); then,
by Proposition 1 and (19) it follows that P(i, j, k) is generated by x;;(1), ...,
xip (™), (1), o x (@™, x (D), L (@), u]

Suppose now that the m — 1 elements of Fy, o, o™t a? 2 are written

as linear combinations of the basis 1, «, . .., @™~ ! as follows:

am+s = Ao, m+s + al m+s™ + -+ amfl,ersamila (20)
wheres =0, 1, ..., m—2,and g;; are suitable integers uniquely determined mod p.
If k is an integer > 1, we shall denote by Z’; the direct product of k copies of Z,,.

Let us consider now the abelian groups Z') and 2} x Z7. By Aut(Z'} x Z'}}) we
shall denote the group of automorphisms of the group Z'7 x Z'}. In the following
we shall identify each matrix A € G Ly, (Z,) with the induced automorphism f4 €
Aut(Z; x Z)) and we shall misuse the notations by writing A € Aut(Z} x Z)
instead of f4 € Aut(Z’; X Z'I’}). Notice that, if A, B € GL3,(Z,), then the
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product AB corresponds to the composition fp o fa; therefore, if we have to
verify some relation concerning the automorphisms f4, it suffices to examine the
corresponding relation between matrices with the usual row-by-column product.
Now, given the abelian group Z'I’j, let A = {ey, ..., e,} be the set of its canonical
generators, namely e; = (1,0,...,0),...,¢e, = (0,0,...,0,1). Consider the
correspondence

¢:A— Aut(Z'I',1 X Z'I'f)

such that

I B I B I B,_
6’1'—>A0=<0 IO>,€2'—>A1=<O Il>,€m'—>Am1=<O 7 l>,

where [ is the identity m x m matrix, 0 is the zero matrix of order m and By, .. .,
B, are the following m x m blocks:

By =1,
0 ... 0 aom
10 .0 a
B =01 0 am |
00 ... 1 apim
O . O a(),m ao,m+1
O . O al,nl a],m+1
Bo=|1 - 0 amn az,m+1
0 1 amfl,m An—1,m+1
0 aom aom+1 -+ A02m—2
O Alm arm+1 . e ao,2m—2
B, =|0 am A2m+1 - A02m—2
1 An—1,m Am—1,m+1 .. Au—12m—2

In other terms, block Bj is built starting from By = I, by eliminating the first
column of By and inserting, as the last column, the m-coefficients in (20) which
determine o as linear combination of the basis {1, «, . .., & '}. The block B, is
built starting from Bj, by eliminating the first column of B; and inserting, as the
last column, the m-coefficients in (20) which determine o *! as linear combination
of the basis {1, «, ..., o™ '}, and so on until we arrive at B,,_|.

Notice that all the matrices Ao, ..., A,,—; have order 2m x 2m and determi-
nant 1; consequently, they are contained in SL,,, (F,) and induce m automorphisms
of the group Z/} x Z/}.
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Remark. Letus consider now F, as a vector space V of dimensionm onF ), having

basis X = {1, a, ..., " '}. Let us define the application

fo:V—V
such that

fa(x) = ax,
for each x € V. Therefore f, € GL(V) and folf = fyo---0o f,issuch that

| S
k times
Kooy ok .
[y (x) =o'x, if k>1. (%)

Immediately we can easily verify that
Matx (fo) = B1.

Then, since Matyx, : GL(V) —> GL,,(F,) is a group isomorphism, we get
Matx(f3) = By,

for each integer k > 1.
On the other hand, by (20) and () it follows that:

Matx () = By, if 1<k<m-—1.
Hence
Bf =By, if 1<k<m-—1
O

The group Z7) is a direct product of m copies of Z,; thus we have the following
presentation:

Z';}%(zo,...,szl Z(I;=~-~=Zp =1,[zi,z;]=1 2D

m—1 =

if i,je{0,....m—1}).
‘We can assume that
zZ0 <— ey, R Zm—1 <—> en (22)

under the isomorphism in (21). By matrix calculations we can easily verify that
the matrices Ay, ..., A, satisfy the relations of the groups Z”, as given in (21).
So, the application ¢ extends uniquely to a group morphism (which we denote by
@ again)

@2 — Au(Z) x Z)). (23)
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Now let us consider the semidirect product S of Z'; and (Z7; x ZI}) with respect to
the action ¢:

S =7 x, (Z0 x ZI).

