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Abstract
The relative fixity of a digraph� is defined as the ratio between the largest number of vertices
fixed by a nontrivial automorphism of � and the number of vertices of �. We characterize the
vertex-primitive digraphs whose relative fixity is at least 1

3 , and we show that there are only
finitely many vertex-primitive digraphs of bounded out-valency and relative fixity exceeding
a positive constant.
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1 Introduction

Throughout this paper, we use the word digraph to denote a combinatorial structure � deter-
mined by a finite nonempty set of vertices V� and a set of arcs A� ⊆ V� ×V�, sometimes
also viewed as a binary relation on V�. If the set A� is symmetric (when viewed as a binary
relation on V�), then the digraph � is called a graph and unordered pairs {u, v} such that
(u, v) and (v, u) are arcs are called edges of �.

The fixity of a finite digraph �, denoted by Fix(�), is defined as the largest number of
vertices that are left fixed by a nontrivial automorphism of �, while the relative fixity of � is
defined as the ratio

RelFix(�) = Fix(�)

|V�| .
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The notion of fixity of (di)graphs was introduced in a 2014 paper of Babai [1] (see also
[2]), where several deep results regarding the fixity of strongly regular graphs were proved
(these results were later used in his work on the graph isomorphism problem [3]). To convey
the flavour of his work, let us mention [2, Theorem 1.6], which states that the relative fixity of
a strongly regular graph (other then a complete bipartite graph or the line graph of a complete
graph) is at most 7

8 .
The study of the fixity of graphs continued in a series of papers [4–6] by P. Spiga and

coauthors (including the authors of the present paper), where the problem was studied in the
context of vertex-transitive graphs of fixed valency.

Let us mention that fixity is a well studied parameter in the slightly more general context
of permutation groups, where, instead of fixity, it is more common to consider the dual notion
of minimal degree of a permutation group G, defined by

μ(G) = min
g∈G\{1G } |supp(g)|,

where supp(g) denotes the set of all nonfixed points of g ∈ G. Note that the fixity of a digraph
� and the minimal degree of its automorphism group Aut(�) are related via the equality

Fix(�) = |V (�)| − μ(Aut(�)).

A vast majority of papers on the topic of minimal degree of permutation groups (including
the original work of Jordan on primitive permutation groups of minimal degree c for a fixed
constant c) concentrates on primitive permutation groups (see, for example, [7–12]). It is
thus natural to ask the following question:

Question 1 What can be said about a digraph with large relative fixity whose automorphism
group acts primitively on the vertex-set?

In this paper, we answer this question in the setting where the relative fixity is more than 1
3 .

In our analysis, we rely heavily on the recent classification of primitive permutation groups
of minimal degree at most 2

3 of the degree of the permutation group from [8]. The essence
of our work thus consists of determining the digraphs upon which the permutation groups
from this classification act upon.

Before stating our main result, let us first introduce a few graph theoretical concepts
and constructions. First, recall that the direct product of the family of digraphs �1, . . . , �r

(sometimes also called the tensor product or the categorical product) is the digraph �1 ×
· · · × �r whose vertex-set is the Cartesian product V�1 × · · · × V�r and whose arc-set is

A(�1 × · · · × �r ) = {
((u1, . . . , ur ), (v1, . . . , vr ))

∣∣ (ui , vi ) ∈ A�i for all i ∈ {1, . . . , r}} .

Recall also that a union of digraphs �1 and �2 is the digraph whose vertex-set and arc-set are
the sets V�1 ∪ V�2 and A�1 ∪ A�2, respectively. Note that when �1 and �2 share the same
vertex-set, their union is then obtained simply by taking the union of their arc-sets. Further, for
a positive integerm, letLm andKm denote the loop graph and the complete graph on a vertex-
set V of cardinality m and with arc-sets {(v, v) | v ∈ V } and {(u, v) | u, v ∈ V , u �= v},
respectively.

We now have all the ingredients needed to present a construction yielding the digraph
appearing in our main result.

Construction 2 Let G = {�0, �1, . . . , �k} be a list of k+1 pairwise distinct digraphs sharing
the same vertex-set �. Further, let r be a positive integer, and let J be a subset of the r-fold
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Vertex-primitive digraphs with large fixity

Cartesian power Xr , where X = {0, 1, . . . , k}. Given this input, construct the digraph

P(r ,G,J ) =
⋃

( j1, j2,..., jr )∈J
� j1 × � j2 × · · · × � jr

and call it the merged product action digraph.

Our interest lies in applying Construction 2 with G being the set of all orbital digraphs for
a primitive permutation group. In this case, we may assume that �0 is the diagonal orbital
digraph, that is, that �0 is the loop graph Lm where m = |�| is the loop graph. Meanwhile
the union of the remaining digraphs in G is the complete graph, that is,

Km =
k⋃

i=1

�i .

For the sake of a simpler and more compact presentation, we assume that this property holds
for all the families G.

Remark 3 We give some example to give a flavour of what can be obtained using Construc-
tion 2.

If r = 1, then P(1,G,J ) is simply the union of some digraphs from the set G.
If r = 2 and J = {(1, 0), (0, 1)}, then P(2,G,J ) = Lm × �1 ∪ �1 × Lm , which is, in

fact, the Cartesian product �1��1. (This product is sometimes called the box product, and
we refer to [13] for its definition.)

More generally, if J = {ei | i ∈ {1, . . . , r}}, where ei = (0, . . . , 0, 1, 0, . . . , 0) is the
r -tuple with 1 in the i-th component and zeroes elsewhere, then P(r ,G,J ) = (�1)

�r , the
r -th Cartesian power of the graph �1 ∈ G. More specifically, if �1 = Km and J is as above,
then P(r ,G,J ) is the Hamming graph H(r ,m) = K�r

m .

While J can be an arbitrary set of r -tuples in Xr , we will be mostly interested in the case
whereJ ⊆ Xr is invariant under the induced action of some permutation group H ≤ Sym(r)
on the set Xr given by the rule

( j1, j2, . . . , jr )
h = ( j1h−1 , j2h−1 , . . . , jrh−1).

(Throughout this paper, in the indices, we choose to write ih−1 instead of i h
−1

for improved
legibility.) We shall say that J is an H -invariant subset of Xr in this case. A subset J ⊆ Xr

which is H -invariant for some transitive subgroup of Sym(r) will be called homogeneous.
The last example of Remark 3 justifies the introduction of the following new family of

graphs.

