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Abstract
This paper brings several contributions to the classical Forster–Bell–Narasimhan conjecture
and the Yang problem concerning the existence of proper, almost proper, and complete
injective holomorphic immersions of open Riemann surfaces in the affine planeC

2 satisfying
interpolation and hitting conditions. We also show that every compact Riemann surface
contains a Cantor set whose complement admits a proper holomorphic embedding in C

2,
and every connected domain inC

2 admits complete, everywhere dense, injectively immersed
complex discs. The focal point of the paper is a lemma saying for every compact bordered
Riemann surface, M , closed discrete subset E of M̊ = M \ bM , and compact subset K ⊂
M̊ \ E without holes in M̊ , any C 1 embedding f : M ↪→ C

2 which is holomorphic in M̊ can
be approximated uniformly on K by holomorphic embeddings F : M ↪→ C

2 which map
E ∪ bM out of a given ball and satisfy some interpolation conditions.
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1 Introduction andmain results

This paper contributes to the following three interesting topics in global complex geometry,
the main focus being on the interrelationship between them:

• The classical Forster–Bell–Narasimhan conjecture (see [11, 19]) asking whether every
open Riemann surface admits a proper holomorphic embedding in C

2. The general case
is still open; for positive results, see the surveys in [20, Sects. 9.10–9.11] and [16].
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• Yang’s problem [50, 51] concerning the existence of complete bounded complex sub-
manifolds of C

n ; see the up-to-date comprehensive survey [2].
• The existence of dense holomorphic curves in complex manifolds; see Forstnerič and

Winkelmann [27, 47] and [6, Sect. 10].

The focal point of the paper is the following lemma, which is proved in Sect. 2.

Lemma 1.1 Let M be a compact bordered Riemann surface with boundary of class C s for
some s > 1. Given a C 1 embedding f : M ↪→ C

2 which is holomorphic on M̊ = M\bM,
a compact set K ⊂ M̊ without holes, a compact polynomially convex set L ⊂ C

2 such that
f (M\K̊ ) ∩ L = ∅, finite sets A = {α1, . . . , αl} ⊂ M̊ \ K and B = {β1, . . . , βl} ⊂ C

2 \ L,
a closed discrete set E ⊂ M̊ such that E ∩ (A ∪ K ) = ∅, and numbers ε > 0 and r > 0,
there is a holomorphic embedding F : M ↪→ C

2 satisfying the following conditions:

(a) F(bM ∪ E) ∩ rB = ∅. (Here, B denotes the unit ball of C
2.)

(b) F(M \ K̊ ) ∩ L = ∅.
(c) supx∈K |F(x) − f (x)| < ε.
(d) F agrees with f to a given finite order at a given finite set of points in K \ f −1(B).
(e) F(α j ) = β j for j = 1, . . . , l.

Wemay assume that the surface M in the lemma is a closed domain in a compact Riemann
surface, R, whose boundary bM consists of real analytic Jordan curves, and M has no
connected component without boundary. (See Stout [43, Theorem 8.1] and note that any
conformal diffeomorphism of M onto such a domain is of class C 1(M); see [7, Theorem
1.10.10].) A map F : M → C

2 is said to be holomorphic if it extends to a holomorphic map
from an open neighbourhood of M in the ambient Riemann surface. A hole of a compact
set in an open surface is a relatively compact connected component of its complement. See
Remark 1.11 concerning the validity of the hypotheses of the lemma.

Lemma 1.1 is based on techniques developed by Wold [48, 49] and Forstnerič and Wold
[28] for constructing proper holomorphic embeddings of bordered Riemann surfaces in C

2.
In their constructions, some boundary points of the given surface M are sent to infinity where
they remain at all subsequent steps. Our proof of Lemma 1.1 uses a similar construction with
additional precision, but the points at infinity are finally brought back to C

2. Thus, the main
novelty of Lemma 1.1, and of the related Lemma 4.2, is that we keep the entire Riemann
surface M as an embedded complex curve in C

2 while pushing its boundary and the discrete
set E ⊂ M̊ (or a countable family of discs in Lemma 4.2) arbitrarily far towards infinity.

These two lemmas lead to new existence, approximation, interpolation, and hitting theo-
rems for complete injectively immersed complex curves inC

2, or in domains ofC2, satisfying
additional global conditions such as being proper, almost proper, or dense, which are pre-
sented in the sequel. At the same time, they give a simpler proof of a number of known
results. Our lemmas reduce proofs of these applications to formal induction schemes without
the need of dealing with the technical issues at every step. A similar role is played by the
Riemann–Hilbert method (see [17, 22] and [7, Chapter 6]), but when the target is a complex
surface that technique, unlike ours, tends to introduce self-intersections which cannot be
removed since a generic immersion from a Riemann surface has transverse double points.

As a first illustration of the constructions that can be carried out using Lemma 1.1, we
establish the following interpolation result for almost proper injective holomorphic immer-
sions of bordered Riemann surfaces in C

2. It is proved in Sect. 3.

Theorem 1.2 Let M be a compact bordered Riemann surface with C s boundary for some
s > 1, and let f : M ↪→ C

2 be a C 1 embedding which is holomorphic on M̊. Given a
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compact set K ⊂ M̊ without holes, a discrete sequence α j ∈ M̊ \K without repetition which
clusters only on bM, a sequence β j ∈ C

2 without repetition, and a number ε > 0, there is
an almost proper injective holomorphic immersion F : M̊ ↪→ C

2 satisfying the following
conditions:

(i) supx∈K |F(x) − f (x)| < ε.
(ii) F agrees with f to a given finite order at a given finite set in K \ f −1({β j : j =

1, 2, . . .}).
(iii) F(α j ) = β j for all j = 1, 2, . . ..

In particular, F can be chosen such that F(M̊) is everywhere dense in C
2.

If the sequence β j ∈ C
2 is closed and discrete, then there is a proper holomorphic

embedding F : M̊ ↪→ C
2 satisfying conditions (i)-(iii).

Recall that a continuous map f : X → Y of topological spaces is said to be almost proper
if for every compact set K ⊂ Y the connected components of f −1(K ) are all compact.
Given a compact bordered Riemann surface M as in Theorem 1.2, one cannot hit an arbitrary
countable subset ofC

2 by proper holomorphicmaps M̊ → C
2, but this can be done by almost

proper maps. In fact, almost proper maps are in some sense the best class of holomorphic
maps M̊ → C

2 that can hit any given countable subset of C
2.

The last part of Theorem 1.2 implies the following known result concerning the Forster–
Bell–Narasimhan Conjecture; see Globevnik [30] in the case of the disc, and [28, Corollaries
1.2 and 1.3] by Forstnerič and Wold and [35, Theorem 1] by Kutzschebauch et al. for an
arbitraryM .We state itwith additional precision concerning approximation and interpolation.

Corollary 1.3 Givenaholomorphic embedding f : M ↪→ C
2 of a compact borderedRiemann

surface M, a compact set K ⊂ M̊ without holes, and closed discrete sequences α j ∈ M̊
and β j ∈ C

2 without repetitions such that K ∩ {α j : j ∈ N} = ∅, we can approximate f
uniformly on K by proper holomorphic embeddings F : M̊ ↪→ C

2 satisfying F(α j ) = β j

for all j = 1, 2, . . ..

We give a unified proof of Theorem 1.2 and Corollary 1.3, based on Lemma 1.1, and we
supply some details related to [35, Lemma 2.2]; see Remark 2.1. The analogous result for
algebraic curves in C

2 is a special case of [24, Theorem 1.3]; see also [20, Theorem 4.17.1].
Recall that an immersed submanifoldϕ : Z → R

n is said to be complete if theRiemannian
metric on Z , obtained by pulling back the Euclidean metric on R

n via ϕ, is a complete
metric; equivalently, for every proper path γ : [0, 1) → Z the path ϕ ◦ γ : [0, 1) → R

n

has infinite Euclidean length. It is obvious that every almost proper immersion ϕ : Z → R
n

is complete, hence the immersions F in Theorem 1.2 are complete. It seems that this gives
the first examples of a specific bordered Riemann surface, other than the disc, admitting a
complete nonproper injective holomorphic immersion into C

2. The construction of complete
injectively immersed complex lines C ↪→ C

2 with dense images was given by the authors in
[5].

The technique of bringing back the points at infinity also applies in conjunction with [29,
Lemma 3.1], thereby yielding an analogue of Lemma 1.1 for circle domains with countably
many boundary components in the Riemann sphereCP

1; see Lemma 4.2. This gives a simpler
proof of the theorem of Forstnerič and Wold [29, Theorem 1.1] saying that every circle
domain in CP

1 embeds properly holomorphically in C
2; see Theorem 4.1. (For domains

with finitely many boundary components, this was proved by Globevnik and Stensøness
[31].) As indicated in [29, p. 500], the analogous result likely holds for circle domains in tori.
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Nothing seems to be known about this problem for domains in compact Riemann surfaces of
genus> 1, where the main problem is to find a suitable initial embedding of the uniformized
surface intoC

2. On the other hand, in Sect. 5 we use Lemma 1.1 to prove the following hitting
theorem for almost proper injective holomorphic immersions inC

2 fromdomains obtained by
removing countably many pairwise disjoint closed discs from any compact Riemann surface.

Theorem 1.4 Let R be a compact Riemann surface and� = R\⋃∞
i=0 Di be an open domain

in R whose complement is the union of countably many pairwise disjoint closed discs Di

with C s boundaries for some s > 1. Given a C 1 embedding f : Mk = R\ ⋃k
i=0 D̊i ↪→ C

2

for some k ≥ 0 that is holomorphic on the open bordered surface M̊k = R \ ⋃k
i=0 Di , a

compact set K ⊂ �, a number ε > 0, and a countable set B ⊂ C
2, there is an almost proper

(hence complete) injective holomorphic immersion F : � ↪→ C
2 such that

(i) supx∈K |F(x) − f (x)| < ε,
(ii) F agrees with f to a given finite order at a given finite set of points in �, and
(iii) B ⊂ F(�).

In particular, there exists an almost proper (hence complete) injective holomorphic immersion
� ↪→ C

2 with everywhere dense image.

Lemma 1.1 can also be combined with the method developed by Forstnerič [21] for
constructing complete bounded embedded holomorphic null curves in C

3 with Cantor ends,
as well as complete bounded minimal surfaces inR

3 and some other related types of surfaces
with Cantor ends. In this way we obtain the following result proved in Sect. 6.

Theorem 1.5 If R is a compact Riemann surface and B ⊂ C
2 is a countable subset, there exist

a Cantor set C ⊂ R and an almost proper injective holomorphic immersion F : R\C ↪→ C
2

whose image contains B. If B is closed and discrete in C
2 then F can be chosen to be a

proper holomorphic embedding. Hence, every compact Riemann surface contains a Cantor
set whose complement admits a proper holomorphic embedding in C

2.

The Cantor sets which arise in the proof of Theorem 1.5 are small modifications of the
standard Cantor set in the plane, and they have almost full measure in a surrounding domain.
The last statement in Theorem 1.5 generalizes a recent result by Di Salvo and Wold [16,
Theorem 1.1], who constructed a Cantor set of large measure in CP

1 whose complement
admits a proper holomorphic embedding in C

2. The first examples of Cantor sets in CP
1

whose complements embed properly in C
2 were given by Orevkov [37], and Di Salvo [15]

showed that Orevkov’s construction also yields examples having Hausdorff dimension zero.
So far, we have been talking about (almost) proper injective holomorphic immersions in

C
2. However, Lemma 1.1 can also be applied to the construction of complete injectively

immersed holomorphic curves in more general domains in C
2, at the cost of losing control

of their conformal structure and in some case of almost properness.
To motivate this line of developments, we recall that Yang [50, 51] asked in 1977 whether

there exist complete bounded complex submanifolds of a complex Euclidean space C
n of

dimension > 1. The Yang problem has been a focus of interest in the last decades; we refer
to the recent survey [2]. It is an open problem whether for every compact bordered Riemann
surface M as in Lemma 1.1 there is a complete holomorphic embedding M̊ ↪→ C

2 with
bounded image; see [8, Problem 1.5]. In fact, given such a Riemann surface M other than
the closed disc, all known complete holomorphic embeddings M̊ ↪→ C

2 are proper in C
2

(see [28, Corollary 1.2]) or else the complex structure of the embedded surface may change.
By using Lemma 1.1, we construct complete embedded complex curves with a given smooth
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structure in any pseudoconvex Runge domain of C
2 as in the following theorem. In this case

one clearly cannot control the complex structure of the examples.

