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Abstract
We undertake a detailed study of the L2 discrepancy of 2-dimensional Korobov lattices and
their irrational analogues, either with or without symmetrization. We give a full characteri-
zation of such lattices with optimal L2 discrepancy in terms of the continued fraction partial
quotients, and compute the precise asymptotics whenever the continued fraction expansion
is explicitly known, such as for quadratic irrationals or Euler’s number e. In the metric the-
ory, we find the asymptotics of the L2 discrepancy for almost every irrational, and the limit
distribution for randomly chosen rational and irrational lattices.

Keywords Continued fraction · Quadratic irrational · Korobov lattice · Symmetrization ·
Low discrepancy · Limit distribution
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1 Introduction

The extreme discrepancy of a finite point set P ⊂ [0, 1)d in the unit cube is defined as

Dextr(P) = sup
A⊆[0,1)d

||P ∩ A| − |P|λ(A)| ,

where the supremum is over all axis-parallel boxes A = [a1, b1) × · · · × [ad , bd) ⊆ [0, 1)d ,
and λ is the Lebesgue measure. The L2 discrepancy is defined as the L2 average over all
axis-parallel boxes anchored at the origin:

D2(P) =
(∫

[0,1]d
(|P ∩ [0, x1) × · · · × [0, xd)| − |P|x1 · · · xd)2 dx1 · · · dxd

)1/2

.

Clearly, D2(P) ≤ Dextr(P). The extreme and the L2 discrepancy are common measures of
equidistribution, with direct applications to numerical integration; for a general introduction
we refer to the monograph Drmota–Tichy [16]. In dimension d = 2, a seminal result of K.
Roth [26] states that every finite point set P ⊂ [0, 1)2 satisfies D2(P) � √

log |P| with
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a universal implied constant. This is known to be sharp, with several explicit constructions
e.g. based on digital nets attaining the optimal order D2(P) � √

log |P|, see [15]. The
corresponding result for the extreme discrepancy due to W. Schmidt [16, p. 44] states that
for every finite point set P ⊂ [0, 1)2, we have Dextr(P) � log |P| with a universal implied
constant, and this is again sharp with several explicit constructions attaining the optimal order
Dextr(P) � log |P|. In contrast, in dimensions d ≥ 3 the best known constructions of finite
point sets P ⊂ [0, 1)d satisfy Dextr(P) � (log |P|)d−1, but the optimal order remains an
important open problem.

Given a positive integer N and integers p1, . . . , pd , the set

Lp1,...,pd ,N =
{({np1

N

}
, . . . ,

{npd
N

})
∈ [0, 1)d : 0 ≤ n ≤ N − 1

}
,

where {·} denotes the fractional part function, is called a rank-1 lattice rule or a Korobov
lattice. The terminology is explained by the fact thatLp1,...,pd ,N is the intersection of the unit
cube [0, 1)d and the dual of the lattice1 � = {(n1, . . . , nd) ∈ Z

d : n1 p1 + · · · + nd pd ≡ 0
(mod N )}. Korobov lattices have been extensively used as quadrature rules in numerical
integration. Finding lattice points (p1, . . . , pd) ∈ Z

d that make the approximation error

∫
[0,1]d

f (x) dx ≈ 1

N

N−1∑
n=0

f
({np1

N

}
, . . . ,

{npd
N

})

suitably small for given classes of integrable functions f is known as the method of “good
lattice points”. We refer to the monograph of Dick, Kritzer and Pillichshammer [14] for a
comprehensive survey and a history of lattice rules.

Bykovskii [11] showed that in any dimension d ≥ 3, for any integer N ≥ 3 there exist inte-
gers p1, . . . , pd , each coprimewith N , such that Dextr(Lp1,...,pd ,N ) � (log N )d−1 log log N .
Note that this matches the best known constructions up to a factor of log log N . The proof is
probabilistic, see also [19, 20]. We refer to [14, Chapter 5] for an algorithm that produces a
good lattice point such that Dextr(Lp1,...,pd ,N ) � (log N )d , and for results on the discrepancy
with respect to all convex sets.

Dimension d = 2 is rather special. In this case, given a positive integer N , and integers
p1, p2, both coprime with N , we have Lp1,p2,N = Lp,1,N with p = p∗

2 p1, where p∗
2 is

the multiplicative inverse of p2 (mod N ). In particular, Korobov lattices are parametrized
by a single rational number p/N , and their distribution properties can be characterized in
terms of the continued fraction expansion of p/N . The main goal of this paper is to study
the L2 discrepancy of 2-dimensional Korobov lattices, and their analogues corresponding to
irrational values of the parameter.

More precisely, given α ∈ R and N ∈ N, we will consider the N -element set

L(α, N ) =
{(

{nα}, n

N

)
∈ [0, 1)2 : 0 ≤ n ≤ N − 1

}
,

and the 2N -element set

S(α, N ) =
{(

{±nα}, n

N

)
∈ [0, 1)2 : 0 ≤ n ≤ N − 1

}
.

Note that L(α, N ) is the intersection of the unit square [0, 1)2 and the lattice spanned by the
vectors (α, 1/N ) and (1, 0). We call S(α, N ) the symmetrization of L(α, N ); more precisely,

1 Both� and its dual have full rank d. The terminology “rank-1” comes from the fact that the setLp1,...,pd ,N ,

viewed as a finite additive subgroup of the torus Rd/Zd , is cyclic.
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Optimal and typical L2 discrepancy of 2-dimensional lattices

S(α, N ) is the union of L(α, N ) and its reflection about the vertical line x = 1/2. We study
both rational and irrational values of α.

The equidistribution properties of S(α, N ) and L(α, N ), in particular their L2 discrepancy,
are closely related to the Diophantine approximation properties of α. Throughout this paper,
α = [a0; a1, a2, . . . ] will denote the (finite or infinite) continued fraction expansion of α,
and pk/qk = [a0; a1, . . . , ak] its convergents. In the rational case it will not matter which of
the two possible expansions is chosen. Roughly speaking, we will show that for N ≈ qK ,

D2
2(S(α, N )) ≈

K∑
k=1

a2k and D2
2(L(α, N )) ≈

K∑
k=1

a2k +
(

K∑
k=1

(−1)kak

)2

.

See Propositions 7 and 8 below for a precise formulation.
Our first result characterizes all irrationals for which S(α, qK ) resp. L(α, qK ) attains

optimal L2 discrepancy as K → ∞. We also consider the same problem for S(α, N ) and
L(α, N ) as N → ∞. The first equivalence below generalizes a result of Davenport [12], who
showed that S(α, N ) attains optimal L2 discrepancy whenever α is badly approximable, i.e.
ak � 1.

Theorem 1 Let α = [a0; a1, a2, . . . ] be irrational. We have

D2(S(α, N )) � √
log N ⇐⇒ D2(S(α, qK )) � √

log qK ⇐⇒ 1

K

K∑
k=1

a2k � 1,

D2(L(α, qK )) � √
log qK ⇐⇒ 1

K

K∑
k=1

a2k � 1 and
1√
K

∣∣∣∣∣
K∑

k=1

(−1)kak

∣∣∣∣∣� 1.

Remark 1 We also give an almost complete answer for the unsymmetrized lattice L(α, N )

with general N : under the assumption ak � √
k/(log k)2, we have

D2(L(α, N )) � √
log N ⇐⇒ 1

K

K∑
k=1

a2k � 1 and
1√
K

∣∣∣∣∣
K∑

k=1

(−1)kak

∣∣∣∣∣� 1.

In the special case of a badly approximable α, this equivalence was observed in [5, 7]. Note
that K−1∑K

k=1 a
2
k � 1 implies that ak � √

k; we do not know whether the slightly stronger
extra assumption ak � √

k/(log k)2 can be removed.

More precise results can be deduced for an irrationalαwhose continued fraction expansion
is explicitly known. Themost interesting case is that of quadratic irrationals, whose continued
fractions are of the form α = [a0; a1, . . . , ar , ar+1, . . . , ar+p], where the overline denotes
the period. Note that in this case

∑K
k=1(−1)kak = A(α)K +O(1)with some constant A(α).

In fact, A(α) = 0 if p is odd, and A(α) = p−1∑p
k=1(−1)r+kar+k (possibly zero) if p

is even. We also have log qK = �(α)K + O(1) with some constant �(α) > 0. In fact,
�(α) = p−1 log η, where η > 1 is the larger of the two eigenvalues of the matrix(

0 1
1 ar+1

)(
0 1
1 ar+2

)
· · ·
(
0 1
1 ar+p

)
.

Theorem 2 Let α be a quadratic irrational, and let A(α) and �(α) be as above. There exists
a constant c(α) > 0 such that

D2
2(S(α, N )) = c(α) log N + O(1),
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and

D2
2(L(α, N )) =

{
3
2c(α) log N + O((log log N )4) if A(α) = 0,
A(α)2

144�(α)2
(log N )2 + O(log N ) if A(α) �= 0.

The implied constants depend only on α.

We proved the same result for S(α, N ) with the slightly worse error term O(log log N ) in
a previous paper [9]. In contrast to A(α) and �(α), there seems to be no simple way to
compute the value of c(α) directly from the continued fraction expansion. The latter constant
first appeared in certain lattice point counting problems studied in detail by Beck [1–3], who
showed that it is related to the arithmetic of the ring of algebraic integers of the real quadratic
field Q(α), and computed its explicit value for any quadratic irrational; for instance,

c

(
1 + √

5

2

)
= 1

30
√
5 log 1+√

5
2

and c(
√
3) = 1

12
√
3 log(2 + √

3)
.

