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Abstract
It is well-known that an integrally closed domain D can be expressed as the intersection
of its valuation overrings but, if D is not a Prüfer domain, most of the valuation overrings
of D cannot be seen as localizations of D. The Kronecker function ring of D is a classical
construction of a Prüfer domain which is an overring of D[t], and its localizations at prime
ideals are of the form V (t) where V runs through the valuation overrings of D. This fact can
be generalized to arbitrary integral domains by expressing them as intersections of overrings
which admit a unique minimal overring. In this article we first continue the study of rings
admitting a unique minimal overring extending known results obtained in the 1970s and
constructing examples where the integral closure is very far from being a valuation domain.
Then we extend the definition of Kronecker function ring to the non-integrally closed setting
by studying intersections of Nagata rings of the form A(t) for A an integral domain admitting
a unique minimal overring.

Keywords Kronecker function ring · Nagata ring · Intersection of integral domains ·
Integral closure

Mathematics Subject Classification 13A15 · 13A18 · 13B02 · 13B21 · 13B30 · 13F05

1 Introduction

Let D be a local, integrally closed integral domain with maximal ideal m and quotient field
K . Let α ∈ K be such that α and 1/α are not in D. A theorem of Seidenberg [36, Theorem 7]
indicates that m extends to a nonmaximal prime ideal in the ring D[α] and gives details
concerning the structure of the maximal ideals of D[α] which containm. Here, we only note
that there are infinitely many. Clearly, these same results hold for D[1/α]. The fact that D
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is integrally closed insures that D[α] ∩ D[1/α] = D. We can think of the introduction of α

and 1/α as being like striking a large crystal (the ring D) with a hammer and shattering it
into many smaller pieces.

Of course, the scenario described above does not quite always work. In particular, it is
impossible to choose the element α when D is a valuation domain. In accordance with the
depiction above, a classical theorem by Krull states that every integrally closed domain is the
intersection of all its valuation overrings. For this reason, valuation rings are the indivisible
atoms in a canonical decomposition of an integrally closed domain. This makes it seem that
valuation rings would be a powerful tool in studying the structure of rings. This is often true,
but there are several things that can make it difficult.

First, note that it is hard to describe in a simple way all the valuation overrings of a given
ring. For instance, let F be any field. The ring D = F[x, y] of polynomials in two variables
has uncountably many valuation overrings, but only few of them are easy to see when looking
at the localizations of D. Krull provided an answer to this difficulty. The Kronecker function
ring Kr(D) of D is an overring of the polynomial ring D[t]with the property that that there is
an easy correspondence between the valuation overrings of D and the localizations of Kr(D)

at prime ideals [16, 29, 30]. A second difficulty is harder to overcome. If one is inclined to
analyze a ring by the means of studying its valuation overrings, it can be disconcerting to be
faced with an integral domain that is not integrally closed. Of course, one can turn to tools
of an entirely different nature. The aim of this paper is to generalize the notions of valuation
ring and Kronecker function ring to a non-integrally closed setting.

When semistar operations were first introduced one of the major selling points was the
possibility of using semistar operations to build aKronecker function ring for a domainwhich
is not integrally closed [11].However, in this case theKronecker function ring that is produced
is simply a conventional Kronecker function ring of an integrally closed overring of D. Our
real purpose is to produce a non-integrally closed Kronecker function ring which mirrors
the non-integrally closed character of D. The first step in such a process is to generalize the
notion of a valuation domain. We need two properties to hold for such a generalization.

• We need a generalized valuation ring to actually be a valuation ring if it is integrally
closed.

• We need for a domain which is not integrally closed to be equal to the intersection of the
generalized valuation rings that contain it.

Suppose now D is not integrally closed. Let α be an element of the quotient field K which
is not in D. Let Aα be an overring of D which is maximal with respect to the property of
not containing the element α. Such a domain exists by application of Zorn’s Lemma and is
necessarily local.We call Aα amaximal excluding domain. It has been observed that maximal
excluding domains are exactly the integral domains admitting a unique minimal overring in
the sense of [17] (see also [20]). This is our proposed notion for a generalization of valuation
rings.

The structure of this paper is as follows. Section2 is devoted to reviewing the already
known facts concerning Kronecker function rings and maximal excluding domains. We pro-
vide in this section all the needed references.

Section 3 is devoted to constructing examples of maximal excluding domains. Almost
all valuation rings are maximal excluding (specifically all those with branched maximal
ideal). One might think that this fact, combined with the fact that we are specifically working
with rings that are not integrally closed, would mean that the integral closure of a maximal
excluding domain is a valuation ring, or at least a Prüfer domain. This is known to not be
true [19]. Here we show how to construct maximal excluding domains using generalized

123



Non-integrally closed Kronecker function rings…

power series rings. Our construction is interesting since the maximal excluding domains
constructed can be farther from being Prüfer than examples that are already in the literature.
We can indeed construct examples that have infinitely many incomparable prime ideals of
the same height. We also construct maximal excluding domains of a more ordinary character
using pullbacks.

In Sect. 4 we work in earnest on the theory of non-integrally closed Kronecker function
rings. In the classical settingwe beginwith an integrally closed domain D. In this case, the key
feature of Kr(D) is that if we localize at any prime ideal we get a ring of the form V (t)where
V is a valuation overring of D and V (t) is what is known as the Nagata ring of V . Suppose
that D is not integrally closed and is expressed as the intersection of a family of maximal
excluding domains. We can define a new generalized version of the Kronecker function ring
to be the intersection of the Nagata rings of themaximal excluding domains in this family.We
should not expect in this setting to always recover all the maximal excluding domains back
by localizing this generalized Kronecker function ring. For example, if the integral closure
of D is a Prüfer domain then perhaps we should expect any of these generalized Kronecker
function rings to be just equal to the Nagata ring D(t). We prove that this fact holds true in
Theorem 4.8. Along the way we also study general properties about whether the operation
of Nagata rings extension commutes with intersection of integral domains.

Finally, in Sect. 5 we explore various settings where: we start with a domain D, which is
not integrally closed, we express D as an intersection of maximal excluding domains, and we
intersect the rings A(t) where A runs through the maximal excluding rings in our collection.
We first demonstrate that a localization of this intersection at a maximal ideal has the form
C(t) where C is an overring of D (providing also several examples where this ring C is
maximal excluding). Then, we demonstrate that the integral closure of this intersection is
a classical Kronecker function ring of the integral closure of D. We analyze also a simpler
construction of the form R = Kr(D) ∩ A(t) where D is the integral closure of a domain D
and D = D∩ A for A a semilocal overring.We can study the properties of this ring R more in
general without requiring A to be maximal excluding. To give examples and applications we
involve the maximal excluding rings coming from the constructions in Sect. 3. Furthermore,
throughout the paper, we leave several open questions for further research.

2 Preliminaries

We fix our notation for this article and recall all the definitions and results that we will need
about Nagata rings, Kronecker function rings, and integral domains maximal with respect to
excluding a given element of their quotient field.

All the rings we consider will be integral domains, having the same unit element 1. For an
integral domain D, we denote its quotient field by Q(D). If D is local, we denote its unique
maximal ideal bymD . An overring of D is an integral domain A such that D ⊆ A ⊆ Q(D). If
A is an overring and A and D are both local, we say that A dominates D ifmA ⊇ mD . The set
of all valuation overrings dominating D is standardly called Zar(D) (the name comes from
Zariski’s definition). Given a valuation overring V we denote by v the associated valuation
and byGV its value group. The integral closure of an integral domain D in a field F ⊇ Q(D)

is denoted by D
F
. If F = Q(D), we simply use the notation D.
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2.1 Nagata rings and Kronecker function rings

The main reference we consider for Nagata rings and Kronecker function rings is Gilmer’s
book [16]. For an historical introduction we refer to the paper [9] and to its bibliography.
These subjects have been widely studied in the last 60 years. There are many other relevant
references including [3, 10, 11, 22, 29, 30, 32].

Given an integral domain D and an indeterminate t over the quotient field of D, consider a
polynomial f (t) ∈ D[t]. The content of f is the ideal c( f ) ⊆ D generated by the coefficients
of f . The Nagata ring of D is defined as

D(t) :=
{
f

g
: f , g ∈ D[t], c(g) = D

}
.

This ring is the localization of the ring D[t] at the multiplicatively closed set consisting of
the polynomials whose content is equal to the unit ideal.

We will use several known facts about the Nagata ring. When m is a maximal ideal of
D, the extension mD(t) is a maximal ideal of D(t), and D(t)mD(t) = Dm(t) (cf. [26,
Proposition 2.1]). Therefore, since D = ⋂

m⊆D Dm, we get D(t) = ⋂
m⊆D Dm(t). We

can thus say that the operation of Nagata ring extension commutes with the intersection of
localizations at the maximal ideals. By [18, Theorem 3], Nagata ring extension commutes
also with integral closure. We have that the integral closure of D(t) in its quotient field is
D(t).

If V is a valuation domain, the ring V (t) is also a valuation domain, called the trivial
extension of v to the field Q(V )(t). The value of a polynomial f = ∑n

k=0 akt
k ∈ Q(V )[t]

with respect to this valuation is equal to mink=0,...,n{v(ak)}.
Let D be an integrally closed domain.By a classical theoremofKrull, D = ⋂

V∈ Zar(D) V .
The Kronecker function ring of D can be defined as the intersection

Kr(D) =
⋂

V∈ Zar(D)

V (t).

In the literature, the definition of Kronecker function ring is commonly given using the e.a.b
star operations of the ring D, but for the purpose of this paper, where we study intersections
of Nagata rings, we give this as an equivalent definition. It is well-known that the Kronecker
function ring of D is always a Bezout domain (indipendently of the properties of D) and its
localizations at the prime ideals are all the trivial extensions of the valuation overrings of
D. Moreover, Kr(D) ⊇ D(t) and they coincide if and only if D is a Prüfer domain. Given
a subset F ⊆ Zar(D) such that D = ⋂

V∈F V , one can define another ring KrF (D) =⋂
V∈F V (t). This last ring is an overring of the Kronecker function ring Kr(D). Also these

overrings KrF (D) are commonly called Kronecker function rings of D.

2.2 Integral domains maximal with respect to excluding an element of their
quotient field

In this paper we are interested in studying intersections of Nagata rings of overrings of
an integral domain. For this reason we need to understand the properties of those integral
domains which cannot be expressed as intersections of proper overrings. These rings have
been already considered in the literature. Gilmer and Heinzer [17] consider integral domains
admitting a unique minimal overring, in the sense that an integral domain D has an overring
A such that for any other overring B of D there are inclusions D ⊆ A ⊆ B. Several properties
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of these domains have been studied in [17, 20] and other papers, but generally these rings are
still quite mysterious and difficult to identify (in the case they are not integrally closed). It is
observed that an integral domain D admits a unique minimal overring in the sense of Gilmer
and Heinzer if and only if it is maximal with respect to the property of not containing some
element α ∈ Q(D) (obviously if D is maximal with respect to excluding α, then D[α] is the
unique minimal overring of D). Clearly these properties are also equivalent to the fact that
D cannot be written as an intersection of proper overrings. In particular, any such ring D has
to be local and its maximal ideal a t-ideal (see [13] for information about the star operation
t). It is also easy to observe that any integral domain can be written as the intersection of its
overrings that are maximal with respect to excluding some element of the quotient field.

Papick [33] consider a slightly weaker notion of unique minimal overring. To avoid con-
fusion with this notion we call an integral domain maximal with respect to excluding an
element of its quotient field, a maximal excluding domain. For a survey about this topic and
about the more general concept of minimal ring extensions we refer to [34].

If not otherwise specified, the proofs of all the results that we mention in the following
paragraphs can be found in [17, 20]. The first important known fact is that an integrally
closed maximal excluding domain is necessarily a valuation domain with branched maximal
ideal (in particular any valuation domain of finite dimension is maximal excluding). Another
relevant class of maximal excluding domains, not necessarily integrally closed, is the class
of local domains such that every ideal is divisorial, for instance local Gorenstein noetherian
domains of dimension one (cf. [5, 12, 24]).

