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Abstract
This work is devoted to the study of the obstacle problem associated to the Kolmogorov–
Fokker–Planck operator with rough coefficients through a variational approach. In particular,
after the introduction of a proper anisotropic Sobolev space and related properties, we prove
the existence and uniqueness of a weak solution for the obstacle problem by adapting a
classical perturbation argument to the convex functional associated to the case of our interest.
Finally, we conclude this work by providing a one-sided associated variational inequality,
alongside with an overview on related open problems.
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1 Introduction

This work is devoted to the study of the obstacle problem associated to the following
Kolmogorov–Fokker–Planck operator

L u(v, x, t) = ∇v · (A(v, x, t)∇vu(v, x, t)) + v · ∇xu(v, x, t) − ∂t u(v, x, t)

=: ∇v · (A(v, x, t)∇vu(v, x, t)) + Yu(v, x, t), (1.1)

where (v, x, t) ∈ R
2d+1 and the diffusion matrix A satisfies the following assumption:

(H) A(v, x, t) = (
ai j (v, x, t)

)
i j is a bounded d × d matrix made of real measurable coef-

ficients and such that ai j = a ji for every i, j = 1, . . . , d . Moreover, there exists two
positive constants λ and � such that

λ|ξ |2 ≤ (Aξ) · ξ ≤ �|ξ |2 ∀ξ ∈ R
d . (1.2)

Assumption (H) is usually referred to as ellipticity condition. In particular, the left-hand side
of inequality (1.2) ensures coercivity of the functionals J andJ defined below in (3.2) and
(3.5), respectively, providing us with a fundamental ingredient for our proof. Moreover, it
is responsible of the degenerate nature of the Kolmogorov–Fokker–Planck operator L , for
which the diffusion only happens in the velocity variables, i.e. the first d directions.

1.1 Motivation and background

The Kolmogorov–Fokker–Planck operator K with constant coefficient

K u(v, x, t) = �vu(v, x, t) + v · ∇xu(v, x, t) − ∂t u(v, x, t), (v, x, t) ∈ R
2d+1,

was firstly introduced by Kolmogorov in [22] as a fundamental ingredient for the study of the
density of d particles of gas in the phase space. Later on, K was considered by Hörmander
in [19] as a prototype for the family of hypoelliptic operators of type 2, i.e. the ones which
can be written as a sum of squares plus a drift term

∑d
i=1 X

2
i + X0, where Xi is a smooth

vector field for every i = 0, . . . , d , and for this reason we usually refer to

Yu(v, x, t) := v · ∇xu(v, x, t) − ∂t u(v, x, t), (v, x, t) ∈ R
2d+1,

as drift, or transport term. This immediately suggested that K is a hypoelliptic operator
because it satisfies Hörmander’s rank condition, meaning every solution to K u = f on a
bounded open domain � ⊂ R

2d+1 is smooth whenever f ∈ C∞(�). Thus, K possesses
strong regularizing properties.

As it will be clear in the following, operatorL arises in various applications starting from
the kinetic theory of gas, f. i. [32], and the financial market modeling, f.i. [2, 29]. On the other
hand, from the purely analytical point of view, L is a prototype for the family of second
order ultraprabolic partial differential operators of Kolmogorov type defined as

m0∑

i, j=1

∂xi
(
ai j (x, t)∂x j u(x, t)

) +
N∑

i, j=1

bi j x j∂xi u(x, t) − ∂t u(x, t), (x, t) ∈ R
N+1,

(1.3)

on Lie groups, see f. i. [23]. On one hand, when the matrix A is made of constant, or Hölder
continuous coefficients, we deal with classical solutions. In this setting, Schauder estimates
[25, 30], well-posedness results for the Dirichlet [25] and the Cauchy problem [11], alongside
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with other results were proved by many authors over the years. For further information on
this subject we refer the reader to [3] and the references therein.

On the other hand, when the matrix A is made of measurable coefficients we have to
tackle with weak solutions. The extension of the De Giorgi-Nash-Moser regularity theory
to this setting had been an open problem for decades recently resolved both in the kinetic
and ultraparabolic setting, with various contributions among which we recall [15–17] and
[4], respectively. As far as we are concerned with well-posedness results for boundary value
problems in the weak setting, there are recent results regarding existence and uniqueness of
the solution for the Dirichlet problem [24], existence of a weak fundamental solution for the
weak Cauchy problem [5], and finally Cα regularity estimates up to the boundary [31, 33]. It
is in this weak framework that we aim to address the study of the weak obstacle problem by
means of variational methods, a topic which presents many interesting open problems that
we discuss in Sect. 4.

Obstacle problems are not only fascinating for theoretical purposes, but also for their appli-
cations in research areas as diverse as physics, biology and stochastic theory. We here focus
on their connection to mathematical finance and in particular to the problem of determining
the arbitrage-free price of American-style options. To be more precise, we consider a finan-
cial model where the time evolution of the state variables is described by the 2d-dimensional
diffusion process X = (

V x
t , Xx

t

)
solving the stochastic differential equation

{
dV x

t = √
2 dWt ,

dXx
t = V x

t dt,
and Xt0,x

t0 = x, (1.4)

where (x, t0) ∈ R
2d × [0, T ] and Wt denotes a d-dimensional Wiener process.