Precise results also follow for non-badly approximable irrationals whose continued frac-
tion expansions are explicitly known. Consider Euler’s number e = [2; 1, 2, 1, 1, 4, 1, . . . , 1,
2n, 1, . . . ] as an illustration. Since the “period length” is odd, the square of the alternating
sum (

∑K
k=1(−1)kak)2 � K 2 is negligible compared to

∑K
k=1 a

2
k = (4/81)K 3 + O(K 2).

Thus from our general results it easily follows that

D2(S(e, N )) = 1

3
√
30

(
log N

log log N

)3/2 (
1 + O

(
log log log N

log log N

))
,

and

D2(L(e, N )) = 1

6
√
5

(
log N

log log N

)3/2 (
1 + O

(
log log log N

log log N

))
.

In contrast, e.g. for tan 1 = [1; 1, 1, 3, 1, 5, 1, . . . , 2n − 1, 1, . . . ], the “period length” is
even, and the alternating sum (

∑K
k=1(−1)kak)2 = K 4/16 + O(K 3) dominates

∑K
k=1 a

2
k =

K 3/6 + O(K 2). Consequently,

D2(S(tan 1, N )) = 1

3
√
30

(
log N

log log N

)3/2 (
1 + O

(
log log log N

log log N

))
,

but for the unsymmetrized lattice we have the larger order of magnitude

D2(L(tan 1, N )) = 1

12

(
log N

log log N

)2 (
1 + O

(
log log log N

log log N

))
.

We also establish precise results for randomly chosen α, starting with the asymptotics a.e.
in the sense of the Lebesgue measure.

Theorem 3 Let ϕ be a positive nondecreasing function on (0,∞).

(i) If
∑∞

n=1 1/ϕ(n) < ∞, then for a.e. α,

D2(S(α, N )) ≤ ϕ(log N ) + O(log N log log N ),

D2(L(α, N )) ≤ ϕ(log N ) + O(log N log log N )

with implied constants depending only on α and ϕ.
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(ii) If
∑∞

n=1 1/ϕ(n) = ∞, then for a.e. α,

D2(S(α, N )) ≥ ϕ(log N ) and D2(L(α, N )) ≥ ϕ(log N ) for infinitely many N .

In particular, for a.e. α we have D2(S(α, N )) � log N (log log N )1+ε and D2(L(α, N )) �
log N (log log N )1+ε with any ε > 0, but these fail with ε = 0.

Our next result is the distributional analogue of Theorem 3, stating that if α is chosen
randomly from [0, 1] with an absolutely continuous distribution, then after suitable normal-
ization D2

2(S(α, N )) converges to the standard Lévy distribution. If α is chosen randomly
with the Lebesgue measure λ or the Gauss measure ν(B) = (1/ log 2)

∫
B 1/(1 + x) dx

(B ⊆ [0, 1] Borel) as distribution, then we also estimate the rate of convergence in the
Kolmogorov metric.

Theorem 4 If μ is a Borel probability measure on [0, 1] which is absolutely continuous with
respect to the Lebesgue measure, then for any t ≥ 0,

μ

({
α ∈ [0, 1] : 5π3 D

2
2(S(α, N ))

(log N )2
≤ t

})
→
∫ t

0

e−1/(2x)

√
2πx3/2

dx as N → ∞.

If μ is either the Lebesgue measure λ or the Gauss measure ν, then for any N ≥ 3,

sup
t≥0

∣∣∣∣∣μ
({

α ∈ [0, 1] : 5π3 D
2
2(S(α, N ))

(log N )2
≤ t

})
−
∫ t

0

e−1/(2x)

√
2πx3/2

dx

∣∣∣∣∣�
(log log N )1/3

(log N )1/3

with a universal implied constant.

We conjecture that a similar result holds for the unsymmetrized lattice as well, i.e.
if α is chosen randomly from [0, 1] with an absolutely continuous distribution, then
D2
2(L(α, N ))/(log N )2 has a nondegenerate limit distribution as N → ∞.
Our results, especially Theorems 1, 3 and 4 should be compared to the corresponding

properties of the extreme discrepancy Dextr,N (nα) := Dextr({{nα} : 1 ≤ n ≤ N }) of the
classical Kronecker sequence {nα}. Note that max1≤�≤N Dextr,�(nα) is, up to a factor of 2,
equal to Dextr(L(α, N )). Roughly speaking, for N ≈ qK we have max1≤�≤N Dextr,�(nα) ≈∑K

k=1 ak . We can characterize all irrationals for which the optimal rate log N is attained as
[16, p. 53]

Dextr,N (nα) � log N ⇐⇒ 1

K

K∑
k=1

ak � 1.

The extreme discrepancy Dextr,N (nα) is also known to satisfy the same asymptotics a.e. as in
Theorem3 [16, p. 63].A fortiori, the previous two results apply also tomax1≤�≤N Dextr,�(nα),
and hence to Dextr(L(α, N )). We mention two distributional analogues due to Kesten [22]:

Dextr,N (nα)

log N log log N
→ 2

π2 in measure,

max1≤�≤N Dextr,�(nα)

log N log log N
→ 3

π2 in measure.

Full limit laws for Dextr,N (nα), max1≤�≤N Dextr,�(nα) and Dextr(L(α, N )) remain challeng-
ing open problems.

As a curious observation, we mention that there exists an irrational α such that

log N � D2(S(α, N )) ≤ Dextr(S(α, N )) � log N ,
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and

log N � D2(L(α, N )) ≤ Dextr(L(α, N )) � log N ,

i.e. both S(α, N ) and L(α, N ) have optimal extreme discrepancy, but neither has optimal
L2 discrepancy. Indeed, it is easy to construct a sequence of positive integers ak such that
K−1∑K

k=1 ak � 1 but
∑K

k=1 a
2
k � K 2 (e.g. let ak = k if k is a power of 2, and ak = 1

otherwise).
Consider now the case of a rational α. For the sake of simplicity, we will always assume

that N is the denominator of α. That is, given a reduced fraction p/q , we study the q-element
set

L(p/q, q) =
{({

np

q

}
,
n

q

)
∈ [0, 1)2 : 0 ≤ n ≤ q − 1

}
,

and the 2q-element set

S(p/q, q) =
{({

±np

q

}
,
n

q

)
∈ [0, 1)2 : 0 ≤ n ≤ q − 1

}
.

Note that L(p/q, q) is the 2-dimensional Korobov lattice Lp,1,q . The characterization of
all sets of rationals for which the L2 discrepancy is optimal is exactly the same as in the
irrational case.

Theorem 5 Let R ⊆ Q be an arbitrary set of reduced fractions p/q = [a0; a1, . . . , ar ]. We
have

sup
p/q∈R

D2(S(p/q, q))√
log q

< ∞ ⇐⇒ sup
p/q∈R

1

r

r∑
k=1

a2k < ∞,

sup
p/q∈R

D2(L(p/q, q))√
log q

< ∞ ⇐⇒ sup
p/q∈R

1

r

r∑
k=1

a2k < ∞

and sup
p/q∈R

1√
r

∣∣∣∣∣
r∑

k=1

(−1)kak

∣∣∣∣∣ < ∞.

As an analogue of the metric results on typical values of α in the sense of the Lebesgue
measure above, we also study the L2 discrepancy for typical values of rationals. In this case,
“typical” means choosing p/q randomly from the set of Farey fractions, that is, the set of all
reduced rationals with bounded denominator.

Theorem 6 Let FQ denote the set of all reduced fractions in the interval (0, 1) with denom-
inator at most Q. For any Q ≥ 2,

sup
t≥0

∣∣∣∣∣
1

|FQ |

∣∣∣∣∣
{
p

q
∈ FQ : 5π3 D

2
2(S(p/q, q))

(log q)2
≤ t

}∣∣∣∣∣−
∫ t

0

e−1/(2x)

√
2πx3/2

dx

∣∣∣∣∣�
1

(log Q)1/2

with a universal implied constant.

We conjecture that a similar result holds for the unsymmetrized lattice as well, i.e. if p/q is
chosen randomly from FQ , then D2

2(L(p/q, q))/(log q)2 has a nondegenerate limit distri-
bution as Q → ∞.

In Sect. 2, we derive an explicit formula for D2(S(α, N )) and D2(L(α, N )) in terms of the
partial quotients of α, see Propositions 7 and 8. Theorems 1, 2 and 5 are proved in Sect. 2.2.
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In Sect. 3, we show how Theorems 3 and 4 follow from classical results on the metric theory
of continued fractions andψ-mixing random variables. The proof of Theorem 6 in Sect. 4, on
the other hand, relies on recent results of Bettin and Drappeau [4] on the statistics of partial
quotients of random rationals.

2 L2 discrepancy via the Parseval formula

2.1 Themain estimates

We remind that α = [a0; a1, a2, . . . ] is the (finite or infinite) continued fraction expansion
of a real number α, and pk/qk = [a0; a1, . . . , ak] denotes its convergents. For the rest of the
paper, we also use the notation

Tn =
n∑

�=0

(
1

2
− {�α}

)
and EN = 1

N

N−1∑
n=0

Tn .