If a domain D, maximal with respect to excluding an element α, is not integrally closed,
then the unique minimal overring D[α] is an integral extension of D and is semilocal with
at most two maximal ideals. Furthermore, mDD[α] ⊆ D.

If D[α] has exactly two maximal ideals, then the integral closure of D is a Prüfer domain
obtained as the intersection of two valuation rings. In this case, if D[α] = D, the structure
of D has been described in [25, Theorem 14] with the use of pullback diagrams. Also if the
maximal ideal mD of D coincides with the maximal ideal of D[α], then the integral closure
of D is a valuation overring V of D such that mV = mD . In the case D[α] is local and
its maximal ideal is strictly larger than mD , the integral closure of D may not be a Prüfer
domain. The most known example of this situation is the subject of the paper [19]. In this
case D is one-dimensional and its integral closure is a PVD but not a valuation domain (a
PVD is a local domain sharing its maximal ideal with a valuation overring [23]). A similar
example appears here as Example 3.8.

Many questions about non-integrally closed maximal excluding domains are still open.
Already in [25], one can find examples of maximal excluding domains whose prime ideals
are not linearly ordered (but the integral closure is a Prüfer domain). In Sect. 3 of this paper
we show that a maximal excluding domain of dimension at least 2 can have infinitely many
prime ideals of the same height and its integral closure may not even be a PVD (see Theorem
3.13, Example 3.14).

The complete integral closure of a domain D is the ring of the elements x ∈ Q(D) for
which there exists d ∈ D such that dxn ∈ D for every n ≥ 1. The complete integral closure
of the example described by Gilmer and Hoffmann [19] is a valuation domain. The same
happens for the classes of maximal excluding domains that we consider here in Sect. 3. We
leave the following open questions.

Question 2.1 Let D be a maximal excluding domain. Is the complete integral closure of D
always a Prüfer domain? If D is one-dimensional and D is local, is D a PVD?

123



L. Guerrieri, K. A. Loper

3 Constructions of maximal excluding domains

In this section we characterize maximal excluding domains that can be obtained as pullbacks
and as generalized power series rings over a field, defined by submonoids of the positive part
of a totally ordered abelian group. In both cases, as a consequence of Theorems 3.1 and 3.10,
we get that the complete integral closures of the rings in these families are valuation rings.

3.1 Maximal excluding domains obtained as pullbacks

Let T be a local domainwithmaximal idealm and let B be an integral domain having quotient
field κ := T

m . Let φ : T → κ be the canonical surjective map. Define the ring D := φ−1(B)

as in the pullback diagram:

D B

T κ

For exhaustive information about the properties of rings of this form the readermay consult
[8, 14–16].

Theorem 3.1 The integral domain D is maximal excluding if and only if B is maximal exclud-
ing and T is a valution domain.

Proof First suppose that B is not maximal excluding. Thus, there are two proper overrings
B1, B2 of B such that B = B1∩B2. It follows that D = φ−1(B1)∩φ−1(B2) is an intersection
of two proper overrings, hence is not maximal excluding.

Thus, suppose that B is maximal excluding with unique minimal overring B[α′]. Let α

be an element of T such that φ(α) = α′. Clearly α is a unit in T .
Assume that T is a valuation ring and pick z ∈ Q(D)\D. In particular z /∈ m. We need

to show that α ∈ D[z]. If z /∈ T then, 1
z ∈ m ⊆ D. It follows that α

z ∈ m ⊆ D and
α = z α

z ∈ D[z]. Next assume z to be a unit in T . Therefore φ(z) ∈ κ . Since B is maximal
excluding, we get α′ ∈ B[φ(z)]. Since m ⊆ D, we get α ∈ φ−1(B[φ(z)]) = D[z].

Finally consider the case where T is not a valuation domain. Let V be a valuation overring
of T such that m ⊆ mV . By way of contradiction suppose that D is maximal with respect
to excluding an element β. We must have β ∈ D[α] ⊆ T . If there exists z ∈ mV \m, then
we find the contradiction β /∈ D[z]. Indeed, if β ∈ D[z], then there exists d0 ∈ D such that
β − d0 = z(d1 + zd2 + · · · + zn−1dn) ∈ mV ∩ T = m ⊆ D. This is a contradiction since
β /∈ D. If instead mV = m, let φ′ be the canonical quotient map V → V /mV . Observe that
φ′|T = φ and the image of φ′ is a proper field extension of κ . We show that there exists
an element z ∈ V \T such that κ(φ′(z)) � κ and β /∈ D[z]. Setting θ := φ′(z) for some
z ∈ V \T , this is equivalent to showing that α′ /∈ B[θ ]. If θ is transcendental over κ , this is
obvious. If it is algebraic, let us assume it to be of degree n. Let f be the minimal polynomial
of θ over F . Using that κ is the quotient field of B, we can find b ∈ B such that the constant
term of the minimal polynomial of bθ , which is equal to bn f (0), is in B. Replace θ by bθ to
have f (0) ∈ B. Assume there exists a relation α′ = b0+b1θ +b2θ2+· · ·+btθ t . For k ≥ n,

using the relation given by f (θ) = 0, the term θk can be replaced by a linear combination
of θ, . . . , θn−1 with coefficient in κ and constant term in B. This yields another equation of
algebraic dependence of θ over κ of degree at most n − 1 but with constant term not in B.
This is a contradiction. 	
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Corollary 3.2 Consider the same notation of the previous theorem but assume that B is a
field and κ a field extension of B. Then D is maximal excluding if and only if T is a valuation
domain and the extension κ/B is a minimal field extension.

Proof The condition that κ/B is a minimal field extension is clearly necessary. The other
conditions can be proved exactly as in Theorem 3.1 choosing α′ to be any element of κ\B. 	


3.2 Maximal excluding domains in generalized power series rings

In the following G will denote a totally ordered abelian group (with additive notation and
order relation ≤), 0 will denote its unit element and G≥0 the subsemigroup of elements of
G larger than or equal to 0. We consider a family of generalized power series rings, defined
according to [6]. The literature about generalized power series rings is very extensive, an
interested reader can consult also [27, 28, 35] and several other papers by P. Ribemboim and
other authors.

Let S be a subsemigroup of G≥0 containing 0. A subset A of S is Artinian if it does
not contain any infinite descending sequence of elements with respect to ≤ (equivalently,
if A admits a minimal element). Let K be any field. The generalized power series ring
[[K S]] is defined formally as the set of all the maps S → K such that the set supp( f ) :=
{s ∈ S | f (s) �= 0} is Artinian. The operations on this ring are pointwise addition and the
convolution product defined as in [6, Section 2]. The ring [[K S]] is a commutative integral
domain with unit element equal to the map e such that e(0) = 1 and e(s) = 0 for s �= 0.
Notice that in [6] and in the subsequent papers, the authors consider a more general case of
this construction where the groupG is not necessarily totally ordered and K is replaced by an
arbitrary commutative ring R. The classical semigroup ring K [Xs, s ∈ S] can be embedded
canonically in [[K S]] sending the homogeneous element Xs to the map f such that f (s) = 1
and f (g) = 0 for every g �= s. For simplicity of notation we also denote the image of this
element in [[K S]] by Xs and we say that these elements are monomial elements. A general
element of [[K S]] can be now expressed as a possibly infinite sum f = ∑

s∈S us Xs with
us ∈ K and such that supp( f ) is Artinian. The units of [[K S]] can be described using [6,
Proposition 5] (which is based on a result proved in [21]). It turns out that f is a unit if and
only if f (0) is a nonzero element of K . This fact makes [[K S]] a local domain. It is easy to
observe that, if S = G≥0, the ring [[KG≥0 ]] is a valuation domain with value group G and
the value of an element f ∈ [[KG≥0 ]] is exactly the minimal element of supp( f ). Let us set
V := [[KG≥0 ]].

We want to describe the maximal excluding domains of the form [[K S]] with S ⊆ G≥0.
In the following we always assume that [[K S]] and V have the same quotient field. The first
result we prove is inspired by the case G = Z which has been considered. If G = Z, V
is isomorphic to a standard power series ring in one variable over a the field K . The set S
is a numerical semigroup and the subring [[K S]] is maximal excluding if and only if S is
symmetric or pseudo-symmetric (cf. [12], [4, Lemma I.1.9]).

Theorem 3.3 Let S be a proper submonoid of G≥0 and let D := [[K S]] � V . Assume
that D and V have the same quotient field. Take a ∈ G≥0\S. The following conditions are
equivalent:

(1) D is maximal with respect to excluding the element Xa.
(2) For every g ∈ G, g �= a

2 , X
g ∈ D if and only if Xa−g /∈ D.
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Proof Let v be the valuation associated to V and call mV the maximal ideal of V . Assume
D to be maximal with respect to excluding the element y = Xa . Let us first show that
ymV ⊆ D. If there exists z ∈ ymV \D, then by definition of maximal excluding domain
y = d0 + d1z + · · · + dnzn with d0, . . . , dn ∈ D. Hence v(y − d0) ≥ v(z) > v(y), implying
that d0 is an element of D of value v(y) = a. This is a contradiction. It follows that if g > a,
then Xg ∈ D and if g < 0, then Xa−g ∈ D.

Consider now g ∈ G such that 0 < g < a and 2g �= a. If both Xg, Xa−g ∈ D, then
y = XgXa−g ∈ D, contradicting the assumption. Suppose both Xg, Xa−g /∈ D. In this case
we show that one among D[Xg] and D[Xa−g] is an overring of D not containing y. Suppose
y ∈ D[Xg]. Hence

Xa = d0 + d1X
g + d2X

2g + · · · + dn X
ng,

with d0, . . . , dn ∈ D. Using that Xg ∈ D for every g > a, if 2g > a the equation reduces to
Xa = d0 + d1Xg . But this yields a contradiction since no term of d1 can contain Xa−g and
no term of d0 can contain Xa . If instead 2g < a, we obtain that y /∈ D[Xa−g]. For this write

Xa = c0 + c1X
a−g + c2X

2a−2g + · · · + cn X
na−ng,

with c0, . . . , cn ∈ D. Now observe that 2a−2g > a and conclude in the same way as before.
Assume now condition (2) and prove that D is maximal with respect to excluding y. Using

that D is a subring of V , we know that D cannot contain Xg with g < 0. Hence Xg ∈ D
for every g > a. In particular D contains all the elements of V of value larger than a, thus
ymV ⊆ D.

Let z be an element of the quotient field of D. We want to show that y ∈ D[z]. In the
case z /∈ V , we get y

z ∈ ymV ⊆ D. Thus y = z y
z ∈ D[z]. Otherwise, pick z ∈ V \D. By

subtracting elements of D, we reduce to the case where v(z) = min supp(z) ∈ G≥0\S. Set
b := v(z). Then z = uXb + h with u ∈ K and v(h) > b. By hypothesis Xa−b ∈ D, hence
Xa−bz = uy + h′ ∈ D[z]. But v(h′) > (a − b) + b = a, implying h′ ∈ D. It follows that
y ∈ D[z]. 	


Example 3.4 Let G be equal to the additive group of real numbers (R,+) and set V =
[[KG≥0 ]]. Let a be a positive real number. Set

S = {0} ∪
{
g ∈ G | a

2
< g < a

}
∪ {g ∈ G | g > a}.

Clearly S is a monoid contained in G≥0 and every real number can be obtained as the
difference of two elements in S. Thus the ring D := [[K S]] has the same quotient field as V .
By Theorem 3.3, D is maximal excluding with unique minimal overring D[Xa]. It is easy to
check that the integral closure of D is V (for a precise proof see Corollary 3.6).

Before presenting more examples we describe how to compute the integral closure of
certain domains of the form [[K S]]. This result is similar to the corresponding case for
semigroup rings, where the integral closure coincides with the root closure, see [1, 2]. For
this, we need to introduce some new notation and from now onwe assume dim(V ) = n < ∞.
Write the group G ∼= G1 ⊕ · · · ⊕ Gn . For i = 1, . . . , n define the semigroup

Ĝi = {(g1, . . . , gn) ∈ G | gk = 0 for k < i and gi > 0} ⊆ G≥0.