Theorem 1.6 Let D ⊂ C
2 be a pseudoconvex Runge domain and B be a countable subset

of D. On every open Riemann surface S there are a domain M, which is diffeotopic to S,
and a complete, almost proper, injective holomorphic immersion F : M ↪→ D such that
B ⊂ F(M). If in addition the set B is closed in D and discrete, then F : M ↪→ D can be
chosen to be a complete proper holomorphic embedding.

Theorem 1.6 is proved in Sect. 7. The special casewhen D = C
2 and B = ∅, guaranteeing

the existence of properly embedded complex curves in C
2 with arbitrary topology, was

established in 2013 by Alarcón and López [9, Theorem 4.5]. This showed that there is no
topological restriction to theForster–Bell–Narasimhan conjecture. (For embeddings inC×C

∗
and (C∗)2, see Ritter [38, 39], Lárusson and Ritter [36], and Remark 2.3.) In the special case
when D = B is the open unit ball and B ⊂ B is closed and discrete, Theorem 1.6 was proved
byAlarcón andGlobevnik [8]. Likewise,when D = Bor D = C

2 and S is of finite topology, it
was established by the authors in [5], except for the almost properness condition. For arbitrary
pseudoconvex Runge domains D in C

2, Theorem 1.6 also generalizes and simplifies the
proofs of some hitting results for (not necessarily complete) properly embedded complex
curves in D due to Forstnerič, Globevnik, and Stensøness [23] and Alarcón [1]. Adapting
the arguments in [5, 8, 9] to the use of labyrinths of compact sets in pseudoconvex Runge
domains, constructed by Charpentier and Kosiński in [13], leads to a proof of Theorem 1.6 in
the case when B is closed in D and discrete, or S is finitely connected. The proof of Theorem
1.6 that we give here, based on Lemma 1.1 and using the labyrinths from [13], is considerably
simpler and provides the general case of the theorem.

In Sect. 8 we establish the following analogue of Theorem 1.6 in which we do not impose
any conditionwhatsoever on the given connected domain inC

2; the cost beingnot to guarantee
almost properness of the obtained immersion.

Theorem 1.7 Let X ⊂ C
2 be a connected domain and B be a countable subset of X. Given

an open Riemann surface S, there are a domain M ⊂ S, which is diffeotopic to S, and a
complete injective holomorphic immersion F : M ↪→ X such that B ⊂ F(M). In particular,
F can be chosen to have everywhere dense image in X.

All similar results in the literature pertain to special domains in C
2; see the discussion

below Theorem 1.6 and the survey [2]. On the other hand, omitting the injectivity condition
in dimension two, it was shown by Forstnerič and Winkelman [27, 47] that every connected
complex manifold X with dim X > 1 admits an immersed holomorphic disc D = {ζ ∈ C :
|ζ | < 1} → X with dense image; if dim X > 2 then the immersion can be chosen injective.
Recently the analogous result was obtained by the authors for any bordered Riemann surface
and for some other classes of open Riemann surfaces [6, Theorem 10.1].

Let dH denote the Hausdorff distance between subsets of Euclidean spaces. The following
corollary, which follows by inspecting the proof of Theorem 1.7, shows that every embedded
holomorphic disc is arbitrarily close to a complete one in the Hausdorff distance.

Corollary 1.8 Given a C 1 embedding G : D ↪→ C
2 which is holomorphic on D, a compact

set K ⊂ D, and a number ε > 0, there is a complete injective holomorphic immersion
F : D → C

2 such that |F − G| < ε on K and dH(F(D),G(D)) < ε.

We do not know whether the injective immersion F in Corollary 1.8 can be chosen to
extend continuously to D or to satisfy |F − G| < ε on D. In particular, it remains an open
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question whether F can be chosen such that F(D) is bounded by a Jordan curve. All these
tasks can be carried out if one allows the map F to have double points; see [3, 4, 45].

Insisting on the almost properness condition, we also establish the following result, which
is obtained by a slight modification of the proof of Theorem 1.7. Again, we do not impose
any condition whatsoever on the given connected domain X in C

2.

Theorem 1.9 Let X ⊂ C
2 be a connected domain and B be a countable subset of X. On

every open Riemann surface S there exists a connected, relatively compact domain M such
that M has the same topological genus as S and there is a complete almost proper, injective
holomorphic immersion F : M → X with B ⊂ F(M). In particular, F can be chosen to
have everywhere dense image in X.

Our method of proof does not allow to ensure that the domain M in Theorem 1.9 is
homeomorphic to the given open Riemann surface S. In particular, we cannot control its
ends set, which could be more complicated than that of S.

Remark 1.10 (On completeness) By a minor modification of the proofs, using that any two
metrics on a compact space are comparable, we can ensure that the injective holomorphic
immersions F obtained in Theorems 1.2, 1.4, 1.5, 1.6, 1.7, and 1.9 are complete with respect
to any given Riemannian metric (not necessarily complete or the Euclidean one) on the target
domain C

2, D ⊂ C
2, or X ⊂ C

2, respectively.

Remark 1.11 (On the hypotheses in Lemma 1.1) It is not known whether every compact
bordered Riemann surface embeds holomorphically in C

2. Here is a way to obtain such
surfaces. Any compact Riemann surface, R, admits a holomorphic immersion f : R → CP

2

in the projective plane with finitely many simple double points f (a j ) = f (b j ), where
a j �= b j for j = 1, . . . ,m (see Griffiths and Harris [32]). Given a complex line 
 ⊂ CP

2,
the punctured Riemann surface R′ = R\( f −1(
)∪{b1, . . . , bm}) is injectively immersed in
CP

2\
 ∼= C
2, and hence any compact domain in R′ is embedded inC

2. There is considerable
freedom in the above choices, showing that most domains with smooth boundary in any
compact Riemann surface satisfy Lemma 1.1. However, we are not aware of suitable results
in the literature on controlling the location of double points in an immersed compact Riemann
surface in CP

2, and it seems an open problem whether one could put all punctures in the
above construction in an arbitrarily small disc around any given point of R. If this were
true, then one could embed the interior of any finite bordered Riemann surface properly
holomorphically in C

2.

2 Proof of Lemma 1.1

The proof involves fourmain steps: (1) using a holomorphic automorphismofC2 to satisfy the
interpolation conditions in (e), (2) exposing and sending to infinity a point in each boundary
component of M , (3) pushing the boundary bM and the discrete set E out of a given ball
by a holomorphic automorphism of C

2 (see condition (a)), and (4) bringing back the points
at infinity. The first three steps are obtained by following and augmenting the proofs of [28,
Corollary 1.2] and [35, Lemma 2.2], while the last step uses a new idea. For the sake of
readability we give a complete exposition, beginning with preliminaries.

Denote the coordinates on C
2 by z = (z1, z2), and let πi : C

2 → C for i = 1, 2 denote
the projection πi (z1, z2) = zi . Let D be the open unit disc in C and B the open unit ball in
C
2.
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Let f : M ↪→ C
2 and the sets B, L ⊂ C

2 be as in Lemma 1.1, and let c1, . . . , cl ′ ∈
K\ f −1(B) denote the points at which we must fulfil the interpolation condition (d). By
Mergelyan theorem (see [18, Theorem 16]) we can approximate f in the C 1(M) topology
by a holomorphic map f̃ : U → C

2 from an open neighbourhoodU ⊂ R of M which agrees
with f to a given finite order k at every point c1, . . . , cl ′ . Assuming that the approximation
is close enough and up to shrinking U around M , we may assume that f̃ : U ↪→ C

2 is a
holomorphic embedding satisfying f̃ (U\K̊ )∩L = ∅. By a standard transversality argument
we can also ensure that B ∩ f̃ (U ) = ∅. We replace f by f̃ and drop the tilde.

Finally, by a small perturbation of the map f , keeping the above conditions in place, we
can ensure that the set L ∪ f (M) is polynomially convex in C

2. Indeed, by Stolzenberg’s
theorem [41] the polynomial hull of L ∪ f (bM) is the union of this set with complex curves
having their boundaries in L ∪ f (bM), and we can arrange that there are no such curves
besides f (M). Here is an explicit way of doing this. Choose a compact domain M ′ ⊂ U
containing M in its interior such that M is a strong deformation retract of M ′. We may
assume that the function f1 = π1 ◦ f ∈ O(U ) is nonconstant on each component of U . We
approximate f2 = π2 ◦ f on M (with interpolation at the points c1, . . . , cl ′ ) by a smooth
function f̂2 on M ′ which is holomorphic on M̊ ′ and does not extend holomorphically across
any boundary point of M ′. Set f̂ = ( f1, f̂2). Take a point p ∈ bM ′ at which d f1(p) �= 0.
(Note that almost every point of bM ′ is such.) Locally at the image point q = f̂ (p) ∈ C

2

we can represent the complex curve �′ = f̂ (M ′) with smooth boundary b�′ = f̂ (bM ′) as
a graph over the first coordinate such that the graphing function is holomorphic on the local
projection of �′ but does not extend holomorphically past the point q1 = π1(q) = f1(p). It
follows that �′ is not contained in any complex curve containing q in the interior, since such
a curve would provide a holomorphic extension of the graphing function to a neighbourhood
of q1. We claim that L ∪ �′ is polynomially convex. Indeed, by Stolzenberg [41] the set
̂L ∪ b�′ \ (L ∪b�′) is a pure one-dimensional closed complex subvariety which is closed in

C
2\(L∪b�′). If this subvariety has an irreducible component
which is not contained in�′,

then
must contain a connected componentC of b�′, and the boundary uniqueness theorem
(see Chirka [14, Proposition 1, p. 258]) shows that�′∪
 is a complex curve inC

2 containing
C , contradicting the choice of f̂ . This proves the claim. Since M is holomorphically convex
in M ′, Rossi’s local maximummodulus principle (see Rosay [40] for a simple proof) implies
that L ∪ f̂ (M) is also polynomially convex. Furthermore, for every compact set K ⊂ M̊
without holes such that f̂ (M \ K̊ ) ∩ L = ∅ the set L ∪ f̂ (K ) is polynomially convex. We
now replace f by a map satisfying all the stated conditions.

(1) Fulfilling condition (e) in the lemma. We have arranged above that the set L ∪ f (M) is
polynomially convex in C

2. Since K has no holes in M̊ and f (M\K̊ ) ∩ L = ∅, the set

L ′ := L ∪ f (K ) (2.1)

is also polynomially convex (see the argument above). Recall that

A = {α1, . . . , αl} ⊂ M̊ \ K and B = {β1, . . . , βl} ⊂ C
2 \ L ′.

