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Abstract
We study twominimization problems concerning the elastic energy on curves given by graphs
subject to symmetric clamped boundary conditions. In the first, the inextensible problem, we
fix the length of the curves while in the second, the extensible problem, we add a term penal-
izing the length. This can be considered as a one-dimensional version of the Helfrich energy.
In both cases, we prove existence, uniqueness and qualitative properties of the minimizers.
A key ingredient in our analysis is the use of Noether identities valid for critical points of the
energy and derived from the invariance of the energy functional with respect to translations.
These identities allow us also to prove curvature bounds and ordering of the minimizers even
though the problem is of fourth order and hence in general does not allow for comparison
principles.
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1 Introduction

The paper is concerned with the minimization of the bending energy in a certain class of
planar open curves subject to clamped boundary conditions and a constraint on the length of
the curve. By clamped boundary condition, we mean that the position vector and the tangent
vector of the curves are fixed at the boundary points. We will consider two cases: either
we look at the classical Euler-Bernoulli elastica problem where one aims to minimize the
bending energy

This project has been funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation)- Projektnummer: 404870139.

B Anna Dall’Acqua
anna.dallacqua@uni-ulm.de

Klaus Deckelnick
klaus.deckelnick@ovgu.de

1 Universität Ulm, Helmholtzstraße 18, 89081 Ulm, Germany

2 Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39016 Magdeburg, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10231-023-01396-x&domain=pdf
http://orcid.org/0000-0002-1438-3255


A. Dall’Acqua, K. Deckelnick

E0(γ ) = 1

2

∫
γ

κ2 ds

subject to a given prescribed length. Alternatively, the constraint appears as a penalization
leading to the minimization of the modified elastic energy

Eλ(γ ) = 1

2

∫
γ

κ2 ds + λ

∫
γ

ds, (1)

where λ is a non-negative constant. The first problem is referred to as the inextensible, the
second as the extensible problem. In the above, κ is the curvature of γ and s denotes the
arclength parameter. The energy Eλ can be considered as a 1-dimensional version of the
Helfrich energy. To see this, recall that for a surface � ⊂ R

3 the Helfrich energy is given by

H(�) =
∫

�

(
1

2
kc(H − c0)

2 + kc̄K

)
dA , (2)

where kc, kc̄ denote the curvature-elastic moduli, c0 ∈ R is a spontaneous curvature, and
H , K denote the mean curvature and Gauss curvature of �, respectively. Similarly, for
curves, one is led to consider the energy

∫
γ

1

2
(κ − c0)

2 ds =
∫

γ

1

2
κ2 ds − c0

∫
γ

κ ds + c20
2

∫
γ

ds.

Since the second integral on the right-hand side is equal to a constant when the tangent vectors
are fixed at the boundary (hence, in particular in the case of clamped boundary conditions), we
may view Eλ as a 1-dimensional Helfrich energy. It is well-known that both in the extensible
and in the inextensible problem, a critical point γ satisfies the Euler-Lagrange equation

∂2s κ + 1

2
κ3 − λκ = 0 on γ, (3)

where λ ∈ R is the Lagrange multiplier associated with the length constraint in the inextensi-
ble problem. Solutions to this equation are called elastica and have been studied since Euler
by many authors, see, e.g., [11, 14, 20] for an historical overview. By integrating equation
(3), Langer and Singer [10] have derived explicit formulae for closed elastica in terms of
elliptic integrals. Corresponding formulae have been obtained by Linnér in Linnér [13] for
open curves under various boundary conditions both in the extensible and inextensible case.
While these formulae give useful insight into the shape of elastica, it is not straightforward
and certainly cumbersome to use those in order to solve the minimization problem or (3) sub-
ject to clamped boundary conditions. Recently, Miura [16] obtained the existence of a unique
global minimizer both in the extensible and inextensible case for λ sufficiently large. By a
suitable rescaling argument, he shows in addition that the shape of the solution close to the
endpoints can be described with the help of a so–called borderline elastica. The minimization
of E0 subject to fixed length in the class of curves with prescribed endpoints has been con-
sidered by Yoshizawa [21]. In this case, it is possible to explicitly construct all critical points
and to select the unique global minimum from these. The gradient flow associated to Eλ has
been studied in Lin [12] and Dall’Acqua et al. [5] in the extensible and inextensible problem,
respectively. Finally, let us mention that the minimization of the surface energy (2) subject
to clamped boundary conditions has been considered in Scholtes [18] and Deckelnick [7] for
surfaces of revolution, in Deckelnick et al. [8] for two-dimensional graphs and in Refs. [1,
9] for parametric surfaces.
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Elastic graphs with clamped boundary and length constraints