We recall that an American option with pay-off ψ is a contract which grants the holder
the right to receive the payment of the sum ψ(Xt ) at a time t ∈ [0, T ], which is chosen by
the holder. Then, in virtue of the classical arbitrage theory (see, for instance [29]), the fair
price at the initial time 0 of the American option, assuming the risk-free interest rate is zero,
is given by the following optimal stopping problem

u(x, t) = sup
τ∈[t,T ]

E
[
ψ

(
Xt,x

τ

)]
, (1.5)

where the supremum is taken over all stopping times τ ∈ [t, T ] of X . In [28], it is proved
that the function u in (1.5) is a solution to the obstacle problem

{
max{L u − f , ψ − u} (v, x, t) ∈ R

2d × [0, T ]
u(v, x, t) = g (v, x, t) ∈ R

2d × {0}, (1.6)

where the obstacleψ corresponds to the pay-off of the option and it is a Lipschitz continuous
function in � satisfying the following condition: there exists a constant c ∈ R such that

d∑

i, j=1

ξiξ j∂xi x j ψ ≥ c|ξ |2, in�, ξ ∈ R
d (1.7)

in the distributional sense.
In the uniformly parabolic case, i.e. when d = N , the evaluation of American options was

studied starting from the article [8], where a probabilistic approach was employed, and later
on developed in the paper [20] considering a variational approach.

Furthermore, the investigation of problem (1.6) is motivated by the fact that there are
significant classes of American options whose corresponding diffusion process X is associ-
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ated to Kolmogorov-type operators which are not uniformly parabolic and are of the kind
(1.1). Two such examples are given by American style options (c.f. [6]) and by the American
options priced in the stochastic volatility introduced in the article [18].

In virtue of its importance in finance, the mathematical study of the obstacle problem (1.6)
was already initiated in the papers [12, 14, 27]. Specifically, the main result of [12] is the
existence of a strong solution to problem (1.6) in certain bounded cylindrical domains and
in the strips R

2d × [0, T ] through the adaptation of a classical penalization technique. On
the other hand, the main purpose of papers [14, 27] is to prove some new regularity results
for solutions to (1.6). In particular, [14] concerns the optimal interior regularity for solutions
to the problem (1.6), while [27] contains new results regarding the regularity near the initial
state for solutions to the Cauchy-Dirichlet problem and to (1.6).

However, in the aforementioned papers [12, 14, 27], the authors could only deal with
strong solutions and continuous obstacles satisfying condition (1.7). For this reason, the
main purpose of this paper is to improve the results contained in [12, 14, 27, 28] by studying
the obstacle problem (1.6) in a more general and natural setting, i.e. by considering weak
solutions to (1.1) in the functional space W . Furthermore, in a standard manner (see [21,
Chapter 6]), we assume that the obstacleψ and the boundary data g inherit the same regularity
of the function u, namelyψ ∈ W(�v ×�xt ) and g ∈ W(�v ×�xt ). In comparison with [12,
14, 27, 28], we also weaken the regularity assumptions on the right-hand side by considering
f ∈ L2(�xt , H−1(�v)) and by considering the following more general obstacle problem

⎧
⎪⎨

⎪⎩

L u(v, x, t) = f (v, x, t) (v, x, t) ∈ �

u(v, x, t) ≥ ψ(v, x, t) (v, x, t) ∈ �

u(v, x, t) = g (v, x, t) ∈ ∂K�,

(1.8)

where the boundary condition needs to be considered as attained in the sense of traces, the
obstacle condition holds in W(�v × �xt ) and

ψ ≤ g on ∂K (�v × �xt ) in W(�v × �xt ), (1.9)

an ordering relation whose meaning will be clarified in Sect. 2. Another motivation behind
our studies is to pursue the variational analysis of Kolmogorov-type operators. In particular,
with this work we aim at initiating the study of the obstacle problem (1.8) in the framework
of Calculus of Variations, in order to take advantage of the rich toolbox provided by such
theory when it comes to investigating weak solutions and less regular obstacles.

A first step towards this direction was already taken in [1, 4, 24], where the natural
functional setting for the variational study of degenerateKolmogorov equationswas identified
and subsequently characterized. This leads back to finding the right variational formulation
and the right functional associated to Kolmogorov-type equations. More precisely, following
[1], we rewrite the problem of finding a solution to (1.8) as that of finding a null minimizer
of the functional

inf

⎧
⎪⎨

⎪⎩

∫∫∫

�v×�xt

1

2
(A (∇vu − ((ג · (∇vu − (ג dv dx dt : ∇v · (Aג) = f − Yu

⎫
⎪⎬

⎪⎭
. (1.10)

It is clear that the infimum in (1.10) is non-negative and that, given a solution u to (1.8), if we
choose ג = ∇vu, then (1.10) vanishes at u. Moreover, it is easy to show that the functional
in (1.10) is uniformly convex and attains its minimum at zero. Finally, we remark that the
functional justifies the definition of functional kinetic space given in (1.12).
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1.2 Functional setting

In order to present ourmain results, we first need to introduce some further notation regarding
both the domain and the functional setting we are considering from now on in this work.
First of all, let � := �v × �xt be a subset of R

2d+1 such that

(D) �v ⊂ R
d is a bounded Lipschitz domain and �xt ⊂ R

d+1 is a bounded domain with
C1,1-boundary, i.e. C1,1-smooth with respect to the transport operator Y as well as t .