Set also Ĝ0 = {0}. Observe that G≥0 = ⋃n
i=0 Ĝi and Ĝi + Ĝ j ⊆ Ĝmin(i, j) for any i, j .

Denote by qi the prime ideal of V of height i . Then g ∈ Ĝi if and only if Xg ∈ qi\qi−1.
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Given any submonoid S of G≥0, we define Si := S ∩ Ĝi . Clearly S = ⋃n
i=0 Si . Define also

S :=
⋃
n∈N

{g ∈ G | ng ∈ S}.

Also S is a monoid contained in G≥0. It is straightforward to see that for every i = 1, . . . , n,
Si = S ∩ Ĝi .

Proposition 3.5 Let G ∼= G1 ⊕ · · · ⊕ Gn be a totally ordered abelian group of finite rank.
Let S be a proper submonoid of G≥0 such that G = 〈S〉. Let D := [[K S]]. Suppose that for
every i = 1, . . . , n, there exists ai ∈ Si such that {g ∈ Si | g ≥ ai } ⊆ Si . Suppose also that
the ring R = [[K S]] is integrally closed. Then R is the integral closure of D.

Proof For f ∈ R, we show that f is integral over D. We can write f = f1 + · · · + fn in
such a way that the support of fi is in Si ∪ {0}. It is sufficient to show that any fi is integral
over D. But for this, if gi is the minimum of the support of fi , by the Archimedean property
of real numbers, applied in the component Gi of G, one can find a positive integer ei such
that ei gi ≥ ai . In this way by assumption we get f eii ∈ D. 	


We will apply this proposition to study the integral closure of the domains defined in
Examples 3.7, 3.8, 3.14. Moreover we can immediately use it to describe the integral closure
in the case when V is one-dimensional, as for instance in Example 3.4.

Corollary 3.6 Let G be a subgroup of the additive group of real numbers (R,+). Let S be
a submonoid of G≥0 and let D := [[K S]] ⊆ V := [[KG≥0 ]] (notice that dim(V ) = 1).
Suppose that D is maximal excluding and D and V have the same quotient field. Then V is
the integral closure of D.

Proof By Theorem 3.3, there exists a ∈ G≥0 such that g ∈ S, for every g > a. Given
s ∈ G≥0, there exists some n ∈ N such that ns > a. Hence, S = G≥0 and V is the integral
closure of D by Proposition 3.5. 	


In the next two examples the valuation ring V has dimension 2.

Example 3.7 Let G = Z × Z, ordered by lexicographic order, and let V = [[KG≥0 ]]. Call X
the monomial element of V of value (0, 1) and Y the monomial element of V of value (1, 0).
The ring V = K [[X ]] + Y K ((X))[[Y ]] is a discrete valuation ring of rank 2. Consider the
submonoid

S = {(0, n) | n ≥ 0} ∪ {(1, n) | n ≥ 1} ∪ {(m, n) |m ≥ 2, n ∈ Z} ⊆ G≥0.

By Theorem 3.3 the ring D = [[K S]] = K [[YmV , X ]] is maximal excluding with unique
minimal overring D[Y ]. The integral closure is clearly V by Proposition 3.5. Indeed, S2 = Ĝ2

and 2(1, n) ∈ S1 for every n ∈ Z. By an analogous argument also the ring D[Y ] is maximal
excluding with unique minimal overring D[ YX ]. Iterating, we observe that there exists an
infinite ascending chain

D ⊆ D[Y ] ⊆ D

[
Y

X

]
⊆ D

[
Y

X2

]
⊆ · · · ⊆

∞⋃
n=0

D

[
Y

Xn

]
= V ,

such that each ring is maximal excluding, the next one is the unique minimal overring, and
the integral closure of all these ring is V . In this example, the ring D has dimension 2 and
two nonzero prime ideals. The maximal ideal m is generated by X and Y X , the height one
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prime is P = p ∩ D where p is the height one prime of V . The quotient D/P is a DVR
with maximal ideal generated by the image of X . The localization DP coincides with the
localization Vp. The quotient ring D/(X) is an Artinian ring having dimension 2 as K -vector
space.

Example 3.8 This example is a sort of dual of the previous one. Again letG = Z×Z, ordered
by lexicographic order, let V = [[KG≥0 ]] and define X , Y as in Example 3.7. Set

S = {(0, 0)} ∪ {(1, n) | n ∈ Z\{0}} ∪ {(m, n) |m ≥ 2, n ∈ Z} ⊆ G≥0.

It is easy to check that S is a monoid. The ring D = [[K S]] = K [[YmV , Y
X , Y

X2 , . . .]] is
maximal excluding by Theorem 3.3 and the unique minimal overring is D[Y ]. We notice
that this ring D[Y ] is equal to K + Y K ((X))[[Y ]], thus it is an integrally closed PVD but
not a valuation domain (X , X−1 /∈ D[Y ]). By Proposition 3.5, we observe that D[Y ] is the
integral closure of D. Indeed, Y is clearly integral over D while all the powers of X are not
integral since for every m, n ∈ N, m(0, n) = (0,mn) /∈ S (hence S2 = S2 = ∅). Let W be
the rank one valuation overring of V . The maximal ideal of W coincides with the height one
prime p of V and is also equal to the maximal ideal m of D[Y ]. Hence, in this example D is
one-dimensional and its complete integral closure W is a valuation domain. This example is
similar to the Gilmer–Hoffmann construction which appears in [19].

Remark 3.9 Consider the same notation used earlier through this section and assume V to
have finite dimension. In the next part of this section we can always reduce to assuming that,
if D is maximal excluding with unique minimal overring D[Y ], then Y is an element of the
height one prime of V . Indeed, given any non-maximal prime ideal q of V , it is well-known
that V is the pullback of the valuation ring V /q with respect to the quotient map from Vq to
its residue field. The ring V /q is maximal excluding, hence if the ideal YV has height i > 1,
we can choose q to be the prime ideal of height i − 1 and apply Theorem 3.1, reducing to the
case where the height of YV is 1.

In all the above examples, the complete integral closure of D is the rank one valuation
overring of V . We prove now that this happens in general for all the maximal excluding rings
in this family, provided that they share the same quotient field with V and V has finitely
many prime ideals.

Theorem 3.10 Let S be a submonoid of G≥0 and let D := [[K S]] ⊆ V = [[KG≥0 ]].
Suppose that D is maximal excluding, D and V have the same quotient field, and V has finite
dimension. Then the rank one valuation overring W of V is the complete integral closure of
D.

Proof The ring W is completely integrally closed. Hence, it is sufficient to show that every
element of W is almost integral over D. If dim(V ) = 1, then V = W and the result follows
by Corollary 3.6. Assume dim(V ) ≥ 2 and let p be the height one prime ideal of V , which
coincides with the maximal ideal of W . We can write G ∼= GW ⊕ GV /p where GW is the
rank one value group associated toW and GV /p is the value group of the valuation ring V /p.

Say that the unique minimal overring of D is D[y]with y ∈ mV . Let v(y) = (a1, a2)with
a1 ≥ 0. Choose f ∈ p such that v( f ) = (s1, s2) with s1 > a1. In particular v( f ) > v(y).
Since by Theorem 3.3, ymV ⊆ D we get f ∈ D. Pick h ∈ W . If h ∈ V , then for every n ≥ 1,
v(hn f ) ≥ v( f ) > v(y). If h /∈ V , then v(h) = (0,−g), for g a positive element of GV /p.
Thus v(hn f ) = (s1,−ng + s2) > (a1, a2) = v(y). In both cases this implies hn f ∈ D. 	
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We now analyze further the integral closure of [[K S]] to show that the integral closure
of a maximal excluding domain can be very far from being Prüfer. We show that it does not
even need to be a PVD and can have infinitely many incomparable prime ideals. For this,
we assume 1 < dim(V ) = n < ∞. In the following, we let the semigroups Ĝi and Si for
i = 1, . . . , n be defined as earlier in this section. We show how given arbitrary S2, . . . , Sn
we can construct a monoid S such that D = [[K S]] is maximal excluding. By Remark 3.9 we
can restrict to consider only the case where the excluded element is in the height one prime
of V .

Lemma 3.11 Let G ∼= G1 ⊕ · · · ⊕ Gn be a totally ordered abelian group of rank n > 1. For
each i = 2, . . . , n, fix a (possibly empty) semigroup Si ⊆ Ĝi . Suppose that Si+S j ⊆ Smin(i, j)
for any i, j = 2, . . . , n. Also set S0 := Ĝ0 = {0}. Then, it is possible to construct S1 ⊆ Ĝ1

such that S := ⋃n
i=0 Si is amonoid and the ring D = [[K S]] ismaximal excluding.Moreover,

D has the same quotient field of V = [[KG≥0 ]].
Proof Fix a = (a1, . . . , an) ∈ Ĝ1 (in particular a1 > 0). Define S1 = S′

1 ∪ S′′
1 ∪ S∗

1 where

S′
1 = {g ∈ Ĝ1 | g > a}, S′′

1 = {g ∈ Ĝ1 | g < a, g1 = a1, and a − g /∈ S2 ∪ · · · ∪ Sn},
and S∗

1 ⊆ {g ∈ Ĝ1 | g1 < a1} is empty if {g ∈ Ĝ1 | g1 < a1} = ∅ or otherwise is constructed
in such a way that:

• g ∈ S∗
1 if and only if a − g /∈ S∗

1 .• S∗
1 + S∗

1 ⊆ S1.
• S j + S∗

1 ⊆ S∗
1 for every j = 2, . . . , n.

To get some ideas on how one can concretely construct such S∗
1 see Remark 3.12. We prove

now that S is a monoid.
We have to show that for every j = 1, . . . , n, the set S j + S1 ⊆ S1. Clearly S j + S′

1 ⊆ S′
1

for every j . Also (S′′
1 + S′′

1 )∪ (S′′
1 + S∗

1 ) ⊆ S′
1. By the hypothesis on S∗

1 , to conclude we only
need to check the inclusion S j + S′′

1 ⊆ S1 for j ≥ 2. Pick g = (0, . . . , 0, g j , . . . , gn) ∈ S j

and h = (a1, h2, . . . , hn) ∈ S′′
1 . If g + h > a, then g + h ∈ S′

1 ⊆ S1. We cannot have
g + h = a since this would contradict the definition of S′′

1 . Hence, suppose g + h < a and
let us show that g + h ∈ S′′

1 . If by way of contradiction a − (g + h) ∈ S2 ∪ · · · ∪ Sn , we
would have

a − h = g + (a − g − h) ∈ S j + (S2 ∪ · · · ∪ Sn) ⊆ (S2 ∪ · · · ∪ Sn).

Also this contradicts the definition of S′′
1 and shows that S is a monoid.

Set D := [[K S]]. By construction X2a, X3a are in D, hence X−a is in the quotient field
of D. For every g ∈ G≥0, Xg = Xa+g X−a . This implies that D has the same quotient field
as V . Using Theorem 3.3, it is straightforward to check that D is maximal with respect to
excluding the element Xa . 	

Remark 3.12 For the purpose of constructing examples, the conditions defining the set S∗

1 in
the above proof are not very explicit. A good way to satisfy the third condition is assuming
that, if g1 > 0, for every g2, . . . , gn , the element g = (g1, g2, . . . , gn) ∈ S∗

1 if and only
if (g1, 0, . . . , 0) ∈ S∗

1 . For the first two conditions, one can choose a set such that the
projection on the first component behaves as the set described in Example 3.4. An easier
assumption, which can still produce many nice examples, is the following: set G1 = Z

and a = (1, 0, . . . , 0). In this way the set S∗
1 = ∅ and the proof of Lemma 3.11 can be

simplified. However, there are other possible choices to construct a set S∗
1 satisfying the

required conditions.
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We now prove the main theorem concerning the rings which occur as integral closure of
a maximal excluding domain of the form D = [[K S]].