By the choice of f we have that B ∩ f (U ) = ∅. By [20, Proposition 4.15.3] there is
a holomorphic automorphism  ∈ Aut(C2) which approximates the identity map on L ′, it
agrees with the identity to a given finite order k at the points f (c1), . . . , f (cl ′) ∈ f (K ) ⊂ L ′,
and it satisfies ( f (α j )) = β j for j = 1 . . . , l. Replacing f by  ◦ f we may thus assume
that f fulfills condition (e) in the lemma and the other properties remain in place. We now
add to A the given finite set of points in M̊ at which we shall interpolate the map to a given
finite order in the subsequent steps of the proof, and we suitably enlarge the set K ⊂ M̊ so
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that it has no holes and contains this new bigger set A, while the discrete set E ⊂ M̊ remains
in M̊ \ (A ∪ K ). This will ensure that the final map F will satisfy condition (e).
(2) Exposing boundary points. We follow the exposition in [28, Sect. 4]. On each boundary
curve C j ⊂ bM we choose a point a j and attach to M a smooth embedded arc γ j ⊂ U such
that γ j ∩M = {a j }, the intersection of bM and γ j is transverse at a j , and the arcs γ1, . . . , γm
are pairwise disjoint. Let b j denote the other endpoint of γ j . On the image side, we choose
smoothly embedded pairwise disjoint arcs λ1, . . . , λm ⊂ C

2\L ′, where L ′ is given by (2.1),
such that for every j = 1, . . . ,m we have that λ j ∩ f (M) = f (a j ), λ j agrees with f (γ j )

near the endpoint f (a j ), the other endpoint p j of λ j satisfies

|π2(p j )| > sup{|π2(z)| : z ∈ L ′},
the set f (M) ∪ ⋃m

i=1 λi intersects the complex line


 j = π−1
2 (π2(p j )) = C × {π2(p j )} (2.2)

only at the point p j , and the tangent vector to λ j at p j has nonvanishing second component.
(See [28, Fig. 2, p. 109] where the projection π1 is used in place of π2.)

We now modify f , keeping it fixed on a neighbourhood U1 ⊂ U of M and extending it
to a smooth diffeomorphism γ j → λ j for every j = 1, . . . ,m such that f (b j ) = p j . Set

S = M ∪
m⋃

j=1

γ j ⊂ R.

Applying Mergelyan theorem (see [18, Theorem 16]), we can approximate f as closely as
desired in C 1(S) by a holomorphic map f̃ : V → C

2 on an open neighbourhood V ⊂ R of
S such that f̃ agrees with f to a given finite order k at the points in the finite set A ⊂ M̊
defined in the previous step, and f̃ agrees with f to the second order at the endpoints a j

and b j of γ j for j = 1, . . . ,m. If the approximation is close enough and up to shrinking V
around S, the map f̃ : V ↪→ C

2 is a holomorphic embedding satisfying

f̃ (V \ K̊ ) ∩ L = ∅. (2.3)

Furthermore, for every j = 1, . . . ,m the complex line 
 j (2.2) intersects the embedded
complex curve f̃ (V ) only at the point p j = f̃ (b j ) = f (b j ) and the intersection is transverse.

We have now arrived at the main point of the exposing of points technique. By [28,
Theorem 2.3] there is a conformal diffeomorphism

τ : M → τ(M) ⊂ V (2.4)

such that for every j = 1, . . . ,m we have that τ(a j ) = b j , τ maps a small neighbourhood
Uj ⊂ M of the point a j ∈ bM in a thin tube around the arc γ j , τ agrees with the identity
map to a given order k at the points of the finite set A ⊂ M̊ , and τ is arbitrarily C 1 close to
the identity map on M\ ⋃m

j=1Uj . We can choose τ to have any finite order of smoothness
on M ; for technical reasons which will become apparent in the next step we shall assume
that it is of class C 3(M). The map

h = f̃ ◦ τ : M ↪→ C
2 (2.5)

is then a C 3 embedding which is holomorphic on M̊ , its image h(M) is a compact domain
with C 3 boundary in the embedded complex curve f̃ (V ) ⊂ C

2, and τ can be chosen such
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that for each j = 1, . . . ,m the complex line 
 j (2.2) intersects h(M) only at p j = f (b j ).
Assuming as we may that τ is close enough to the identity on K , (2.3) implies

h(M \ K̊ ) ∩ L = ∅.

Let g be a rational shear on C
2 of the form

g(z1, z2) =
⎛

⎝z1 +
m∑

j=1

ρ eiθ j

z2 − π2(p j )
+ P(z2), z2

⎞

⎠ (2.6)

where ρ > 0, θ j ∈ R, and P(z2) is a holomorphic polynomial chosen such that the function
∑m

j=1
ρ eiθ j

z2−π2(p j )
+ P(z2) vanishes to order k at the point π2( f (a)) for every a ∈ A, and

P vanishes at every point π2(p j ) for j = 1, . . . ,m. By taking the constant ρ > 0 in (2.6)
sufficiently small, the polynomial P can be chosen such that |P| is as small as desired on the
compact set π2(L ′) where L ′ is given by (2.1). This gives a holomorphic embedding

g ◦ f̃ : V \ {b1, . . . , bm} ↪→ C
2 (2.7)

with simple poles at the points b1, . . . , bm . Similarly, we have a C 3 embedding

g ◦ h = g ◦ f̃ ◦ τ : M ′ = M \ {a1, . . . , am} ↪→ C
2 (2.8)

which is holomorphic on M̊ , it approximates the embedding h (2.5) as closely as desired on
K provided that the constant ρ > 0 in (2.6) is chosen small enough, it satisfies

(g ◦ h)(M ′ \ K̊ ) ∩ L = ∅, (2.9)

it agrees with h (and hence with f ) to order k at the points of the finite set A, and the map
g ◦ h sends the points a1, . . . , am to infinity. More precisely, recalling that bM = ⋃m

j=1 C j ,
for every j = 1, . . . ,m the set

σ j = (g ◦ h)(C j \ {a j }) ⊂ C
2 (2.10)

is a properly embedded curve of class C 3, diffeomorphic to R, which is asymptotic to a line
at every end (see [49, Lemma 2] for the details), the first coordinate projection π1 : C

2 → C

maps σ j to a proper curve σ̃ j = π1(σ j ) ⊂ C, and π1 : σ j → σ̃ j is a diffeomorphism near
infinity. Furthermore, the numbers θ j ∈ R in (2.6) can be chosen such that the projected curves
σ̃ j have different asymptotic directions, and for every sufficiently big number s > 0 the set
C\(sD ∪ ⋃m

j=1 σ̃ j
)
has no bounded connected components. These choices are independent

of the number ρ > 0, which can be chosen arbitrarily small.
With the curves σ j given by (2.10) and the discrete set E ⊂ M̊ as in the lemma, we define

� =
m⋃

j=1

σ j ⊂ C
2 and E ′ = (g ◦ h)(E) ⊂ C

2 \ �. (2.11)

Since E only clusters on bM , the set E ′ only clusters on �, so E ′ ∪ � is closed and the
projection π1 : E ′ ∪ � → C is proper. Furthermore, since the curves σ j are asymptotic
to lines at infinity, for any C-linear projection π ′

1 : C
2 → C sufficiently close to π1 the

projection π ′
1 : E ′ ∪� → C is still proper. By a general position argument, π ′

1 can be chosen
such that

π ′
1 : E ′ ∪ � → C is proper, π ′

1 : E ′ → C is injective, and π ′
1(E

′) ∩ π ′
1(�) = ∅. (2.12)
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By a linear change of coordinates on C
2 we may assume that this holds for π1. Furthermore,

if π1 was not changed much, then by our conditions on � there is a number s0 ≥ 0 such that

the domain C \ (sD ∪ π1(�)) has no holes for s ≥ s0. (2.13)

Remark 2.1 The last two conditions in (2.12) are not discussed in [35, proof of Lemma 2.2].
Without them, we are unable to complete the proof of Lemma 2.2 [the problem appears in
the construction of a shear ψ in (2.16)]. Indeed, we do not know how to prove [35, Lemma
2.2] without assuming that the linear projections C

2 → C sufficiently close to π1 are proper
on �.

(3) Pushing E ′ ∪ � out of the ball rB. We shall find an automorphism  ∈ Aut(C2) sending
the set E ′ ∪ � out of the given ball rB. This is accomplished by the following lemma based
on [49, Lemma 1] and [35, Lemma 2.2]. In light of Remark 2.1, we include a proof.

Lemma 2.2 Let E ′ and � be as in (2.11), satisfying conditions (2.12) and (2.13) for the
projection π1(z1, z2) = z1. Given a compact polynomially convex set L ⊂ C

2 with L∩ (E ′ ∪
�) = ∅ and numbers r > 0 (big) and ε > 0 (small), there is an automorphism ∈ Aut(C2)

satisfying the following conditions:

(i) |(z) − z| < ε for all z ∈ L,
(ii) (E ′ ∪ �) ⊂ C

2 \ rB, and
(iii)  agrees with the identity map to a given order k at given points q1, . . . , ql ∈ L.

Proof We shall obtain  as a composition  = φ ◦ ψ of two automorphisms, where φ will
do the main job and ψ will be a shear (2.16) taking care of things at infinity.

Choose a compact polynomially convex set L ′ ⊂ C
2 containing L in its interior such that

L ′ ∩ (E ′ ∪�) = ∅ and a number ε′ > 0 to be specified later. Let s0 ≥ 0 be as in (2.13). Pick
s ≥ s0 such that L ′ ⊂ sD × C and set

Ẽ = E ′ ∩ (sD × C) and �̃ = � ∩ (sD × C). (2.14)

We move �̃ out of the ball rB by an isotopy of embeddings of class C 3 within the set C2 \ L ′.
Since �̃ is a union of smooth embedded pairwise disjoint arcs, the union of L ′ with the image
of �̃ at every stage of the isotopy is polynomially convex by Stolzenberg [42]. Hence, [25,
Theorem 2.1] due to Forstnerič and Løw furnishes an automorphismφ1 ∈ Aut(C2) satisfying

(i’) |φ1(z) − z| < ε′ for all z ∈ L ′, and
(ii’) φ1(�̃) ∩ rB = ∅.

(The proof of [25, Theorem 2.1] relies on the Andersén–Lempert theorem in the version
given by Forstnerič and Rosay [26]; see also [20, Theorem 4.9.2].)

Since the discrete set Ẽ only clusters on �̃ (see (2.14)), condition (i’) implies that Ẽ =
Ẽ1 ∪ Ẽ2 where φ1(Ẽ1) ∩ rB = ∅ and the set Ẽ2 = Ẽ \ Ẽ1 is finite. The compact set
Ẽ1 ∪ �̃ ∪ L ′ is polynomially convex by [35, Lemma 2.3]. Therefore, [20, Proposition 4.15.3]
furnishes an automorphism φ2 ∈ Aut(C2) which is arbitrarily close to the identity map on
φ1(Ẽ1 ∪ �̃ ∪ L ′) and maps the finite set φ1(Ẽ2) into C

2 \ rB. If the approximation is close
enough then the automorphism φ2 ◦ φ1 ∈ Aut(C2) satisfies the conditions

(i”) |(φ2 ◦ φ1)(z) − z| < ε′ for all z ∈ L ′, and
(ii”) (φ2 ◦ φ1)(Ẽ ∪ �̃) ∩ rB = ∅.

We now correct φ2 ◦ φ1 so that the above conditions are preserved and the interpolation
condition (iii) holds. Since φ2 ◦ φ1 is close to the identity on L ′, its k-jet at each point q j
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is close to the k-jet of the identity map. To satisfy (iii) we take φ = φ3 ◦ φ2 ◦ φ1 where a
suitable automorphism φ3 ∈ Aut(C2) is obtained by [20, proof of Theorem 4.9.2, p. 140],
which relies on the jet-interpolation theorem for holomorphic automorphisms [20, Corollary
4.15.5, p. 174]. Note that φ3 can be chosen arbitrarily close to the identity map on any given
compact set in C

2 if the k-jet of φ2 ◦ φ1 at each point q j is close enough to the k-jet of
the identity map. Hence, assuming that ε′ > 0 is chosen small enough, the automorphism
φ = φ3 ◦ φ2 ◦ φ1 satisfies condition (i), condition

φ(Ẽ ∪ �̃) ∩ rB = ∅, (2.15)

and condition (iii). Recall the notation (2.14) and set

E ′′ = E ′ \ Ẽ and �′ = � \ �̃.