Then, if we denote by N the outer normal to �xt , we are able to classically define the
Kolmogorov boundary of the set � as

∂K (�v × �xt ) := (∂�v × �xt ) ∪ {
(v, x, t) ∈ �v × ∂�xt | (v,−1) · Nxt > 0

}
,

(1.11)

which serves in the context of the operator L as the natural hypoelliptic counterpart of the
parabolic boundary considered in the context of Cauchy-Dirichlet problems for uniformly
parabolic equations. Notice that the Kolmogorov boundary is well defined on the domain
�v ×�xt , since we assume enough regularity on the boundary of�xt to ensure the existence
of the normal Nxt .

Secondly, let us denote by H1(�v) the Sobolev space in the velocity variable, i.e. the

space of functions whose distributional gradient in �v lies in
(
L2(�v)

)d
that is

H1(�v) :=
{
h ∈ L2(�v) : ∇vh ∈ (

L2(�v)
)d}

. (1.12)

Moreover, we set the norm associated to the space H1(�v) as

‖h‖H1(�v) := ‖h‖L2(�v) + ‖∇vh‖L2(�v), ∀h ∈ H1(�v),

where by abuse of notation ‖∇vh‖L2(�v) is the vectorial norm of the gradient. Then, following
the classical approach, we let H1

c (�v) denote the closure of C∞
c (�v) in the norm of H1(�v)

and we recall that C∞
c (�v) is dense in H1(�v) given that �v is a Lipschitz domain by

assumption. This means we can define equivalently H1(�v) as the closure of C∞
c (�v) in

the norm ‖ · ‖H1(�v). Since H1
c (�v) is a Hilbert space, then it is reflexive, meaning

(
H1
c (�v)

)∗ = H−1(�v) and
(
H−1(�v)

)∗ = H1
c (�v),

where (·)∗ denotes the dual of the space. Hence, from now on we denote by H−1(�v) the
dual to H1

c (�v) acting on functions in H1
c (�v) through the duality pairing

〈 · | · 〉 := 〈 · | · 〉H−1(�v),H1
c (�v).

Now, following the approach proposed in [24], we define the Kolmogorov Sobolev space
W(�v × �xt ) as the closure of C∞(�xt × �v) in the norm

‖w‖W(�xt×�v) := ‖w‖L2(�xt ,H1(�v)) + ‖Yu‖L2(�xt ,H−1(�v)

:=
(∫∫

�xt

‖w(·, x, t)‖2H1(�v)
dx dt

) 1
2+

⎛

⎜
⎝

∫∫

�xt

‖Yu(·, x, t)‖2H−1(�v)
dx dt

⎞

⎟
⎠

1
2

.

We recall that in [1] the authors prove that C∞
c (�xt × �v) is dense in the space

W(�xt × �v) = {
w ∈ L2(�xt , H

1(�v)) : Yw ∈ L2(�xt , H
−1(�v))

}
.
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Hence, we could also consider this equivalent definition for the Kolmogorov Sobolev space.
Furthermore, we consider that L2(�xt , H−1(�v)) is such that

L2(�xt , H
−1(�v)) = (

L2(�xt , H
1
c (�v))

)∗
.

Lastly, if we consider again �xt ×�v under the assumption (D), then we denote by ∂(�xt ×
�v) its topological boundary and by ∂K (�xt × �v) its Kolmogorov boundary as defined
in (1.11), where ∂K (�xt × �v) ⊂ ∂(�xt × �v). Hence we denote by C∞

0,K (�xt × �v) the

set of functions C∞(�xt × �v) vanishing on ∂K (�xt × �v). Additionally, we denote by
W0(�xt × �v) the closure in the norm W(�xt × �v) of C∞

0,K (�xt × �v).
We conclude this subsection recalling the following Poincarè inequality for functions in

L2(�xt , H1
c (�v)) (see [24, Lemma 2.2]).

Lemma 1.1 There exists a constant 1 ≤ C < +∞, which depends only on d and �v , such
that

‖u‖L2(�xt ,L2(�v)) ≤ C‖∇vu‖L2(�xt ,L2(�v))

for every u ∈ L2(�xt , H1
c (�v)).

1.3 Main results

As previously pointed out, our aim is to study the well-posedness theory for weak solutions
to the obstacle problem (1.8) under assumption (H) on a domain � satisfying assumption
(D). Given the notation introduced in the previous subsection, we are in a position to properly
formalize the definition of weak solution to (1.8) considered in this work.

Definition 1.2 We say u is a weak solution to (1.8) if

u ∈ W(�v × �xt ), u ∈ g + W0(�v × �xt ), u ≥ ψ in W(�v × �xt )

and such that

0 =
∫∫∫

�v×�xt

A(v, x, t)∇vu · ∇vφ dv dx dt +
∫∫

�xt

〈 f (·, x, t) − Yu(·, x, t)|φ(·, x, t)〉 dx dt

(1.13)

for every φ ∈ L2(�xt , H1
c (�v)) and where 〈·|·〉 is the standard duality pairing in H−1(�v).