Definition 4 Let r ,m be two positive integers, and let J ⊆ {0, 1}r be a homogeneous set.
The graph P (r , {Lm,Km},J ) is called generalised Hamming graph and is denoted by
H(r ,m,J ).

Remark 5 The generalised Hamming graphs H(r ,m,J ), where J is H -invariant, are pre-
cisely the unions of orbital digraphs for the group Sym(m)wr H endowed with the product
action (see Lemma 15 for further details).

Since the union of all nondiagonal orbital digraphs is Kmr , all the complete graphs are
generalised Hamming graphs. Furthermore, Kmr can be explicitly build from Definition 4
upon choosing J containing only the vectors with all entries equal to 1.
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A homogeneous set J is said to be Hamming if,

J =
⋃

h∈H

(
(X \ {0})a × Xb × {0}r−a−b

)h
,

for some nonnegative integers a, b such that a + b ≤ r and a transitive group H ≤ Sym(r).
It is said to be non-Hamming otherwise.

Remark 6 Let P(r ,G,J ) be a merged product action digraph where J is a Hamming set.
Since the union of all the digraphs that are not labelled by 0 is Km by assumption, upon
switching the order of the unions and of the direct products in Construction 2, we obtain that
every factor of P(r ,G,J ) (which we can now think of as a direct product of digraphs) is
isomorphic either toLm , toKm or toLm ∪Km . We can be more precise with this observation.
Build J ′ ⊆ {0, 1}r from J by substituting any nonzero entry of a sequence in J with 1.
Then

P (r ,G,J ) = P (
r , {Lm,Km},J ′) .

In particular, a generalised Hamming graph arises from Construction 2 if and only if J is a
Hamming set.

Remark 7 The ordering of the Cartesian components in the definition of a Hamming set does
not matter: indeed, a permutation of the components corresponds to a conjugation of the
group H in Sym(r), thus defining isomorphic digraphs in Construction 2.

We are ready to state our main result.

Theorem A Let � be a finite vertex-primitive digraph with at least one arc. Then

RelFix(�) >
1

3

if and only if one of the following occurs:

(i) � is a generalised Hamming graph H(r ,m,J ), with m ≥ 4, and, if m is optimal in
the sense of Definition 16, then

RelFix(�) = 1 − 2

m
;

(ii) � is a merged product action graph P(r ,G,J ), where r ≥ 1, where J is a non-
Hamming subset of Xr with X = {0, 1, . . . , |G| − 1}, and where G is as in one of the
following:

(a) G = {J(m, k, i) | i ∈ {0, 1, . . . , k}} is the family of distance-i Johnson graphs, where
k,m are fixed integers such that k ≥ 2 and m ≥ 2k + 2 (see Sect. 4.2 for details),
and

RelFix(�) = 1 − 2k(m − k)

m(m − 1)
;

(b) G = {QJ(2m,m, i) | i ∈ {0, 1, . . . , 	m/2
}} is the family of squashed distance-i
Johnson graphs, where m is a fixed integer with m ≥ 4 (see Sect. 4.3 for details),
and

RelFix(�) = 1

2

(
1 − 1

2m − 1

)
;
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(c) G = {Lm, �1, �2}, where �1 is a strongly regular graph listed in Sect.4.4, �2 is its
complement, and

RelFix(�) = RelFix(�1)

(the relative fixities are collected in Table 1).

Remark 8 Although we do not assume that a vertex-primitive digraph � in Theorem A is
a graph, the assumption of large relative fixity forces it to be such. In other words, every
vertex-primitive digraph of relative fixity larger than 1

3 is a graph.

Remark 9 The relative fixity can be arbitrarily close to 1. Indeed, this can be achieved by
choosing a generalised Hamming graph H(r ,m,J ) with m arbitrarily large.

By analysing the vertex-primitive graphs of relative fixity more than 1
3 , one can notice that

the out-valency of these graphs must grow as the number of vertices grows. More explicitly,
a careful inspection of the families in Theorem A leads to the following result, the proof of
which we leave out.

Remark 10 There exists a constantC such that everyfinite connected vertex-primitive digraph
� with

RelFix(�) >
1

3

satisfies

val(�) ≥ C log (|V�|) .

Observe that, for the Hamming graphs H(r ,m) with m ≥ 4, we have that

val (H(r ,m)) = r(m − 1) ≥ r log(m) = log (|VH(r ,m)|) .

In particular, as both expressions are linear in r , a logarithmic bound in Remark 10 is the
best that can be achieved.

One of the consequences of Remark 10 is that for every positive integer d there exist only
finitely many connected vertex-primitive digraphs of out-valency at most d and relative fixity
exceeding 1

3 .
As Theorem B and Corollary C show, this remains to be true if 1

3 is substituted by an
arbitrary positive constant. We thank P. Spiga for providing us with the main ideas used in
the proof.

Theorem B Let α and β be two positive constants, and let F be a family of quasiprimitive
permutation groups G on � satisfying:

(a) μ(G) ≤ (1 − α)|�|; and
(b) |Gω| ≤ β for every ω ∈ �.

Then F is a finite family.

Corollary C Let α be a positive constant, and let d be a positive integer. There are only finitely
many vertex-primitive digraphs of out-valency at most d and relative fixity exceeding α.

The proof of Theorem A can be found in Sect. 5, while Theorem B and Corollary C are
proved in Sect. 6.
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2 Basic concepts and notations

2.1 Product action

We start by recalling the definition of a wreath product and its product action. By doing so,
we also settle the notation for the rest of the paper. We refer to [14, Section 2.6 and 2.7] for
further details.

Let H be a permutation group on a finite set �. Suppose that r = |�|, and, without loss
of generality, identify � with the set {1, 2, . . . , r}. For an arbitrary set X , we may define a
permutation action of H of rank r over X as the the action of H on the set Xr given by the
rule

(x1, x2, . . . , xr )
h = (

x1h−1 , x2h−1 , . . . , xrh−1
)
.

Let K be a permutation group on a set �. We can consider the permutation action of H
of rank r over K by letting

(k1, k2, . . . , kr )
h = (k1h−1 , k2h−1 , . . . , krh−1) for all (k1, k2, . . . , kr ) ∈ Kr , h ∈ H .

If we denote by ϑ the homomorphism H → Aut(Kr ) corresponding to this action, then the
wreath product of K by H , in symbols K wr H , is the semidirect product Kr

�ϑ H . We call
Kr the base group, and H the top group of this wreath product.

Note that the base and the top group are both embedded into K wr H via the monomor-
phisms

(k1, k2, . . . , kr ) �→ ((k1, k2, . . . , kr ), 1H )

and

h �→ ((1K , 1K , . . . , 1K ), h) .