The problem now is that φ(E ′′ ∪ �′) may intersect the ball rB. These intersections are
removed by precomposing φ with a shear ψ ∈ Aut(C2) of the form

ψ(z1, z2) = (z1, z2 + ξ(z1)) (2.16)

for a suitably chosen entire function ξ : C → C which is close to 0 on the disc sD. The
idea is explained in [35, proof of Lemma 2.2] (based on [12, Lemma 2.2]); however, some
additions to their argument are necessary in light of Remark 2.1. Note that φ−1(rB) is a
compact polynomially convex set. Let s ≥ s0 be as above, and pick s1 > s such that

π1(φ
−1(rB)) ⊂ s1D. (2.17)

The shear ψ of the form (2.16) should be chosen such that

ψ(E ′ ∪ �) ∩ φ−1(rB) = ∅. (2.18)

By (2.17) this does not impose any condition on the function ξ on C \ s1D, while on sD it
suffices to take ξ close enough to 0 in view of (2.15). It is explained in [49, Lemma 1] how to
determine ξ on the curvesπ1(�)∩(s1D\sD) such thatψ(�)∩φ−1(rB) = ∅. To find an entire
function ξ on C such that the above holds, one uses Mergelyan theorem (see [18, Theorem
16]) and condition (2.13). Since the set E ′ only clusters on �, there are at most finitely many
points Q = {e1, . . . , ei } ⊂ E ′ such that ψ(e j ) ∈ φ−1(rB) for j = 1, . . . , i , i.e., condition
(2.18) fails only at these points. In view of the last two conditions in (2.12) we can redefine
ξ at the points π1(e1), . . . , π1(ei ) ∈ s1D\sD, approximating the previously chosen function
sufficiently closely on the polynomially convex set

[
π1((E ′\Q) ∪ �) ∩ (s1D)

] ∪ sD ⊂ C,

so that the new shear map ψ satisfies (2.18). The interpolation of the identity at the given
points q1, . . . , ql ∈ L is achieved by choosing ξ such that it vanishes to order k at every point
π1(q j ) ∈ π1(L) ⊂ sD for j = 1, . . . , l. The automorphism  = φ ◦ ψ ∈ Aut(C2) then
satisfies Lemma 2.2. ��
(4) Bringing back the points at infinity.Recall that f̃ : V ↪→ C

2 is a holomorphic embedding
satisfying (2.3) and g ◦ f̃ : V \{b1, . . . , bm} ↪→ C

2 is given by (2.7). Furthermore, τ : M →
τ(M) ⊂ V is a conformal diffeomorphism in (2.4) and h = f̃ ◦ τ (2.5). The compact set
K ⊂ M̊ is holomorphically convex in M̊ , and in view of (2.9) the compact set

L̃ := L ∪ (g ◦ h)(K ) ⊂ C
2 (2.19)

is polynomially convex (for the details, see [48] or [20, proof of Theorem 4.14.6, p. 168]).
Let  ∈ Aut(C2) be given by Lemma 2.2 with L replaced by L̃ , the set E ′ = (g ◦ h)(E),
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and with interpolation to order k (see condition (iii)) on the finite set f (A) = (g ◦ h)(A) ⊂
(g ◦ h)(K ) ⊂ L̃ . Consider the holomorphic embedding

F̃ :=  ◦ g ◦ f̃ : V \ {b1, . . . , bm} ↪→ C
2.

The image of F̃ is an embedded complex curve inC
2 containing the image of the embedding

F̃ ◦ τ =  ◦ g ◦ h : M \ {a1, . . . , am} ↪→ C
2.

By the construction, F̃ ◦ τ satisfies Lemma 1.1 except that the points a1, . . . , am ∈ bM are
sent to infinity. We now bring them back to C

2 as follows. On every curve τ(C j ) ⊂ τ(bM)

we choose a proper closed arc I j � τ(C j ) containing the point τ(a j ) = b j in its interior.
Let v be a smooth vector field on R along the set I = ⋃m

j=1 I j which is transverse to τ(bM)

and points to the interior of τ(M). Mergelyan theorem allows us to approximate v by a
holomorphic vector field on a neighbourhood of τ(M) in V , still denoted v, which vanishes
to order k at every point of A. (Note that the tangent bundle of V is trivial, so we may think
of v as a function.) The flow ψt of v for small values of |t |, with ψ0 = Id, exists on a
neighbourhood of τ(M) in V and consists of biholomorphic maps whose k-jet at every point
of A agrees with the k-jet of the identity map. Since v points to the interior of τ(M) along I ,
for small t > 0 the closed domain ψt (τ (M)) ⊂ V (which is conformally diffeomorphic to
M) does not contain any of the points b1, . . . , bm , and hence for such t the embedding

F =  ◦ g ◦ f̃ ◦ ψt ◦ τ : M ↪→ C
2

satisfies the conclusion of Lemma 1.1.

Remark 2.3 (A) The same proof shows that Lemma 1.1 also holds if the holomorphic map
f : M → C

2 has finitely many branch points in M̊ ; see [28, Theorem 1.1] for the details.
(B) The proof of Lemma 1.1 can be adapted to give an analogous result for embeddings

of bordered Riemann surfaces in C × C
∗. In this case, the compact set L ⊂ C × C

∗ should
be holomorphically convex in C × C

∗, and condition (i) in the lemma should be replaced by
asking that F(E ∪ bM) lies outside the cylinder {(z1, z2) ∈ C

2 : |z1| ≤ r , 1/r ≤ |z2| ≤ r}
for a given r > 1. An inductive application of this lemma yields the analogue of Corollary
1.3 for proper holomorphic embeddings M̊ ↪→ C × C

∗ (see Ritter [38, Theorem 4]).

3 Proof of Theorem 1.2

We begin with some reductions. As in Lemma 1.1, we assume as we may that M is a closed
smoothly bounded domain in a compact Riemann surface R. Fix K , α j , β j , and ε as in
the statement of Theorem 1.2. Also, fix finitely many points c1, . . . , cl in K\ f −1({β j :
j = 1, 2, . . .}) for the interpolation condition (ii), as well as a number k ∈ N for the
interpolation order. By Mergelyan theorem in the C 1 topology with interpolation at the
points c1, . . . , cl (see [18, Theorem 16]), we may assume that f is given by a holomorphic
embedding f : U ↪→ C

2 on an open neighbourhood U ⊂ R of M .
Choose a smoothly bounded compact domain K0 ⊂ M̊ which is a strong deformation

retract of M such that K ⊂ K̊0. By renumbering the points α j and β j , we may assume that
α1, . . . , α j ∈ K0 and αi /∈ K0 for all i > j . Applying Lemma 1.1 we find a holomorphic
embedding f0 : M ↪→ C

2 which approximates f as closely as desired on K , it agrees with f
to order k at the points c1, . . . , cl , and it satisfies f0(αi ) = βi for i = 1, . . . , j . We now add
the points {α1, . . . , α j } to the finite set {c1, . . . , cl} and drop them from the list of α-points
in the theorem. Likewise, we drop β1, . . . , β j from the list of β-points.
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We take f0 as our new starting map and K0 as the new initial compact set in the theorem.
Set K−1 = ∅ and ε0 = ε/2. We may assume without loss of generality that β j �= 0 for all
j = 1, 2, . . ., and that there is r0 > 0 such that

f0(M) ∩ r0B = ∅. (3.1)

Choose a sequence 0 < r0 < r1 < r2 < · · · with lim j→∞ r j = +∞. Fix a point α0 ∈
K0\ f −1

0 ({β j : j = 1, 2, . . .}) and setβ0 = f0(α0).We shall inductively construct a sequence
of triples X j = { f j , K j , ε j }, j ∈ N, where

• f j : M ↪→ C
2 is a holomorphic embedding,

• K j ⊂ M̊ is a smoothly bounded compact domain which is a strong deformation retract
of M , and

• ε j > 0 is a number,

such that ⋃

j∈N
K j = M̊ (3.2)

and the following conditions hold for all j ∈ N:

(1 j ) K j−1 ∪ {αi : i = 0, . . . , j} ⊂ K̊ j and {αi : i > j} ∩ K j = ∅.
(2 j ) supx∈K j−1

| f j (x) − f j−1(x)| < ε j .

(3 j ) ε j < ε j−1/2 and every holomorphic map ϕ : M̊ → C
2 with |ϕ − f j−1| < 2ε j on

K j−1 is an embedding on K j−2.
(4 j ) f j (αi ) = βi for all i ∈ {0, . . . , j}.
(5 j ) f j agrees with f j−1 to order k at ci for all i ∈ {1, . . . , l}.
(6 j ) f j (M \ K̊ j ) ∩ r jB = ∅.
(7 j ) f j (M \ K̊ j−1) ∩ min{r j−1, |β j |/2}B = ∅.

Assuming the existence of such a sequence, the proof of Theorem 1.2 is completed as
follows. Conditions (1 j ), (2 j ), (3 j ), and (3.2) ensure that there exists a limit map

F = lim
j→∞ f j : M̊ → C

2

which is an injective holomorphic immersion and satisfies

sup
x∈K j−1

|F(x) − f j−1(x)| < 2ε j for all j ∈ N. (3.3)

This implies condition (i) in the theorem; recall that f0 = f and 2ε1 < ε0 < ε. Conditions
(4 j ) and (5 j ) ensure that F(αi ) = βi for all i = 1, 2, . . . and F agrees with f to order k at ci
for all i ∈ {1, . . . , l}; so, (ii) and (iii) hold as well. Now, (3.3) and condition (6 j ) guarantee
that

inf
x∈bK j

|F(x)| > r j − 2ε j+1 > r j − ε0 for all j ∈ N. (3.4)

Since the increasing sequence of compact sets K j exhausts M̊ (see (3.2)) and we have that
lim j→∞ r j = +∞, it follows that F : M̊ ↪→ C

2 is an almost proper map. Likewise, (3.3)
and (7 j ) give that

inf
x∈K j \K̊ j−1

|F(x)| > min
{
r j−1 ,

|β j |
2

}
− ε0 for all j ∈ N. (3.5)
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If the sequence β j ∈ C
2 is closed and discrete, we have that lim j→∞ |β j | = +∞, and hence

lim
j→∞min

{
r j−1,

|β j |
2

}
= +∞.

This, (3.2), (3.5), and conditions (1 j ) imply that in this special case the injective immersion
F : M̊ ↪→ C

2 which we constructed is a proper map, hence an embedding, thereby proving
the final assertion of the theorem.

Let us explain the induction.Thebasis is givenby the triple X0 = { f0, K0, ε0}; observe that
it meets conditions (10), (40), and (60), see (3.1), while (20), (30), (50), and (70) are void. For
the inductive step we fix j ∈ N and assume that we have a triple X j−1 = { f j−1, K j−1, ε j−1}
enjoying (1 j−1), (4 j−1), and (6 j−1). By the Cauchy estimates, there is a number ε j > 0 so
small that (3 j ) holds true. Recall that β j �= 0 and set

L = min
{
r j−1,

|β j |
2

}
B.

By (6 j−1), we have that

f j−1(M \ K̊ j−1) ∩ L = ∅.

Choose a number r > r j so large that

f j−1(M) ⊂ (r − ε j )B. (3.6)

Lemma 1.1 then applies to the embedding f j−1, the compact set K j−1 (it has no holes since
it is a strong deformation retract of M), the compact polynomially convex set L ⊂ C

2,
the singletons {α j } ⊂ M̊\K j−1 (see (1 j−1)) and {β j } ⊂ C

2\L , the closed discrete set
E = {αi : i > j} ⊂ M̊ (note that E ∩ (K j−1 ∪ {α j }) = ∅ by (1 j−1)), and the numbers
ε j > 0 and r > 0, furnishing us with a holomorphic embedding f j : M ↪→ C

2 satisfying
(2 j ), (5 j ), (7 j ), and the following conditions:

(a) f j (bM ∪ {αi : i > j}) ∩ rB = ∅.
(b) f j (α j ) = β j and f j (αi ) = f j−1(αi ) for all i ∈ {1, . . . , j − 1}.
(c) f j (K j−1) ⊂ rB.