As it also happens in the parabolic setting, a weak solution to L u = 0 in the sense of
the above definition is also a weak solution in the sense of distributions. Indeed, whenever
φ ∈ C∞

c (�v × �xt ) we have

0 =
∫∫∫

�v×�xt

(A(v, x, t)∇vu · ∇vφ + uYφ) dv dx dt .

We are now in a position to state our main result.

Theorem 1.3 Let assumptions (H) and (D) hold. Let f ∈ L2(�xt , H−1(�v)) and g, ψ ∈
W(�v × �xt ). Then there exists a unique weak solution u ∈ W(�v × �xt ) in the sense of
Definition 1.2 to the obstacle problem (1.8). Moreover, there exists a constant C, which only
depends on d and on �v × �xt , such that

‖u‖W(�xt×�v) ≤ C
(‖g‖W(�xt×�v) + ‖ f ‖L2(�xt ,H−1(�v))

)
. (1.14)
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1.4 Outline of the paper

Thiswork is organized as follows. In Sect. 2we discuss the non-Euclidean geometrical setting
suitable for the study of operator L , then we provide the reader with a characterization of
non-negative functions and of the maximum between two functions in the spaceW . Section3
is devoted to the proof of our main result, Theorem 1.3. Finally, Sect. 4 concludes this work
and contains the proof of a one-sided associated variational inequality, alongside with an
overview on related open problems.

2 Preliminaries

2.1 Geometrical setting

As firstly pointed out by Lanconelli and Polidoro in [23], a Lie group structure is the most
suitable geometrical setting for studying operatorL . Hence, we endow R

2d+1 with the non-
commutative group law

z0 ◦ z = (v0 + v, x0 + x + tv0, t0 + t), ∀z0 = (v0, x0, t0) ∈ R
2d+1,

also known as Galilean change of variables. Then G := (R2d+1, ◦) is a Lie group with
identity element e := (0, 0, 0) and inverse defined by

z−1 := (−v,−x + tv,−t), ∀z = (v, x, t) ∈ R
2d+1.

We observe that K is left invariant with respect to the group operation ◦. Specifically, if
w(v, x, t) = u(v0 + v, x0 + x + tv0, t0 + t) and g(v, x, t) = f (v0 + v, x0 + x + tv0, t0 + t),
then

K u = f ⇐⇒ K w = g for every (v0, x0, t0) ∈ R
2m+1.

Moreover, we are also allowed to introduce a family of dilations

δr (z) = (rv, r3x, r2t), ∀r > 0, ∀z = (v, x, t) ∈ R
2d+1.

with respect to which the operatorK is invariant. Indeed, if u is a solution toK u = 0, then
for every r > 0 the scaled function ur (z) = u(δr (z)) satisfies the same equation in a suitably
rescaled domain. Hence, we say K is homogeneous of degree 2 with respect to the dilation
group {δr }r>0.

2.2 Well-posedness of the obstacle problem

First of all, by paralleling the definition of a non-negative function in H1 [21, Definition 5.1]
we introduce the definition of non-negative function in the sense of W(�v × �xt ).

Definition 2.1 Let w ∈ W(�v × �xt ) and E ⊂ �v × �xt The function w is non-negative
on E in the sense ofW(�v ×�xt ), if there exists a sequence wn ∈ C∞

c (�v ×�xt ) such that

wn ≥ 0 in E and wn → w in W(�v × �xt ).

If −w ≥ 0 on E in the sense ofW(�v × �xt ), then w is said to be non-positive on E in the
sense of W(�v × �xt ). If w is both w ≥ 0 and w ≤ 0 on E in the sense of W(�v × �xt ),
then w = 0 on E in the sense of W(�v × �xt ).
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Similarly, for any w, z ∈ W(�v × �xt ) we say w ≤ z on E in the sense ofW(�v × �xt ) if
w − z ≥ 0 on E in the sense of W(�v × �xt ). In particular, z may be constant. Hence, we
are able to introduce the definition

sup
E

w = inf {M ∈ R : w ≤ M on E in the sense ofW(�v × �xt )} ,

and analogously of

inf
E

w = sup {m ∈ R : w ≥ m on E in the sense ofW(�v × �xt )} .

Now, we prove an explicit characterization for non-negative functions on E in the sense of
W(�v ×�xt ). This result plays an important role in our analysis, since it allows us to define
the set Kψ in (3.1), which is the starting point of our variational analysis for the obstacle
problem.

Lemma 2.2 Let w ∈ W(�v × �xt ) and E ⊂ �v × �xt be bounded. Then w ≥ 0 on E in
the sense of W(�v × �xt ), if and only if w ≥ 0 on E a.e.

Proof The right implication trivially follows by considering that w ≥ 0 in the sense of
W(�v × �xt ) implies w ≥ 0 also in the sense of L2(�v, L2(�xt )); and hence a.e.