Finally, ζ is the Riemann zeta function.
Our main tool is an evaluation of the L2 discrepancy up to a small error, based on the

Parseval formula. This method goes back to Davenport [12], and more recently has also been
used in [5–7, 18, 25]. We follow the steps in our previous paper [9], where we considered
irrationals whose sequence of partial quotients is reasonably well-behaved (e.g. bounded, or
increasing at a regular rate such as for Euler’s number). Here we shall need a more refined
analysis in order to study arbitrary reals without any assumption on the partial quotients.

Proposition 7 For any qK−1 ≤ N ≤ qK , we have

∣∣∣∣∣∣D
2
2(S(α, N )) −

qK−1−1∑
m=1

1

4π4m2‖mα‖2 − ξS(α, N )

∣∣∣∣∣∣
≤

K−1∑
k=0

ak+1

2qk
+ ζ(3)

16π4N

K−2∑
k=0

(ak+1 + 2)3qk + 6.28

with some ξS(α, N ) which satisfies both 0 ≤ ξS(α, N ) ≤∑qK−1
m=qK−1

1
2π4 m2‖mα‖2 and

∣∣∣∣∣∣ξS(α, N ) −
qK−1∑

m=qK−1

1

4π4m2‖mα‖2

∣∣∣∣∣∣ ≤
ζ(3)

16π4N
(aK + 2)3qK−1 + 0.07.

Similarly, for any qK−1 ≤ N ≤ qK , we have

∣∣∣∣∣∣D
2
2(L(α, N )) − 1

N

N−1∑
n=0

(
T 2
n + 1

2
Tn

)
−
(
1 − 1

2N

) qK−1−1∑
m=1

1

4π4m2‖mα‖2 − ξL(α, N )

∣∣∣∣∣∣
≤

K−1∑
k=0

ak+1

8qk
+ ζ(3)

16π4N

K−2∑
k=0

(ak+1 + 2)3qk + 2.78
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with some ξL(α, N ) which satisfies both 0 ≤ ξL(α, N ) ≤∑qK−1
m=qK−1

1
2π4 m2‖mα‖2 and

∣∣∣∣∣∣ξL(α, N ) −
(
1 − 1

2N

) qK−1∑
m=qK−1

1

4π4m2‖mα‖2

∣∣∣∣∣∣ ≤
ζ(3)

16π4N
(aK + 2)3qK−1.

We also prove a simpler form which is sharp up to a constant factor.

Proposition 8 For any qK−1 ≤ N ≤ qK , we have D2
2(S(α, N )) � ∑K

k=1 a
2
k . For N = qK ,

we also have D2
2(S(α, qK )) �∑K

k=1 a
2
k , and

K∑
k=1

a2k +
(

K∑
k=1

(−1)kak

)2

� D2
2(L(α, qK )) �

K∑
k=1

a2k +
(

K∑
k=1

(−1)kak

)2

.

The implied constants are universal.

We postpone the proofs to Sects. 2.3 and 2.4, and now comment on the main terms.
The contribution of the sums Tn can be written as

1

N

N−1∑
n=0

(
T 2
n + 1

2
Tn

)
= 1

N

N−1∑
n=0

(Tn − EN )2 + E2
N + 1

2
EN .

Observing a connection with Dedekind sums, Beck showed [1, p. 79 and p. 91] (see also
[28]) that for any qK−1 ≤ N ≤ qK , the “expected value” EN is

EN = 1

12

K∑
k=1

(−1)kak + O

(
max

1≤k≤K
ak

)
. (1)

For N = qK , the error term can be improved to

EqK = 1

12

K∑
k=1

(−1)kak + O(1). (2)

Both implied constants are universal. Generalizing results of Beck, in a recent paper [8] we
proved that if ak ≤ ckd with some constants c > 0 and d ≥ 0, then for any qK−1 ≤ N ≤ qK ,
the “variance” is

1

N

N−1∑
n=0

(Tn − EN )2 =
qK−1∑
m=1

1

8π4m2‖mα‖2 + O

(
max|k−K |�log K

a2k · (log log N )4
)

(3)

with implied constants depending only on c and d . See also Lemma 10 below.
Finally, we will need two different evaluations of the Diophantine sum appearing in

Proposition 7. On the one hand, for general α we have [10, p. 110], [9]∣∣∣∣∣∣
qK−1∑
m=1

1

m2‖mα‖2 − π4

90

K∑
k=1

a2k

∣∣∣∣∣∣ ≤ 152
K∑

k=1

ak . (4)

On the other hand, Beck [1, p. 176] proved that if α is quadratic irrational, then for any
M ≥ 1,

M∑
m=1

1

4π4m2‖mα‖2 = c(α) logM + O(1) (5)

with some constant c(α) > 0 and an implied constant depending only on α.
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2.2 Optimal lattices

In this section, we deduce Theorems 1, 2 and 5 from Propositions 7 and 8.

Proof of Theorem 1 Consider first the symmetrized lattice S(α, N ). We will show the impli-
cations

1

K

K∑
k=1

a2k � 1 �⇒ D2(S(α, N )) � √
log N

�⇒ D2(S(α, qK )) � √
log qK �⇒ 1

K

K∑
k=1

a2k � 1.

Assume that K−1∑K
k=1 a

2
k � 1 as K → ∞. By Proposition 8, for any qK−1 ≤ N ≤ qK

we have D2
2(S(α, N )) � ∑K

k=1 a
2
k � K � log N , as claimed. The second implication is

trivial. Next, assume that D2(S(α, qK )) � √
log qK as K → ∞. By Proposition 8, we have

K∑
k=1

a2k � D2
2(S(α, qK )) � log qK ≤

K∑
k=1

log(ak + 1) �
K∑

k=1

ak ≤
√√√√K

K∑
k=1

a2k ,

and the claim follows. This finishes the proof of the equivalence for S(α, N ).
Consider now the unsymmetrized lattice L(α, qK ). Assume that K−1∑K

k=1 a
2
k � 1 and

K−1/2|∑K
k=1(−1)kak | � 1 as K → ∞. By Proposition 8, we have

D2
2(L(α, qK )) �

K∑
k=1

a2k +
(

K∑
k=1

(−1)kak

)2

� K � log qK ,

as claimed. Next, assume that D2(L(α, qK )) � √
log qK as K → ∞. By Proposition 8, we

have

K∑
k=1

a2k +
(

K∑
k=1

(−1)kak

)2

� D2
2(L(α, qK )) � log qK

≤
K∑

k=1

log(ak + 1) �
K∑

k=1

ak ≤
√√√√K

K∑
k=1

a2k .

In particular,

K∑
k=1

a2k �
√√√√K

K∑
k=1

a2k and

(
K∑

k=1

(−1)kak

)2

�
√√√√K

K∑
k=1

a2k .

The first estimate gives
∑K

k=1 a
2
k � K , whereas the second estimate yields (

∑K
k=1(−1)kak)2

� K , as claimed. This finishes the proof of the equivalence for L(α, qK ). ��

Proof of Theorem 5 As Proposition 8 applies to both rationals and irrationals, the proof is
identical to that of Theorem 1. ��
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Proof of Theorem 2 Let α be a quadratic irrational. By Proposition 7 and formula (5), for any
qK−1 ≤ N ≤ qK ,

D2
2(S(α, N )) =

qK−1∑
m=1

1

4π4m2‖mα‖2 + O(1) = c(α) log N + O(1),

as claimed. Using also formula (3), we similarly get

D2
2(L(α, N )) = 3

2
c(α) log N + E2

N + 1

2
EN + O((log log N )4).

Formula (1) shows that here EN = A(α)
12 K + O(1) = A(α)

12�(α)
log N + O(1), and the claim

follows. ��

2.3 Proof of Proposition 7

Lemma 9 Let α = [a0; a1, a2, . . .] be the (finite or infinite) continued fraction expansion of
a real number α, and let pk/qk = [a0; a1, . . . , ak] be its convergents.
(i) For any K ≥ 1,

qK−1∑
m=1

1

π2m2‖mα‖ ≤
K−1∑
k=0

ak+1

2qk
+ 3.12.

(ii) For any K ≥ 1 and n ≥ 0,

∞∑
m=qK

1

2π2m2 min

{
1

4‖mα‖2 , n2
}

≤ 1.12
n

qK
+ 0.61

n2

q2K
.

(iii) For any K ≥ 1 and N ≥ qK−1,

qK−1∑
m=1

1

4π4m2‖mα‖2 min

{
1

4N‖2mα‖ , 1

}
≤ ζ(3)

16π4N

K−1∑
k=0

(ak+1 + 2)3qk + 0.07.

Proof The proof of all three claims is based on the following simple observations. Let k ≥ 1,
or k = 0 and a1 > 1. For any integer a ≥ 1 let Jk,a = [aqk, (a + 1)qk) ∩ [qk, qk+1) be a
(possibly empty) index set. Let δk = qkα− pk , and recall from the general theory of continued
fractions that 1/(qk+1 + qk) ≤ |δk | = ‖qkα‖ ≤ 1/qk+1. For any integer m ∈ Jk,a , we have
mα = mpk/qk +mδk/qk , and here the second term is negligible as m|δk |/qk < 1/qk . Since
pk and qk are relatively prime, as m runs in the index set Jk,a , the numbers mpk attain each
mod qk residue class at most once. If mpk �≡ 0,±1 (mod qk), then

‖mα‖ =
∥∥∥∥mpk

qk
+ mδk

qk

∥∥∥∥ ≥
∥∥∥∥mpk

qk

∥∥∥∥− 1

qk
≥ 1

2

∥∥∥∥mpk
qk

∥∥∥∥ .