The direct product (Z’;} X Z’;}) has the following presentation (see [3] for details):

ZZ’XZ'Z}E
(X0, Xty o ym X = =xD =y ==yl =1,
[xi,x;] =1 if i,j€0,...,m—1;
[yvi,yjl1=1 if i,j€0,...,m—1;
[xi, y;j1=1 if i,j€0,....m—1). (24)

We can obviously assume that generators x;, y; correspond under the isomorphism
(24) to elements X; and Y;, respectively, where the last ones are given by the
following 2m-uples:

Xo=(1,0,...,0,0,...,0), ..., Xp_1 =(0,0,...,0, 1,0,...,0),
)

place
m—th

Yo=(0,0,...,0,0,.... 1 ,0,...,0), ..., Y

place
(m+1)—th

=(0,0,...,0,0,...,0, 1 ).
t

place
2m—th

Using the presentations of Z) and Z)) x L} established in (21) and (24),
respectively, we see that S is isomorphic to the abstract group 2 given by the
following presentation:

Q :(zO,...,zm,l,xo,...,xm,l,yo,...,ym,l |
zg=~~~=zf;_1=1 (25)
[zr, 2] =1 se r,sef0,1,...,m—1} (26)
R S @7)
[y, ys]l =[x, xs] =1 se r,se{0,1,...,m—1}, (28)
[yr, xs] =1 se r,se{0,1,...,m—1}, 29)
XSS = Xy Zs se r,se{0,1,...,m— 1}, (30)
ZsYE = YrZs se r,s€0,1,...,m—1}). (31)

Relations (25) and (26) define the subgroup 7'} and relations (27), (28) and (29)
define the subgroup Z/; x Z/; (i.e. the normal factor of the semidirect product S);
finally, relations (30) and (31) define the action of the generators z; on the generators
X0s+++» Xm—1,Y0 - - -» Ym—1. Now, let us observe that in the isomorphism between
the abstract group €2 and the semidirect product S, the elements of Q2 given by

iz zj Zk %k lk
XooXp oo X 15 Yo s Y1 oo v o0 Y
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correspond, respectively, to the following elements of S:

fai(Xo)s ooy fa, X1, fa,(Y0)s ooy fay (Y1),

where i,k = 0,1,...,m — 1. Let us note that fs.(X;), fa,(Y,) are identified,
respectively, with the matricial products A;X; and A;Y,, where X; and Y, are
thought of as 2m x 1 matrices (X ; and Y, are the canonical generators of the group
Z'I’} X Z'I’}, as one sees from the notation introduced after the presentation (24)). By

the definition of Ay, ..., A,—1 it follows at once that the previous elements of S
are, respectively, given by:

AOXO = X(), AOXI = Xls ceey AOXm—] = an—]v

Am—IXO = XOs Am—]XI = Xls ey Am—]Xm—] = an—]v

AoYo = Xo+ Yo

A1 =X+ 1

Ao =Xo+ 1,

AOYm—Z = Xm—2 + Ym—2
AOmel =Xn1+Yn

AYo=X1+ Y
AYi =X+

A, =X3+1

AYp o =Xpu1+Yno
AIYm—] = aO,mXO + a],mX] +-- 4+ am—l,me—l + Ym—l

AYo=Xo+ Y
AyY) = X3+

AY,=X4+ 1,

ArYy 3 =Xpu 1+ Yns3

AyYy o =aomXo+ar X1+ -+ an 1 mXm1+Yn o

ArYy—1 = aom1Xo tarmr Xi + -+ am—1m1 Xm—1 + Y1 =
An1Yo=Xu-1+ Y

A Yy =aomXo+armX1+ -+ anm_1mXm_1 +1i

An1Ys = aom1Xo +arm1 X1+ +am1mp1 Xm1+ 12

Am—l Ym—] = aO,Zm—ZXO + a1,2m—2X1 +-- 4+ am—l,2m—2xm—] + Ym—l

By the isomorphism between the semidirect product S and the abstract group €2,
the previous identities in S correspond to identities in €2. In fact, A;X; and
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ArY, correspond in S, respectively, to the actions of z; on x; and of z; on y,
in Q.