As far as we are concerned with the left implication, given our definition ofW(�v ×�xt ),
there exists a sequence of functionswn ∈ C∞

0,K (�v×�xt ) such thatwn → w inW(�v×�xt )

and in �v × �xt pointwise a.e. Hence, max(wn, 0) ≥ 0 and w = max(w, 0) in �v × �xt

a.e. So, we have

‖max(wn, 0) − w‖L2(�v,L2(�xt ))
= ‖max(wn, 0) − max(w, 0)‖L2(�v,L2(�xt ))

≤ ‖wn − w‖L2(�v,L2(�xt ))
→ 0 in L2(�v, L

2(�xt )) as n → ∞.

From this, it follows
∫∫∫

�v×�xt

max(wn, 0)
2 dv dx dt ≤

∫∫∫

�v×�xt

w2
n dv dx dt ≤ C .

Hence, the sequence max(wn, 0) has a subsequence that converges weakly inW(�v × �xt )

to a certain element, that needs to be w considering the previous computations. Hence, by
Mazur’s lemma, we conclude the proof. ��

Finally, taking into consideration the results above and the Hölder regularity results for
weak solution to L u = f proved in [4, 16, 17, 31, 33] (see Sect. 1), the ordering relation
between the obstacle and the boundary data introduced in (1.9) is well-posed and classically
justified as in [10, Chapter 10] by applying the classical maximum principle proved in [9].
Hence, the obstacle problem (1.8) is well-posed.

3 Proof of Theorem 1.3

This section is devoted to the proof of Theorem 1.3 via an adaptation of the method proposed
in [24] to address the study of a Dirichlet problem.

Throghout this section, we consider a fixed obstacle ψ ∈ W(�v × �xt ), right-hand side
f ∈ L2(�xt , H−1(�v)) and boundary data g ∈ W(�v × �xt ). Then, we introduce the set:

K(ψ, g) :={w∈W(�v × �xt ) : w∈g+W0(�v × �xt ), w≥ψ in � in W(�v × �xt )} .

(3.1)
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Then we note it is not empty, asψ ∈ K(ψ, g). Moreover, K(ψ, g) is a convex set and, thanks
to Lemma 2.2, w ∈ K(ψ, g) if and only if

w ∈ W(�v × �xt ), w ∈ g + W0(�v × �xt ), and w ≥ ψ a.e. in W(�v × �xt ).

Now, for every pair of functions (w, f ) such that

w ∈ L2(�xt , H
1(�v)) and f − Yw ∈ L2(�xt , H

−1(�v)),

we may introduce a functional J defined as

J [w, f ] = inf
G(w, f )

∫∫∫

�v×�xt

1

2
(A (∇vw − ((ג · (∇vw − (ג dv dx dt (3.2)

where the infimum is taken over the set

G(w, f ) =
{
ג ∈ (L2(�xt , L

2(�v))
d : ∇v · (Aג) = f − Yw

}
. (3.3)

The functional J is well-defined, since we are interested in solutions to (1.8), where f ∈
L2(�xt , H−1(�v)) and ψ, g ∈ W(�v × �xt ) are fixed by the problem. Moreover, we
highlight that the condition each ג in G(w, f ) needs to satisfy is intended in the sense of
distributions, i.e.

−
∫∫∫

�v×�xt

Aג · ∇vφ dv dx dt=
∫∫

�xt

〈( f −Yw)(·, x, t)|φ(·, x, t)〉dx dt ∀φ∈ L2 (
�xt , H

1(�v)
)
,

where 〈·|·〉 is the standard duality pairing in H−1(�v).
Then, we are in a position to prove the one-to-one correspondence between the solution

of the obstacle problem and the (zero) minimizer of the functional J . Note that an analogous
equivalence result for the Dirichlet problem was proved in [24, Lemma 3.3].

Lemma 3.1 Let assumptions (H) and (D) hold. Let f ∈ L2(�xt , H1(�v)), ψ, g ∈ W(�v ×
�xt ) be fixed by the problem (1.8). Then u ∈ K(ψ, g) is a solution to (1.8) if and only if

0 = J [u, f ] = min
w∈K(ψ,g)

J [w, f ].

Proof The proof of this equivalence result relies on the observation that, since A satisfies the
ellipticity assumption (H), then J [w, f ] ≥ 0 for every w ∈ K(ψ, g) and therefore we need
to prove that

u is a weak solution to (1.8) ⇐⇒ J [u, f ] = 0.

(�⇒) Let u ∈ W(�v × �xt ) be a solution to (1.8), then our aim is to show J [u, f ] = 0.
Notice that by definition (3.2) we have

J [u, f ] = inf
G(u, f )

∫∫∫

�v×�xt

1

2
(A (∇vu − ((ג · (∇vu − (ג dv dx dt,

where G(u, f ) is defined as in (3.3). Given that u is a solution to (1.8) by assumption, then
the infimum in (3.2) is attained at ג = ∇vu. Hence, J [u, f ] = 0.
(⇐�) Let u ∈ K(ψ, g) be such that J [u, f ] = 0, then our aim is to show u is a solution to
(1.8). Given our assumptions, we have

0 = J [u, f ] = inf
G(u, f )

∫∫∫

�v×�xt

1

2
(A (∇vu − ((ג · (∇vu − (ג dv dx dt,
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hence ג = ∇vu a.e. in�v ×�xt , as the integrand is non-negative. Finally, given the definition
of ג in (3.3), we conclude

∫∫∫

�v×�xt

A∇vu · ∇vφ dv dx dt =
∫∫∫

�v×�xt

f φ dv dx dt −
∫∫

�xt

〈Yu(·, x, t)|φ(·, x, t)〉 dx dt

for every φ ∈ L2(�xt , H1(�v)). Hence, u is by definition a solution to (1.8). ��
Hence, in order to prove Theorem 1.3 we reduce ourselves to show the existence of a (zero)
minimizer for J .