In this paper, we are interested in establishing existence, uniqueness and properties of min-
imizers in certain classes of graphs over the unit interval [0, 1]. Note that for a function
v : [0, 1] → R we have ds = √

1 + v′(x)2 dx as well as

κ(x) = v′′(x)
(1 + v′(x)2) 3

2

= d

dx

(
v′(x)√

1 + v′(x)2

)
. (4)

The clamped boundary conditions impose that the value of the function and of its derivative
is prescribed at 0 and at 1. For β > 0, � ≥ 1, we therefore introduce the following sets of
admissible functions

Mβ := {v ∈ H2(0, 1) ∩ H1
0 (0, 1) | v′(0) = −v′(1) = β}; (5)

Mβ,� := {v ∈ Mβ |
∫ 1

0

√
1 + v′(x)2 dx = �} (6)

and then consider the problems

min
v∈Mβ

Eλ(v) (7)

as well as

min
v∈Mβ,�

E0(v) (8)

with

Eλ(v) = 1

2

∫ 1

0

v′′(x)2

(1 + v′(x)2) 5
2

dx + λ

∫ 1

0

√
1 + v′(x)2 dx ,

and E0(v) = 1
2

∫ 1
0

v′′(x)2

(1+v′(x)2)
5
2
dx . Let us emphasize that we consider symmetric boundary

conditions but that the functions over which we minimize are not necessarily symmetric.
Since the energies do not depend on v but only on its derivative of first and second order it
is not a restriction to impose zero boundary values for the function. For the same reason, the
case β < 0 can be considered by simply going from v to −v. The choice β = 0 is certainly
interesting in the inextensible problem but unfortunately our methods do not work in that
case.

Even though the functional Eλ is highly nonlinear and non-convex, we are able to establish
the existence of a unique minimizer both for the extensible and the inextensible problem.
More precisely, our first main result reads as follows:

Theorem 1.1 For every β > 0, λ ≥ 0, there exists a unique uβ,λ ∈ Mβ such that

Eλ(uβ,λ) = min
v∈Mβ

Eλ(v).

The function uβ,λ belongs to C∞([0, 1]), is symmetric with respect to x = 1
2 and strictly

concave. Furthermore, uβ,λ is a solution of the boundary value problem

1√
1 + u′(x)2

d

dx

( κ ′(x)√
1 + u′(x)2

)
+ 1

2
κ(x)3 − λκ(x) = 0 x ∈ [0, 1] (9)

u(0) = u(1) = 0, u′(0) = −u′(1) = β. (10)
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This result generalizes Theorem 2 in [6] where the case λ = 0 was considered and an
explicit formula for the solution was derived. We shall prove existence and uniqueness of
the minimizers without any restriction on the parameters β and λ and without using explicit
formulas. A crucial ingredient of our analysis are Noether identities that will be derived in
Sect. 2 from the invariance of Eλ with respect to translations. These identities will play an
important role to get insight into the qualitative behaviors of theminimizers, such as curvature
bounds, see Lemma 3.4 below.

Even though the problem (9) is of fourth order and hence, in general, no comparison
principle is available, we not only have uniqueness of minimizers uβ,λ, but we can also prove
that the solutions are strictly ordered with respect to the parameters β and λ.

Theorem 1.2 Let uβ,λ ∈ Mβ be the unique minimum of Eλ found in Theorem 1.1.

a) We have for all λ ≥ 0 and all 0 < β1 < β2

uβ1,λ(x) < uβ2,λ(x), x ∈ (0, 1), u′
β1,λ

(x) < u′
β2,λ

(x), x ∈ [0, 1
2
).

b) We have for all β > 0 and all 0 ≤ λ1 < λ2

uβ,λ1(x) > uβ,λ2(x), x ∈ (0, 1), u′
β,λ1

(x) > u′
β,λ2

(x), x ∈ (0,
1

2
).