Hence, from these last identities it follows that relations (30) take the following
equivalent form in the abstract group 2:

[, 5,0=1 if r se{0,1,...,m—1}, (30b)

since the action of z; leaves xq, x1, . .., X, _1 fixed.
On the other hand, relations (31) take the following equivalent form:

—1 —1
[yo, <0 ]zxo s

—1 —1
[yl7z() ]:x] ’

—1 -1
[ymfl’ 20 ] =X,_1

-1 -1
[)’07 Zl ] = xl ’

-1 —1
[)’I,Zl ]:x2 s

-1 -1
[Ym—Zy Z] ] = xﬂl—] ’

—ag,m —Am—1,m

[y,nq,Zfl] = Xy X s
: (31b)

-1 —1
[)707 Zm—Z] =Xn-2

-1 —1
1, mez] = Xu_1

—a0,m —Adm—1,m

1
V2, 2, 0l =x0 " ooux,

—1 —a0,2m-3 —Am—1,2m-3
[Ym-1, mez] = Xy e X s

-1 -1
[yo, mel] = Xu_1

0,m —Adm—1,m

1 —a,
izl =x0 " ox, ",

[ymfl, Zn—11_1] — xo_aO,Zm—Z . .xn_;in;—l,Zm—Z
Notice that in transforming relations (31) into (31b) we have used the fact that
X0, - .., Xm—1 commute each other in 2.
Let us now consider the correspondence given by:

Zr = -xjk(ar)7 -xS = -xl'k(as)7 yt = xij(at)7 (32)

where r,s,t = 0,1,...,m — 1, from the set {zo,...,Zm—1,X0-++»Xm—1,
Y0 -+ -, Ym—1} in the group P(i, j, k). Let us observe that, by virtue of the pre-
vious correspondence, relations (14) correspond to (25), (15) to (26), (11) to (27),
(12) to (28), (13) to (29), (16) to (30b).

Now, let us examine relations (17) in connection with relations (31b).
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Choosing suitable integer exponents (considered mod p) Ao, Af,. .., Am—1, 1o,
Wi, .., Um—1 in (17) and keeping into account (20), gives at once that all relations
(31b) are satisfied in P(i, j, k) with x;;(«”) in place of y", with x jz(«*) in place

of z; and with x;(c) in place of x;. For example, setting Ag = +-- = A;,—2 = 0,
Am—1=Lpuo=0-=puu—>=0, wy—1 = —1, we have (by (20)):
(ho+ A4+ 1@ Do + i+ -+ o) =
—a®" % = —ag a2 — Ao — = Ayt om0
Hence
lo = —aoom-2, Iy = —aiom-2, e lm—1 = —am-1.m+1,

by which we obtain that
L (@™ ™), (@ ™) T = (1) 022 L (o) T2,

corresponding to the relation

[ty 2y = g 272 e

given in (31b). We can proceed analogously to verify that all relations (31b) are
satisfied. Consequently, by virtue of Proposition 2, there exists an epimorphism
from the abstract group 2 in P(i, j, k). On the other hand, 2 is isomorphic to
the semidirect product § = Z’; X (Z’; X Z’;), thus |Q| = p> = |PG, j, k)|;
therefore €2 is isomorphic to the subgroup P(i, j, k). Hence, in relations (17) we
can eliminate all those that do not appear in (31b). Then, having fixed distinct 7, j,
k € {1, ..., n}, the relations that involve the elements in (10) are (11)-(16), as well
as the following (which come from (17) after the above-mentioned reduction):