In this way, we may view the base and the top group as subgroups of the wreath product
and identify an element ((k1, k2, . . . , kr ), h) ∈ K wr H with the product (k1, k2, . . . , kr )h
of (k1, k2, . . . , kr ) ∈ Kr and h ∈ H (both viewed as elements of the group K wr H ).

The wreath product K wr H can be endowed with an action on �r by letting

(δ1, δ2, . . . , δr )
(k1,k2,...,kr )h =

(
δ
k1
1 , δ

k2
2 , . . . , δkrr

)h =
(
δ
k1h−1

1h−1 , δ
k2h−1

2h−1 , . . . , δ
krh−1

rh−1

)
,

for all (δ1, δ2, . . . , δr ) ∈ �r , (k1, k2, . . . , kr ) ∈ Kr , and h ∈ H . We call this action the
product action of the wreath product K wr H on �r .

We recall the condition for a wreath product endowed with product action to be primitive.

Lemma 11 [14, Lemma2.7A]Let K be a permutation group on� and let H be a permutation
group on �, with |�| = r . The wreath product K wr H endowed with the product action on
�r is primitive if and only if H is transitive on � and K is primitive but not regular on �.

We now introduce some notation to deal with any subgroup G of Sym(�)wr Sym(�)

endowed with product action on �r .
By abuse of notation, we identify the set � with

{{δ} × �r−1
∣∣ δ ∈ �

}
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Vertex-primitive digraphs with large fixity

via the mapping δ �→ {δ}×�r−1. We denote by G�
� the permutation group that G� induces

on �, that is,

G�
�

∼= G�/G(�).

(Recall that G(�) denotes the pointwise stabilizer of �.)
Moreover, recalling that every element of G can be written uniquely as gh, for some

g ∈ Sym(�)r and some h ∈ Sym(�), we can define the group homomorphism

ψ : G → Sym(�), gh �→ h.

This map defines a new permutational representation of G acting on �. We denote by G�

the permutation group corresponding to the faithful action that G defines on �, that is,

G� ∼= G/ ker(ψ).

Recall that a primitive group G, according to the O’Nan–Scott classification (see, for
instance, [15, III(b)(i)]), is said to be of product action type if there exists a transitive group
H ≤ Sym(�) and a primitive almost simple group K ≤ Sym(�) with socle T such that, for
some integer r ≥ 2,

T r ≤ G ≤ K wr H ,

where T r is the socle of G, thus contained in the base group Kr . A detailed description of
primitive groups of product action type was given by Kovács in [16].

Remark 12 By [17, Theorem 1.1 (b)], a group G of product action type is permutationally
isomorphic to a subgroup of G�

� wr G�. Therefore, up to a conjugation in Sym(�r ), the
group K can always be chosen as G�

�, and H as G�.

2.2 Groups acting on digraphs

We give a short summary of standard notations for digraphs and graphs.
If a subgroup G ≤ Aut(�) is primitive on V�, we say that � is G-vertex-primitive. In a

similar way, if G is transitive on A�, we say that � is G-arc-transitive. The analogue notions
can be defined for graphs, and when G = Aut(�) we drop the prefix G.

For any vertex v ∈ V�, we denote by �(v) its out-neighbourhood, that is, the set of
vertices u ∈ � such that (v, u) ∈ A�. The size of the out-neighbourhood of a vertex v,
|�(v)|, is called out-valency of v. If � is G-vertex-primitive, for some group G, then the out-
valency in independent of the choice of the vertex v, thus we will refer to it as the out-valency
of �, in symbols val(�). Whenever � is a graph, neighbourhood and valency can be defined
in the same way.

An orbital for G is an orbit of G in its induced action on � × �. An orbital digraphs
for G is a digraph whose vertex-set is �, and whose arc-set is an orbital for G. An example
of orbital for G is the diagonal orbital (ω, ω)G , whose corresponding disconnected orbital
graph is called diagonal orbital graph. We refer to [14, Section 3.2] for further details.

Note that an orbital graph for G is always G-arc-transitive, and, conversely, every G-
arc-transitive digraph is an orbital graph for G. Furthermore, if G ≤ Aut(�) is a group of
automorphism for a given digraph �, then � is a union of orbitals for G acting on V�.

The number of distinct orbital digraphs for G is called the permutational rank of G. In
particular, 2-transitive permutation groups are precisely those of permutational rank 2.
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If A ⊆ � × � is an orbital for G, then so is the set A∗ = {(β, α) | (α, β) ∈ A}. If
A = A∗, then the orbital A is called self-paired. Similarly, an orbital digraph is self-paired
if its arc-set is a self-paired orbital. Note that any G-arc-transitive graph is obtained from a
self-paired orbital digraph for G.

3 Orbital digraphs for wreath products in product action

Weare interested in reconstructing the orbital digraphs for awreath product K wr H endowed
with product action once the orbital digraphs for K are known.

Lemma 13 Let K wr H be a wreath product endowed with the product action on�r , and let

G = {�0, �1, . . . , �k}
be the complete list of the orbital digraphs for K . Then any orbital digraph for K wr H is a
merged product action digraph of the form

P
(
r ,G, ( j1, j2, . . . , jr )

H
)

,

for a sequence of indices ( j1, j2, . . . , jr ) ∈ Xr , where X = {0, 1, . . . , k}.
Proof Let � be an orbital digraph for K wr H . Suppose that (u, v) ∈ A�, where u =
(u1, u2, . . . , ur ) and v = (v1, v2, . . . , vr ). We aim to compute the K wr H -orbit of (u, v),
and, in doing so, proving that there is a sequence of indices ( j1, j2, . . . , jr ) ∈ Xr such that

A� = AP
(
r ,G, ( j1, j2, . . . , jr )

H
)

.

We start by computing the Kr -orbit of (u, v) (where by Kr we refer to the base group of
K wr H ). Since this action is componentwise, we obtain that

(u, v)K
r =

{(
(uk11 , uk22 , . . . , ukrr ), (v

k1
1 , v

k2
2 , . . . , vkrr )

) ∣∣ (k1, k2, . . . , kr ) ∈ Kr
}

=
{(

(u′
1, . . . , u

′
r ), (v′

1, . . . , v
′
r )

) ∣∣ (u′
i , v

′
i ) ∈ (ui , vi )

K for all i ∈ {1, . . . , r}
}

= A
(
� j1 × � j2 × · · · × � jr

)

where the last equality follows from the fact that there is a unique index ji ∈ X such that
(ui , vi ) is an arc of� ji . (Recall that orbital graphs partition the arc-set of the complete digraph
on �.)