Therefore for any nondecreasing function f : [2,∞) → [0,∞), we have

∑
m∈Jk,a

f

(
1

‖mα‖
)

≤ 3 f

(
1

‖qkα‖
)

+
qk−2∑
j=2

f

(
2

‖ j/qk‖
)

≤ 3 f

(
1

‖qkα‖
)

+ 2
∑

2≤ j≤qk/2

f

(
2qk
j

)
. (6)
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Note that 3 f (1/‖qkα‖) is an upper bound to the contribution of the three terms for which
mpk ≡ 0,±1 (mod qk).

We also have the simpler estimate

∑
1≤m<qk+1

f

(
1

‖mα‖
)

≤ 2
∑

1≤ j≤qk+1/2

f

(
1

j‖qkα‖
)

. (7)

Indeed, consider the points mα (mod 1), 1 ≤ m < qk+1 and the intervals Hj =
[ j‖qkα‖, ( j + 1)‖qkα‖), j ≥ 1 and Hj = (( j − 1)‖qα‖, j‖qkα‖], j ≤ −1. Since
‖(m1 − m2)α‖ ≥ ‖qkα‖ for any m1,m2 ∈ [1, qk+1), m1 �= m2, each interval Hj con-
tains at most one point mα (mod 1), and (7) follows.

(i) Estimate (6) yields

∑
m∈Jk,a

1

π2m2‖mα‖ ≤ 1

π2a2q2k

⎛
⎝ 3

‖qkα‖ + 2
∑

2≤ j≤qk/2

2qk
j

⎞
⎠

≤ 1

π2a2q2k

(
3(qk+1 + qk) + 4qk log

qk
2

)
.

Summing over a ≥ 1 and2 0 ≤ k ≤ K − 1 leads to

qK−1∑
m=1

1

π2m2‖mα‖ ≤
K−1∑
k=0

3qk+1 + 3qk + 4qk log(qk/2)

6q2k

≤
K−1∑
k=0

ak+1

2qk
+

K−1∑
k=0

3 + 2 log(qk/2)

3qk

≤
K−1∑
k=0

ak+1

2qk
+

∞∑
k=0

3 + 2 log(Fk+1/2)

3Fk+1
,

where Fk is the sequence of Fibonacci numbers. The numerical value of the series in the
previous line is 3.1195 . . . , as claimed.

(ii) Estimate (6) yields

∑
m∈Jk,a

1

2π2m2 min

{
1

4‖mα‖2 , n2
}

≤ 1

2π2a2q2k

⎛
⎝3n2 + 2

∞∑
j=2

min

{
q2k
j2

, n2
}⎞
⎠

≤ 1

2π2a2q2k

(
3n2 + 4nqk

)
.

Note that the contribution of the terms 2 ≤ j ≤ �qk/n� + 1 and j ≥ �qk/n� + 2 is at
most nqk each. Summing over a ≥ 1 and k ≥ K leads to

∞∑
m=qK

1

2π2m2 min

{
1

4‖mα‖2 , n2
}

≤
∞∑

k=K

3n2 + 4nqk
12q2k

.

From the recursion satisfied by qk one readily sees that qK+� ≥ F�+1qK for all � ≥ 0,
hence the right hand side of the previous formula is at most c1n/qK + c2n2/q2K with

2 If a1 = 1, then the term k = 0 can be removed.
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c1 = ∑∞
�=0 1/(3F�+1) = 1.1199 . . . and c2 = ∑∞

�=0 1/(4F
2
�+1) = 0.6065 . . . , as

claimed.
(iii) The contribution of all m such that ‖mα‖ > 1/4 is negligible:

∑
1≤m≤qK−1
‖mα‖>1/4

1

4π4m2‖mα‖2 min

{
1

4N‖2mα‖ , 1

}
<

∞∑
m=1

4

π4m2 = 2

3π2 .

On the other hand, ‖mα‖ ≤ 1/4 implies ‖2mα‖ = 2‖mα‖, hence the contribution of all
such terms is

∑
1≤m≤qK−1
‖mα‖≤1/4

1

4π4m2‖mα‖2 min

{
1

4N‖2mα‖ , 1

}
≤

qK−1∑
m=1

1

32π4Nm2‖mα‖3 .

Estimate (7) gives

∑
qk≤m<qk+1

1

32π4Nm2‖mα‖3 ≤ 1

16π4Nq2k

∞∑
j=1

1

j3‖qkα‖3 ≤ ζ(3)(ak+1 + 2)3qk
16π4N

.

Summing over 0 ≤ k ≤ K − 1, we thus obtain

qK−1∑
m=1

1

4π4m2‖mα‖2 min

{
1

4N‖2mα‖ , 1

}
≤

K−1∑
k=0

ζ(3)(ak+1 + 2)3qk
16π4N

+ 2

3π2 .

Here 2/(3π2) = 0.06754 . . . , as claimed. ��

Proof of Proposition 7 We give a detailed proof for the symmetrized lattice S(α, N ), and then
indicate at the end how to modify the proof for the unsymmetrized lattice L(α, N ).

Let B(x, y) = |S(α, N )∩ ([0, x)×[0, y))| denote the number of points of S(α, N )which
fall into the box [0, x)×[0, y). Integrating on the strips [0, 1)×[n/N , (n+1)/N ) separately
leads to

D2
2(S(α, N )) =

N−1∑
n=0

∫ 1

0

∫ n+1
N

n
N

(B(x, y) − 2Nxy)2 dy dx = M + R + 4

9

with

M := 1

N

N−1∑
n=0

∫ 1

0

(
B

(
x,

n + 1

N

)
− 2(n + 1)x

)2

dx,

R := 2

N

N−1∑
n=0

∫ 1

0

(
B

(
x,

n + 1

N

)
− 2(n + 1)x

)
x dx .

The function

B

(
x,

n + 1

N

)
− 2(n + 1)x =

n∑
�=0

(
I[0,x)({�α}) + I[0,x)({−�α}) − 2x

)
,
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where I[0,x) denotes the indicator function of the interval [0, x), is mean zero, and has Fourier
coefficients∫ 1

0

(
B

(
x,

n + 1

N

)
− 2(n + 1)x

)
e−2π imx dx =

n∑
�=0

cos(2�mπα)

π im

= 1

2π im

(
sin((2n + 1)mπα)

sin(mπα)
+ 1

)
.

TheFourier coefficients of x are
∫ 1
0 xe−2π imx dx = −1/(2π im), thus by the Parseval formula

we have

R = 2

N

N−1∑
n=0

2
∞∑

m=1

1

2π im

(
sin((2n + 1)mπα)

sin(mπα)
+ 1

)
· −1

2π im

= 1

N

N−1∑
n=0

∞∑
m=1

sin((2n + 1)mπα)

π2m2 sin(mπα)
+ 1

6
.

The Parseval formula similarly gives

M = 1

N

N−1∑
n=0

2
∞∑

m=1

1

4π2m2

(
(sin((2n + 1)mπα)

sin(mπα)
+ 1

)2

= 1

N

N−1∑
n=0

∞∑
m=1

sin2((2n + 1)mπα)

2π2m2 sin2(mπα)
+ 1

N

N−1∑
n=0

∞∑
m=1

sin((2n + 1)mπα)

π2m2 sin(mπα)
+ 1

12
.

The only main term in D2
2(S(α, N )) is the first double sum in the previous formula. The

double sum in R and the second double sum in the previous formula are identical. Using∣∣∣∣ sin((2n + 1)mπα)

sin(mπα)

∣∣∣∣ ≤ min

{
1

2‖mα‖ , 2n + 1

}

and Lemma 9 (i), they can be estimated as

∣∣∣∣ 1N
N−1∑
n=0

∞∑
m=1

2 sin((2n + 1)mπα)

π2m2 sin(mπα)

∣∣∣∣ ≤ 1

N

N−1∑
n=0

⎛
⎝qK−1∑

m=1

1

π2m2‖mα‖ +
∞∑

m=qK

2(2n + 1)

π2m2

⎞
⎠

≤
K−1∑
k=0

ak+1

2qk
+ 3.12 + 4N

π2qK
.

By the assumption N ≤ qK and the fact 3.12 + 4/π2 + 4/9 + 1/6 + 1/12 < 4.22, we thus
obtain ∣∣∣∣∣D2

2(S(α, N )) − 1

N

N−1∑
n=0

∞∑
m=1

sin2((2n + 1)mπα)

2π2m2 sin2(mπα)

∣∣∣∣∣ ≤
K−1∑
k=0

ak+1

2qk
+ 4.22.

Lemma 9 (ii) estimates the tail of the infinite series in the previous formula as

∞∑
m=qK

sin2((2n + 1)mπα)

2π2m2 sin2(mπα)
≤

∞∑
m=qK

1

2π2m2 min

{
1

4‖mα‖2 , (2n + 1)2
}

≤ 1.12
2n + 1

qK
+ 0.61

(2n + 1)2

q2K
.
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By the assumption N ≤ qK and the facts
∑N−1

n=0 (2n + 1)2 ≤ (4/3)N 3 and 4.22 + 1.12 +
(4/3) · 0.61 < 6.16, we immediately get∣∣∣∣∣∣D

2
2(S(α, N )) − 1

N

N−1∑
n=0

qK−1∑
m=1

sin2((2n + 1)mπα)

2π2m2 sin2(mπα)

∣∣∣∣∣∣ ≤
K−1∑
k=0

ak+1

2qk
+ 6.16.