The first part of condition (b) is ensured by Lemma 1.1-(e), while the second part is granted
by Lemma 1.1-(d). Condition (c) is implied by (2 j ) and (3.6).

Note that (b) and (4 j−1) ensure (4 j ). Finally, in view of (a), (c), and the fact that r > r j ,
we can choose a smoothly bounded compact domain K j ⊂ M̊ , being a strong deformation
retract of M , such that (1 j ) and (6 j ) hold true. Indeed, by (a) we can first take a smoothly
bounded compact domain K ′

j ⊂ M̊ which is a strong deformation retract of M such that

K j−1 ∪ {αi : i = 0, . . . , j} = K j−1 ∪ {α j } ⊂ K̊ ′
j and

f j (M \ K̊ ′
j ) ∩ rB = ∅. (3.7)

If the set E ′ = E ∩ K ′
j = {αi : i > j} ∩ K ′

j is empty, then we simply choose K j = K ′
j .

Otherwise, E ′ is a finite set (recall that the sequence αi ∈ M̊ only clusters on bM) and we
can choose K ′

j so that E ′ ⊂ K̊ ′
j\K j−1; see (1 j−1). Let �1, . . . , �m denote the connected

components of K ′
j \ K̊ j−1; these are smoothly bounded compact annuli since K j−1 ⊂ K̊ ′

j is
a strong deformation retract of K ′

j . Fix i ∈ {1, . . . ,m}. Conditions (a), (c), and (3.7) imply

that the set �′
i = �i ∩ f −1

j (C2 \ rB) is disjoint from bK j−1 and it contains E ′ ∩ �i as
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well as an open neighbourhood of �i ∩ bK ′
j . Since �′

i is open in �i , these properties and
the maximum principle show that �′

i is path connected, and hence we can choose a smooth
Jordan arc γi ⊂ �′

i \ {α j } containing E ′ ∩�i , having an endpoint in�i ∩bK ′
j and otherwise

disjoint from bK ′
j . Set γ = ⋃m

i=1 γi . Note that K j−1 ∪ {α j } ⊂ K̊ ′
j \ γ , K j−1 is a strong

deformation retract of K̊ ′
j\γ , {αi : i > j} ∩ K ′

j\γ = ∅, and f j (M\(K̊ ′
j\γ )) ∩ rB = ∅.

It is clear that every sufficiently large smoothly bounded compact domain K j ⊂ K̊ ′
j \ γ

which is a strong deformation retract of M satisfies conditions (1 j ) and (6 j ). This closes the
induction.

Note that at each step of the induction we are allowed to choose the compact domain
K j ⊂ M̊ as large as desired under the only restriction imposed by the second part of condition
(1 j ). So, since the sequence α j ∈ M̊ is closed and discrete, we can proceed in such a way
that condition (3.2) is satisfied. This completes the proof of Theorem 1.2.

4 Proper embeddings of circle domains in CP
1 into C

2

Recall that a circle domain in CP
1 is an open domain of the form

� = CP
1 \

∞⋃

i=0

Di (4.1)

where Di are pairwise disjoint closed round discs. By the uniformization theorem of He
and Schramm [33], every domain of the form (4.1), where Di are pairwise disjoint closed
topological discs (homeomorphic images ofD), is conformally equivalent to a circle domain.
We give a simpler proof of the following result [29, Theorem 1.1] due to Forstnerič andWold.

Theorem 4.1 Every circle domain in CP
1 embeds properly holomorphically into C

2.

We shall use the following analogue of Lemma 1.1 adapted to this situation.

Lemma 4.2 Let � be a circle domain (4.1) in CP
1, and let k ∈ Z+. Given a C 1 embedding

f : Mk = CP
1 \ ⋃k

i=0 D̊i ↪→ C
2 which is holomorphic in M̊k , a compact set K ⊂ � which

isO(M̊k)-convex, a compact polynomially convex set L ⊂ C
2 such that f (Mk\K̊ )∩ L = ∅,

points α ∈ �\K and β ∈ C
2 \ L, and a number r > 0, we can approximate f as closely as

desired uniformly on K by a holomorphic embedding F : Mk ↪→ C
2 which agrees with f

at finitely many given points in K and satisfies

F
(
bMk ∪

∞⋃

i=k+1

Di

)
⊂ C

2 \ rB, F(Mk \ K̊ ) ∩ L = ∅, and F(α) = β.

This lemma is obtained by combining [29, proof of Lemma 3.1] with the proof of Lemma
1.1 in Sect. 2. The only difference in [29, Lemma 3.1] when compared to the technique used
in the earlier papers [28, 48, 49] is that the conformal diffeomorphism τ : M → τ(M) ⊂ V
in (2.4) is chosen such that it maps M onto a domain with piecewise smooth boundary in the
ambient Riemann surface V . (In the context of Lemma 4.2, we apply this argument to the
bordered Riemann surface M = Mk .) The finitely many corner points of τ(bM) are mapped
to infinity by the embedding f̃ ; see (2.5). The main point of this change is to ensure that
the first coordinate projection π1 : C

2 → C, restricted to the image of M , is injective near
infinity; this enables one to find a shear ψ (2.16) in Step (3) of the proof of Lemma 1.1 such

123



A. Alarcón, F. Forstnerič

that the resulting automorphism = φ ◦ψ ∈ Aut(C2)maps all the discs Di out of the given
ball rB. It is clear that the method in step (4) of the proof of Lemma 1.1, using the flow ψt

of a suitably chosen holomorphic vector field on V , still applies to a domain with corners, so
we can bring the points at infinity back to C

2. Finally, we approximate the new conformal
diffeomorphism ψt ◦ τ sufficiently closely by a smooth conformal diffeomorphism from M
onto its image in the ambient surface V , thereby removing the corners. We leave further
details to the reader.

Proof of Theorem 4.1 Let � ⊂ CP
1 be the circle domain (4.1). Let B denote the unit ball

of C
2. Set M0 = CP

1\D̊0; this is a closed disc. Choose a holomorphic embedding f0 :
M0 ↪→ C

2 and a compact, smoothly bounded, O(�)-convex set K0 ⊂ �. Its O(M̊0)-
convex hull is the union of K0 with at most finitely many smoothly bounded open discs in
M̊0, each containing a disc from the family {Di }i∈N. Hence, there are finitely many discs
Dj(1), . . . , Dj(k1) such that, setting M1 = M0\⋃k1

i=1 D̊ j(i), the set K0 isO(M̊1)-convex. Let
J1 = N\{ j(1), j(2), . . . , j(k1)}. By Lemma 4.2 we can approximate the embedding f0|M1

as closely as desired uniformly on K0 by a holomorphic embedding f1 : M1 ↪→ C
2 such

that

f1
(
bM1 ∪

⋃

i∈J1

Di
) ⊂ C

2 \ B.

Since M̊1 \⋃
i∈J1 Di = �, there is a compact, smoothly bounded,O(�)-convex set K1 ⊂ �

with K0 ⊂ K̊1 such that f1(M1\K̊1) ⊂ C
2\B. By the same argument as above, we can find

finitely many discs Dj(k1+1), . . . , Dj(k2) from the given family such that, setting

M2 = M1 \
k2⋃

i=k1+1

D̊ j(i) = M0 \
k2⋃

i=1

D̊ j(i),

the set K1 is O(M̊2)-convex. Let J2 = N\{ j(1), j(2), . . . , j(k2)}. By Lemma 4.2 applied to
the embedding f1|M2 and the polynomially convex set L = B ⊂ C

2 we can approximate f1
on K1 by a holomorphic embedding f2 : M2 ↪→ C

2 such that

f2
(
bM2 ∪

⋃

i∈J2

Di
) ⊂ C

2 \ 2B and f2(M2 \ K̊1) ⊂ C
2 \ B.

Hence, there is a smoothly bounded O(�)-convex set K2 ⊂ � with K1 ⊂ K̊2 such that

f2(M2 \ K̊2) ⊂ C
2 \ 2B.

Continuing inductively, we obtain the following:

(1) an increasing sequence K0 ⊂ K1 ⊂ K2 ⊂ · · · of compact, smoothly bounded, O(�)-
convex domains with K j ⊂ K̊ j+1 for each j ∈ Z+ and

⋃∞
j=0 K j = �,

(2) a decreasing sequence of circle domains M0 ⊃ M1 ⊃ · · · such that
⋂∞

i=0 Mi ⊃ � and
K j is O(M̊ j+1)-convex for each j = 0, 1, 2, . . ., and

(3) a sequence of holomorphic embeddings f j : Mj ↪→ C
2 such that for every j ∈ N, the

map f j approximates f j−1 uniformly on K j−1 as closely as desired and it satisfies

f j
(
bMj ∪

⋃

i∈J j

Di
) ⊂ C

2 \ jB and f j (Mj \ K̊ j−1) ⊂ C
2 \ ( j − 1)B. (4.2)
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Here, J j ⊂ N is such that M̊ j \ ⋃
i∈J j Di = �. The second condition in (4.2) gives

f j (K j \ K̊ j−1) ⊂ f j (Mj \ K̊ j−1) ⊂ C
2 \ ( j − 1)B for all j = 1, 2, . . . . (4.3)

Assuming as we may that the approximation of f j−1 by f j is sufficiently close at every
step, these conditions clearly imply that the sequence f j converges uniformly on compacts
in � to a proper holomorphic embedding f = lim j→∞ f j : � ↪→ C

2. ��
Remark 4.3 To prove Theorem 1.4 in this special case, we modify the above construction
so that for each j = 1, 2, . . . we first pick a point α j ∈ � \ K j−1 and then choose the next
embedding f j : Mj ↪→ C

2 so that it approximates f j−1 on K j−1, it satisfies

f j (α j ) = β j ∈ B and f j
(
bMj ∪

⋃

i∈J j

Di
) ⊂ C

2 \ jB,

and f j agrees with f j−1 at the previously chosen points α1, . . . , α j−1 ∈ K j−1 so that
f j (αi ) = βi ∈ B holds for i = 1, . . . , j . We then pick the next compact, smoothly bounded,
O(�)-convex set K j ⊂ � such that

K j−1 ∪ {α j } ⊂ K̊ j and f j (bK j ) ⊂ C
2 \ jB. (4.4)

(However, we cannot fulfil condition (4.3) due to the interpolation condition f j (α j ) = β j ,
since there is no assumption on the set B = {β j } ⊂ C

2.) By choosing the set K j ⊂ � big
enough at every step to ensure that

⋃∞
j=1 K j = �, condition (4.4) ensures that the limit

holomorphic embedding f = lim j→∞ f j : � ↪→ C
2 is almost proper.

The general case of Theorem 1.4 is proved in the following section.

Remark 4.4 A geometric disc in a Riemann surface R is the image of a round disc in the
universal covering space R̃ ∈ {CP

1, C, D} of R. A circle domain in R is a domain all ofwhose
complementary connected components are closed geometric disks and points (punctures).
By He and Schramm [33, Theorem 0.2], every open Riemann surface with finite genus and
at most countably many ends is conformally equivalent to a circle domain � in a compact
Riemann surface R. If Lemma 4.2 could be proved for such domains without punctures, it
would follow that any such domain embeds properly holomorphically in C

2.

5 Proof of Theorem 1.4

We shall need the following generalization of [29, Lemma 2.2] to domains in an arbitrary
compact Riemann surface R.