The notation for the next theorem is slightly different from that used until now. Let n > 1
and let G ′ ∼= G2 ⊕ · · · ⊕ Gn be a totally ordered abelian group. Set V ′ := [[KG ′≥0 ]]. Let
H be any submonoid of G ′≥0 such that H = H and suppose that A = [[K H ]] ⊆ V ′ is
integrally closed and A and V ′ have the same quotient field. Given another totally ordered
abelian group G1 of rank one, set G := G1 ⊕G ′. Define V := [[KG≥0 ]]. Let W be the rank
one valuation overring of V and κ be the residue field of W . Observe that by quotienting
G with respect to G1, the quotient field of V ′ and A can be identified with κ and V is the
pullback of V ′ with respect to the map W → κ .

Theorem 3.13 With the notation and the assumptions stated above, there exists a submonoid
S of G≥0 such that:

(i) The ring D = [[K S]] ⊆ V is maximal excluding and has the same quotient field as V .
(ii) The integral closure D of D occurs as the pullback in the following diagram:

D A

W κ

Conversely, if D = [[K S′ ]] ⊆ V is a maximal excluding domain having the same quotient
field as V , then the integral closure of D is the pullback of some integrally closed local
domain A′ with respect to the quotient map W → κ .

Proof For i = 0, . . . , n, define Ĝi and Ĝ ′
i as above in this section. Decompose H as the

union H = H0 ∪⋃n
i=2 Hi , where Hi = H ∩ Ĝ ′

i . Since for i ≥ 2 there exists a bijective map

between Ĝi and Ĝ ′
i , we can identify Hi with a subsemigroup of Ĝi .

To construct S, set S0 = {0} and for i = 2, . . . , n, define Si = Hi . Since H is amonoid, the
semigroups S2, . . . , Sn defined in this way obviously satisfy the hypothesis of Lemma 3.11.
Use Lemma 3.11 to produce S1 ⊆ Ĝ1 such that S := ⋃n

i=0 Si is a monoid and the ring
D = [[K S]] satisfies condition (i).

By construction, the ring D is maximal with respect to excluding an element a ∈ Ĝ1 and
the set {g ∈ Ĝ1 | g > a} ⊆ S. Given g ∈ Ĝ1, since G1 has rank one, there exists n ≥ 1 such
that ng > a. Thus S1 = Ĝ1. Clearly, S = Ĝ1∪H and [[K S]] is integrally closed by standard
properties of pullback diagrams. By Proposition 3.5, D = [[K S]]. Let π : W → κ be the
canonical quotient map. We show that D = π−1(A). Observe that, given g ∈ G, π(Xg) = 0
if and only if g1 > 0 and if g1 = 0, π(Xg) = Xg′

where g′ is the component of g in G ′. It
easily follows that π(D) = A. Since ker(π) ⊆ D, we obtain D = π−1(A) and finally prove
(i i).

Conversely, if D = [[K S′ ]] ⊆ V is a maximal excluding domain having the same quotient
field as V , by Remark 3.9, we can assume D maximal with respect to excluding an element
Xa with a ∈ Ĝ1. Using Theorem 3.3 and the same argument as above we get S′

1 = Ĝ1.
The thesis now follows setting H ′ := ⋃n

i=2 Si ∪ {0} and letting A′ be the integral closure of
[[K H ′ ]]. 	


The next example shows that both D and its integral closure can have infinitely many
incomparable prime ideals.
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Example 3.14 Using the notation of Theorem 3.13, let G ′ = G2 = Z[√2] and G1 = Z.
Choose

H = {a + b
√
2, | a, b ≥ 0} ⊆ G ′≥0.

We notice that H = H . Indeed, if for some n ≥ 1 and a, b, c, d ∈ Z, n(c + d
√
2) =

a + √
2b ∈ H , using the irrationality of

√
2, we must have nc = a and nd = b, forcing

c, d ≥ 0.
Define X to be the monomial element of V of value (0, 1) and Z to be the monomial

element of V of value (0,
√
2). The ring A = [[K H ]] ∼= K [[X , Z ]] is a regular local ring

of dimension 2. Since X−1, Z−1 are in the quotient field of A, then the quotient field of A
coincides with the quotient field of V ′ = [[KG ′ ]].

Now construct S as in Theorem 3.13. Looking at the notation of Lemma 3.11 and at
Remark 3.12, we notice that, if we choose a = (1, 0), we get S∗

1 = ∅. Therefore Lemma 3.11
gives a preciseway to construct S that does not require further choices. Let Y be themonomial
element of V of value (1, 0). The ring D = [[K S]] is maximal with respect to excluding Y .
The integral closure D is the pullback of A with respect to the map W → κ . Hence, D is
local and has infinitely many incomparable prime ideals (of height 2). Therefore it can be
neither a PVD nor Prüfer. In this example we can identify W with K ((X , Z))[[Y ]]. Then, if
mW is the maximal ideal of W , we have D ∼= K [[X , Z ]] + mW .

The prime ideals of height 2 of D are principal, generated by elements that are also
elements of D as a consequence of the way S is defined in Theorem 3.13. For this reason,
they all contract to distinct prime ideals of D. It follows that also D has infinitely many
incomparable prime ideals.

4 Intersections of Nagata extensions of overrings

In this section we consider intersections of Nagata rings in order to extend the concept of
Kronecker function rings to non-integrally closed domains. For simplicity we suppose all the
rings in this section to have finite Krull dimension. In particular, as noted in Sect. 2.2, every
integrally closed maximal excluding domain will be a valuation domain.

Let D be an integral domain. We say that a collection of overrings F = {Di }i∈� is a
defining family for D if

⋂
Di∈F Di = D. From what observed in Sect. 2, every integral

domain always admits a defining family formed by maximal excluding overrings. Moreover
we can always consider defining families of D where all the non-integrally closed rings do
not contain the integral closure of D. Indeed D can be always expressed as

D = D ∩
⋂

α∈Q(D)\D
Aα

where Aα is a non-integrally closed overring of D maximal with respect to excluding the
element α.

Definition 4.1 Let D be an integral domain and let F be a defining family of D. We say that
the ring

Kr(D)F =
⋂
Di∈F

Di (t)

is the Kronecker function ring of D with respect to F .
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When D is integrally closed and the familyF is contained in Zar(D), the ring Kr(D)F is
a classical Kronecker function ring. We already recalled in Sect. 2, that an integrally closed
domain is Prüfer if and only if its Kronecker function ring Kr(D) is equal to the Nagata
ring D(t) (in this case the Nagata ring is the unique Kronecker function ring). Also if D is
a maximal excluding domain, since the only defining family of D is {D}, we get that the
only Kronecker function ring, according to Definition 4.1 is D(t). However, in general Prüfer
domains and maximal excluding domains may behave differently with respect to intersecting
Nagata rings of overrings. For a Prüfer domain D, the operation of Nagata ring extension,
mapping an overring A to its Nagata ring A(t), commutes with arbitrary intersection of
overrings. Conversely, one may observe that if the integral closure of an arbitrary integral
domain is not Prüfer, then the operation of Nagata ring extension does not commute with
intersection for some collections of overrings. Indeed, if D is an integral domain such that
D is not a Prüfer domain, choosing F = Zar(D), we get

⋂
V∈F

V (t) = Kr(D) �=
( ⋂
V∈F

V

)
(t) = D(t). (1)

We dedicate this section to investigating whether an intersection of Nagata rings is a
Nagata ring. The next section is dedicated to constructing relevant families of non-integrally
closed Kronecker function rings that behave similarly to the classical integrally closed ones.
The following question arises naturally:

Question 4.2 Let D be an integral domain and suppose that D is a Prüfer domain. If F is an
arbitrary collection of overrings of D, then is

⋂
A∈F A(t) = (

⋂
A∈F A)(t)?

We answer positively to this question in Theorem 4.8. We start by proving a lemma,
which points out a condition for an intersection of local domains to be local. Given two (non-
necessarily local) integral domains A ⊆ B, we say that B dominates A if every maximal
ideal of A is contained in some maximal ideal of B and every maximal ideal of B contracts
to some maximal ideal of A. If A and B are local this means simply thatmA ⊆ mB , returning
to the classical definition.

We prove that an intersection of local domains dominated by a common valuation overring
is local.

Lemma 4.3 Let D be an integral domain. Let {Di }i∈� be a collection of local overrings of
D such that D = ⋂

i Di . Suppose that there exists a valuation overring V that contains all
the rings Di and dominates all of them, except at most one. Then D is local.

Proof Call D1 the ring in the family F possibly not dominated by V . Pick two non-units
x, y ∈ D. Then x, y ∈ ⋃

i∈�(mDi ∩ D) ⊆ (mD1 ∩ D) ∪ (mV ∩ D) = mD1 ∩ D. It follows
that x + y ∈ mD1 ∩ D is not a unit in D. Notice also that if D1 is dominated by V , then also
D is dominated by V . 	


To illustrate the above lemma with an example, for every prime number p choose an
algebraic complex number θp having degree p over Q. Let F be the infinite algebraic exten-
sion of Q generated by all such θp’s. Let t be an indeterminate over F and for every p let
Dp = Q(θp) + t F[[t]]. The rings Dp are all local and dominated by the valuation overring
F[[t]]. Their intersection is the local domain Q + t F[[t]].

Our next step is proving that in the situation described in Lemma 4.3, the intersection of
the Nagata rings of the rings Di is equal to the Nagata ring of D. We actually aim to prove
a more general result which will be useful also later. We want to involve in the intersection
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also semilocal domains. We are able to do this after adding a technical assumption on the
residue fields.

Notice that the two following conditions are equivalent for a domain D: all the residue
fields of D have cardinality at least s + 1 if and only if D contains s units u1, . . . , us such
that ui − u j is still a unit for every i, j . Clearly for all the integral domains containing an
infinite field or containing Z(t), the next results can be proved without technical assumptions
on the residue fields.

Lemma 4.4 Let D be a semilocal domain with s maximal ideals. Suppose that all the residue
fields of D have cardinality at least s. Fix a set of units U ⊆ D, of cardinality at least s − 1
and such that ui − u j is a unit for every distinct ui , u j ∈ U. Let x1, . . . , xn ∈ D be elements
such that (x1, . . . , xn) = D. Then there exists a unit of D of the form c = ∑n

k=1 δk xk with
δk ∈ U ∪ {0} for every k.
Proof We prove it by induction on n. In the case n = 1, we clearly must have that x1 is a
unit, and thus δ1x1 is a unit for every δ1 ∈ U . Thus assume the thesis true for every set of at
most n − 1 elements. Therefore if after reordering the generators (x1, . . . , xn−1) = D, we
conclude by applying the inductive hypothesis and setting δn = 0.

Callm1, . . . ,ms themaximal ideals of D. Possibly relabeling, suppose that x1, . . . , xn−1 ∈
ms , and there exist 1 ≤ s′ < s such that xn ∈ (m1 ∩ · · · ∩ms′)\(ms′+1 ∪ · · · ∪ms). The ideal
generated by x1, . . . , xn−1 cannot be contained in any of the maximal ideals m1, . . . ,ms′ .
Consider the ring A = S−1D where S = D\(m1 ∪ · · · ∪ ms′). The ring A is semilocal and
contains U . Moreover (x1, . . . , xn−1)A = A. By the inductive hypothesis there exists a unit
of A of the form c′ = ∑n−1

k=1 δk xk with δk ∈ U ∪ {0}. Observing that c′ ∈ D, we obtain
c′ /∈ m1 ∪ · · · ∪ ms′ .

Take now two elements of the form d1 = c′ + uxn , d2 = c′ + vxn with u, v ∈ U , u �= v.
We claim that d1, d2 cannot be contained in a common maximal ideal. Indeed if d1, d2 ∈ mi ,
then we would have d1 − d2 = (u − v)xn ∈ mi and vd1 − ud2 = (v − u)c′ ∈ mi , implying
that c′, xn ∈ mi , since u − v is a unit. This is a contradiction with the choice of c′. Moreover
any element of the form c′ + uxn cannot be in a maximal ideal containing either c′ or xn .
Using now that U contains at least s − 1 elements and D has only s maximal ideals we can
find an element of the form c′ + δnxn which is a unit in D. 	