Elementary calculations show that the function 1/ sin2(πx) − 1/(π2‖x‖2) is increasing on
(0, 1/2], hence 1/(π2‖x‖2) ≤ 1/ sin2(πx) ≤ 1/(π2‖x‖2) + 1 − 4/π2 for all x . The error
of replacing sin2(mπα) by π2‖mα‖2 in the denominator of the previous formula is thus at
most

1

N

N−1∑
n=0

qK−1∑
m=1

sin2((2n + 1)mπα)(1 − 4/π2)

2π2m2 ≤
∞∑

m=1

1 − 4/π2

2π2m2 = 1 − 4/π2

12
.

Since 6.16 + (1 − 4/π2)/12 < 6.21, we obtain∣∣∣∣∣∣D
2
2(S(α, N )) − 1

N

N−1∑
n=0

qK−1−1∑
m=1

sin2((2n + 1)mπα)

2π4m2‖mα‖2 − ξS(α, N )

∣∣∣∣∣∣ ≤
K−1∑
k=0

ak+1

2qk
+ 6.21,

(8)
where we define

ξS(α, N ) := 1

N

N−1∑
n=0

qK−1∑
m=qK−1

sin2((2n + 1)mπα)

2π4m2‖mα‖2 .

Using the trigonometric identity

1

N

N−1∑
n=0

sin2((2n + 1)x) = 1

2
− sin(4Nx)

4N sin(2x)
,

the double sum in (8) simplifies to

qK−1−1∑
m=1

1

4π4m2‖mα‖2 −
qK−1−1∑
m=1

sin(4Nmπα)

8π4Nm2‖mα‖2 sin(2mπα)
.

Here second term can be estimated using Lemma 9 (iii) as∣∣∣∣∣∣
qK−1−1∑
m=1

sin(4Nmπα)

8π4Nm2‖mα‖2 sin(2mπα)

∣∣∣∣∣∣ ≤
qK−1−1∑
m=1

1

4π4m2‖mα‖2 min

{
1

4N‖2mα‖ , 1

}

≤ ζ(3)

16π4N

K−2∑
k=0

(ak+1 + 2)3qk + 0.07.

Therefore (8) simplifies to∣∣∣∣∣∣D
2
2(S(α, N )) −

qK−1−1∑
m=1

1

4π4m2‖mα‖2 − ξS(α, N )

∣∣∣∣∣∣ ≤
K−1∑
k=0

ak+1

2qk

+ ζ(3)

16π4N

K−2∑
k=0

(ak+1 + 2)3qk + 6.28,
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and it remains to prove the properties of ξS(α, N ). Clearly, 0 ≤ ξS(α, N ) ≤ ∑qK−1
m=qK−1

1
2π4 m2‖mα‖2 . On the other hand, repeating arguments from above and from Lemma 9 (iii),
we can also write

ξS(α, N ) =
qK−1∑

m=qK−1

1

4π4m2‖mα‖2 −
qK−1∑

m=qK−1

sin(4Nmπα)

8π4Nm2‖mα‖2 sin(2mπα)
,

consequently∣∣∣∣∣∣ξS(α, N ) −
qK−1∑

m=qK−1

1

4π4m2‖mα‖2

∣∣∣∣∣∣ ≤
qK−1∑

m=qK−1

1

4π4m2‖mα‖2 min

{
1

4N‖2mα‖ , 1

}

≤ ζ(3)

16π4N
(aK + 2)3qK−1 + 0.07.

This finishes the proof for S(α, N ).
The proof for L(α, N ) is entirely analogous. The only difference is that the number of

points B(x, y) := |L(α, N )∩([0, x)×[0, y))|which fall into the box [0, x)×[0, y) satisfies

B

(
x,

n + 1

N

)
− (n + 1)x =

n∑
�=0

(
I[0,x)({�α}) − x

)
,

which is not a mean zero function. Its integral (0th Fourier coefficient) is

∫ 1

0

(
B

(
x,

n + 1

N

)
− (n + 1)x

)
dx =

n∑
�=0

(
1

2
− {�α}

)
= Tn,

which introduces the extra terms N−1∑N−1
n=0 Tn/2 resp. N−1∑N−1

n=0 T 2
n when the Parseval

formula is applied to the analogue of R resp. M as above. For the convenience of the reader
we mention that the analogue of formula (8) is∣∣∣∣∣∣D

2
2(L(α, N )) − 1

N

N−1∑
n=0

(
T 2
n + 1

2
Tn

)
− 1

N

N−1∑
n=0

qK−1−1∑
m=1

sin2((n + 1)mπα)

2π4m2‖mα‖2 − ξL(α, N )

∣∣∣∣∣∣
≤

K−1∑
k=0

ak+1

8qk
+ 2.78,

where

ξL(α, N ) := 1

N

N−1∑
n=0

qK−1∑
m=qK−1

sin2((n + 1)mπα)

2π4m2‖mα‖2 .

��

2.4 Proof of Proposition 8

The following lemma is a simpler form of formula (3), but it applies without any assumption
on the partial quotients. As modifying the proof of (3) is not entirely straightforward, we
include the details.
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Lemma 10 For any K ≥ 1,

1

qK

qK−1∑
n=0

(Tn − EqK )2 �
K∑

k=1

a2k

with a universal implied constant.

Proof For the sake of readability, set p = pK and q = qK . For any integer 1 ≤ � ≤ q − 1,
we have ‖�p/q‖ ≥ 1/q and |�α − �p/q| ≤ q|α − p/q| < 1/q . Thus there is no integer
between �p/q and �α, hence

∣∣∣∣{�α} −
{

�p

q

}∣∣∣∣ ≤
∣∣∣∣�α − �p

q

∣∣∣∣ < 1

q
.

Consequently, for all 0 ≤ n ≤ q − 1,

Tn =
n∑

�=0

(
1

2
− {�α}

)
=

n∑
�=0

(
1

2
− 1

2q
−
{

�p

q

})
+ O(1).

Introducing

T ∗
n :=

n∑
�=0

(
1

2
− 1

2q
−
{

�p

q

})
and E∗

q := 1

q

q−1∑
n=0

T ∗
n ,

we thus have Tn − Eq = T ∗
n − E∗

q + O(1). Therefore q−1∑q−1
n=0(Tn − Eq)

2 �
q−1∑q−1

n=0(T
∗
n − E∗

q )
2 + 1, and it remains to estimate the latter.

The rest of the proof is based on Fourier analysis on the finite cyclic group Zq , which we
identify by {0, 1, . . . , q − 1}. Elementary calculations show that

q−1∑
x=0

(
1

2
− 1

2q
−
{
x

q

})
e−2π imx/q =

{
0 if m = 0,
1/(1 − e−2π im/q) if 1 ≤ m ≤ q − 1.

Therefore by Fourier inversion on Zq ,

1

2
− 1

2q
−
{
x

q

}
= 1

q

q−1∑
m=1

e2π imx/q

1 − e−2π im/q
, x ∈ Z.

We can thus write T ∗
n as

T ∗
n = 1

q

q−1∑
m=1

n∑
�=0

e2π im�p/q

1 − e−2π im/q
= 1

q

q−1∑
m=1

1 − e2π im(n+1)p/q

(1 − e−2π im/q)(1 − e2π imp/q)
.

Letting B = q−1∑q−1
m=1 1/(1 − e−2π im/q)(1 − e2π imp/q), we have

1

q

q−1∑
n=0

(T ∗
n − E∗

q )
2 ≤ 1

q

q−1∑
n=0

|T ∗
n − B|2 = 1

q

q−1∑
n=0

1

q2

∣∣∣∣∣∣
q−1∑
m=1

e2π im(n+1)p/q

(1 − e−2π im/q)(1 − e2π imp/q)

∣∣∣∣∣∣
2

.

123



Optimal and typical L2 discrepancy of 2-dimensional lattices

Expanding the square shows that here

∣∣∣∣
q−1∑
m=1

e2π im(n+1)p/q

(1 − e−2π im/q)(1 − e2π imp/q)

∣∣∣∣
2

=
q−1∑
m=1

1

|1 − e−2π im/q |2|1 − e2π imp/q |2

+
q−1∑

m1,m2=1
m1 �=m2

e2π i(m1−m2)(n+1)p/q

(1 − e−2π im1/q)(1 − e2π im1 p/q)(1 − e2π im2/q)(1 − e−2π im2 p/q)
.

As
∑q−1

n=0 e
2π i(m1−m2)(n+1)p/q = 0 for all m1 �= m2, the contribution of the off-diagonal

terms is zero. Formula (4) thus leads to

1

q

q−1∑
n=0

(T ∗
n −E∗

q )
2≤ 1

q2

q−1∑
m=1

1

|1−e−2π im/q |2|1 − e2π imp/q |2 �
q−1∑
m=1

1

m2‖mp/q‖2 �
K∑

k=1

a2k ,

as claimed. ��

Proof of Proposition 8 By Proposition 7, for any qK−1 ≤ N ≤ qK we have

D2
2(S(α, N )) �

qK−1∑
m=1

1

m2‖mα‖2 +
K−1∑
k=0

ak+1

qk
+

K−2∑
k=0

a3k+1qk
N

.