The comparison results will again follow from our Noether identities which allow us to derive
a second order equation for the first derivative of the solution, which is then accessible to a
comparison argument. The proofs of Theorems 1.1 and 1.2 will be given in Sect. 3. In Sect. 5,
we study also the behavior of the minimizers for (β, λ) → (+∞, 0), and for λ → +∞. In
the second case, we prove straightening and can characterize the limit of the boundary layer
as a piece of the so-called borderline elastica.

Our third main result is concerned with the solution of the inextensible problem (8). Here,
our idea consists in introducing L : [0,∞) → R by

L(λ) :=
∫ 1

0

√
1 + u′

β,λ(x)
2 dx (11)

and solving the equation L(λ) = �. More precisely, we have

Theorem 1.3 Let β > 0. Then, (8) has a unique solution u ∈ Mβ,� for every 1 < � ≤ Lβ

where

Lβ :=
∫ β

−β
(1 + τ 2)−3/4dτ∫ β

−β
(1 + τ 2)−5/4dτ

.

The function u belongs to C∞([0, 1]), is symmetric and strictly concave on [0, 1]. Further-
more, there exists λβ,� ≥ 0 such that u satisfies (9), (10) with λ = λβ,�.

The proof of Theorem 1.3 is given in Sect. 4.

2 Noether identities and regularity

Let us consider for δ ≥ 0 the functional Eλ,δ : Mβ → R,

Eλ,δ(v) := Eλ(v) + δ

6

∫ 1

0
v′(x)6dx,

where for later purposes, we have included a penalty term.
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Elastic graphs with clamped boundary and length constraints

Lemma 2.1 Let δ ≥ 0 and suppose that u ∈ Mβ is a critical point for Eλ,δ . Then, u ∈
C∞([0, 1]) and u solves the Euler-Lagrange equation on [0,1], i.e.

1√
1 + u′(x)2

d

dx

( κ ′(x)√
1 + u′(x)2

)
+ 1

2
κ(x)3 − λκ(x) − 5δu′(x)4u′′(x) = 0. (12)

Proof Since u is a critical point of Eλ,δ , we have with (4) for every v ∈ H2
0 (0, 1)

0 =〈E ′
λ,δ(u), v〉 =

∫ 1

0

u′′(x)v′′(x)
(1 + u′(x)2) 5

2

dx − 5

2

∫ 1

0

u′′(x)2u′(x)v′(x)
(1 + u′(x)2) 7

2

dx

+ λ

∫ 1

0

u′(x)v′(x)√
1 + u′(x)2

dx + δ

∫ 1

0
u′(x)5v′(x) dx

=
∫ 1

0
κ(x)

v′′(x)
1 + u′(x)2

dx − 5

2

∫ 1

0
κ2(x)

u′(x)√
1 + u′(x)2

v′(x) dx

+ λ

∫ 1

0

u′(x)v′(x)√
1 + u′(x)2

dx + δ

∫ 1

0
u′(x)5 v′(x)dx . (13)

In the same way, as in Proposition 3.2 in Dall’Acqua et al. [4], we can then show that
u ∈ C∞([0, 1]) as well as (12). �


In the next result, we show how (12) can be integrated once in two different ways. The
relations (14) and (15) in the following corollary can be seen as Noether identities resulting
from the invariance of Eλ,δ with respect to translations and will be crucial for our studies. In
the appendix, we explain the construction leading to these identities.

Corollary 2.2 Let δ ≥ 0 and suppose that u ∈ C4([0, 1]) satisfies (12). Then, there exist
c1, c2 ∈ R such that

κ ′(x)
1 + u′(x)2

+ 1

2

u′(x)κ(x)2√
1 + u′(x)2

− λ
u′(x)√

1 + u′(x)2
− δu′(x)5 = c1, x ∈ [0, 1]; (14)

u′(x)κ ′(x)
1 + u′(x)2

− 1

2

κ(x)2√
1 + u′(x)2

+ λ
1√

1 + u′(x)2
− 5

6
δu′(x)6 = c2, x ∈ [0, 1]. (15)

If, in addition u(x) = u(1 − x) for all x ∈ [0, 1], i.e., u is symmetric, then, c1 = 0 and we
also have

max
x∈[0,1] |u

′(x)| = |u′(0)|. (16)