Now, let us consider problem (1.8) and, given the data f , the obstacleψ and the boundary
data g, we introduce the set of pairs of functions satisfying it:

A ( f , ψ, g) =
{
(u, (ג ∈ K(ψ, g) × (L2(�xt , L

2(�v))
d | ∇v · (A(v, x, t)ג) = f − Yu

}
.

(3.4)

Lemma 3.2 Let ( f , ψ, g) ∈ L2(�xt , H−1(�v)) ×W(�v × �xt ) ×W(�v × �xt ) be fixed.
Then the set A ( f , ψ, g) is not empty.

Proof To prove this result, it is sufficient to show there exists at least a pair of functions
belonging to A ( f , ψ, g). Our idea is to apply the Lax-Milgram Theorem considering the
Hilbert space H1

c (�v) and the set H−1
c (�v) of linear functionals on H1

c (�v). Hence, for
every w,φ ∈ H1

c (�v) we introduce the bilinear form

b(w, φ) =
∫

�v

A∇vw · ∇vφ dv.

We observe that, in virtue of the boundedness of A and the Cauchy–Schwarz inequality, the
bilinear form is continuous, i.e.

|b(w, φ)| ≤ |A|‖∇vw‖2L2(�v)
‖∇vφ‖2L2(�v)

.

Now,we need to show the bilinear form b is coercive in H1
c (�v). By the ellipticity assumption

(H) for the matrix A, we have

b(w,w) =
∫

�v

A∇vw · ∇vw dv ≥ λ‖∇vw‖2L2(�v)
.

Then, by the Lax-Milgram theorem, for any bounded functional L ∈ H−1
c (�v) there exists

a unique w such that

L(φ) = b(w, φ) in H−1
c (�v).

Thus, by choosing φ = g and L = f − Yu, for a.e. fixed (x, t) ∈ �xt the equation

∇v · (A(v, x, t)∇vw(v, x, t)) = f (v, x, t) − Yu(v, x, t)

admits a unique solution w(·) = w(·, x, t) ∈ H1
c (�v). In particular, the set A is not empty,

since at least we have

(g,∇vw) ∈ A ( f , ψ, g).

��
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For every u ∈ K(ψ, g) and ג ∈ (L2(�xt , L2(�v))
d , we now define the functional

J [u, [ג :=
∫∫∫

�v×�xt

1

2
(A (∇vu − ((ג · (∇vu − (ג dv dx dt, (3.5)

which is uniformly convex onA ( f , ψ, g), as proved in [24, Lemma 3.2]. As a consequence,
there exists a unique minimizing pair (̃u, (ג̃ ∈ A ( f , ψ, g) such that

(̃u, (ג̃ = arg min
(u,ג)∈A ( f ,ψ,g)

J [u, .[ג (3.6)

We observe that

min
(u,ג)∈A ( f ,ψ,g)

J [u, [ג = min
u∈K(ψ,g)

J [u, f ].

Hence, by construction and considering the ellipticity of A, we infer J [̃u, f ] ≥ 0. Thus,
keeping in mind Lemma 3.1, it is sufficient to show that

J [̃u, f ] ≤ 0, (3.7)

given the unique minimizing pair (̃u, (ג̃ in (3.6) to conclude the proof of the existence and
uniqueness part of Theorem 1.3.

To this end, we introduce a perturbed convex minimization problem, defined for every
u∗ ∈ L2(�xt , H−1(�v)) in terms of the functional

G(u∗) := inf
u∈K(ψ,0)

⎛

⎜
⎝J [u + g, u∗ + f ] −

∫∫

�xt

〈u∗(·, x, t)|u(·, x, t)〉dx dt
⎞

⎟
⎠ . (3.8)

Now, we firstly observe that by definition

G(0) = inf
u∈K(ψ,0)

J [u + g, f ] = inf
u∈K(ψ,g)

J [u, f ].

Thus, the desired inequality (3.7) can be equivalently stated in terms of G as follows:

G(0) ≤ 0. (3.9)

Secondly, by considering (3.5), (3.4) and (3.3), we can rewrite (3.8) as

G(u∗) = inf
(u,ג): (u+g,ג)∈A ( f +u∗,ψ,g)

⎛

⎜
⎝J [u + g, [ג −

∫∫

�xt

〈u∗(·, x, t)|u(·, x, t)〉dx
⎞

⎟
⎠ ,

and observe that G is a convex, locally bounded from above and lower semi-continuous func-
tional on L2(�xt , H−1(�v)) (see [24,Lemma3.4]). Then for everyh∈(

L2(�xt , H−1(�v))
)∗

= L2(�xt , H1
c (�v)) we introduce its convex dual G∗, that is defined as
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G∗(h) := sup
u∗∈L2(�xt ,H−1(�v))