L (1), x (D71 = xp(1D) 7

[xij (@), x (1) '] = xu(e) 7,

[ (@™ ), x (D)™ = xp (@™ 7,
Lo (@™ ), x (D)™ = xg (@™ H7,
[ (1), x (@) ™' T = x (@)™
[ (o), x (@) ™' = xe (@),

: (E3)
[ (@™ %), xje(e) ™' = xu(e” )7,
L"), x o) ™' = xge (D)7 %0m L xy(o ) Tmt,

mfl) mfl)fl’

[ (D), x (@™ H™' = xp (e

[xij (@), x (@™ )1 = xig (1) 790m g (o™~ 1y~ m=tom

L (@), (@) T ] = i (1) 7022 (@) T2
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Notice that, for i, j and k fixed, there are m? relations (17b), whereas relations
(17) are p*™ in number. In conclusion, we have obtained the following result:

Proposition 3. Let n be an integer > 3, m an integer > 1, p an odd prime and
d = p™. Let « € Fy such that {1,«...,a" "'} is a basis of Fy as a vector
space over K ,. Then, the special linear group SL,,(Fy) has a presentation with the
following generator and relations:
Generators :
x;i(1), . ..,xij(oz'"—]), where i,j € {l,...,n} and i # j.

Relations :
xj(DP = xj@)?f = = xy(@" H? =1 (E1)
i), xii(@H]I=1, if r,s€{0,1,...,m—1}; (E17)
[xij(@), xpu@H)] =1, if j#kandi #1, (E2")
where r,s €{0,1,...,m —1};

relations given in (E3'), where i, j and k are distinct.

Example. In the case of SL3(F,) we have six generators a, b, ¢, d, f, which can
be respectively identified with the following matrices:

110 1 01
xp()=10 1 0], xsH=101 0],

0 01 0 0 1

1 00 1 00
(=11 0], (=101 0],

0 01 0 0 1

1 00 1 00
xi(1)=10 1 0], xp() =10 1 0

1 01 011

Relations (E1’) are the following:
a’ =bP =c? =dP =P = fP = 1.
Relations (E1”) become superflous.
Relations (E2') are given by:
ab =ba,af = fa,bd = db,
cd =dc,ce =ec,ef = fe.
Relations (E3), entirely written before their reduction, are 6(p — 1)? in number and
look as follows:
ad’a’d =0D", withl<r, s<p—1 (mod p)
Vb f=d”, withl <r, s<p—1 (mod p)
b =d”, withl <r, s<p—1 (mod p)
de’d e =", withl <r, s<p—1 (mod p)
eda’e"a = f", withl <r, s<p—1 (mod p)
fréfed =€, withl <r, s<p—1 (mod p).
Just as in the general case of SL,(F;), with n > 3, the relations are reduced to
(E3’), which are the following six:
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l[a,d1=ad 'a"'d=b""
b, f1=bf07 f=a"
le.b-N=cb'cTo=d"
[de ' N=de 'dle=c""!
le,a'l=ea e la= !
[fic 1= fc ' fle=el.
To complete the argument let us list the six subgroups P(i, j, k) (with i, j, k

distinct) that occur in the case of SL3(F,) and that are all isomorphic to the
semidirect product Z, X, (Z, x Z,):

1 y

P(1,2,3) = 01 z):x,y,zeF,s =(a,b,d),
0 1
1 y

P(1,3,2) = 01 0):x,y,z€F,¢ =(a,b,f),
0 1
1 0 x

P2,1,3) = y 1 z):x,y,z€F, =(b,c,d),
001
1 00

P2,3,1) = x 1 yl:ix,y,zeF,; =(c,d,e),
z 01
1 0

P3,1,2) = 0 0):x,y,z€F,¢t =(a,e, f),
y z 0
1 00

P3,2,1) = x 1 0):x,y,zeF,t =(ce f).
y z 1

Notice that, in the particular case of SL3(F,), subgroups P(i, j, k) are all
p-Sylow subgroups since |SL3(Fp)| =2p°(p> - DH(P* - D).

Acknowledgements. 1would like to thank R. Dvornicich for having pointed out this problem
to me and for his suggestions.
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