Proposition 4.5 Let D be an integral domain with quotient field K . Let F = {Di }i∈� be a
defining family of D. Suppose that all the rings in F are contained in a common overring
T �= K and one ring D1 ∈ F is semilocal with s maximal ideals. Also suppose that all the
residue fields of D have cardinality at least s and T dominates Di for every i , except possibly
D1. Then D(t) = ⋂

i Di (t).

Proof As in Lemma 4.4, we can fix a set of units U ⊆ D, of cardinality at least s − 1 such
that qi − q j is a unit for every distinct qi , q j ∈ U . Clearly the set U is also contained in D1.

We always have the inclusion D(t) ⊆ ⋂
i Di (t). To prove the opposite inclusion pick

φ ∈ ⋂
i Di (t). Such an element φ can be always written as f

g with f , g ∈ D[t]. Say that

f = ∑m
k=0 akt

k and g = ∑n
k=0 bkt

k .
Since φ ∈ ⋂

i Di (t), for every i we can find xi ∈ K such that ak
xi

,
bk
xi

∈ Di for every

k and the ideal 1
xi

(b0, . . . , bn)Di is the unit ideal. Hence we can choose an element ci ∈
(b0, . . . , bn)Di such that ci = xi ui with ui a unit in Di . In particular xi ∈ Di . For j �= i ,
since bk

x j
∈ Dj for every k, we get ci

x j
= xi

x j
ui ∈ T . Similarly,

c j
xi

= x j
xi
u j ∈ T and, since

ui , u j are units in T , we obtain that also xi
x j

is a unit in T for every i, j .
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Let us now consider the semilocal domain D1. The ideal 1
x1

(b0, . . . , bn)D1 = D1. By
Lemma 4.4 we can choose the element c1 = ∑n

l=0 δl bl with all δl ∈ U ∪ {0} ⊆ D. Thus
c1 ∈ D. For every i , c1

xi
∈ Di and from what said above c1

xi
= x1

xi
u1 is a unit of T . Since, for

i �= 1, the overring T dominates Di , then
c1
xi

has to be a unit of Di . It follows that for every
i we can write c1 = xiwi with xi , wi ∈ Di and wi a unit in Di (for i = 1, set w1 = u1).
Hence, akc1 ,

bk
c1

∈ ⋂
i Di = D. This implies that f

c1
,

g
c1

∈ D[t] and, since c1 ∈ (b0, . . . , bn)D

we get that the ideal of D generated by the coefficients of g
c1

coincides with D. This implies

φ = f
g
c1
c1

∈ D(t). 	

Corollary 4.6 Let D be an integral domain and letF = {Di }i∈� be a family of local rings that
is also a defining family of D. Suppose that there exists a valuation overring V that contains
all the rings Di and dominates all of them, except at most one. Then KrF (D) = D(t).

Example 4.11 illustrates a case where exactly one ring in the family F is not dominated
by the valuation overring V . The next easy lemma is needed to prove Theorem 4.8.

Lemma 4.7 Let D be an integral domain with quotient field K . Then D(t) ∩ K [t] = D[t].
Proof The inclusion D[t] ⊆ D(t) ∩ K [t] is clear. Let f ∈ K [t] ∩ D(t) and write f = f ∗

a
with f ∗ ∈ D[t] and a ∈ D. There must exist g, h ∈ D[t] such that c(h) = D and f ∗h = ga.
By [31, Theorem 4], c( f ∗) = c( f ∗h) = c(ag) = ac(g). Hence a divides in D all the
coefficients of f ∗ implying that f ∈ D[t]. 	


We now prove the main theorem about Kronecker function rings of integral domains
having Prüfer integral closure.

Theorem 4.8 Let D be an integral domain such that D is a Prüfer domain. LetF be a defining
family of D. Then

⋂
A∈F A(t) = D(t).

Proof By expressing any ring in F as the intersection of its localizations at the maximal
ideals, we can assume every element of F to be local (as recalled in Sect. 2, Nagata ring
extension commutes with the intersection of the localizations at the maximal ideals). For
every valuation overring V of D denote by FV the set of elements of F that are dominated
by V . Clearly F = ⋃

V⊇D FV . By Corollary 4.6 we get
⋂

A∈FV
A(t) = BV (t) where

BV = ⋂
A∈FV

A. Therefore, using that Kr(D) = D(t) we get
⋂
A∈F

A(t) =
⋂
V⊇D

BV (t) ⊆
⋂
V⊇D

V (t) = D(t).

Pick now F = g
f ∈ ⋂

A∈F A(t) such that f , g ∈ D[t] and c( f ) = D. Wewant to construct a

polynomialψ ∈ D[t] such that the product φ := f ψ ∈ D[t] and c(φ) = D. After doing this
we can write F = gψ

φ
and use that φ ∈ D(t) ⊆ ⋂

A∈F A(t) to get gψ ∈ ⋂
A∈F A(t) ∩ K [t]

where K is the quotient field of D. By Lemma 4.7,( ⋂
A∈F

A(t)

)
∩ K [t] =

⋂
A∈F

(A(t) ∩ K [t]) =
⋂
A∈F

A[t] = D[t].

This shows F ∈ D(t).
To construct the polynomial ψ , we write f = ∑n

i=0 ai t
i and use the fact that c( f ) = D

to find z0, . . . , zn ∈ D such that 1 = ∑n
i=0 ai zi . Then we argue exactly as in the proof of
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[31, Theorem 4] to construct φ ∈ D[t] such that c(φ) = D, φ = f ψ , and ψ ∈ K [t]. By
construction, as mentioned in the proof of [31, Theorem 4], the coefficients of ψ are in the

integral closure of D in some algebraic field extension E of K . Then ψ ∈ K [t] ∩ D
E [t] =

D[t]. This is sufficient to conclude the proof. 	

Recall that if the integral closure of D is a Prüfer domain, then also the integral closure of

every overring of D is a Prüfer domain. Using this fact, the next corollary follows combining
Theorem 4.8 with Eq. (1).

Corollary 4.9 Let D be an integral domain. The following conditions are equivalent:

(1) The integral closure of D is a Prüfer domain.
(2) For every collection F of overrings of D,

⋂
A∈F A(t) = (

⋂
A∈F A)(t).

We pass now to study the case of an intersection of a semilocal domain A and a valuation
domain V , having the same quotient field. This case is relevant for the results in Sect. 5. In
the case A is local, the thesis of the next theorem holds without assumptions on the residue
fields. In Example 4.11 are provided instances of interesting cases where the next theorem
applies.

Theorem 4.10 Let V be a valuation domain of finite dimension and let A be a semilo-
cal domain such that Q(A) = Q(V ) = Q(V ∩ A). Assume that A has s maximal ideals
m1, . . . ,ms and all the residue fields of A∩ V have cardinality at least s + 1. The following
assertions hold:

(i) A∩ V is local if and only if A is local and is dominated by an overring of V . In this case
mA is a common prime ideal of A and A ∩ V , A = (A ∩ V )mA , and

A∩V
mA

is a valuation

domain with quotient field A
mA

.
(ii) If A ∩ V is not local, then Ami = (A ∩ V )mi∩V for every i = 1, . . . , s.
(iii) If A and V have no common proper overrings, then V = (A ∩ V )mV ∩A.

(iv) If A ∩ V is not local and A ⊆ VQ for some prime ideal Q of V , maximal with respect to
this property, then (A ∩ V )mV ∩A = AQ∩A ∩ V .

(v) (A ∩ V )(t) = A(t) ∩ V (t).

Proof We can assume A � V , otherwise all the results are obvious. The assumption on the
residue fields of A ∩ V implies that if z ∈ mi for some i , then there exists a unit q ∈ A ∩ V
such that z + q is a unit in A.

(i) If A is local and dominated by an overring of V , the implication follows by Lemma 4.3.
Conversely if A ∩ V is local we claim that mi ⊆ V for every i . Indeed, if there exists
z ∈ mi\V , we get z−1 ∈ mV \A. Choose a unit q ∈ A ∩ V such that z + q is a unit in A.
Observing that

z

q + z
= 1

qz−1 + 1
∈ mi ∩ (V \mV ),

qz−1

1 + qz−1 = q

z + q
∈ mV ∩

⎛
⎝A\

s⋃
j=1

m j

⎞
⎠ ,

we find that z
q+z and q

z+q are two non-units of A ∩ V whose sum is a unit. This is a
contradiction. Hence we have mi ⊆ V for every i . Pick an element s ∈ A\V . For every
n ≥ 1 and every x ∈ ⋃s

j=1m j we get snx ∈ V , showing that the radical of xV is

properly contained in the radical of s−1V . Therefore, there exists a non-maximal prime
ideal Q of V such that

⋃s
j=1 m j ⊆ Q = QVQ and A ⊆ VQ . In particular the unique
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maximal ideal of A is mA = Q ∩ A and A is dominated by VQ . Using that mA ⊆ V , we
obtain that mA is a prime ideal of A ∩ V . For a ∈ A\V , we have a−1 ∈ (A ∩ V )\mA,
thus A = (A ∩ V )mA . If x, y ∈ (A ∩ V )\mA, then the fractions x

y ,
y
x are in A and at

least one of them is in V , implying that A∩V
mA

is a valuation domain.

(ii) It is sufficient to show that A ⊆ (A ∩ V )mi∩V . For z ∈ A\V , if z−1 ∈ A then z = 1
z−1 ∈

(A ∩ V )mi∩V . If z is not a unit, pick again a unit q ∈ A ∩ V such that q + z is a unit in
A. Set u = 1

q+z and observe that u is a unit of A such that uz = 1
qz−1+1

∈ V and u ∈ V .

Hence z = zu
u ∈ (A ∩ V )mi∩V .

(iii) For x ∈ V \A, if x−1 ∈ A, we conclude that x ∈ (A∩V )mV ∩A as in item (ii) by choosing
u = 1

1+qx with q a unit in A∩V such that q+x−1 is a unit in A. Suppose that x, x−1 /∈ A
and write x = a

b with a, b both non-units in A and v(a) ≥ v(b). We want to find a unit
u of A such that v(u) = −v(b). In this way we can write x = au

bu ∈ (A ∩ V )mV ∩A.
If there exists a unit t of A such that v(t) > v(b), it is sufficient to set u = 1

t+qb where
q ∈ A ∩ V is a unit such that t + qb is a unit in A. Suppose by way of contradiction that
there are no units of A with value larger than or equal v(b). This implies that v(b) > 0
(because 1 is a unit of both A and V ). By assumption on the residue fields, every element
of A can be expressed as the sum of at most two units, thus, since A � V , there exists
some unit s of A such that v(s) < 0. For every such s, we get that the radical of s−1V
properly contains the radical of bV . In particular all the units of A are contained in a
proper overring VQ of V . This forces A ⊆ VQ . This is a contradiction.

(iv) Clearly VQ dominates AQ∩A. By Lemma 4.3, AQ∩A ∩ V is local and contains A∩ V . In
particular it contains the localization (A ∩ V )mV ∩A. For x ∈ AQ∩A ∩ V we argue as we
did for item (iii) to show that x = au

bu ∈ (A∩V )mV ∩A. Nowwe can choose a, b non-units
in A such that b /∈ Q ∩ A. By the choice of Q, there exists some unit s of A such that the
radical of sV is the unique prime ideal Q′ of V such that ht(Q′) = ht(Q) + 1. Hence,
there exists a unit t of A such that v(t) > v(b). We can conclude using the same proof
as for item (iii).