Proof We calculate with the help of (12)

d

dx

{
κ ′

1 + (u′)2

}
= 1√

1 + (u′)2
d

dx

{
κ ′√

1 + (u′)2

}
− u′κκ ′√

1 + (u′)2

= −1

2
κ3 + λκ + 5δ(u′)4u′′ − u′κκ ′√

1 + (u′)2

= −1

2

d

dx

{
u′κ2√

1 + (u′)2

}
+ λ

d

dx

{
u′√

1 + (u′)2

}
+ δ

d

dx
(u′)5,
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which yields (14). Since u′κ = − d
dx

( 1√
1+(u′)2

)
, we deduce in a similar way that

d

dx

{
u′κ ′

1 + (u′)2

}
= u′√

1 + (u′)2
d

dx

{
κ ′√

1 + (u′)2

}
+ d

dx

{
u′√

1 + (u′)2

}
κ ′√

1 + (u′)2

= −1

2
u′κ3 + λu′κ + 5δ(u′)5u′′ + κκ ′√

1 + (u′)2

= 1

2

d

dx

{
κ2√

1 + (u′)2

}
− λ

d

dx

{
1√

1 + (u′)2

}
+ 5

6
δ
d

dx
(u′)6,

so that we obtain (15).
If in addition, u is symmetric with respect to x = 1

2 , then evaluating (14) for x = 1
2 yields

c1 = 0. In order to prove (16), let us first assume that m := maxx∈[0,1] u′(x) > |u′(0)| and
choose x0 ∈ (0, 1) such that u′(x0) = m. We then have u′′(x0) = 0 and u′′(x0) ≤ 0 from
which we infer that κ(x0) = 0 and κ ′(x0) ≤ 0. Using (14) we obtain

0 = κ ′(x0)
1 + u′(x0)2

− λ
u′(x0)√

1 + u′(x0)2
− δu′(x0)5 ≤ κ ′(x0)

1 + u′(x0)2
≤ 0

and hence κ ′(x0) = 0. By viewing (12) as a second order ODE for κ (since u′′ = (1+u′2) 3
2 κ),

we infer that κ ≡ 0 and therefore u ≡ 0, a contradiction. In the same way, we can exclude
that minx∈[0,1] u′(x) < −|u′(0)|. �


Thanks to the Noether identities we just derived, we can now generalize some results in
Deckelnick et al. [6]. To do so, we introduce the function

G : R →
(
−c0

2
,
c0
2

)
, G(s) :=

∫ s

0

1

(1 + τ 2)
5
4

dτ , (17)

and

c0 :=
∫ ∞

−∞
1

(1 + τ 2)
5
4

dτ = √
π

�(3/4)

�(5/4)
� 2.396280469.... . (18)

A crucial ingredient in Deckelnick et al. [6] (see in particular [6, Lemma 4]) is the observation

that u is a solution of (9) with λ = 0 if and only if d2

dx2
G(u′(x)) = 0 for x ∈ [0, 1].

By integrating this equation, twice one then obtains that uβ,0 (with the notation used in
Theorem 1.1) is explicitly given by

uβ,0(x) = 2
c 4
√

1+(G−1(c/2−cx))2
− 2

c 4
√

1+(G−1(c/2))2
, x ∈ (0, 1), (19)

with c = 2G(β). Even though it does not appear possible to derive an explicit formula in the
case λ > 0, the function x �→ G(u′(x)) plays an important role in our analysis. Indeed, we
have

Corollary 2.3 Let u ∈ C4([0, 1]) be a solution of (12) with δ = 0 and λ ≥ 0, which is
symmetric with respect to x = 1

2 . Then

(
λ − 1

2
κ(x)2

)√
1 + u′(x)2 = c2, x ∈ [0, 1]; (20)

κ ′(x) − c2u
′(x) = 0, x ∈ [0, 1], (21)
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with c2 the constant in Corollary 2.2, and

d2

dx2
G(u′(x)) = λu′(x)(1 + u′(x)2)

3
4 , x ∈ [0, 1].