The top group H acts by permuting the components, so that

(u, v)K wr H =
⋃

( j ′1, j ′2,..., j ′r )∈( j1, j2,..., jr )H

A
(
� j ′1 × � j ′2 × · · · × � j ′r

)

Therefore, the arc-sets of � and P (
r ,G, ( j1, j2, . . . , jr )H

)
coincide.

As their vertex-sets are both �r , the proof is complete. ��
Now that we know how to build the orbital digraphs for a permutation group in product

action, we ask ourselves what can we say about the orbital digraphs of its subgroups.

Theorem 14 Let G ≤ Sym(�)wr Sym(�) be a primitive group of product action type, and
let T be the socle of G�

�. Suppose that T and G�
� share the same orbital digraphs. Then the

orbital digraphs for G coincide with the orbital digraphs for G�
� wr G�, or, equivalently, for

T wr G�.
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Proof SinceG is a primitive group of product action type,we can suppose thatG is a subgroup
of G�

�wrG
� with socle T r , where r = |�|. Further, we set K = G�

�, H = G�.
As G ≤ K wr H , the partition of �r × �r in arc-sets of orbital digraphs for K wr H

is coarser than the one for G. Hence, our aim is to show that a generic orbital digraph for
K wr H is also an orbital digraph for G.

Let

G = {�0, �1, . . . , �k}
be the complete list of orbital digraphs for T acting on�, and let X = {0, 1, . . . , k}. Observe
that the set of orbital digraphs for T r can be identifiedwith theCartesian product of r copies of
G: indeed, we can bijectivelymap the generic orbital digraph for T r , say� j1 ×� j2 ×· · ·×� jr ,
for some ( j1, j2, . . . , jr ) ∈ Xr , to the generic r -tuple of the Cartesian product Gr of the form
(� j1 , � j2 , . . . , � jr ). This point of view explains why H can act on the set of orbital digraphs
for T r with its action of rank r .

Observe that the set of orbital digraphs for T r is equal to the set of orbital digraphs for
Kr . Moreover, T r is a subgroup of G, and Kr is a subgroup of K wr H . Thus the orbital
digraphs for G and for K wr H are obtained as a suitable unions of the elements of Gr .

By Lemma 13, the orbital digraphs for K wr H are of the form
⋃

( j ′1, j ′2,..., j ′r )∈( j1, j2,..., jr )H

� j ′1 × � j ′2 × · · · × � j ′r ,

for some ( j1, j2, . . . , jr ) ∈ Xr . Aiming for a contradiction, suppose that

� j1 × � j2 × · · · × � jr and �i1 × �i2 × · · · × �ir

are two distinct orbital digraphs for T r that are merged under the action of top group H , but
they are not under the action of G. The first portion of the assumption yields that there is an
element h ∈ H such that

(
� j1 × � j2 × · · · × � jr

)h = �i1 × �i2 × · · · × �ir .

By definition of H = G�, there is an element in G of the form

(g1, g2, . . . , gr )h ∈ G.

Recalling that, for any i = 1, 2, . . . , r , gi ∈ K , we get
(
� j1 × � j2 × · · · × � jr

)(g1,g2,...,gr )h = �i1 × �i2 × · · · × �ir .

Therefore, the merging among these orbital graphs is also realised under the action of G, a
contradiction.

By the initial remark, the proof is complete. ��

4 Daily specials

The aim of this section is to give a descriptions of the digraphs appearing in Theorem A.

4.1 Generalised Hamming graphs

In this section, we clarify Remark 5 and we compute the relative fixity of the generalised
Hamming graphs.
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Lemma 15 Let H ≤ Sym(r) be a transitive permutation group, let G = Alt(�)wr H
endowed with the product action on �r , and let � be a digraph with vertex-set V� = �r .
Then G ≤ Aut(�) if and only if � is a generalised Hamming graph H(r ,m,J ), where
|�| = m and J ⊆ {0, 1}r is H-invariant.

Proof By applying Lemma 13 to the group G, the fact that the orbital digraphs of Alt(�) are
L|�| andK|�|, andDefinition 4,we obtain that� is a generalisedHamming graphH(r ,m,J ),
with the prescribed properties that |�| = m and J ⊆ {0, 1}r is H -invariant. This completes
the proof of the left-to-right direction of the equivalence.

Let us now deal with the converse implication. Let � = H(r ,m,J ), where |�| = m and
J ⊆ {0, 1}r is H -invariant. Remark 7 gives us the opportunity of writing a normal form for
the Hamming graph H(r ,m,J ). Indeed, suppose to reorder the entries of the vectors in J
so that the representative of each orbit is a vector whose first entries are all 1, while the last
ones are all 0. More explicitly, up to reordering of the Cartesian components, there are two
nonnegative integers a, b with a + b ≤ r such that

J =
⎧
⎨

⎩

a+ j∑

i=a

ei
∣∣ j ∈ {0, . . . , b}

⎫
⎬

⎭

H

,

where ei denotes the r -tuple whose only nonzero entry is in the i-th position. Substituting
this J in Construction 2 and Definition 4, we obtain

H(r ,m,J ) =
⋃

h∈H

(
b⋃

i=0

Ka+i
m × Lr−a−i

m

)h

=
b⋃

i=0

(
⋃

h∈H
(Ka+i

m × Lr−a−i
m )h

)

.

Observe that the automorphism group of a Cartesian product of digraphs contains the Carte-
sian product of the automorphism group of the factors. Since the automorphism groups of
Km,Lm or Km ∪ Lm are isomorphic to Sym(m), the previous observation implies

Alt(m)r ≤ Sym(m)r ≤ Aut (H(r ,m,J )) .

Moreover, asJ is H -invariant, the action of rank r that H induces on�r preserves the arc-set
of H(r ,m,J ). As G is generated by Alt(m)r and H in their actions on �r , this implies that
G ≤ Aut(�), as claimed. ��

For the sake of clarity, we would like to stress the fact that, in Lemma 15, the parameters
m and r are not unique and they do not depend on � alone, but rather they depend on the
Cartesian product �r which G preserves. It follows that multiple groups with such property
for distinct Cartesian products can be found in Aut(�). On the other hand, note that, for every
� generalised Hamming graph, as |V�| is finite, the integer

m(�) := max
{
m ∈ N

∣∣ � is isomorphic to H(m, r ,J )
}

is well-defined. We would like to always choose m in such a way, as this guarantees that

Alt(m)r ≤ Aut (�) ≤ Sym(m)wr Sym(r).