(v) We consider different cases. If A ∩ V is local, by item (i), A is dominated by a valuation
overring of V . The thesis follows now by Proposition 4.5. If A ∩ V is not local and
A and V have no common overrings, by items (ii)–(iii), all the rings Ami and V are
precisely the localizations of A ∩ V at the maximal ideals. The thesis follows since
Nagata ring extension commutes with localizations at the maximal ideals. If instead we
are in the situation described by item (iv), we use item (ii) and localization to say that
(A ∩ V )(t) = A(t) ∩ (AQ∩A ∩ V )(t). Using that AQ∩A ∩ V is local we can split further
(AQ∩A ∩ V )(t) = AQ∩A(t) ∩ V (t) and conclude since A ⊆ AQ∩A. 	

We do not know whether the results of Theorem 4.10 hold if we remove the assumption

on the cardinality of the residue fields.

Example 4.11 First consider A = K ((y))[[x2, x3]] and V = K [[y]] + xK ((y))[[x]]. These
two rings have a common overring, namely W = K ((y))[[x]], that dominates A. Hence
Lemma 4.3 and Corollary 4.6 apply to show that A∩V is local and (A∩V )(t) = A(t)∩V (t).
Notice that in this case only A is dominated by W , V is contained in W but of course not
dominated. Theorem 4.10(i) describes the structure of A ∩ V .

To describe a case where A is semilocal, we can take A = A1 ∩ A2 where A1 =
K ((y))[[x2, x3]], A2 = K ((x))[[y2, y3]] (A has two maximal ideal because x2y−2 ∈ mA1

and y2x−2 ∈ mA2 and moreover the localizations of A at the maximal ideals are exactly
A1 and A2). Let V be the same as above. Theorem 4.10 applies to prove that (A ∩ V )(t) =
A(t) ∩ V (t) and that the localization of A ∩ V at the maximal ideals are A2 and A1 ∩ V .
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We conclude this section by showing that under some mild conditions, Nagata ring exten-
sion does not commute with intersection also in the non-integrally closed case. Various
constructions of this kindwill be analyzed in the next section (seeConstructions 5.3 and 5.13).

Proposition 4.12 Let D be a local integral domain and letF = {Di }i∈� be a defining family
of D. If there exists z ∈ Q(D) such that z, z−1 /∈ D and for every i , z ∈ Di or z−1 ∈ Di ,
then D(t) �= ⋂

i∈� Di (t). In particular if D = T ∩ A with T integrally closed, and there
exists z ∈ A such that z, z−1 /∈ D. Then D(t) �= ⋂

V⊇T V (t) ∩ A(t).

Proof Consider

φ = 1

t + z
= z−1

z−1t + 1
.

Clearly φ ∈ ⋂
i∈� Di (t). Let us show that φ /∈ D(t). We can multiply by a common factor

to have both numerator and denominator of φ inside D. Hence pick any d ∈ D such that
dz ∈ D and write φ = d

dt+dz . If φ ∈ D(t), since D is local we would have that either d or
dz is a unit in D. But d cannot be a unit, since dz ∈ D and z /∈ D. If dz were a unit, we
would have z−1 = d(dz)−1 ∈ D. In any case this leads to a contradiction. 	


As an easy example, one can take D = K [[x2, x3, y]], A = K ((y))[[x2, x3]] and notice
that D = D ∩ A. We know that A is maximal excluding and the family F = Zar(D) ∪ {A}
is a defining family for D. Observing that x2y−1 ∈ A\D and its inverse is also not in D, we
get D(t) � KrF (D).

Remark 4.13 For a local domain D that is not a valuation ring and an overring A, the existence
of an element z ∈ A such that z, z−1 /∈ D is usually satisfied. Indeed, such an element z does
not exist if and only if A = DQ for a prime ideal Q of D such that Q = QDQ , and D

Q is
a valuation ring. For this pick z ∈ A not a unit and observe that z ∈ mD . Thus for x, y not
units in A, if x + y was a unit in A, we would get 1 = x

x+y + y
x+y ∈ mD , which is impossible

and implies that A is local. The maximal ideal of A is equal to a prime ideal Q of D which
forces Q = QDQ and A = DQ . Finally, if u, v are element of D\Q, then u

v
, v
u are units in

A and at least one of them has to be in D, implying that D
Q is a valuation domain. Notice

that by Theorem 4.10-(i), a domain D of this form may arise as intersection D = A ∩ V for
some valuation ring V which has an overring dominating A.

The above remark suggests an example of a local domain D not maximal excluding, such
that D is not Prüfer, but still we have KrF (D) = D(t) for some defining familyF . However,
Nagata ring extension clearly does not commute with intersection for all the overrings of D.

Example 4.14 Let T be the maximal excluding generalized power series ring of Example
3.8, defined over the field K = Q. Set D = Z(p) + mT for a prime number p. The integral
closure of D is D = Z(p) + mT and it is not Prüfer since T is not. Also D is not maximal
excluding by Theorem 3.1 because T is not a valuation ring. We can write D = D ∩ T and
consider the defining family F = Zar(D) ∪ {T }, setting KrF (D) = Kr(D) ∩ T (t). Let V
be a valuation overring of D such thatmV = pV . Observing that there are no rings properly
contained between D and T and p−1 ∈ T \V , we get V ∩ T = D (of course T is dominated
by an overring of V , as expected by Theorem 4.10-(i)). Now, Theorem 5.16-(i) from the next
section applies to this setting to show that the localization of KrF (D) at the center of V (t)
is equal to D(t). Thus KrF (D) = D(t).

We leave another open question.
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Question 4.15 Is it possible to find an integral domain D not maximal excluding, such that
D is not Prüfer but KrF (D) = D(t) for every defining family F of D? Is this true for the
ring D defined in Example 4.14?

5 Constructions of non-integrally closed Kronecker function rings

In this section we construct non-integrally closed rings of the form KrF (D), according to
the notation of Definition 4.1. The two main questions that we investigate for such rings are:
understanding what the integral closure is and studying if they behave locally like classical
Kronecker function rings, in the sense that the localizations at maximal ideals are Nagata
ring extensions of some overring of the base ring D. We immediately observe that in general
the integral closure of KrF (D) may not coincide with the Kronecker function ring Kr(D).
Indeed we have:

Remark 5.1 Let D be an integral domain, F a defining family for D and set R = KrF (D).
Suppose that R = Kr(D). Then the integral closure of every A ∈ F is a Prüfer domain.
For this simply recall that Kr(D) is Prüfer and integral closure commutes with Nagata ring
extension.

In the following we first consider cases where the integral closure of KrF (D) is equal to
Kr(D). Then, recalling that the integral closure of a maximal excluding domain may not be
a Prüfer domain, we give in Theorem 5.16 and Example 5.12, examples such that the integral
closure is a proper non-Prüfer subring of Kr(D).

Regarding the local behavior of KrF (D), we find that in all our constructions, the local-
izations at the maximal ideals are Nagata ring extensions of overrings of D. For this reason
we leave the following general question for further research:

Question 5.2 Let D be an integral domain and let F be any defining family of D. Let p be a
maximal ideal of the ring R = ⋂

A∈F A(t). Is Rp = C(t) for some overring C of D?

Our first construction is based on integral domains whose integral closure is obtained by
adding the generators of a finite algebraic (Galois) field extension. We restrict to working
with D a local domain, since one can always reduce from the global case to the local one by
localizing at each maximal ideal.

Construction 5.3 Let D be a local domain with quotient field F . Let F ′ be a subfield of F
such that Q ⊆ F ′ and F is a finite Galois extension of F ′, generated as F ′-vector space by
θ1 = 1, θ2, . . . , θn . Call K the field generated overQ by θ1, θ2, . . . , θn and all their conjugates
with respect to the action of Gal(F/F ′). We assume any intermediate field extension E/E ′
such that F ′ ⊆ E ′ ⊆ E ⊆ F to be a Galois extension generated by ϑ1, . . . , ϑm and satisfying
one of the following condition (see Examples 5.4 and 5.5 for examples):

(∗1) The field K is contained in D.
(∗2) {ϑ1, . . . , ϑm} = {1, ϑ, ϑ2, . . . , ϑm−1} where ϑ is a simple root of degree m over E ′ and

D contains ξϑm for every m-th root of unity ξ .

Suppose there exists a local integrally closed domain D′ containing Q, having quotient field

F ′ such that mD′ ⊆ mD , D = D′[mD]mD , and D′F = D = D[θ1, . . . , θn].
Given a valuation overring V of D′ such that mV ⊇ mD′ , define AV := V [mD](mV ,mD).

Clearly D ⊆ ⋂
V⊇D′ AV ⊆ D. Suppose that

⋂
V⊇D′ AV = D, and in that case define F

to be the defining family of D containing all the maximal excluding overrings A such that
A ⊇ AV for some V valuation overring of D′. Set R := KrF (D).
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The main examples of rings D that we can obtain from Construction 5.3 are certain kinds
of K + m constructions and of algebras over fields, as shown in the next examples.

Example 5.4 Let D′ = K ′+n be an integrally closed domain with quotient field F ′, such that
Q ⊆ K ′. Let K be a finite Galois extension of K ′ generated as K ′-vector space by θ1, . . . , θn
and such that K ∩ F ′ = K ′. Call F the finite Galois extension of F ′ generated by the same

elements. Then define D = K ′+mwithm = ∑n
i=1 θin, and observe that D = D′F = K+m.

Clearly the field extension F/F ′ satisfies condition (∗1). By construction the rings AV do
not contain any element of K\K ′. Therefore

⋂
V⊇D′ AV = D.

Example 5.5 Consider a K -algebra of the form D = ∑c
i=1 K [[xe1ii , . . . , x

eli i
i ]] (or the cor-

responding localized polynomial ring version), where x1, . . . , xc are indeterminates over
K , the exponents 1 ≤ e1i < · · · < eli i generate a numerical semigroup, and K contains
the e1i -th cyclotomic field for all i = 1, . . . , c. In this case D = K [[x1, . . . , xc]] and
D′ = K [[xe111 , . . . , xe1cc ]]. The field extension F/F ′ satisfies condition (∗2). To see that⋂

V⊇D′ AV = D, observe that if V is a valuation overring of D′ (with mV ⊇ mD′ ) such
that xe111 has infinitely larger value than all the other xe1ii , then all the elements of the form
xs1 f (x2, . . . , xc) are not in AV if s is not in the semigroupgenerated by e11, . . . , el11. Similarly
one can show that each element of D\D does not belong to some ring AV . Simple examples
that one may consider in this family are rings such as K [[x2, x3, y]] and K [[x2, x3, y2, y3]].
Lemma 5.6 Take the assumptions and notations of Construction 5.3. Let V be a valuation
overring of D′. Then any element

∑n
j=1 a jθ j ∈ F with a j ∈ F ′ is integral over V if and

only if each summand a jθ j is integral over V .

Proof Let σ1, . . . , σn be the elements of Gal(F/F ′). By restricting each time to the auto-
morphisms with fixed field E ′, we can reduce to proving this result for only the main field
extension F/F ′, assuming that it satisfies either condition (∗1) or condition (∗2).

Set BV := V
F
.Letα = ∑n

j=1 a jθ j ∈ BV witha j ∈ F ′. Since F/F ′ is aGalois extension,
it is well-known that the integral closure of V in F is the intersection of all the extensions
of V to the field F , and such extensions are all conjugates by the elements of Gal(F/F ′)
(see for instance [7, Section 3.2]). Therefore, also all the conjugates of α, σi (α) are elements
of BV . It follows that any linear combination of σ1(α), . . . , σn(α) with coefficients in BV

is in BV . Now, set up a linear square system to express a jθ j as a linear combination of
σ1(α), . . . , σn(α). The equations we obtain are of the form a jθ j = a j

∑n
k=1 bkσk(θ j ) and

0 = ai
∑n

k=1 bkσk(θi ) for i �= j . These can be solved independently of a1, . . . , an for a
choice of coefficients b1, . . . , bn in the field K , which is generated over Q by the elements
σi (θk). Assuming condition (∗1), we have that K ⊆ D ⊆ BV . The square matrix defining
the linear system is

⎡
⎢⎢⎢⎣
1 1 . . . 1
θ2 σ2(θ2) . . . σn(θ2)
...

... . . .
...