Here a3k+1qk/N ≤ a2k+1, hence formula (4) yields D2
2(S(α, N )) � ∑K

k=1 a
2
k , as claimed.

Using Lemma 10 and formula (2) we also deduce that for N = qK ,

1

qK

qK−1∑
n=0

(
T 2
n + 1

2
Tn

)
= 1

qK

qK−1∑
n=0

(Tn−EqK )2+E2
qK + 1

2
EqK �

K∑
k=1

a2k +
(

K∑
k=1

(−1)kak

)2

,

and the upper bound for D2
2(L(α, qK )) follows.

Next, we prove the lower bounds. Let c > 0 resp. C > 0 denote suitably small resp. large
universal constants whose values change from line to line. By Proposition 7 and formula (4),
for N = qK we have

D2
2(S(α, qK )) ≥

qK−1∑
m=1

1

4π4m2‖mα‖2 − ζ(3)

16π4qK

K−1∑
k=0

(ak+1 + 2)3qk − C
K∑

k=1

ak

≥
(

1

360
− ζ(3)

16π4

) K∑
k=1

a2k − C
K∑

k=1

ak .

The point is that 1/360 > ζ(3)/(16π4), i.e. the coefficient of a2k is positive. The contribution
of all k such that ak � 1 is � K , and for all other terms a2k dominates ak . Therefore

D2
2(S(α, qK )) ≥ c

∑K
k=1 a

2
k − CK . On the other hand, by Roth’s theorem we also have

D2
2(S(α, qK )) � log qK � K . Taking a suitable weighted average of the previous two

inequalities establishes the lower bound D2
2(S(α, qK )) ≥ c

∑K
k=1 a

2
k .
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From Proposition 7 we similarly deduce

D2
2(L(α, qK )) ≥ 1

qK

qK−1∑
n=1

(
Tn − EqK

)2 + E2
qK + c

K∑
k=1

a2k .

Here q−1
K

∑qK−1
n=0 (Tn − EqK )2 ≥ 0, and the lower bound for D2

2(L(α, qK )) follows from
formula (2). ��

2.5 Proof of Remark 1

Let α be an irrational such that ak � √
k/(log k)2. For any qK−1 ≤ N ≤ qK we then have

max|k−K |�log K a2k · (log log N )4 � K , hence formulas (3) and (4) give

1

N

N−1∑
n=0

(Tn − EN )2 =
qK−1∑
m=1

1

8π4m2‖mα‖2 + O(K ) �
K∑

k=1

a2k .

Using this fact instead of Lemma 10 in the proof of Proposition 8, we deduce that
D2
2(L(α, N )) � ∑K

k=1 a
2
k + (

∑K
k=1(−1)kak)2 holds for all qK−1 ≤ N ≤ qK (instead

of only for N = qK ). In particular, the equivalence stated in Remark 1 follows.

3 Typical irrationals

3.1 Asymptotics almost everywhere

Let us recall certain basic facts about the statistics of the partial quotients of a typical irrational
number. Let ϕ be a positve nondecreasing function on (0,∞), and let AK = max1≤k≤K ak .

It is well known that for a.e. α we have log qk ∼ π2

12 log 2k, and that ak ≤ ϕ(k) for all but

finitely many k if and only if
∑∞

n=1 1/ϕ(n) < ∞. A classical result of Diamond and Vaaler
[13] on trimmed sums states that for a.e. α,

∑K
k=1 ak − AK

K log K
→ 1

log 2
as K → ∞. (9)

Proof of Theorem 3 For any N ≥ 2, let KN (α) be the positive integer for which qKN (α)−1 <

N ≤ qKN (α). In particular, for a.e. α we have KN (α) ∼ 12 log 2
π2 log N , where 12 log 2

π2 =
0.8427 . . . .
(i) Assume that

∑∞
n=1 1/ϕ(n) < ∞. As observed in the Introduction, by a classical discrep-

ancy estimate for the sequence {nα} [16, p. 52], we have

D2(S(α, N )) � D∞(L(α, N )) �
KN (α)∑
k=1

ak,

D2(L(α, N )) � D∞(L(α, N )) �
KN (α)∑
k=1

ak .
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The asymptotic relation (9) of Diamond and Vaaler shows that for a.e. α,

D2(S(α, N )) ≤ C
KN (α)∑
k=1

ak = CAKN (α) + O(KN (α) log KN (α)),

D2(L(α, N )) ≤ C
KN (α)∑
k=1

ak = CAKN (α) + O(KN (α) log KN (α))

with a universal constant C > 0. Here AKN (α) ≤ ϕ(KN (α)) and KN (α) ≤ log N for
all but finitely many N . Therefore D2(S(α, N )) ≤ Cϕ(log N ) + O(log N log log N ) and
D2(L(α, N )) ≤ Cϕ(log N ) + O(log N log log N ) with implied constants depending only
on α and ϕ. The factor C can be removed by repeating the argument with ϕ(x)/C instead of
ϕ(x).
(ii) Assume that

∑∞
n=1 1/ϕ(n) = ∞. By Proposition 8, we have

D2(S(α, qK )) ≥ c

( K∑
k=1

a2k

)1/2

≥ cAK and D2(L(α, qK )) ≥ c

( K∑
k=1

a2k

)1/2

≥ cAK

with a universal constant c > 0.Here AK ≥ ϕ(K ) for infinitelymany K , and K ≥ (log qK )/2
for all but finitely many K . Hence D2(S(α, qK )) ≥ cϕ((log qK )/2) and D2(L(α, qK )) ≥
cϕ((log qK )/2) for infinitely many K . Repeating the argument with ϕ(2x)/c instead of ϕ(x),
we deduce that D2(S(α, qK )) ≥ ϕ(log qK ) and D2(L(α, qK )) ≥ ϕ(log qK ) for infinitely
many K , as claimed. ��

3.2 Limit distribution

Let λ be the Lebesgue measure, and ν(B) = (1/ log 2)
∫
B 1/(1 + x) dx (B ⊆ [0, 1] Borel)

the Gauss measure. If α is chosen randomly from [0, 1] with distribution ν, then its partial
quotients are identically distributed random variables with distribution

ν ({α ∈ [0, 1] : ak = n}) = 1

log 2
log

(
1 + 1

n(n + 2)

)
, k, n ≥ 1.

If α is chosen randomly from [0, 1] with distribution either λ or ν, then the sequence ak is
ψ-mixing with exponential rate [21, p. 119].

To find the limit distribution of D2
2(S(α, N ))/(log N )2, we shall need more sophisticated

facts about the partial quotients of a typical irrational, whichwe nowgather.Most importantly,
a special case of a limit distribution theorem of Samur [27] (see also [8]) states that if μ is
a Borel probability measure on [0, 1] which is absolutely continuous with respect to the
Lebesgue measure, then for any t ≥ 0,

μ

({
α ∈ [0, 1] : 2(log 2)2

πK 2

K∑
k=1

a2k ≤ t

})
→
∫ t

0

e−1/(2x)

√
2πx3/2

dx as K → ∞. (10)

If μ is either λ or ν, then general results of Heinrich [17] on ψ-mixing random variables
imply the rate of convergence

sup
t≥0

∣∣∣∣∣μ
({

α ∈ [0, 1] : 2(log 2)2

πK 2

K∑
k=1

a2k ≤ t

})
−
∫ t

0

e−1/(2x)

√
2πx3/2

dx

∣∣∣∣∣�
1

K 1−ε
(11)
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with an arbitrary ε > 0 and an implied constant depending only on ε. The corresponding
result for

∑K
k=1 ak in the Gauss measure is also due to Heinrich:

sup
t∈R

∣∣∣∣∣ν
({

α ∈ [0, 1] : 1

K

K∑
k=1

ak − log K − γ

log 2
≤ t

})
− F(t)

∣∣∣∣∣�
(log K )2

K
,

where γ is the Euler–Mascheroni constant, and F(t) is the distribution function of the law
with characteristic function∫

R

eitx dF(t) = exp

(
− π

2 log 2
|x |
(
1 + 2i

π
sgn(x) log |x |

))
.

Note that this is a stable law with stability parameter 1 (and skewness parameter 1). Hence
1 − F(t) � 1/t as t → ∞, and we immediately obtain

ν

({
α ∈ [0, 1] : 1

K

K∑
k=1

ak ≥ t + log K

log 2

})
� 1

t
+ (log K )2

K
as t → ∞. (12)

The final ingredient is a similar estimate for the convergent denominators: with a large enough
universal constant C > 0,

ν

({
α ∈ [0, 1] :

∣∣∣∣log qK − π2

12 log 2
K

∣∣∣∣ ≥ C
√
K log K

})
� 1√

K
. (13)

This follows from the fact that log qK satisfies the central limit theorem with rate O(1/
√
K ),

as shown by Morita [23]. We mention that a better upper bound can be deduced from the
large deviation inequality of Takahasi [29], but (13) suffices for our purposes.