Definition 16 We say that the parameter m of a generalised Hamming graph H(m, r ,J ) is
optimal whenever

m = m (H(m, r ,J )) .
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Instead of directly computing the relative fixity of H(r ,m,J ), we prove the following,
slightly stronger, result.

Lemma 17 Let K wr H be a wreath product endowed with the product action on �r , and let
� be a digraph with vertex set �r . Suppose that

K wr H ≤ Aut(�) ≤ Sym(�)wr Sym(r).

Then

RelFix(�) = 1 − μ (Aut(�) ∩ Sym(�)r )

|V�| .

In particular, whenever the parameter m is optimal in the sense of Definition 16, the relative
fixity of a generalised Hamming graph is

RelFix (H(r ,m,J )) = 1 − 2

m
.

Proof For simplicity sake, let us write |�| = m.We claim that the automorphism that realizes
the minimal support size must be contained in Aut(�) ∩ Sym(m)r (where Sym(m)r is the
base group of Sym(m)wr Sym(r)). Indeed, upon choosing an element of minimal support
size in K × {id} × . . . {id} and a transposition from the top group in Sym(m)wr Sym(r), we
obtain the inequalities

μ
(
Aut(�) ∩ Sym(m)r

) ≤ μ(K )mr−1

≤ (m − 1)mr−1

≤ min
{|supp(g)| | g ∈ Aut(�) \ Sym(m)r

}

This is enough to prove the first portion of the statement.
Since H(r ,m,J ) could be realized by multiple choices of the parameters m and r , we

choose m to be optimal in the sense of Definition 16. This assumption guarantees that the
automorphism group of the graph embeds into Sym(m)wr Sym(r). In particular, it is enough
to look at the action of Sym(m) on a single component. Thus, upon choosing a transposition
in Sym(m) × {id} × . . . {id}, we obtain

RelFix (H(r ,m,J )) = 1 − 2mr−1

mr
= 1 − 2

m
. ��

4.2 Distance-i Johnson graphs

The nomenclature dealing with possible generalizations of the Johnson graph is as lush as
confusing. In this paper, we are adopting the one from [18].

Let m, k, i be integers such that m ≥ 1, 1 ≤ k ≤ m and 0 ≤ i ≤ k. A distance-i
Johnson graph, denoted by J(m, k, i) is a graph whose vertex-set is the family of k-subsets of
{1, 2, . . . ,m}, and such that two k-subsets, say X andY , are adjacentwhenever |X∩Y | = k−i .
The usual Johnson graph is then J(m, k, 1), and two k-subsets X and Y of {1, 2, . . . ,m} are
adjacent in J(m, k, i) if and only if they are at distance i in J(m, k, 1).

Lemma 18 Let m, k be two positive integers such that m ≥ 2k + 2. The orbital digraphs
of Alt(m) and of Sym(m) in their action on k-subsets are the distance-i Johnson graphs
J(m, k, i), one for each choice of i ∈ {0, 1, . . . , k}.
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Proof Suppose that two k-subsets X and Y of {1, 2, . . . , n} are such that (X , Y ) is an arc of
the considered orbital digraph and |X ∩ Y | = k − i , for a nonnegative integer i ≤ k. Since
Alt(m) is (m − 2)-transitive and 2k ≤ m − 2, the Alt(m)-orbit of the arc (X , Y ) contains
all the pairs (Z ,W ), where Z and W are k-subsets with |Z ∩ W | = k − i . Therefore, the
statement is true for the alternating group. The same proof can be repeated verbatim for
Sym(m). ��
Lemma 19 Let m, k, i be three positive integers such that m ≥ 2k + 2 and i < k. Then the
relative fixity of the distance-i Johnson graphs J(m, k, i) is

RelFix(J(m, k, i)) = 1 − 2k(m − k)

m(m − 1)
.

Proof Under our assumption, by [19, Theorem 2 (a)], the automorphism group of J(m, k, i)
is Sym(m) in its action on k subsets. Its minimal degree is achieved by any transposition (see
[9, Section 1]), where

μ (Sym(m)) = 2

(
m − 2

k − 1

)
.

Hence, we find that

RelFix(J(m, k, i)) = 1 − 2k(m − k)

m(m − 1)
. ��

4.3 Squashed distance-i Johnson graphs

A usual construction in the realm of distance transitive graphs consist in obtaining smaller
example starting froma distance transitive graph and identifying vertices atmaximal distance.
We need to apply this idea to a family of generalised Johnson graphs.

Consider the distance-i Johnson graph J(2m,m, i), for some integers m and i , with m
positive and 0 ≤ i ≤ m. We say that two vertices of J(2m,m, i) are disjoint if they have
empty intersection as m-subset. Observe that being disjoint is an equivalence relation, and
our definition coincides with the usual notion of antipodal for J(2m,m, 1) seen as a metric
space. We can build a new graph QJ(2m,m, i) whose vertex-set is the set of equivalence
classes of the disjoint relation, and such that, if [X ] and [Y ] are two generic vertices, then
([X ], [Y ]) is an arc inQJ(2m,m, i)whenever there is a pair of representatives, say X ′ ∈ [X ]
and Y ′ ∈ [Y ], such that (X ′, Y ′) is an arc in J(2m,m, i). We call QJ(2m,m, i) an squashed
distance-i Johnson graph.

Observe that J(2m,m, i) is a regular double cover of QJ(2m,m, i). Furthermore,
QJ(2m,m, i) and QJ(2m,m,m − i) are isomorphic graphs, thus we can restrict the range
of i to {0, 1, . . . , 	m/2
}.
Lemma 20 Let m ≥ 3 be an integer. The orbital digraphs of Alt(2m) and of Sym(2m)

in their primitive actions with stabilizer (Sym(m)wrC2) ∩ Alt(2m) and Sym(m)wrC2

respectively are the squashed distance-i Johnson graphsQJ(m, k, i), one for each choice of
i ∈ {0, 1, . . . , 	m/2
}.
Proof To start, we note that the set � on which the groups are acting can be identified with
the set of partitions of the set {1, 2, . . . , 2m} with two parts of equal size m. Suppose that
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{X1, X2} and {Y1, Y2} are two such partitions and that ({X1, X2}, {Y1, Y2}) is an arc of the
orbital digraph we are building, with

min{|X1 ∩ Y1|, |X1 ∩ Y2|} = m − i,

for a nonnegative integer i ≤ 	m/2
. To determine the image of ({X1, X2}, {Y1, Y2}) under
the group action, it is enough to know the images of X1 and Y2, that is, of at most 2m −
�m/2� ≤ 2m − 2 distinct points. By the (2m − 2)-transitivity of Alt(2m), the Alt(2m)-
orbit of ({X1, X2}, {Y1, Y2}) contains all the arc of the form ({Z1, Z2}, {W1,W2}), where
{Z1, Z2}, {W1,W2} ∈ � and

min{|Z1 ∩ W1|, |Z1 ∩ W2|} = m − i .