⎛

⎜
⎝−G(u∗) +

∫∫

�xt

〈u∗(·, x, t)|h(·, x, t)〉dx dt
⎞

⎟
⎠

= sup
(u,ג,u∗)

⎧
⎪⎨

⎪⎩
−

∫∫∫

�v×�xt

1

2
(A (∇v(u + g) − ((ג · (∇v(u + g) − (ג dv dx dt

+
∫∫

�xt

〈u∗(·, x, t)|h(·, x, t) + u(·, x, t)〉dx dt

⎫
⎪⎬

⎪⎭
,

where (u, ,ג u∗) ∈ W0 × (L2(�xt , L2(�v))
d × L2(�xt , H−1(�v)). Now, if we denote by

G∗∗ the bidual of G, since G is lower semi-continuous we are in a position to observe that
G∗∗ = G, see [13, Lemma I.4.1]. In particular, we have

G(0) = G∗∗(0) = sup
h∈L2(�xt ,H1

c (�v))

(−G∗(h)
)
.

Thus, we can reduce the problem of verifying (3.7), already transformed in (3.9), to prove
the convex dual of G is non-negative, i.e.

G∗(h) ≥ 0 for every h ∈ L2(�xt , H
1
c (�v).

The proof of this fact directly follows as in [24, Lemma 3.5, 3.6 and 3.7], and therefore is
omitted.

To conclude the proof of Theorem 1.3, we are left with proving the quantitative estimate
(1.14) for a weak solution u ∈ W(�v × �xt ) to (1.8). To this end, observing that u − g is a
valid test function in Definition 1.2, we get

0 = −
∫∫∫

�v×�xt

A(v, x, t)∇vu · ∇v(u−g) dv dx dt−
∫∫

�xt

〈 f (·, x, t)−Yu(·, x, t)|(u−g)(·, x, t)〉 dx dt .

(3.10)

In particular, adding and subtracting the terms
∫∫∫

�v×�xt

A(v, x, t)∇vg · ∇v(u − g) dv dx dt and
∫∫

�xt

〈Yg(·, x, t)|(u − g)(·, x, t)〉 dx dt

in (3.10), we obtain

0 =
∫∫∫

�v×�xt

A(v, x, t)∇v(u − g) · ∇v(u − g) dv dx dt +
∫∫

�xt

〈Y (u − g)(·, x, t)|(u − g)(·, x, t)〉 dx dt
T

−
∫∫∫

�v×�xt

A(v, x, t)∇vg · ∇v(u − g) dv dx dt −
∫∫

�xt

〈 f (·, x, t) − Yg(·, x, t)|(u − g)(·, x, t)〉 dx dt .

(3.11)

We now focus on the boxed term T in the previous equality. As u − g ∈ W0, by definition
of W0, there exists a sequence of functions hn ∈ C∞

0,K (�xt × �v) such that

‖(u − g) − hn‖W → 0, as n → +∞
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and in particular

‖Y ((u − g) − hn)‖L2(�xt ,H−1(�v)) → 0, as n → +∞.

As a consequence, we obtain
∫∫

�xt

〈Y (u − g)(·, x, t)|(u − g)(·, x, t)〉 dx dt ≤ lim sup
n→+∞

∫∫

�xt

〈Yhn(·, x, t)|hn(·, x, t)〉 dx dt .

(3.12)

As hn ∈ C∞
0,K (�xt × �v), we can deal with the last integral in (3.12) as follows

∫∫

�xt

〈Yhn(·, x, t)|hn(·, x, t)〉 dx dt =
∫∫∫

�v×�xt

Y hn hn dv dx dt

= 1

2

∫∫∫

�v×�xt

Y h2n dv dx dt

= 1

2

∫∫∫

�v×∂�xt

h2n(v,−1) · Nxt dv dσx,t ≤ 0,

in virtue of the divergence theorem and the definition of the Kolmogorov boundary in (1.11).
Hence, we can rewrite equality (3.11) as follows

∫∫∫

�v×�xt

A(v, x, t)∇v(u − g) · ∇v(u − g) dv dx dt

≤ −
∫∫∫

�v×�xt

A(v, x, t)∇vg · ∇v(u − g) dv dx dt −
∫∫

�xt

〈 f (·, x, t) − Yg(·, x, t)|(u − g)(·, x, t)〉 dx dt .

Thus, taking advantage of (1.2), we can rewrite the previous inequality as follows

λ

∫∫

�xt

‖∇v(u − g)(·, x, t)‖2
L2(�v)

dx dt

≤

∣∣∣
∣∣
∣∣

∫∫∫

�v×�xt

A(v, x, t)∇vg · ∇v(u − g) dv dx dt

∣∣∣
∣∣
∣∣
+

∣∣∣
∣∣
∣∣

∫∫

�xt

〈 f (·, x, t)−Yg(·, x, t)|(u − g)(·, x, t)〉 dx dt

∣∣∣
∣∣
∣∣
.