θn σ2(θn) . . . σn(θn)

⎤
⎥⎥⎥⎦ .

The determinant of this matrix lives in K and is equal to the square root of the discriminant
of the field extension F/F ′. This extension is separable, hence the discriminant is nonzero.
Since K ⊆ BV , the system can be solved over BV by Cramer’s rule yielding a jθ j ∈ BV for
every j . In case condition (∗2) is satisfied, the field F is generated over F ′ by simple roots,
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and by hypothesis we have θ j = θ
j−1
2 for j = 1, . . . , n. Moreover, the n-th cyclotomic field

Q(ξ) is contained in D, hence in BV . To solve the same linear system as above with respect
to a jθ j , we reduce to solve a linear square system in Q(ξ) whose matrix is a Vandermonde
matrix in the entries 1, ξ, . . . , ξn−1. Since Q(ξ) ⊆ BV we again obtain a jθ j ∈ BV for every
j . 	


The next lemma gives us a sufficient condition to have a localization of an overring of
D(t) equal to the Nagata ring extension of an overring of D. We are going to use this lemma
as a technical tool in the proofs of Theorems 5.8 and 5.16, showing instances of cases where
its assumptions are satisfied.

Lemma 5.7 Let D be an integral domain and let A be a local overring. Suppose R to be an
integral domain such that D(t) ⊆ R ⊆ A(t). Let p = mA(t) ∩ R and suppose A ⊆ Rp. Then
Rp = A(t).

Proof By assumption t ∈ R, thus there are inclusions A[t] ⊆ Rp ⊆ A(t). The ring A(t) is the
localization of A[t] at the prime idealmA[t] = mA(t) ∩ A[t]. From the fact that pRp ⊆ mA(t),
it follows that q := pRp ∩ A[t] ⊆ mA[t]. This implies that A(t) ⊆ (A[t])q ⊆ Rp. The thesis
follows. 	

Theorem 5.8 Let R be defined as in Construction 5.3. Then R = Kr(D) and all the local-
izations of R at the maximal ideals are of the form Rp = AV (t) where p = mAV (t) ∩ R.

Proof By construction, for every valuation overring V dominating D′, the integral closure of
AV is BV := V

F
, which is the intersection of all the extensions of V to F , of which there are

finitelymany.Hence AV is a semilocal Prüfer domain. ByTheorem4.8,Nagata ring extension
commutes with intersection for all the overrings of AV . It follows that R = ⋂

V⊇D′ AV (t)
and therefore

Kr(D′) =
⋂

V∈Zar(D′)
V (t) ⊆ R ⊆ Kr(D) =

⋂
V∈Zar(D′)

BV (t).

Pick now an element � ∈ Kr(D). The field extension F(t)/F ′(t) is clearly a finite Galois
extension generated by θ1, . . . , θn and satisfies one of the conditions (∗1), (∗2), since so does
the field extension F/F ′. Hence, there exist φ1(t), . . . , φn(t) ∈ F ′(t) such that

� =
n∑
j=1

φ j (t)θ j ∈ Kr(D) =
⋂

V∈Zar(D′)
BV (t).

By Proposition 5.6, this yields φ j (t)θ j ∈ Kr(D) for every j = 1, . . . , n. If now all θ j are
units in D, this gives

φ j (t) ∈
⋂

V∈Zar(D′)
BV (t) ∩ F ′(t) =

⋂
V∈Zar(D′)

V (t) = Kr(D′) ⊆ R

and shows that � is integral over R since so are all θ j . If instead all θ j are simple roots,
saying that θ

e j
j ∈ D′, we obtain (φ j (t)θ j )

e j ∈ Kr(D) ∩ F ′(t) ⊆ R, again showing that �

is integral over R, being a sum of integral elements.
Now, using that R = Kr(D), we obtain that all the maximal ideals of R are centers of

trivial extensions of valuation overrings of D. In particular, since R ⊆ AV (t) ⊆ AV (t) =
BV (t), every maximal ideal of R is of the form p = mAV (t) ∩ R. This proves the inclusions
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Rp ⊆ AV (t) and pRp ⊆ mAV (t). We show now that AV ⊆ Rp. For this observe first that
mD ⊆ mAV ∩ R ⊆ p. Then pick α ∈ V . The fraction 1

t+α
∈ Kr(D′) ⊆ R but v( 1

t+α
) = 0,

hence 1
t+α

/∈ mV (t) = mAV (t) ∩ V (t). This implies 1
t+α

/∈ p, thus α ∈ Rp. It is clear that
mV (t) ⊆ p. It follows that AV ⊆ Rp. The thesis now follows by Lemma 5.7. 	


The above theorem shows that the localizations of R at prime ideals coincide with the
localizations of someNagata ring extensions of overrings of D. Essentially by the same proof
we can obtain the same result also for some integral extensions of R.

Corollary 5.9 Take the assumptions and notations of Construction 5.3. For each ring AV ,
let CV be a local integral extension. Let T = ⋂

V⊇D′ CV and suppose T �= D. Let R∗ =⋂
V⊇D′ CV (t). Then the ring R∗ = KrF

∗
(T ) for some defining family F∗ of T and the

integral closure of R∗ is Kr(D).Moreover, letp = mCV (t)∩R. IfCV ⊆ R∗
p, then R

∗
p = CV (t).

Proof The integral closure of any of the rings CV is semilocal and Prüfer. Hence, as in the
proof of Theorem 5.8, the family F∗ can be chosen to be the family of all the maximal
excluding overrings of the rings CV . By definition we have inclusions R ⊆ R∗ ⊆ R ⊆
Kr(D), showing that R∗ = R = Kr(D). The last part about localizations follows by
Lemma 5.7. 	


Corollary 5.9 can be applied to the following situation.

Proposition 5.10 Let D = K ′ + m be constructed as in Example 5.4. Let CV =
V [∑n

i=1 θimV ] and let p = mCV (t) ∩ R. Then CV is local and AV ⊆ CV ⊆ R∗
p.

Proof From the inclusions mD ⊆ ∑n
i=1 θimD′ ⊆ ∑n

i=1 θimV , it follows that AV ⊆ CV and

CV = V
F
. Let σ1, . . . , σn be the elements of Gal(F/F ′) with σ1 equal to the identity. To

see that CV is local, pick α = a + ∑n
i=1 θi bi with bi ∈ mV and a a unit in V . Observe that

σ j (θi )bi ∈ mVCV ⊆ Jac(V
F
) for every i, j . In particular the product

∏n
i=1 σi (α) = an + z,

with z ∈ mVCV , is a unit in CV . It follows that

1

α
=

∏n
i=2 σi (α)∏n
i=1 σi (α)

∈ CV .

Now let us prove that CV ⊆ R∗
p. By the same argument used in the proof of Theorem

5.8, we obtain V ⊆ R∗
p. We need to show that zθi ∈ R∗

p for z ∈ mV . For this consider the

fraction φ = 1
t+zθi

. For all the valuation overrings V ′ of D′ containing z, we have φ ∈ CV (t).

For the valuation overrings V ′ not containing z, we have z−1 ∈ mV ′ , z−1θ−1
i ∈ CV , and

φ = z−1θ−1
i

z−1θ−1
i t+1

∈ CV (t). Thus φ ∈ ⋂
V⊇D′ CV (t) = R. In particular, since φ is a unit in CV ,

we obtain φ−1 ∈ R∗
p and therefore zθi ∈ R∗

p. 	

In general the rings AV may be too small for being maximal excluding. In particular if

V
F
has more than two maximal ideals we do not expect AV to be maximal excluding. In

some cases it can be shown that AV is maximal excluding. For D = K [[x2, x3, y]] and D′ =
K [[x2, y]], we have AV = V [x3]mV ,x3 . For V = K [[x2, y, y

x2
,

y
x4

, . . .]], the ring AV =
K [[x2, x3, y, y

x ,
y
x2

, . . .]] is maximal excluding since it can be expressed as pullback as in

Theorem 3.1. Also, if V = K [[y, x2, x2
y , x2

y2
, . . .]], the ring AV = K [[y, x3, x2, x2

y , x2

y2
, . . .]]

is a generalized power series ring and is maximal with respect to excluding the element x3
y

by Theorem 3.3. In the next examples we construct rings of the form KrF (D) such that the
rings AV or CV are all maximal excluding.
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Example 5.11 Adopting the same notation of Example 5.4 and Proposition 5.10, let D′ =
Q + n, D = Q + m = Q + n + in and D = Q(i) + m. For a valuation overring V of D′,
set CV = V [imV ]. We show that CV is maximal with respect to excluding the element i .
It is clear that CV ⊆ V (i) is a minimal ring extension. We have two possible cases. In the
first a2 + 1 /∈ mV for every a ∈ V . It is easy to check that in this case there is only one
valuationW of F extending V , and w(a+ ib) = min(v(a), v(b)). Hence,W = V (i) and its
residue field is isomorphic to V

mV
(i). Now [17, Theorem 2.4], or alternatively our Corollary

3.2, shows that CV is maximal excluding. In the other case we have two distinct conjugated
valuations W1 and W2 extending V to F . We observe that V (i) = W1 ∩ W2, indeed for
a + ib ∈ W1 ∩ W2 we cannot have v(a) = v(b) < 0, otherwise the conjugate a − ib would
not be in the same ring. Again [17, Theorem 2.4] shows that CV is maximal excluding. The
structure of CV in this case is described by [25, Theorem 14].

In the next example we replace the intersection of all the valuation overrings of D′ by the
intersection of a smaller collection, which still form a defining family for D′. The Kronecker
function ring associated to this family is an overring of the canonical Kronecker function
ring.

Example 5.12 Let κ be a field, x an indetreminate over κ , and T a local integrally closed
domainof the formκ(x)+m. SetW = κ[[x]] and B = κ[[x2, x3]] (one can also take anyother
maximal excluding domain havingW as integral closure). Define D to be the pullback B+m.
If we assume that T is not a valuation ring, the ring D is not maximal excluding by Theorem
3.1. For F = Q(D), let F ′ be the largest subfield of F containing x2 but not x . The ring D′
in this case is set to be κ[[x2]]+ (m∩ F ′) and we set also T ′ = D′

m∩F ′ = κ(x2)+ (m∩ F ′).
The extension F/F ′ satisfies the assumption of Construction 5.3. We can now express D′
as the intersection of the valuation overrings V of the form V = π−1

V (κ[[x2]]) where πV

is the quotient map from a valuation overring V ′ of T ′ to its residue field. For any of such
V , we can define as previously AV = V [mD]mV ,mD = V [x3,m]. In particular AV is the
pullback of B with respect to the quotient map from the valuation overring V ′(x) of T to its
residue field. Therefore AV is maximal excluding by Theorem 3.1. Let F be the family of
all the rings AV . The same proof used for Theorem 5.8 shows that, if R = KrF (D), then R
is the Kronecker function ring of D obtained by intersecting all the valuations of the form
V ′(x)(t). Furthermore, all the localizations of R at the maximal ideals are of the form AV (t).

We now move on to discuss a second construction which produces rings that are very
close the the Kronecker function ring of D, in the sense that they locally coincide for almost
all the maximal ideals. This construction allows also to describe cases where the integral
closure of D is not finitely generated over D or where the integral closure of some overring
in the defining family of D is not Prüfer. The idea is to express D as the intersection of its
integral closure with a semilocal domain A. The rings we define here are not necessarily
of the form KrF (D), if the integral domain A is neither maximal excluding nor has Prüfer
integral closure. However, Theorem 4.10 give us the tools to study a more general situation.

Construction 5.13 Let D be an integral domain and suppose that there exists a semilocal
overring A such that D = D ∩ A. Suppose that also A is semilocal with s maximal ideals
and all the residue fields of D have cardinality at least s + 1. Let R′ = Kr(D) ∩ A(t).