Lemma 5.1 Assume that R is a compact Riemann surface of genus ν and � is a connected
open domain in R of the same genus ν. Given a closed set L in R which is a union of connected
components of R \� and an open set V ⊂ R containing L, there exist finitely many pairwise
disjoint, smoothly bounded closed discs �i ⊂ V (i = 1, . . . ,m) such that

L ⊂
m⋃

i=1

�i and
m⋃

i=1

b�i ⊂ �. (5.1)

Proof Let K1 ⊂ K2 ⊂ · · · ⊂ ⋃∞
j=1 K j = � be an exhaustion by smoothly bounded

compact connected sets with K j ⊂ K̊ j+1 for all j ∈ N. By choosing K1 big enough,
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every set K j has the same genus ν as R, and hence R \ K j is the union of finitely many

open discs U j = {U j
1 , . . . ,U j

m( j)} with pairwise disjoint closures. We claim that for j large
enough there are discs �1, . . . , �m ∈ U j satisfying (5.1). Indeed, if this is not the case,

there is a decreasing sequence of closed discsU j
k( j) ⊃ U j+1

k( j+1) such thatU
j
k( j) ∩ L �= ∅ and

U j
k( j) ∩ (R \V ) �= ∅ for each j ; but then

⋂∞
j=1U

j
k( j) would be a complementary component

of � which is contained in L and intersects R \ V , a contradiction. ��
Given a compact subset L ⊂ R \ � and open smoothly bounded discs �i ⊂ R (i =

1, . . . ,m) with pairwise disjoint closures satisfying (5.1), we shall say that the set

� =
m⋃

i=1

b�i ⊂ �

is a surrounding system for L , or simply that � surrounds L . The set

c(�) = � \
m⋃

i=1

�i (5.2)

is called the core component of � \ �. Note that if � ⊂ � surrounds L and δ : [0, 1) → �

is a path such that δ(0) ∈ c(�) and δ has a limit point in L , then δ([0, 1)) ∩ � �= ∅.

Proof of Theorem 1.4 Let R and � = R\⋃∞
i=0 Di be as in the theorem, so Di are closed

pairwise disjoint closed discs. Note that � has the same topological genus ν as R. Set

Mj = R \
j⋃

i=0

D̊i for j = 0, 1, . . . . (5.3)

For all j ≥ 0 we have that � ⊂ M̊ j , Mj+1 ∪ D̊ j+1 = Mj , bMj+1 = bMj ∪ bD j+1, and
� = ⋂∞

j=0 M̊ j . By a surrounding system � ⊂ � for Mj , we shall mean a surrounding

system for R\M̊ j = ⋃ j
i=0 Di . Note that if δ : [0, 1) → � is a path such that δ(0) ∈ c(�)

(see (5.2)) and δ([0, 1)) has a limit point in bMj = ⋃ j
i=0 bDi , then δ([0, 1)) intersects �.

Let k ∈ {0, 1, . . .}, f : Mk ↪→ C
2, K ⊂ �, ε > 0, and B ⊂ C

2 be as in the statement
of the theorem. We shall assume without loss of generality that the set B = {β1, β2, . . .} is
infinite, and for simplicity of notation we assume that k = 0 (the same argument will apply
in the general case). Set f0 = f : M0 = R \ M̊0 ↪→ C

2. Fix points c1, . . . , cl ∈ � at
which we wish to interpolate (see condition (ii) in the theorem). We may assume without
loss of generality that f0({c1, . . . , cl})∩ B = ∅. Using Lemma 5.1 we find a smooth Jordan
curve �0 ⊂ � surrounding the disc D0 = R \ M̊0 such that �0 ∩ {c1, . . . , cl} = ∅ and f0
vanishes nowhere on �0; the last condition is easily arranged by a small deformation. Then,
choose a smoothly bounded compact connected domain K0 ⊂ � with genus ν such that
K ∪ {c1, . . . , cl} ∪ �0 ⊂ K̊0. Pick a point α0 ∈ K̊0 \ f −1

0 (B) and set β0 = f0(α0). We also
let K−1 = ∅ and ε0 = ε/2.

We shall inductively construct a sequence of tuples Tj = { f j , K j , � j , ε j , α j }, j ∈ N,
where

• f j : Mj ↪→ C
2 is a holomorphic embedding,

• K j ⊂ � is a smoothly bounded compact connected domain of genus ν,

• � j ⊂ K̊ j is a surrounding system for Mj ,
• ε j > 0 is a number, and
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• α j ∈ K̊ j is a point,

such that ∞⋃

j=0

K j = � (5.4)

and the following conditions hold for all j = 1, 2, . . . :

(1 j ) K j−1 ⊂ K̊ j .
(2 j ) � j ∪ {α j } ⊂ K̊ j \ K j−1 and K j−1 ∪ {α j } ⊂ c(� j ); see (5.2).
(3 j ) ε j < ε j−1/2 and every holomorphic map ϕ : � → C

2 with |ϕ − f j−1| < 2ε j on
K j−1 is an embedding on K j−2. (Recall that K−1 = ∅.)

(4 j ) supx∈K j−1
| f j (x) − f j−1(x)| < ε j .

(5 j ) f j (αi ) = βi for i = 0, 1, . . . , j .
(6 j ) f j agrees with f j−1 to a given order at ci ∈ K0 for i = 1, . . . , l.
(7 j ) f j (� j ) ∩ jB = ∅.

The basis of the induction is given by T0 = { f0, K0, �0, ε0, α0}. It meets conditions (10),
(50), and (70), while the remaining conditions are void for j = 0. For the inductive step,
assume that we have tuples T0, . . . , Tj−1 satisfying the required conditions for some j ≥ 1,
and let us construct Tj . Choose ε j > 0 so small that (3 j ) holds. Next, choose a compact
set K ′

j−1 ⊂ M̊ j without holes in M̊ j such that K j−1 ⊂ K̊ ′
j−1. (The set K

′
j−1 need not be

contained in �.) Pick a point α j ∈ �\K ′
j−1 (this set is nonempty since K ′

j−1 ⊂ M̊ j is

compact while � is not relatively compact in M̊ j ). Lemma 1.1 applied to the embedding
f j−1|Mj : Mj ↪→ C

2, the compact set K ′
j−1 ⊂ M̊ j , the singletons {α j } ⊂ M̊ j \ K ′

j−1 and

{β j } ⊂ C
2, and the number ε j > 0 furnishes a holomorphic embedding f j : Mj ↪→ C

2

satisfying (4 j )–(6 j ) and

f j (bMj ) ∩ jB = ∅.

Hence, there is an open set V ⊂ R containing R\M̊ j = ⋃ j
i=0 Di such that

(K j−1 ∪ {α j }) ∩ V = ∅ and | f j | > j on V ∩ Mj .

By Lemma 5.1 there is a surrounding system � j = ⋃ j
i=0 γi ⊂ � ∩ V for Mj such that

γi = b�i , where �i ⊂ V is a disc containing Di and the closed discs �i for i = 0, 1, . . . , j
are pairwise disjoint. Hence, � j ∩ K j−1 = ∅, K j−1 ∪ {α j } ⊂ c(� j ) (this is the second
condition in (2 j )), and (7 j ) holds. Finally, choose any smoothly bounded compact connected
domain K j ⊂ � containing K j−1 ∪ {α j } ∪ � j in its interior. Hence, K j is of genus ν (the
same as the genus of R) and conditions (1 j ) and (2 j ) hold. The induction may now proceed.
Note that condition (5.4) can be fulfilled since we may choose K j ⊂ � as large as desired at
each step.

As in the proof of Theorem 1.2, there is a limit map F = lim j→∞ f j : ⋃∞
j=0 K j =

� ↪→ C
2 which is an injective holomorphic immersion and satisfies conditions (i), (ii), and

(iii) in the statement of the theorem; note that B = F({α j : j ∈ N}) ⊂ F(�). Finally,
conditions (2 j )–(4 j ) and (7 j ) guarantee that infx∈� j |F(x)| > j − ε for all j ∈ N. Since
� j = b(c(� j )) for every j and c(�1) � c(�2) � · · · ⊂ ⋃

j∈N c(� j ) = � is an exhaustion
of � by connected, smoothly bounded compact domains in view of (5.4), (1 j ), and (2 j ), this
inequality shows that the map F : � → C

2 is almost proper. ��
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6 Proof of Theorem 1.5

We begin by recalling a construction of a Cantor set in a domain �0 ⊂ C. In the first step,
we choose a smoothly bounded compact convex domain �0 ⊂ �0. Removing from �0

a suitably chosen open neighbourhood ϒ0 of the vertical straight line segment divides �0

in two smoothly bounded compact convex subsets �1
0 and �2

0 of the same width. Next,

for j = 1, 2 we remove from �
j
0 an open neighborhood ϒ

j
0 of the horizontal straight line

segment dividing �
j
0 in two convex subsets of the same height, making sure that the two

connected components of �
j
0 \ ϒ

j
0 are smoothly bounded compact convex domains. This

gives a compact set
�1 = �0 \ (ϒ0 ∪ ϒ1

0 ∪ ϒ2
0 ) ⊂ �̊0 (6.1)

which is the union of four pairwise disjoint, smoothly bounded compact convex domains�
j
1,

j = 1, . . . , 4. In the second step, we repeat the same procedure for each convex compact
domain�

j
1 from the first generation, thereby getting four pairwise disjoint smoothly bounded

compact convex domains in its interior. This gives a compact set�2 ⊂ �̊1 which is the union
of sixteen smoothly bounded compact convex domains. Continuing inductively, we obtain a
decreasing sequence of smoothly bounded compact domains

�1 � �2 � �3 � . . . (6.2)

such that for each i ≥ 1 the domain �i consists of 4i pairwise disjoint smoothly bounded
compact convex domains. The intersection

C =
∞⋂

i=1

�i ⊂ �0 (6.3)

is then a Cantor set in C. Moreover, choosing the separating neighbourhoods sufficiently
small at each step of the construction, we may ensure that μ(C) > μ(�0) − δ for any given
δ > 0, where μ denotes the 2-dimensional Lebesgue measure on C.

We now explain the proof of Theorem 1.5. Let R be a compact Riemann surface and
B ⊂ C

2 be a countable set. Assume that B = {β1, β2, . . .} is infinite and 0 /∈ B. Let �0 be a
smoothly bounded compact convex domain in a holomorphic coordinate chart on R such that
there is a holomorphic embedding f0 : R \ �̊0 ↪→ C

2. Such a set and embedding f0 always
exists; we may for instance choose �0 to be the complement of a small open neighbourhood
of the curves in a suitable homology basis of R. Fix ε0 > 0, set K0 = R\�̊0 and K−1 = ∅,
and assume without loss of generality that there is a number r0 > 0 satisfying

f0(K0) ∩ r0B = ∅. (6.4)

(Cf. (3.1); recall that B is the unit ball in C
2.) Choose a point α0 ∈ K̊0\ f −1

0 (B) and set
β0 = f0(α0). Also choose any sequence 0 < r0 < r1 < r2 < · · · with lim j→∞ r j = +∞.

Let �0 ⊂ �̊0 be a smoothly bounded compact convex domain so large that f0 extends to
a holomorphic embedding f0 : R \ �̊0 ↪→ C

2 satisfying f0(R \ �̊0) ∩ r0B = ∅. Choose
a positive number ε1 < ε0/2. An application of Mergelyan theorem in two steps (see [18,
Theorem 16]) furnishes a compact set �1 as in (6.1), consisting of four pairwise disjoint
smoothly bounded compact convex domains, and a holomorphic embedding f̃0 : K1 =
R \ �̊1 ↪→ C

2 such that

f̃0(K1 \ K̊0) ∩ r0B = ∅ and sup
x∈K0

| f̃0(x) − f0(x)| < ε1/2. (6.5)
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Indeed, we first extend f0 to a smooth embedding f0 : (R\�̊0)∪ E0 ↪→ C
2, where E0 is the

vertical straight line segment dividing �0 in two convex subsets of the same width, such that
f0(E0) ∩ r0B = ∅. Note that E0 intersects R\�̊0 only at its endpoints and the intersections
are transverse. ByMergelyan theorem (see [18, Theorem 16]) we can then approximate f0 in
the C 1 topology on (R \ �̊0) ∪ E0 by a holomorphic embedding f ′

0 : (R\�̊0) ∪ ϒ0 ↪→ C
2,

where ϒ0 is a neighborhood of E0 in �0 as explained above, such that

f ′
0((�0 \ �̊0) ∪ ϒ0) ∩ r0B = ∅.