(3.13)

We now take care of the right-hand side of (3.13) employing the boundedness of A, Cauchy-
Schwarz inequality and Young’s inequality and we find

λ

∫∫

�xt

‖∇v(u − g)(·, x, t)‖2L2(�v)
dx dt

≤ |A|
2ε

∫∫

�xt

‖∇vg(·, x, t)‖2L2(�v)
dx dt + ε

2

∫∫

�xt

‖∇v(u − g)(·, x, t)‖2L2(�v)
dx dt

+
∫∫

�xt

‖ f (·, x, t)‖2H−1(�v)
dx dt +

∫∫

�xt

‖Yg(·, x, t)‖2H−1(�v)
dx dt,

123



F. Anceschi, A. Rebucci

where ε ∈ (0, 1) is a degree of freedom. Hence, given a suitable choice of ε in the previous
inequality, we get

‖∇v(u − g)‖L2(�xt ,L2(�v)) ≤ C
(‖g‖W(�v×�xt ) + ‖ f ‖L2(�xt ,H−1(�v)

)
,

where C = C(d, ε, λ) is a positive constant. Then, as u − g ∈ L2(�xt , H1
c (�v)), we can

apply Lemma 1.1 and infer

‖u − g‖L2(�xt ,H1(�v)) ≤ C
(‖g‖W(�v×�xt ) + ‖ f ‖L2(�xt ,H−1(�v)

)
. (3.14)

We now use the definition of weak solution (1.13) against any test function φ ∈
L2(�xt , H1

c (�v)) such that ‖φ‖L2(�xt ,H1
c (�v)) = 1 and, taking advantage once again of

the boundedness of A, Cauchy-Schwarz inequality and Young’s inequality, we easily obtain

‖Yu‖L2(�xt ,H−1(�v) ≤ C
(‖∇vu‖L2(�xt ,L2(�v)) + ‖ f ‖L2(�xt ,H−1(�v)

)
. (3.15)

Combining inequalities (3.14) and (3.15), we prove the quantitative estimate (1.14) and
therefore conclude the proof of Theorem 1.3.

4 A one-sided variational inequality and related open problems

As already pointed out in the introduction of this work, our aim is to give rise to the study of
boundary value problems associated to Kolmogorov operators through variational methods,
with a particular attention to the obstacle problem.

The results we presented in previous sections are only the starting point for this analysis,
since many interesting open problems are left untouched by our work and among which, first
and foremost, we recall the proof of a one-on-one correspondence between solutions to (1.8)
and solutions to a suitable variational inequality. We observe that the literature concerning
evolution equations in the framework of Calculus of Variations is way more recent than
the one relevant to elliptic equations, see [7, 26] and the references therein. Moreover, to
our knowledge, in our hypoelliptic setting there are not yet available results concerning the
relationship between solutions to (1.8) and solutions to a suitable variational inequality. In
the present work, we are able to give proof to one of the two implications, i.e. a weak solution
to (1.8) is also a solution to a suitable variational inequality. The other implication is still an
open problem.

Proposition 4.1 Let us consider ψ, ϕ ∈ W(�v × �xt ) and the associated obstacle problem
(1.8) under the assumptions (H) and (D). If u ∈ Wψ(�v × �xt ) is a solution to the obstacle
problem (1.8), then it satisfies the following variational inequality

∫∫

�xt

〈Yu(·, x, t)|(w − u)(·, x, t)〉dx dt +
∫∫∫

�v×�xt

A∇vu · ∇v (w − u) dv dx dt

≥
∫∫

�xt

〈 f (·, x, t)|(w − u)(·, x, t)〉dv dx dt,

for every w ∈ L2(�xt , H1
c (�v)).
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Proof Let u ∈ K(ψ, g) be a solution to (1.8). Then in particular u ∈ Wψ(�v × �xt ) and
thus w − u is a valid test function in the weak formulation (1.13), i.e.

∫∫∫

�v×�xt

∇v· (A∇vu) (w − u)dv dx dt +
∫∫

�xt

〈Yu|w − u〉dx dt =
∫∫

�xt

〈 f |w − u〉dv dx dt .

By the Divergence Theorem in H1(�v × �xt ), we get
∫∫∫

�v×�xt

∇v · (A∇vu) (w − u)dv dx dt

= −
∫∫∫

�v×�xt

A∇vu · ∇v(w − u)dv dx dt +
∫∫

�xt

∫

∂v(�v)

γ0 (A∇vu) · Nv (w − u) dσ

≥ −
∫∫∫

�v×�xt

A∇vu · ∇v(w − u)dv dx dt

where Nv denotes the outer normal with respect to the velocity boundary, γ0 denotes the
trace of the function. ��
The lack of the equivalence between the obstacle problem and a suitable variational inequality
implies we are not allowed to employ tools from Calculus of Variations that are specifically
designed for variational inequalities. This means that, for instance, the coincidence set of
the obstacle problem is not yet characterized, and even the equivalence between the two
formulations (1.6) and (1.8) of it is still missing. In fact, the latter is assumed to be true in
the existing literature, see f.i. [27].

Lastly, it is our opinion that an extension of these studies to the more general class of
ultraparabolic operators of Kolmogorov type (1.3) with rough coefficients would be of great
interest for the community. In order to achieve this, one has to overcome many difficulties,
starting with the characterization of the set W introduced in [4] in this more general setting
and the definition of the trace of a function in this framework.
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