Notice that if D arises as in Construction 5.3 and A contains an intersection of rings of the
form AV , then the above ring R′ is an overring of the ring R, contained in Kr(D). ByTheorem
5.8, one immediately gets R′ = Kr(D). Easy examples that illustrate this construction are

D = K [[x2, x3, y]] = K [[x, y]] ∩ K ((y))[[x2, x3]],
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and the ring D defined in Example 4.14.
Before proving the main theorem about this construction, we need to investigate the

integral closure of local rings of the form A ∩ V considered in Theorem 4.10-(i).

Remark 5.14 Let A and V be defined as above. Obviously there is an inclusion A ∩ V ⊆
A∩ V . However, the containment may be strict: for instance take A = Q + XQ(i)[[X ]] and
V = Z(5)[ 2+i

5 ] + XQ(i)[[X ]]. These rings have the same quotient field and V is a valuation
domain. We have A ∩ V = Z(5) + XQ(i)[[X ]], A = Q(i)[[X ]], and

A ∩ V = Z(5)(i) + XQ(i)[[X ]] � A ∩ V = V .

Next proposition analyzes the relation between A ∩ V and A ∩ V .

Proposition 5.15 Let A be a local domain, V a valuation ring such that Q(A) = Q(V ) =
Q(A∩V ) and suppose that A is dominated by a localization VQ of V . Let q = Q ∩ A be the
center of VQ in A and set B = A ∩ V and C = Aq ∩ V . Then the following assertions hold:

(1) B ′ := B
Q∩B and C ′ := C

Q∩C are Prüfer domains with the same quotient field.
(2) C ′ is the localization of B ′ at the maximal ideal defined as the center of the valuation

ring V
Q .

Proof Since VQ dominates A, then q is a maximal ideal of A and VQ dominates Aq. Thus
C is local and its structure is described in Theorem 4.10-(i). In particular Q ∩C = qAq and

C ′ is a valuation domain with quotient field κ = Aq

qAq
= A

q . For the same reason, again by

Theorem4.10-(i), we have that A′ := A∩V
mA

is a valuation domainwith quotient field κ ′ = A
mA

.
By standard results on quotient rings of integral extensions, since Q ∩ (A ∩ V ) = mA, we
get that B ′ is an integral extension of A′ and κ is an algebraic field extension of κ ′. The
integral closure of a valuation domain in an algebraic field extension of the quotient field is
a Prüfer domain. The ring B ′ is clearly integrally closed, thus is a Prüfer domain. It is clear
that B ′ ⊆ C ′. To prove (1) it remains to show that they have the same quotient field. For
this we prove that A ∩ V is contained in a ring of fractions S−1B for S a multiplicatively
closed set of B with S ∩ Q = ∅. Define S = (A ∩ V )\mA. This set S is multiplicatively
closed since mA is a prime ideal of A ∩ V and S ∩ Q = S ∩ mA = ∅. Pick x ∈ A ∩ V .
Then xn + an−1xn−1 + · · · + a1x + a0 = 0 for a0, . . . , an−1 ∈ A. If a0, . . . , an−1 ∈ V
then x ∈ B. Thus suppose that at least one of them is not in V and set a = ∏

ak /∈V ak . Since
mA ⊆ Q ⊆ V , we have that a is a unit in A and a−1 ∈ V . Multiplying the above equation
of integral dependence of x by a−n yields an equation of integral dependence of a−1x over
A ∩ V . It follows that a−1x ∈ B and x ∈ S−1B because a−1 ∈ S. From this, going modulo

the contraction of Q and observing that A∩V
q and C ′ have the same quotient field, we obtain

that B ′ and C ′ have the same quotient field. Finally to prove (2), we simply notice that V
dominates both A ∩ V and C , therefore it dominates the localization of B at the maximal
ideal mV ∩ B = mC ∩ B. It follows that C ′ dominates the localization of B ′ at the center of
V
Q . Since B

′ and C ′ are Prüfer domains with the same quotient field, C ′ must be equal to that
localization of B ′. 	

Theorem 5.16 Let D, A and R′ be defined as in Construction 5.13. The following assertions
hold:

(i) For a valuation overring V of D, let p = mV (t) ∩ R′. Then R′
p = (A ∩ V )mV ∩A(t).

Moreover, if A and V have no common proper overrings then R′
p = V (t).
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(ii) For every valuation overring V of R′, there exists a valuation overring V of D such that
V ⊇ (A ∩ V )(t).

(iii) The localizations of R′ at its maximal ideals are Nagata ring extensions of overrings of
R.

(iv) The integral closure of R′ is Kr(D) ∩ A(t).

Proof It is well-known that the number of maximal ideals of A is less or equal than the
number of maximal ideals of A. The assumption on the residue fields of D implies that also
the residue fields of A∩ V and A∩ V have cardinality at least s for every valuation overring
V of D. Therefore the intersections A ∩ V and A ∩ V satisfy the hypothesis of Theorem
4.10.

(i) By Theorem 4.10-(iv) we immediately get (A ∩ V )(t) = A(t) ∩ V (t). Hence, R′ ⊆
(A∩V )(t) andp is equal also to the contraction in R′ of themaximal ideal of (A∩V )mV ∩A.
This implies R′

p ⊆ (A ∩ V )mV ∩A(t). We only need to show (A ∩ V )mV ∩A ⊆ R′ and
apply Lemma 5.7. Let a, s ∈ A ∩ V with s /∈ mV . Consider

F = 1

t + a
, G = 1

t + s−1 = s

st + 1
.

Clearly F,G ∈ Kr(D) ∩ A(t) = R′. Moreover, v(a) ≥ 0, v(s) = 0, and F,G are
units in V (t). Thus F−1 = t + a and G−1 = t + s−1 are in R′

p. This proves
a
s ∈ R′

p,

because t ∈ R′. If A and V have no common proper overrings we get R′
p = V (t) by

Theorem 4.10-(iii).
(ii) Set V = V ∩ Q(D) (of course we allow also the case V = Q(D)). Clearly V ⊇

R′ ∩ Q(D) ⊇ D(t) ∩ Q(D) = D. Since t ∈ R′ we get (A ∩ V )[t] ⊆ V [t] ⊆ V . Pick a
polynomial f = ∑m

k=0 akt
k ∈ (A∩V )[t] such that c( f ) = A∩V . Let ak be a coefficient

of f . In every valuation overring of Kr(D), the value of ak is larger than or equal to the
value of f . Hence ak f −1 ∈ Kr(D) ∩ A(t) = R′ ⊆ V. Since c( f ) = A ∩ V and A is
semilocal, by Lemma 4.4 there exist u0, . . . , um ∈ D, that are either units or zeros, such
that a = ∑m

k=0 akuk is a unit in A ∩ V . It follows that a f −1 ∈ R′ ⊆ V . Now a is a unit
in A ∩ V , hence a unit in V . This implies f −1 ∈ V and shows (A ∩ V )(t) ⊆ V .

(iii) Every prime ideal of R′ is the center of some valuation overring of R′. By item (ii), every
valuation overring V of R′ contains an intersection of the form (A∩V )(t) = A(t)∩V (t)
for some valuation overring V of D. By item (i), (A ∩ V )mV ∩A(t) is the localization of
R′ at the center of the valuation overring V (t). In particular, given a maximal ideal m of
A, the ring Am(t) is the localization of R′ at the center of any valuation overring V (t)
such that V dominates Am. Let p = mV ∩ R′. By Theorem 4.10, since localization at the
maximal ideals commutes with Nagata ring extension, V contains a ring C(t) which is
equal either to Am(t) for m a maximal ideal of A or to (A ∩ V )mV ∩A(t). For what said
above, this ring C(t) is a localization of R′ at a prime ideal and, if q = mV ∩ C(t), then
q ∩ R′ = p. Hence R′

p is the localization of C(t) at q. In particular, since we already
know that the rings C(t) are localizations of R′ at some prime ideal, it follows that the
localizations of R′ at its maximal ideals are all of the form C(t) for some overring C of
D.

(iv) We argue showing that every valuation overring of R′ contains A(t)∩V (t) = (A∩V )(t)
for some valuation overring V of D. Let V be a valuation overring of R′ and let V =
V ∩Q(D). By item (ii) we already know that V ⊇ (A∩ V )(t). If V ⊇ A(t), we are done
since then V ⊇ A(t) = A(t). Otherwise by Theorem 4.10, localizing at the maximal
ideals of A∩V we find thatV ⊇ (A∩V )mV ∩A(t). If (A∩V )mV ∩A = V we can conclude.
If not, again by Theorem 4.10, we reduce to the case where there exists a prime ideal Q of
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V such that VQ contains A and (A ∩ V )mV ∩A = AQ∩A ∩ V . Without loss of generality,
we simplify the notation possibly replacing A by AQ∩A, and reduce to the case where
A and A ∩ V are local, VQ dominates A, and V ⊇ (A ∩ V )(t). Obviously, using that
Nagata ring extension commutes with integral closure, we get V ⊇ (A ∩ V )(t). Now, if
A ∩ V = A ∩ V we are clearly done. If not we use the result of Proposition 5.15. Let
q = Q ∩ A and set B = A ∩ V and C = Aq ∩ V . It is sufficient to prove that V ⊇ C(t).
Since V contains V and t , then V ⊇ C[t]. Notice also that the maximal ideal mV ∩ B of
B is contained in mV . Thus, by localization we find that V ⊇ BmV ∩B(t). Pick f ∈ C[t]
such that c( f ) = C . We want to prove that f −1 ∈ V . For h ∈ C[t], if h−1 ∈ V and
g ∈ mV [t] ⊆ mV we get (h + g)−1 ∈ V . Hence, we want to find g ∈ mV [t] such that
f + g ∈ BmV ∩B [t] and c( f + g) = BmV ∩B . But Proposition 5.15 implies that BmV ∩B

and C coincide after going modulo the contractions of Q on both rings. In particular, if
x ∈ C , then there exists z ∈ Q∩C ⊆ Q ⊆ mV such that x+z ∈ BmV ∩B . Furthermore, if
x is a unit inC then x+z is a unit in BmV ∩B . Applying this procedure to all the coefficients
of f that are not in BmV ∩B , one can construct a polynomial g ∈ Q[t] ⊆ mV [t] such that
f + g ∈ BmV ∩B [t] and c( f + g) = BmV ∩B . 	


Remark 5.17 With the setting of the above theorem, if A is Prüfer, we automatically have
R′ = Kr(D). In this case, since we assume all the rings to have finite dimension, A has only
finitely many valuation rings, hence all but finitely many localizations of R′ at prime ideals
are valuation domains of the form V (t). The other localizations are localizations of A(t) or
of domains of the form (A ∩ V )(t).

For instance, let D = K [[x2, x3, y]], A = K ((y))[[x2, x3]], and R′ = Kr(D) ∩ A(t).
Then R′ = Kr(D) because A is Prüfer. In this case all but two localizations of R′ at its prime
ideals are of the form V (t). The two remaining localizations are A(t) and (A∩W )(t) where
W is the rank two valuation overring of D having A as unique minimal overring.

We construct now examples of Kronecker function ring of D of the form Kr(D) ∩ A(t)
such that A is maximal excluding, but A is not a valuation. Therefore R′ = Kr(D)∩ A(t) �

Kr(D).

Example 5.18 Let K be any field and let D′ = [[K S]] be a maximal excluding generalized
power series ring. Let z be an indeterminate over Q(D) and set D = D′[[z]]. Let A be the
generalized power series ring over K obtained by adding to D all the elements of the form
z
y for y ∈ mD′ a monomial element. This ring A can be represented as pullback of D′ with
respect to the quotient map from Q(D′)[[z]] to its residue field. Hence, by Theorem 3.1, A
is maximal excluding. By standard properties of pullback diagrams (see [15, Theorem 1.2]),
A is the pullback of D′ with respect to the same quotient map. Moreover, D = D ∩ A. Let
R′ = Kr(D) ∩ A(t).

Notice that A and A are both local, therefore D, A and R′ satisfy the hypothesis of
Construction 5.13 without restrictions on the field K . The generalized power series rings of
Example 3.8 and Example 3.14 provide examples where A is not a Prüfer domain. Those
from Examples 3.4 and 3.7 provide examples where D is not finitely generated as D-module.
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