To conclude, observe that � is the set of m-subsets of {1, 2, . . . , 2m} in which two elements
are identified if they are disjoint, and that

min{|X1 ∩ Y1|, |X1 ∩ Y2|} = m − i,

is the adjacency condition in an squashed distance-i Johnson graph. As in Lemma 18, the
same reasoning can be exteneded to Sym(2m). Therefore, the orbital digraphs of Alt(2m)

and of Sym(2m) in these primitive actions are the squashed distance-i Johnson graphs
QJ(2m,m, i), for some i ∈ {0, 1, . . . , 	m/2
}. ��
Lemma 21 Let m, i be two positive integers such that m ≥ 3 and i < 	m/2
. Then the
relative fixity of the distance-i Johnson graphs QJ(2m,m, i) is

RelFix(QJ(2m,m, i)) = 1 − 2k(m − k)

m(m − 1)
.

Proof Consider J(2m,m, i), the regular double covering of QJ(2m,m, i). In view of [19,
Theorem 2 (e)], the automorphism group of J(2m,m, i) is Sym(2m) × Sym(2), where
the central involution swaps pairs disjoint vertices. It follows that the automorphism group
of QJ(2m,m, i) is Sym(2m). Now, we can immediately verify that the stabilizer of the
vertex {{1, 2, . . . ,m}, {m + 1,m + 2, . . . , 2m}} is Sym(m)wrC2. The minimal degree of
the primitive action of Sym(2m) with stabilizer Sym(m)wrC2 is

μ (Sym(2m)) = 1

4

(
1 + 1

2m − 1

)
(2m)!
m!2

(see [8, Theorem 4]). Thus, we find that

RelFix(QJ(2m,m, i)) = 1

2

(
1 − 1

2m − 1

)
. ��

4.4 Strongly regular graphs

We list all the strongly regular graphs appearing as �1 in Theorem A (c). We divide them
according to the socle L of the almost simple group that acts on them. Further, the present
enumeration corresponds to the one of the groups that act on these graphs as listed in (the
soon to be enunciated) Theorem 22 (e).

(i) L = U4(q), q ∈ {2, 3}, acting on totally singular 2-dimensional subspaces of the
natural module, two vertices of� are adjacent if there is a third 2-dimensional subspace
that intersect both vertices in a 1-dimensional subspace (see [20, Section 2.2.12]);
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(i i) L = �2m+1(3),m ≥ 2, acting on the singular points of the natural module, two
vertices of � are adjacent if they are orthogonal (see [20, Theorem 2.2.12]);

(i i i) L = �2m+1(3),m ≥ 2, acting on the nonsingular points of the natural module, two
vertices of � are adjacent if the line that connects them is tangent to the quadric where
the quadratic form vanishes (see [20, Section 3.1.4]);

(iv) L = P�ε
2m(2), ε ∈ {+,−},m ≥ 3, acting on the singular points of the natural module,

two vertices of � are adjacent if they are orthogonal (see [20, Theorem 2.2.12]);
(v) L = P�ε

2m(2), ε ∈ {+,−},m ≥ 2, acting on the nonsingular points of the natural
module, two vertices of � are adjacent if they are orthogonal (see [20, Section 3.1.2]);

(vi) L = P�+
2m(3),m ≥ 2 acting on the nonsingular points of the natural module, two

vertices of � are adjacent if they are orthogonal (see [20, Section 3.1.3]);
(vi i) L = P�−

2m(3),m ≥ 3 acting on the singular points of the natural module, two vertices
of � are adjacent if they are orthogonal (see [20, Theorem 2.2.12]);

(vi i i) L = P�−
2m(3),m ≥ 2 acting on the nonsingular points of the natural module, two

vertices of � are adjacent if they are orthogonal (see [20, Section 3.1.3]).

Table 1 collects the usual parameters of a strongly regular graph, (v, d, λ, μ), and their
relative fixity. Recall that v is the number of vertices, d is the valency of the graph, λ is
the number of common neighbours between two adjacent vertices, and μ is the number
of common neighbours between two nonadjacent vertices. As μ(G) can be found in [8,
Theorem 4], the relative fixity is computed as

RelFix(�) = 1 − μ(G)

v
.

5 Proof of Theorem A

The primitive permutation groups we are concerned with were classified by Burness and
Guralnick in [8]. We report their result here. For the sake of our proof, we explicitly write the
permutational rank of the almost simple groups of Lie type. This information can be easily
obtained combining the complete list of 2-transitive finite permutation groups, first described
by Cameron in [21, Section 5], and the complete list of classical finite permutation groups
of permutational rank 3, compiled by Kantor and Liebler in [22, Theorem 1.1].

Theorem 22 [8, Theorem 4] Let G be a permutation group of degree n with

μ(G) <
2n

3
.

Then one of the following holds:

(a) Alt(m) ≤ G ≤ Sym(m), for some m ≥ 3, in its action on k-subsets, for some k < m/2;
(b) G = Sym(2m), for some m ≥ 2, in its primitive action with stabilizer Gα =

Sym(m)wrC2;
(c) G = M22 : 2 in its primitive action of degree 22 with stabilizer Gα = L3(4).22;
(d) G is an almost simple group of socle L and permutational rank 2, and one of the following

occurs:

(i) L = Lm(2), m ≥ 3, in its natural action;
(ii) L = Lm(3), m ≥ 3, in its natural action, and G contains an element of the form

(−In−1, I1);
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(iii) L = Sp2m(2), m ≥ 3, in its action on the singular points of the natural module;
(iv) L = Sp2m(2), m ≥ 3, in its action on the right cosets of SO−

2m(2);
(v) L = Sp2m(2), m ≥ 3, in its action on the right cosets of SO+

2m(2);

(e) G is an almost simple group of socle L and permutational rank 3, and one of the following
occurs:

(i) L = U4(q), q ∈ {2, 3}, in its primitive action on totally singular 2-dimensional
subspaces, and G contains the graph automorphism τ ;