We then repeat the process simultaneously in the two components �1
0 and �2

0 of �0\ϒ0: we

suitably extend f ′
0 to E1

0 ∪ E2
0 , where E j

0 , j = 1, 2, is the horizontal straight line segment

dividing �
j
0 in two convex subsets of the same height, and apply Mergelyan theorem to

approximate f ′
0 in the C

1 topology on (R\�̊0)∪ϒ0∪ E1
0 ∪ E2

0 by a holomorphic embedding
f̃0 : �1 ↪→ C

2, where �1 is of the form (6.1) and f̃0 satisfies (6.5) for K1 = R\�̊1.
Note that K0 ⊂ K̊1 and choose a point α1 ∈ K̊1\K0. Arguing as in the proof of Theorem

1.2, we may use Lemma 1.1 to obtain a holomorphic embedding f1 : K1 ↪→ C
2 satisfying

the following conditions:

(a) supx∈K0
| f1(x) − f̃0(x)| < ε1/2. Hence, supx∈K0

| f1(x) − f0(x)| < ε1 by (6.5).
(b) f1(αi ) = βi for i = 0, 1.
(c) f1(bK1) ∩ r1B = ∅.
(d) f1(K1 \ K̊0) ∩ min{r0, |β1|/2}B = ∅.

We repeat this procedure inductively, following the recursive construction of a Cantor set
C in �0 described above; see (6.2) and (6.3). In this way, we construct a sequence of tuples
Tj = { f j , K j , ε j , α j }, j ∈ N, where

• K j = R\� j , where � j is a domain in �0 consisting of 4 j pairwise disjoint smoothly
bounded compact convex domains,

• f j : K j ↪→ C
2 is a holomorphic embedding,

• ε j > 0 is a number, and
• α j ∈ K̊ j \ K j−1 is a point,

such that Tj satisfies K j−1 ⊂ K̊ j and conditions (2 j )–(4 j ), (6 j ), and (7 j ) in the proof of
Theorem 1.2 for all j ∈ N (with M̊ replaced by K j−1 in (3 j )), and we have that

C = R \
⋃

j≥0

K j =
⋂

j≥0

� j

is a Cantor set in R. As in the proof of Theorem 1.2, there is a limit map

F = lim
j→∞ f j : R \ C =

⋃

j≥0

K j → C
2

which is an almost proper injective holomorphic immersion and satisfies

B = F({α j : j ≥ 1}) ⊂ F(R \ C).

Moreover, the map F : R \C → C
2 is proper, and hence a proper holomorphic embedding,

if the given set B is closed in C
2 and discrete. This concludes the proof of Theorem 1.5.
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7 Proof of Theorem 1.6

Let S be an open Riemann surface. Fix an exhaustion

S0 � S1 � S2 � · · · �
⋃

j≥0

S j = S (7.1)

of S by connected, smoothly bounded, compact domains without holes in S such that S0 is
a closed disc and the Euler characteristic of S j \ S̊ j−1 equals 0 or −1 for every j = 1, 2, . . .
(see [9, Lemma 4.2]). Also set D−1 = D0 = ∅ and let

D1 � D2 � · · · �
⋃

j≥1

Dj = D (7.2)

be an exhaustion of D by smoothly bounded, polynomially convex, strongly pseudoconvex,
Runge domains [20, Sect. 2.3]. Assume that the set B = {β1, β2, . . .} is infinite, set m0 = 0,
and for each j ∈ N denote by m j the unique integer such that

β j ∈ Dm j+1 \ Dm j . (7.3)

Fix ε0 > 0 and set K0 = S0 and K−1 = ∅. Let f0 : K0 ↪→ D be a holomorphic embedding
with f0(K0) ⊂ D1; recall that K0 is a disc. Choose α0 ∈ K̊0 such that f0(α0) /∈ B and set
β0 = f0(α0) ∈ D1. We shall construct a sequence X j = {K j , f j , ε j , α j }, j ∈ N, where

• K j ⊂ S is a connected, smoothly bounded, compact domain without holes in S,
• f j : K j ↪→ D is a holomorphic embedding,
• ε j > 0 is a positive number, and
• α j ∈ K̊ j \ K j−1 is a point,

such that the following conditions hold for all j ∈ N:

(1 j ) K j−1 � K j ⊂ S j and K j is diffeotopic to S j .
(2 j ) supx∈K j−1

| f j (x) − f j−1(x)| < ε j .

(3 j ) ε j < ε j−1/2 and every holomorphic map ϕ : K j−1 → C
2 with |ϕ − f j−1| < 2ε j on

K j−1 is an embedding on K j−2.
(4 j ) f j (αi ) = βi for all i ∈ {0, . . . , j}.
(5 j ) f j (bKi ) ∩ Di = ∅ for all i ∈ {0, . . . , j}.
(6 j ) f j (K j\K̊ j−1) ∩ D j−1 ∩ Dm j = ∅. (See (7.3) for the definition of m j .)
(7 j ) length( f j ◦γ ) > 1 for every path γ : [0, 1] → K j with γ (0) ∈ K j−1 and γ (1) ∈ bK j .

Assume for a moment that such a sequence exists. Conditions (7.1) and (1 j ) imply that

M =
⋃

j∈N
K j ⊂ S (7.4)

is a domain in S that is diffeotopic to S. In particular, there is a complex structure J on S such
that the open Riemann surface (S, J ) is biholomorphic to M . (For details in a similar setting,
see [3, proof of Theorem 1.4 (b) and Corollary 1.5].) By (1 j ), (2 j ), (3 j ), and the maximum
principle, there is a limit map

F = lim
j→∞ f j : M → D,

which is an injective holomorphic immersion and satisfies

sup
x∈K j−1

|F(x) − f j−1(x)| < 2ε j , j ∈ N. (7.5)
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We claim that if each ε j > 0 is chosen sufficiently small then F satisfies the conclusion of
Theorem1.6. Indeed, if every ε j > 0 is small enough then (7.4), (7.5), and conditions (1 j ) and
(7 j ) guarantee that length(F ◦γ ) = +∞ for every proper path γ : [0, 1) → M , and hence F
is complete. Likewise, (7.5) and conditions (5 j ) imply that F(bK j ) ∩ D j = ∅ for all j ∈ N

whenever the ε j ’s are sufficiently small, and hence F : M → D is an almost proper map in
view of (7.2), (7.4), and conditions (1 j ). Indeed, if Q ⊂ D is compact and we take m ∈ N

so large that Q ⊂ Dm , then F−1(Q) ∩ bK j = ∅ for every j > m, hence all components of
F−1(Q) are compact in M . Conditions (4 j ) give that B = {β1, β2, . . .} ⊂ F(M). Finally,
if each ε j > 0 is chosen sufficiently small then F(K j\K̊ j−1) ∩ D j−1 ∩ Dm j = ∅ for all
j ∈ N by (7.5) and conditions (6 j ), while if the given set B ⊂ D is closed and discrete
then lim j→∞ min{ j − 1,m j } = +∞; see (7.2) and (7.3). These conditions imply that
F : M ↪→ D is a proper map, and hence a proper holomorphic embedding, provided that B
is closed in D and discrete. Therefore, F satisfies the conclusion of the theorem.

To complete the proof, it remains to explain the induction. The basis is given by the tuple
X0 = {K0, f0, ε0, α0}; it satisfies (10), (40), (50), and (60), while the remaining conditions are
void for j = 0. Fix j ∈ N and assume that we have a tuple X j−1 = {K j−1, f j−1, ε j−1, α j−1}
fulfilling conditions (1 j−1), (4 j−1), (5 j−1), and (6 j−1). We distinguish two cases.
Case 1: The Euler characteristic of S j \ S̊ j−1 is 0. In this case, (7.1) and (1 j−1) imply
that K j−1 ⊂ S̊ j and K j−1 is a strong deformation retract of S j . Choose an integer d >

max{ j,m j + 1} so large that f j−1(K j−1) ⊂ Dd and set d ′ = min{ j − 1,m j } < d . Assume
without loss of generality that β j /∈ f j−1(K j−1). By (5 j−1) and (7.3) we have that

f j−1(bK j−1) ∪ {β j } ⊂ Dd \ Dd ′ . (7.6)

Pick a point a ∈ bK j−1 and attach to K j−1 a smooth embedded arc η ⊂ S̊ j such that
η ∩ K j−1 = {a} and the intersection of bK j−1 and η is transverse at a. On the image side,
choose a smoothly embedded arc

λ ⊂ Dd \ Dd ′ (7.7)

such that λ agrees with f j−1(η) near the endpoint f j−1(a), λ∩ f j−1(K j−1) = f j−1(a), and
the other endpoint of λ equals β j . Let α j denote the other endpoint of η and extend f j−1 to a
smooth diffeomorphism η → λ such that f j−1(α j ) = β j . By Mergelyan theorem (see [18,
Theorem 16]) we may assume in view of (5 j−1), (7.6), and (7.7) that there is a connected,
smoothly bounded, compact domain K ⊂ S without holes such that

(i) α j ∈ K j−1 ∪ η � K ⊂ S̊ j ,
(ii) K j−1 is a strong deformation retract of K , and
(iii) f j−1 : K ↪→ Dd is a holomorphic embedding satisfying

f j−1(α j ) = β j and f j−1(K \ K j−1) ∩ Dd ′ = ∅.

It follows that K is a strongdeformation retract of S j aswell. ByCharpentier andKosiński [13,
Lemma 2.4] there is a compact polynomially convex set � ⊂ Dd+1 \ Dd whose connected
components are holomorphically contractible (for example, convex) such that Dd ∪ � is
polynomially convex and length(σ ) > 1 for every path σ : [0, 1] → D\� with σ(0) ∈ Dd

and σ(1) ∈ D\Dd+1. It follows that the compact set

L = Dd ′ ∪ � = (D j−1 ∩ Dm j ) ∪ �

is also polynomially convex, and f j−1(K\K j−1) ∩ L = ∅ by (iii). Lemma 1.1 furnishes a
holomorphic embedding f j : K ↪→ C

2 satisfying the following conditions:
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(a) f j (bK ) ∩ Dd+1 = ∅.
(b) f j (K \ K j−1) ∩ L = ∅.
(c) supx∈K j−1∪η | f j (x) − f j−1(x)| < ε j (note that K j−1 ∪ η has no holes in K̊ ).
(d) f j (αi ) = f j−1(αi ) = βi for all i ∈ {0, . . . , j} (see (iii) and (4 j−1)).

(e) f j (bKi ) ∩ Di = ∅ for all i ∈ {0, . . . , j − 1} (see (5 j−1)).

Here, ε j > 0 is so small that condition (3 j ) holds and

f j (K j−1 ∪ η) ⊂ Dd (7.8)

(see (iii) and (c)). Note that (7.8) ensures that the point α j ∈ η lies in the connected com-
ponent of f −1

j (Dd) containing K j−1. This, the maximum principle, and conditions (i) and

(a) guarantee the existence of a connected, smoothly bounded, compact domain K j ⊂ K̊
without holes in S satisfying (1 j ),

α j ∈ K̊ j , f j (bK j ) ∩ Dd+1 = ∅, and f j (K j ) ⊂ D. (7.9)

Condition (c) implies (2 j ); (d) ensures (4 j ); (e), (7.9), and d > j give (5 j ); (b) implies (6 j );
and (b), (7.8), (7.9), and the properties of � ensure (7 j ). This closes the induction in this
case.
Case 2: The Euler characteristic of S j \ S̊ j−1 equals−1. In this case, there is a smooth Jordan
arc E ⊂ S̊ j\K̊ j−1, transversely attached with its two endpoints to bK j−1 and otherwise
disjoint from K j−1, such that K j−1 ∪ E is a strong deformation retract of S j . Given ε > 0,
an application ofMergelyan theorem (see [18, Theorem 16]) furnishes a connected, smoothly
bounded, compact domain K ⊂ S̊ j , without holes in S, such that K j−1 ∪ E ⊂ K̊ and K
is a strong deformation retract of S j , and a holomorphic embedding g : K ↪→ D such
that supx∈K j−1

|g(x) − f j−1(x)| < ε, g(αi ) = βi for all i ∈ {0, . . . , j − 1} (see (4 j−1)),

g(bKi )∩ Di = ∅ for all i ∈ {0, . . . , j − 1}, and g(K\K̊ j−1)∩ D j−1 = ∅ (see (5 j−1)). See
[1, p. 216, Case 1] for the details in a very similar situation. This reduces the proof of the
inductive step to Case 1. This closes the induction and completes the proof of Theorem 1.6.