Proof of Theorem 4 Throughout the proof, C > 0 is a large universal constant whose value
changes from line to line, and Yi = Yi (α, N ), i = 1, 2, . . . are error terms. For any N ≥ 2,
let KN (α) be the positive integer for which qKN (α)−1 < N ≤ qKN (α).

Proposition 7 and formula (4) show that we can write

D2
2(S(α, N )) = 1

360

KN (α)−1∑
k=1

a2k + Y1,

where

|Y1| ≤ 1

180
a2KN (α) + C

KN (α)∑
k=1

ak + C

N

KN (α)−2∑
k=0

a3k+1qk .

Using the general fact qk+2/qk ≥ 2, we estimate the last error term as

1

N

KN (α)−2∑
k=0

a3k+1qk ≤ 1

N

KN (α)−1∑
k=1

a2k qk

≤
KN (α)−100 log KN (α)∑

k=1

a2k
qk

qKN (α)−1
+

KN (α)−1∑
k=KN (α)−100 log KN (α)

a2k
qk

qKN (α)−1

≤ 1

KN (α)10

KN (α)∑
k=1

a2k +
KN (α)−1∑

k=KN (α)−100 log KN (α)

a2k .
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This leads to the simplified form D2
2(S(α, N )) = (1/360)

∑KN (α)
k=1 a2k + Y2, where

|Y2| ≤ C

KN (α)10

KN (α)∑
k=1

a2k + C
KN (α)∑

k=KN (α)−100 log KN (α)

a2k + C
KN (α)∑
k=1

ak .

Set K = � 12 log 2
π2 log N�. The estimate (13) states that

ν

({
α ∈ [0, 1] :

∣∣∣∣log qK − π2

12 log 2
K

∣∣∣∣ ≥ C
√
K log K

})
� 1√

K
.

By the definition of KN (α) and K , this immediately gives

ν

({
α ∈ [0, 1] : |KN (α) − K | ≥ C

√
K log K

})
� 1√

K
.

Roughly speaking, this means that we can replace KN (α) by K in the above formulas; the
point is that the latter does not depend on α. More precisely, outside a set of ν-measure

� 1/
√
K , we have D2

2(S(α, N )) = (1/360)
∑K

k=1 a
2
k + Y3, where

|Y3| ≤ C

K
10

2K∑
k=1

a2k + C
K+C

√
K log K∑

k=K−C
√

K log K

a2k + C
2K∑
k=1

ak .

Since 5π3/(log N )2 = 720(log 2)2/(πK
2
) + O(1/K

3
), normalizing the previous formula

leads to the fact that outside a set of ν-measure � 1/
√
K ,

5π3 D
2
2(S(α, N ))

(log N )2
= 2(log 2)2

πK
2

K∑
k=1

a2k + Y4,

where

|Y4| ≤ C

K
3

2K∑
k=1

a2k + C

K
2

K+C
√

K log K∑
k=K−C

√
K log K

a2k + C

K
2

2K∑
k=1

ak .

We now estimate the three error terms in the previous formula. The limit distribution with
rate of Heinrich (11) gives

ν

⎛
⎝
⎧⎨
⎩α ∈ [0, 1] : 1

K
3

2K∑
k=1

a2k ≥ 1

K
1/3

⎫⎬
⎭
⎞
⎠�

∫ ∞

const·K 2/3

e−1/(2x)

√
2πx3/2

dx + 1

K
1−ε

� 1

K
1/3 .
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Since the sequence ak is strictly stationary, we similarly deduce

ν

({
α ∈ [0, 1] : 1

K
2

K+C
√

K log K∑
k=K−C

√
K log K

a2k ≥ (log K )1/3

K
1/3

})

= ν

⎛
⎜⎝
⎧⎪⎨
⎪⎩α ∈ [0, 1] : 1

K
2

C
√

K log K∑
k=1

a2k ≥ (log K )1/3

K
1/3

⎫⎪⎬
⎪⎭

⎞
⎟⎠

�
∫ ∞

const·K 2/3
/(log K )2/3

e−1/(2x)

√
2πx3/2

dx + 1

K
1/2−ε

� (log K )1/3

K
1/3 .

Finally, formula (12) gives

ν

⎛
⎝
⎧⎨
⎩α ∈ [0, 1] : 1

K
2

2K∑
k=1

ak ≥ 1

K
1/3

⎫⎬
⎭
⎞
⎠� 1

K
2/3 .

By the previous three estimates, we can finally write

5π3 D
2
2(S(α, N ))

(log N )2
= 2(log 2)2

πK
2

K∑
k=1

a2k + Y5, (14)

where

ν

({
α ∈ [0, 1] : |Y5| ≥ C

(log K )1/3

K
1/3

})
≤ C

(log K )1/3

K
1/3 . (15)

The proof of the theorem is now immediate. Assume first, that μ is absolutely continuous
with respect to the Lebesgue measure. The theorem of Samur (10) ensures that the main term
in (14) converges in distribution to the standard Lévy distribution as N , and hence K , goes to
infinity. Since Y5 → 0 in ν-measure, the same holds also in μ-measure, and the convergence
to the standard Lévy distribution remains true for the left hand side of (14). This finishes the
proof for a general absolutely continuous measure μ.

Next, let μ be either λ or ν. Then the sequence ak is ψ-mixing with exponential rate, and
the limit distribution with rate of Heinrich (11) ensures that the main term in (14) converges

to the standard Lévy distribution with rate � 1/K
1−ε

. The estimate (15), which holds also
with λ in place of ν, together with the trivial fact that the distribution function of the Lévy
distribution is Lipschitz, shows that this convergence remains true for the left hand side of

(14) with the rate � (log K )1/3/K
1/3

. This finishes the proof of the rate of convergence for
λ and ν. ��

4 Typical rationals

Let FQ denote the set of all reduced fractions in the interval (0, 1) with denominator at
most Q, and let us write every p/q ∈ FQ in the form p/q = [0; a1, . . . , ar ]. It does
not matter which of the two possible expansions is chosen. Note that the partial quotients
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a1 = a1(p/q), . . . , ar = ar (p/q) as well as the length r = r(p/q) are functions of p/q .
For the sake of simplicity, we use the convention ak = 0 if k > r .

The proof of Theorem 6 is based on recent results of Bettin and Drappeau on the limit
distribution of power sums of the partial quotients; they are perfect analogues of the results
for typical irrationals mentioned in Sect. 3.2.

Lemma 11 (Bettin–Drappeau [4]) For any Q ≥ 2 and ε > 0,

sup
t≥0

∣∣∣∣∣
1

|FQ |

∣∣∣∣∣
{
p

q
∈ FQ : π3

72(log Q)2

r∑
k=1

a2k ≤ t

}∣∣∣∣∣−
∫ t

0

e−1/(2x)

√
2πx3/2

dx

∣∣∣∣∣�
1

(log Q)1−ε

(16)
and

sup
t∈R

∣∣∣∣∣
1

|FQ |

∣∣∣∣∣
{
p

q
∈ FQ : 1

log Q

r∑
k=1

ak − log log Q − γ

π2/12
≤ t

}∣∣∣∣∣− G(t)

∣∣∣∣∣�
1

(log Q)1−ε

with implied constants depending only on ε. Here γ is the Euler–Mascheroni constant, and
G(t) is the distribution function of the law with characteristic function∫

R

eitx dG(t) = exp

(
− 6

π
|x |
(
1 + 2i

π
sgn(x) log |x |

))
.

The second limit distribution in Lemma 11 immediately yields

1

|FQ |

∣∣∣∣∣
{
p

q
∈ FQ : 1

log Q

r∑
k=1

ak ≥ t + log log Q

π2/12

}∣∣∣∣∣�
1

t
+ 1

(log Q)1−ε
as t → ∞.

(17)
Note that (16) was stated in [4] with the rate � 1/(log log Q)1−ε, but the methods of that
paper actually give � 1/(log Q)1−ε. For the sake of completeness, we deduce (16) as stated
here in Sect. 4.1. We now prove a lemma which will serve as a substitute for the fact that the
partial quotients are not exactly identically distributed, and then prove Theorem 6.

Lemma 12 For any positive integers Q, k, t , we have∣∣∣∣
{
p

q
∈ FQ : ak ≥ t

}∣∣∣∣ ≤ 2Q2

t
.

Proof Assume first, that k = 1. Note that a1 ≥ t implies that 0 < p/q ≤ 1/t . In particular,
for each 1 ≤ q ≤ Q there are at most q/t possible numerators p, hence

∣∣∣∣
{
p

q
∈ FQ : a1 ≥ t

}∣∣∣∣ ≤
Q∑

q=1

q

t
≤ Q2

t
. (18)

Next, assume that k ≥ 2. Let denom(x) denote the denominator of a rational x (in its reduced
form). From the recursion satisfied by the denominator of the convergents one readily deduces
the supermultiplicative property

denom([0; a1, . . . , ar ]) ≥ denom([0; a1, . . . , ak−1]) · denom([0; ak, . . . , ar ]).
For any fixed positive integers b1, . . . , bk−1 we thus obtain∣∣∣∣

{
p

q
∈ FQ : a1 = b1, . . . , ak−1 = bk−1, ak ≥ t

}∣∣∣∣
≤
∣∣∣∣
{
p

q
∈ FQ/denom([0;b1,...,bk−1]) : a1 ≥ t

}∣∣∣∣ .
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Summing over b1, . . . , bk−1 and applying (18) leads to

∣∣∣∣
{
p

q
∈ FQ : ak ≥ t

}∣∣∣∣ ≤
∞∑

b1,...,bk−1=1

Q2

t(denom([0; b1, . . . , bk−1]))2 .