(ii) L = �2m+1(3) in its action on the singular points of the natural module, and G
contains an element of the form (−I2m, I1) with a +-type (−1)-eigenspace;

(iii) L = �2m+1(3) in its action on the nonsingular points of the natural module whose
orthogonal complement is an orthogonal space of −-type, and G contains an ele-
ment of the form (−I2m, I1) with a −-type (−1)-eigenspace;

(iv) L = P�ε
2m(2), ε ∈ {+,−}, in its action on the singular points on the natural

module, and G = SOε
2m(2);

(v) L = P�ε
2m(2), ε ∈ {+,−}, in its action on the nonsingular points on the natural

module, and G = SOε
2m(2);

(vi) L = P�+
2m(3) in its action on the nonsingular points on the natural module, and

G contains an element of the form (−I2m−1, I1) such that the discriminant of the
1-dimensional 1-eigenspace is a nonsquare;

(vii) L = P�−
2m(3) in its action on the singular points on the natural module, and G

contains an element of the form (−I2m−1, I1);
(viii) L = P�−

2m(3) in its action on the nonsingular points on the natural module, and
G contains an element of the form (−I2m−1, I1) such that the discriminant of the
1-dimensional 1-eigenspace is a square;

(f) G ≤ Kwr Sym(r) is a primitive group of product action type, where K is a permutation
group appearing in points (a) − (e), the wreath product is endowed with the product
action, and r ≥ 2;

(g) G is an affine group with a regular normal socle N, which is an elementary abelian
2-subgroup.

Proof of Theorem A The proof is split in two independent chunks. First, we prove that every
vertex-primitive digraph of relative fixity exceeding 1

3 belongs to one of the families appearing
in Theorem A. Then, we tackle the problem of computing the relative fixities of the graphs
appearing in Theorem A, thus showing that they indeed all have relative fixity larger than 1

3 .
Assume that � is a digraph on n vertices with at least one arc and with RelFix(�) > 1

3
such thatG = Aut(�) is primitive. If� is disconnected, then the primitivity ofG implies that
� ∼= Ln . Hence we may assume that � is connected. Moreover, RelFix(�) > 1

3 implies that
μ(G) < 2n

3 . Hence G is one of the groups determined in [8] and described in Theorem 22.
Suppose that G is an almost simple group. Then G is one of the groups appearing in parts

(a)−(e) of Theorem 22. Since anyG-vertex-primitive graph is a union of orbital digraphs for
G, the digraphs arising from these cases will be merged product action digraphs P(1,G,J )

(see Remark 3). Hence, our goal is to consider these almost simple groups in turn and compile
their list of orbitals digraphs G.

Let G be a group as described in Theorem 22 (a). Lemma 18 states the orbital digraphs
for G are the distance-i Johnson graph J(m, k, i).

Assume that k = 1, that is, consider the natural action of either Alt(m) or Sym(m) of
degree m. Since this action is 2-transitive, their set of orbital digraphs is G = {Lm,Km}. In
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particular, P(1,G,J ) = H(1,m,J ). This case exhausts the generalized Hamming graphs
with r = 1, which appear in Theorem A (i). Therefore, in view of Remark 6, for as long as
we suppose r = 1, we can also assume that J is a non-Hamming homogeneous set. Observe
m ≥ 4, otherwise, we go against our assumption on the relative fixity.

Going back to distance-i Johnson graphs, to guarantee that J is non-Hamming, we have
to take k ≥ 2. Thus,

G = {J(m, k, i) | i ∈ {0, 1, . . . , k}} ,

which corresponds to Theorem A (i i)(a).
Let G = Sym(2m) be a permutation group from Theorem 22 (b). If m = 2, the degree of

G is 3, and the relative fixity of any action of degree 3 can either be 0 or 1
3 . Hence, we must

suppose that m ≥ 3: by Lemma 20, the orbital digraphs for G are the squashed distance-i
Johnson graph QJ(2m,m, i). We obtain that

G = {QJ(2m,m, i) | i ∈ {0, 1, . . . , 	m/2
}} ,

as described in Theorem A (i i)(b).
Let G = M22 : 2 in the action described in Theorem 22 (c). Consulting the list of all the

primitive groups of degree 22 in Magma [23] (which is based on the list compiled in [24]),
we realize that they are all 2-transitive. Hence, the set of orbital digraphs is G = {K22,L22}.
In particular, all the graphs are generalised Hamming graphs.

LetG be an almost simple of Lie type appearing in Theorem 22 (d). Since all these groups
are 2-transitive with a 2-transitive socle L , their orbital digraphs are eitherKm or Lm , where
m ≥ 7 is the degree of G. Once again, we obtain only generalise Hamming graphs.

Let G be an almost simple of Lie type described in Theorem 22 (e). Any group of
permutational rank 3 defines two nondiagonal orbital digraphs, and, as such digraphs are
arc-transitive and one the complement of the other, they are strongly regular digraphs (see,
for instance, [20, Section 1.1.5]). The set of orbital digraphs is of the form G = {Lm, �1, �2},
where we listed the possible �1 in Sect. 4.4, and where m = |V�1|. The graphs described in
this paragraph appear in Theorem A (i i)(c).

We have exhausted the almost simple groups from Theorem 22. Hence, we pass to Theo-
rem 22 ( f ). Suppose that G ≤ Kwr Sym(r) is a primitive group of product action type. We
want to apply Theorem 14 to G. The only hypothesis we miss is that T and G�

� share the
same set of orbital digraphs.

We claim that T and K induces the same set of orbital digraphs. If K is either alternating
or symmetric, the claim follows from Lemmas 18 and 20. If K is 2-transitive, then we can
observe that its socle L is also 2-transitive: the socle of M22 : 2 is T = M22 in its natural
3-transitive action, while the socle T of the almost simple groups of Lie type of rank 2 is
2-transitive by [21, Section 5]. In particular, K and T both have G = {Lm,Km} as their set
of orbital graphs. Finally, suppose that K is an almost simple group of permutational rank 3.
We have that its socle T is also of permutational rank 3 by [22, Theorem 1.1]. Observe that,
since any orbital digraph for T is a subgraph of an orbital digraph for G, the fact that G and
L both have permutational rank 3 implies that they share the same set of orbital digraphs.
Therefore, the claim is true.