8 Proof of Theorems 1.7 and 1.9

For simplicity of exposition we shall prove these results in the case when the open Riemann
surface S is a disc, say, S = 2D = {ζ ∈ C : |ζ | < 2}. In particular, the domain M ⊂ S in
Theorem 1.7 must be a disc, while the one in Theorem 1.9 must be a planar domain. The
general cases are seen by combining the proof in these special cases with the procedure to
prescribe the topology in the proof of Theorem 1.6; we leave the details to interested readers.

Proof of Theorem 1.7 Let X ⊂ C
2 and B = {β j } j∈N ⊂ X be as in the statement. Let us

assume that S = 2D. Set D0 = D and choose a holomorphic embedding f0 : D0 → X .
Assume that f0(0) /∈ B and set α0 = 0, β0 = f (α0), and D−1 = ∅. Fix a number ε0 > 0.
We shall inductively construct a sequence of smoothly bounded closed discs Dj ⊂ 2D,
points α j ∈ D̊ j , holomorphic embeddings f j : Dj → X , and numbers ε j > 0 satisfying
the following conditions for all j ∈ N = {1, 2, . . .}:
(i j ) Dj−1 ⊂ D̊ j .
(ii j ) | f j − f j−1| < ε j on Dj−1.
(iii j ) f j (αk) = βk for all k ∈ {0, . . . , j}.
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(iv j ) dist f j (0, bD j ) > j , where dist f j denotes the distance function on Dj associated to the
Riemannian metric induced on Dj by the Euclidean one in C

2 via the embedding f j .
(v j ) ε j < ε j−1/2 and every holomorphic map ϕ : Dj−1 → C

2 such that |ϕ − f j−1| < 2ε j

on Dj−1 is an embedding and satisfies ϕ(Dj−1) ⊂ X and distϕ(0, bD j−1) > j − 1.

The basis of the induction is provided by the already chosen disc D0 = D, point α0 = 0 ∈
D̊0, holomorphic embedding f0 : D0 → X , and number ε0 > 0. They meet conditions
(i0), (iii0), and (iv0), while (ii0) and (v0) are void. For the inductive step, fix j ∈ N and
assume that we have suitable objects Dk , αk , fk , and εk satisfying (ik), (iiik ), and (ivk) for
all k ∈ {0, . . . , j − 1}. By (iv j−1) we can choose a number ε j > 0 so small that (v j ) is
satisfied. Reasoning as in Case 1 in the proof of Theorem 1.6, we may assume that there are
a smoothly bounded closed disc � ⊂ 2D and a point α j ∈ � such that f j−1 extends to a
holomorphic embedding f j−1 : � → X with

α j ∈ �̊ ⊃ Dj−1 and f j−1(α j ) = β j . (8.1)

Moreover, � can be chosen as close to Dj−1 as desired.
Since � is a disc and f j−1 : � → C

2 is holomorphic, the compact set f j−1(�) ⊂ X
is polynomially convex in C

2 by a theorem of Wermer [46] (see also Stolzenberg [42] and
Alexander [10]), so it admits a basis of open neighbourhoods which are smoothly bounded,
strongly pseudoconvex, and Runge in C

2. (Indeed, a compact polynomially convex set K ⊂
C
n is the zero set of a smooth plurisubharmonic exhaustion function ρ ≥ 0 on C

n which is
strongly plurisubharmonic on C

n K [44, Theorem 1.3.8], and every sublevel set {ρ < c} for
c > 0 of such a function is a strongly pseudoconvex Runge domain in C

n by [34, Theorem
4.3.4].) Let U1 � U2 � X be a pair of such relatively compact neighbourhoods of f j−1(�)

in X . By [13, Lemma 2.4] there is a compact polynomially convex set � ⊂ U2 \ U1 whose
connected components are holomorphically contractible such that U 1 ∪ � is polynomially
convex and length(γ ) > 1 for every path γ : [0, 1] → X\� with γ (0) ∈ U 1 and γ (1) ∈
X\U2. Since Dj−1 is a Runge compact in �̊ and f j−1(�) ∩ � = ∅, Lemma 1.1 furnishes
a holomorphic embedding f j : � ↪→ C

2 satisfying the following conditions:

(a) f j (b�) ∩U 2 = ∅; recall that U2 is compact.
(b) f j (� \ D̊ j−1) ∩ � = ∅.
(c) | f j − f j−1| < ε j on a smoothly bounded closed disc �′ with Dj−1 ∪ {α j } � �′ � �.
(d) f j (αk) = f j−1(αk) for all k ∈ {0, . . . , j}.
Further, choosing ε j > 0 sufficiently small, condition (c) implies that

f j (Dj−1) ⊂ f j (�
′) ⊂ U1; (8.2)

recall thatU1 is an open neighbourhood of f j−1(�). Since the domainU2 is Runge inC
2, this

and conditions (a) and (c) guarantee the existence of a smoothly bounded closed disc Dj ⊂
�̊ ⊂ 2D, with �′ ⊂ D̊ j (this implies (i j )), satisfying f j (Dj ) ⊂ X and f j (bD j ) ∩U2 = ∅.
This, (8.2), (b), and the properties of � imply dist f j (Dj−1, bD j ) > 1, while (c)=(ii j ) and
(v j ) ensure that dist f j (0, bD j−1) > j − 1, so (iv j ) holds. Finally, (d), (iii j−1), and (8.1)
imply (iii j ). This closes the induction.

Note that M = ⋃
j∈N Dj ⊂ 2D is an open disc which is diffeotopic to S = 2D. By

conditions (i j ), (ii j ), and (v j ), there is a limit holomorphic map F = lim j→∞ f j : M → C
2

such that |F − f j−1| < 2ε j for all j ∈ N. So, by (v j ), F has range in X and is a complete
injective immersion. Finally, conditions (iii j ) ensure that B ⊂ F(M). ��
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Proof of Corollary 1.8 Let G, K , and ε be as in the statement. By Mergelyan theorem (see
[18, Theorem 16]) there is a holomorphic embedding f0 : D → C

2 with | f0 − G| < ε/2 on
D, hence dH( f0(D),G(D)) < ε/2. Let X ⊂ C

2 be an ε/2-tubular neighbourhood of f0(D).
It follows that dH(X ,G(D)) < ε. By the proof of Theorem 1.7 there are an open disc M
with D � M � 2D and a complete injective holomorphic immersion h : M → X such that
h(M) is everywhere dense in X , i.e., h(M) = X . We then have that dH(h(M),G(D)) < ε.
Furthermore, an inspection of the proof of Theorem 1.7 shows that we can choose M so close
to D that there is a holomorphic diffeomorphism φ : D → M satisfying |h ◦ φ − f0| < ε/2
on the compact set K ⊂ D. It is clear that F = h ◦φ satisfies the conclusion of the corollary.

��
Proof of Theorem 1.9 Let B = {β j } j∈N ⊂ X ⊂ C

2 be as in the statement and S = 2D. Let
D0, f0, α0, β0, D−1, and ε0 be as in the proof of Theorem 1.7. Choose an exhaustion

∅ = K0 � K1 � K2 � · · · ⊂
⋃

j∈N
K j = X (8.3)

of X by compact domains. We shall inductively construct an increasing sequence of con-
nected, smoothly bounded compact domains Dj ⊂ 2D, as well as sequences of points
α j ∈ D̊ j , holomorphic embeddings f j : Dj → X , and numbers ε j > 0 satisfying conditions
(i j )–(v j ) in the proof of Theorem 1.7 and also the following one for all j ∈ N = {1, 2, . . .}:
(vi j ) f j (bD j ) ∩ K j = ∅.

(Unlike in the proof of Theorem 1.7, Dj need not be a disc.) Note that (vi0) holds true. For
the inductive step, fix j ∈ N and assume that we have suitable objects Dk , ak , fk , and εk
satisfying (ik), (iiik), (ivk), and (vik) for all k ∈ {0, . . . , j − 1}. Choose ε j > 0 so small that
(v j ) holds. Reasoning as in the proof of Theorem 1.7 we may assume that f j−1 extends to a
holomorphic embedding f j−1 : � → X on a connected, smoothly bounded compact domain
� ⊂ 2D such that Dj−1 ⊂ �̊, Dj−1 is a strong deformation retract of �, and there is a point
α j ∈ �̊ with f j−1(α j ) = β j . By a small perturbation of the map f j−1 keeping the above
conditions in place, we can ensure in addition that f j−1(�) is polynomially convex in C

2;
see the argument in the first part of the proof of Lemma 1.1 based on Stolzenberg’s theorem
[41].We can therefore choose a pair of smoothly bounded, relatively compact, pseudoconvex
domainsU1 � U2 � X which are Runge in C

2 such that f j−1(�) ⊂ U1. We place a suitable
labyrinth � = � j in U2 \ U1 and choose a holomorphic embedding f j : � → C

2 as in the
proof of Theorem 1.7 with condition (a) replaced by

(a’) f j (b�) ∩ (K j ∪U2) = ∅.

In particular, conditions (b)–(d) and (8.2) in the proof of Theorem 1.7 are satisfied (in this
case �′ is a smoothly bounded compact domain in �̊ containing Dj−1 ∪ {α j } in its interior
and such that Dj−1 is a strong deformation retract of �′). In view of (a’) and the mentioned
conditions, there is a connected, smoothly bounded compact domain Dj ⊂ �̊ ⊂ 2D such
that

Dj−1 ∪ {α j } ⊂ D̊ j , f j (Dj ) ⊂ X , and f j (bD j ) ∩ (K j ∪U2) = ∅.

(The last conditionwill be the key to ensure almost properness of the limit map; compare with
the condition f j (bD j ) ∩U 2 = ∅ in the proof of Theorem 1.7. In general, since the domain
X need not be pseudoconvex and Runge in C

2, we cannot choose Dj such that Dj−1 is a
strong deformation retract of Dj ; possibly Dj has more boundary components than Dj−1.)
Then, conditions (i j )–(vi j ) hold true, which closes the induction.
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Set M = ⋃
j∈N Dj ⊂ 2D, a connected relatively compact domain in C. By the reasoning

in the proof of Theorem 1.7, there is a limit map F = lim j→∞ f j : M → X which is a
complete injective holomorphic immersion such that B ⊂ F(M). Finally, condition (vi j )
ensures that F is an almost proper map provided that each number ε j > 0 in the inductive
process is chosen sufficiently small. Indeed, by such a choice (similar to that in (v j )) we can
ensure that F(bD j ) ∩ K j = ∅ for all j ∈ N; see (ii j ) and (vi j ). This, (i j ), and (8.3) imply
the almost properness of F : M → X . ��
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Spain. Forstnerič is supported by the European Union (ERC Advanced grant HPDR, 101053085) and grants
P1-0291, J1-3005, and N1-0237 from ARIS, Republic of Slovenia.

Funding open access charge: Universidad de Granada / CBUA

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Alarcón, A.: Complex curves in pseudoconvex Runge domains containing discrete subsets. J. Anal. Math.
140(1), 207–226 (2020)

2. Alarcón, A.: The Yang problem for complete bounded complex submanifolds: a survey. In: Proceedings
for the Biennial Conference of the Spanish Royal Mathematical Society 2022, RSME Springer Series. In
press. arxiv:2212.08521
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17. Drinovec Drnovšek, B., Forstnerič, F.: Holomorphic curves in complex spaces. Duke Math. J. 139(2),
203–253 (2007)
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