Recall that the set of real numbers [0; c1, c2, . . .] ∈ [0, 1] such that c1 = b1, . . . , ck−1 =
bk−1 is an interval whose length is at least 1/(2 denom([0; b1, . . . , bk−1])2). Since these are
pairwise disjoint intervals, we have

∞∑
b1,...,bk−1=1

1

(denom([0; b1, . . . , bk−1]))2 ≤ 2,

and the claim follows. ��

Proof of Theorem 6 Throughout the proof, C > 0 is a large universal constant whose value
changes from line to line, and Zi = Zi (p/q), i = 1, 2 are error terms.

Proposition 7 and formula (4) show that we can write

D2
2(S(p/q, q)) = 1

360

r∑
k=1

a2k + Z1, where |Z1| ≤ C
r∑

k=1

ak + C

q

r−1∑
k=0

a3k+1qk .

Here a3k+1qk ≤ a2k+1qk+1, and qk/q = qk/qr ≤ 1/Fr−k+1, where Fk is the sequence of
Fibonacci numbers. Hence normalizing the previous formula leads to

5π3 D
2
2(S(p/q, q))

(log Q)2
= π3

72(log Q)2

r∑
k=1

a2k + Z2,

where

|Z2| ≤ C

(log Q)2

r∑
k=1

ak + C

(log Q)2

r∑
k=1

a2k
Fr−k+1

.

The first error term can be estimated in measure using formula (17) as

1

|FQ |

∣∣∣∣∣
{
p

q
∈ FQ : 1

(log Q)2

r∑
k=1

ak ≥ 1

(log Q)1/2

}∣∣∣∣∣�
1

(log Q)1/2
.

Let us agree for the moment to use the continued fraction expansion with ar ≥ 2
for fractions p/q ∈ (0, 1/2], and the expansion with ar = 1 for fractions p/q ∈
(1/2, 1). Then the map reversing the order of the partial quotients FQ → FQ ,
[0; a1, a2, . . . , ar ] �→ [0; ar , . . . , a2, a1] is a bijection. In fact, [0; ar , . . . , a2, a1] is the
reduced fraction qr−1/qr , which has the same denominator as [0; a1, . . . , ar ]. Therefore
the distribution of (ar , . . . , a2, a1) is identical to that of (a1, a2, . . . , ar ), and we can apply
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Lemma 12 to estimate the second error term in measure as

1

|FQ |

∣∣∣∣∣
{
p

q
∈ FQ : 1

(log Q)2

r∑
k=1

a2k
Fr−k+1

≥ 1

(log Q)1/2

}∣∣∣∣∣
= 1

|FQ |

∣∣∣∣∣
{
p

q
∈ FQ :

r∑
k=1

a2k
Fk

≥ (log Q)3/2

}∣∣∣∣∣
≤ 1

|FQ |
∞∑
k=1

∣∣∣∣∣
{
p

q
∈ FQ : a2k

Fk
≥ (log Q)3/2

}∣∣∣∣∣
≤ 1

|FQ |
∞∑
k=1

2Q2

F1/2
k (log Q)3/4

� 1

(log Q)3/4
.

Note that we used the convention ak = 0 if k > r , and the fact that |FQ | � Q2. One readily
checks that the value of

∑r
k=1 a

2
k /Fr−k+1 for the two possible continued fraction expansions

of the same rational differ at most by a factor of 2. Hence the tail estimate in the previous
formula holds no matter which expansion we choose. In particular,

1

|FQ |
∣∣∣∣
{
p

q
∈ FQ : |Z2| ≥ 1

(log Q)1/2

}∣∣∣∣� 1

(log Q)1/2
,

and the limit distribution theorem (16) of Bettin and Drappeau yields

sup
t≥0

∣∣∣∣∣
1

|FQ |

∣∣∣∣∣
{
p

q
∈ FQ : 5π3 D

2
2(S(p/q, q))

(log Q)2
≤ t

}∣∣∣∣∣−
∫ t

0

e−1/(2x)

√
2πx3/2

dx

∣∣∣∣∣�
1

(log Q)1/2
.

The error of replacing (log Q)2 by (log q)2 is easily seen to be negligible compared to
1/(log Q)1/2. ��

4.1 Proof of Lemma 11

We now deduce the rate � 1/(log Q)1−ε in (16). Fix ε > 0. Applying the main result [4,
Theorem 3.1] of Bettin andDrappeau to, in their notation, φ(x) = �1/x�2 with α0 = 1/2−ε,
we conclude that there exist constants t0, δ > 0 such that for all |t | < t0,

1

|FQ |
∑

p/q∈FQ

exp

(
i t

r∑
k=1

a2k

)
= exp

(
U (t) log Q + O

(|t |1/2−ε + Q−δ
))

, (19)

where

U (t) = 12

π2

∫ 1

0

eit�1/x�2 − 1

1 + x
dx + O

(|t |1−ε
) = 12

π2

∫ ∞

1

eit�x�2 − 1

x2 + x
dx + O

(|t |1−ε
)
.

Here t0, δ and the implied constants depend only on ε.
Our improvement in (16) comes from a more careful estimate for U (t). Assume that

0 < t < t0. Since |�x�2 − x2| ≤ 2x , the error of removing the integer part function is
negligible:
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∣∣∣∣∣
∫ ∞

1

eit�x�2 − eitx
2

x2 + x
dx

∣∣∣∣∣ ≤
∫ ∞

1

min{2t x, 2}
x2 + x

dx � t log
1

t
.

Therefore

U (t) = 12

π2

∫ ∞

1

eitx
2 − 1

x2 + x
dx + O(t1−ε) = 12

√
t

π2

∫ ∞
√
t

ei x
2 − 1

x2 + √
t x

dx + O(t1−ε).

We now compare the remaining integral to its limit, the Fresnel-type integral
∫∞
0 (eix

2 −
1)/x2 dx = (i − 1)

√
2π/2. We have∣∣∣∣∣

∫ ∞
√
t

ei x
2 − 1

x2 + √
t x

dx −
∫ ∞

0

eix
2 − 1

x2
dx

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ √

t

0

eix
2 − 1

x2
dx

∣∣∣∣∣
+
∫ ∞

√
t

|eix2 − 1| ·
∣∣∣∣ 1

x2 + √
t x

− 1

x2

∣∣∣∣ dx

≤
∫ √

t

0
1 dx +

∫ ∞
√
t
min{x2, 2}

√
t

x3
dx

� √
t log

1

t
,

hence U (t) = 6
√
2
√
t

π3/2 (i − 1) + O(t1−ε). The case of negative t follows from complex
conjugation, thus for |t | < t0,

U (t) = −6
√
2|t |1/2
π3/2 (1 − isgn(t)) + O(|t |1−ε). (20)

Now let

ϕ1(t) = 1

|FQ |
∑

p/q∈FQ

exp

(
i t

π3

72(log Q)2

r∑
k=1

a2k

)

and ϕ2(t) = exp(−|t |1/2(1− isgn(t))); the latter is the characteristic function of the standard
Lévy distribution. The Berry–Esseen inequality [24, p. 142] states that the distance of these
two distributions in the Kolmogorov metric is, with any T > 0,

sup
t≥0

∣∣∣∣∣
1

|FQ |

∣∣∣∣∣
{
p

q
∈ FQ : π3

72(log Q)2

r∑
k=1

a2k ≤ t

}∣∣∣∣∣−
∫ t

0

e−1/(2x)

√
2πx3/2

dx

∣∣∣∣∣
� 1

T
+
∫ T

0

|ϕ1(t) − ϕ2(t)|
t

dt .

Choose T = log Q. Formulas (19) and (20) show that for |t | ≤ log Q,

ϕ1(t) = ϕ2(t) exp

(
O

(( |t |
(log Q)2

)1−ε

log Q +
( |t |

(log Q)2

)1/2−ε

+ Q−δ

))

= ϕ2(t)

(
1 + O

( |t |1−ε + |t |1/2−ε

(log Q)1−2ε + Q−δ

))
.

Using |ϕ2(t)| = e−|t |1/2 , this immediately yields

|ϕ1(t) − ϕ2(t)| � e−|t |1/2
( |t |1−ε + |t |1/2−ε

(log Q)1−2ε + Q−δ

)
.

123



Optimal and typical L2 discrepancy of 2-dimensional lattices

It is now easy to see that∫ 1

Q−100

|ϕ1(t) − ϕ2(t)|
t

dt � 1

(log Q)1−2ε and
∫ log Q

1

|ϕ1(t) − ϕ2(t)|
t

dt � 1

(log Q)1−2ε .

On the other hand, by a very rough estimate we have
∑r

k=1 a
2
k ≤ Q3, hence |ϕ1(t) − 1| �

|t |Q3. Clearly |ϕ2(t) − 1| � |t |1/2, thus
∫ Q−100

0

|ϕ1(t) − ϕ2(t)|
t

dt �
∫ Q−100

0

t Q3 + t1/2

t
dt � Q−50.

Therefore

1

log Q
+
∫ log Q

0

|ϕ1(t) − ϕ2(t)|
t

dt � 1

(log Q)1−2ε ,

as claimed.
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