By our claim together with the double inclusion

T ≤ G�
� ≤ K ,

we obtain that T ,G�
� and K all induce the same set of orbital digraphs. Therefore, we can

apply Theorem 14 to G: we obtain that G shares its orbital graphs with T wr G�.
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Therefore, all the G-vertex-primitive digraphs are union of orbital digraphs for T wr H ,
with T the socle type of G and H a transitive permutation group isomorphic to G�. In other
words, we found all the graphs P(r ,G,J ) with r ≥ 2 described in Theorem A. (Recall that,
by Definition 4, among the graphs P(r ,G,J ), we find all the generalised Hamming graphs.)

Suppose that G is an affine group with a regular normal socle N , which is an elementary
abelian 2-subgroup. We have that G can be written as the split extension N : H , where H is
a group of matrices that acts irreducibly on N . It follows that G is 2-transitive on N , hence,
as |N | ≥ 4, the graphs arising in this scenario are L|N |,K|N | and L|N | ∪ K|N |, which are
generalised Hamming graphs.

We have completed the first part of the proof, showing that the list of vertex-primitive
digraphs appearing in Theorem A is exhaustive. As all the orbital digraphs in G are actually
graphs, the same property is true for the graphs in the list, as we have underlined in Remark 8.

We can now pass to the second part of the proof, that is, we can now tackle the computation
of relative fixities. We already took care of the generalised Hamming graphs in Lemma 17.
Thus, we can suppose that � is a merged product action graph P(r ,G,J ) appearing in
Theorem A (i i).

Suppose that r = 1, that is, � is a union of graphs for some primitive almost simple
group K . (We are tacitly assuming that K is maximal among the groups appearing in a given
part of Theorem 22.) In view of [25, Theorem], we have that K is a maximal subgroup
of either Alt(|V�|) or Sym(|V�|). Therefore, there are just two options for Aut(�): either
it is isomorphic to K or it contains Alt(|V�|). In the latter scenario, as Alt(|V�|) is 2-
transitive on the vertices, we obtain that � ∈ {Lm,Km,Lm ∪ Km}. All those graphs are
generalisedHamming graphs, against our assumption on�. Therefore, we have K = Aut(�).
In particular, the relative fixity for � are computed in Lemma 19, Lemma 21 or Table 1 given
that G is described in Theorem A (i i)(a), (i i)(b) or (i i)(c) respectively.

Suppose now that r ≥ 2. The automorphism group of � either embeds into
Sym(m)wr Sym(r),wherem = |V�i | for any�i ∈ G, or, bymaximality ofSym(m)wr Sym(r),
Aut(�) = Sym(mr ). In the latter scenario, � ∈ {Lm,Km,Lm ∪Km}. All these graphs can be
written as a merged product graph where r = 1 and J is a Hamming set. This goes against
our assumption on �, thus we must suppose Aut(�) �= Sym(mr ).

As a consequence, we obtain that, for some almost simple group K listed in Theo-
rem 22 (a) − (e), and for some transitive group H ≤ Sym(r), K wr H ≤ Aut(�). Note
that, as K ≤ Aut(�)��, by [25, Theorem], Aut(�)�� is either K or it contains Alt(m). If the
latter case occurs, then Alt(m)r wr H ≤ Aut(�). By Lemma 15,� is a generalised Hamming
graph, which contradicts our choice of �. Therefore, Aut(�) ≤ Kwr Sym(r).

Observe that we can apply Lemma 17. We obtain that

RelFix(�) = 1 − μ(K )mr−1

mr
= 1 − μ(K )

m
= RelFix

(P(1,G,J ′)
)
,

for some non-Hamming homogeneous set J ′. In particular, the relative fixities for r ≥ 2
coincides with those we have already computed for r = 1. This complete the proof. ��

6 Proof of Theorem B

Recall that a permutation groupG on� is quasiprimitive if all its nontrivial normal subgroups
are transitive on �. Clearly, any primitive group is quasiprimitive. Moreover, recall that, by
repeating the proof of Cauchy–Frobenius Lemma (see [14, Theorem 1.7A]) on the conjugacy
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class of a permutation x ∈ G (with G transitive), we obtain

fix(x)|xG | = |xG ∩ Gω||�|
where fix(x) = |�| − |supp(x)| is the number of fixed points of x , and ω ∈ � is a generic
point of the permutation domain.

Proof of Theorem B (Wewould like to thank P. Spiga again for pointing out the key ingredients
for this proof.) Let G be a quasiprimitive permutation group on a set �, and let x ∈ G \ {1}
be an element achieving |supp(x)| ≤ (1 − α)|�|. For any point ω ∈ �, we obtain

α ≤ |xG ∩ Gω|
|xG | ≤ |Gω|

|xG | ≤ β

|xG | .

It follows that |xG | ≤ α−1β. Now consider the normal subgroup of G defined by

N :=
⋂

g∈G
CG(xg).

Recall that |G : CG(x)| = |xG |. Observe that G acts by conjugation on the set

{CG(xg) | g ∈ G},
it defines a single orbit of size at most |xG |, and N is the kernel of this action. Therefore

|G : N | ≤ |{CG(xg) | g ∈ G}|! ≤ |xG |! ≤
⌈

β

α

⌉
!,

that is, N is a bounded index subgroup of G. Since G is quasiprimitive, either N is trivial or
N is transitive.

Aiming for a contradiction, we suppose that N is transitive. We note that, as α > 0,
|supp(x)| < |�|. In particular, x fixes at least one point, and we choose ω ∈ � to be a point
that is fixed by x . Since [N , x] = 1, for any n ∈ N ,

ωnx = ωxn = ωn .

The transitivity of N implies that x = 1, against our choice of x .
Therefore, N is trivial. It follows that

|G| = |G : N | ≤
⌈

β

α

⌉
!.

Since there are finitely many abstract groups of bounded size, the proof is complete. ��
An equivalent formulation of Sims’ Conjecture states that if G is a primitive permutation

group and the minimal out-valency among its nondiagonal orbital digraphs is at most d , then
the size of a point stabilizer is bounded from above by a function f(d) depending only on the
positive integer d . An answer in the positive to this conjecture was given in [26].

Proof of Corollary C Let� be a vertex-primitive digraphs of out-valency at most d and relative
fixity exceeding α, and let G = Aut(�). The hypothesis on the out-valency implies that, for
any v ∈ V�, |Gv| ≤ f(d), where f(d) is the function that solves Sims’ Conjecture. The
result thus follows by choosing β = f(d) in Theorem B. ��

We conclude the paper by observing that, as f(d) ≥ (d −1)!, from Corollary C we cannot
obtain a bound as sharp as that in Remark 10.
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