Proof In view of the symmetry of u, we deduce from Corollary 2.2 that

κ ′(x)
1 + u′(x)2

+ 1

2

u′(x)κ(x)2√
1 + u′(x)2

− λ
u′(x)√

1 + u′(x)2
= 0, x ∈ [0, 1]. (22)

By multiplying (22) by −u′(x) and adding the result to (15), we obtain (20). The relation
(21) is obtained by inserting (20) into (22).
Clearly,

d

dx
G(u′(x)) = u′′(x)

(1 + u′(x)2) 5
4

= κ(x)(1 + u′(x)2)
1
4 ,

and hence

d2

dx2
G(u′(x)) = κ ′(x)(1 + u′(x)2)

1
4 + 1

2
κ(x)u′(x)u′′(x)(1 + u′(x)2)−

3
4

= (1 + u′(x)2)
5
4

(
κ ′(x)

1 + u′(x)2
+ 1

2

u′(x)κ(x)2√
1 + u′(x)2

)
= λu′(x)(1 + u′(x)2)

3
4

in view of (22). �


3 Extensible problem

3.1 Existence and uniqueness of minimizers

A direct application of the direct method in the calculus of variations to solve (7) is not
straightforward since a bound on Eλ(v) does not immediately imply a bound on the H2-
norm of the function v. In particular, it is not clear how to get a bound on ‖v′‖∞. For this
reason, we first solve the minimization problem for the penalized functional Eλ,δ . In order
to then get rid of the penalization, we work in the class of symmetric functions and make use
of (16). Hence, let

Msym
β := {v ∈ H2 ∩ H1

0 (0, 1) | v(x) = v(1 − x), x ∈ [0, 1], v′(0) = −v′(1) = β} .

Lemma 3.1 For every δ ∈ (0, 1], there exists uδ ∈ Msym
β such that

Eλ,δ(uδ) = inf
v∈Msym

β

Eλ,δ(v).

Moreover, uδ ∈ C∞([0, 1]) and maxx∈[0,1] |u′
δ(x)| = β.

Proof We proceed similarly to [4, Lemma 3.1, Lemma 2.5]. Let (uk)k∈N ⊂ Msym
β be a

sequence with Eλ,δ(uk) ↘ infv∈Msym
β

Eλ,δ(v), k → ∞. For k ∈ N, we find

∫ 1

0
|u′′

k (x)|dx =
∫ 1

0

|u′′
k (x)|

(1 + u′
k(x)

2)
5
4

(1 + u′
k(x)

2)
5
4 dx

≤ C(δ)
(
Eλ,δ(uk) + 1

) ≤ C̃(δ),
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using the Cauchy-Schwarz inequality and that λ ≥ 0. Since uk(0) = uk(1) = 0, there exists
ξk ∈ (0, 1) with u′

k(ξk) = 0 and hence

|u′
k(x)| ≤

∫ 1

0
|u′′

k (y)|dy ≤ C̃(δ), x ∈ [0, 1], k ∈ N.

Therefore, the minimizing sequence (uk)k∈N is uniformly bounded in H2(0, 1) ∩ H1
0 (0, 1)

and hence, there exists uδ ∈ H2(0, 1) ∩ H1
0 (0, 1) and a subsequence (uk j ) j∈N, such that

uk j ⇀uδ in H2(0, 1), j → ∞ and uk j → uδ in C1([0, 1]), j → ∞. Clearly, uδ ∈ Msym
β .

Moreover,

E0(uδ) = lim
j→∞

∫ 1

0
u′′
k j (x)

u′′
δ (x)

(1 + (u′
δ(x))

2)
5
2

dx

= lim
j→∞

∫ 1

0

u′′
k j

(x)

(1 + (u′
k j

(x))2)
5
4

u′′
δ (x)

(1 + (u′
δ(x))

2)
5
4

dx

≤ lim inf
j→∞ E0(uk j )

1
2 E0(uδ)

1
2 , (23)

from which we infer that uδ is a minimum of Eλ,δ recalling that uk j → uδ in C1. Next, since
uδ is a critical point of Eλ,δ in Msym

β , we have

〈E ′
λ,δ(uδ), v〉 = 0 for all v ∈ Msym

0 . (24)

By splitting an arbitrary function v ∈ H2
0 (0, 1) into a symmetric and an antisymmetric

part and using the symmetry of uδ , we deduce that (13) holds for all v ∈ H2
0 (0, 1). As in

Lemma 2.1 we then have that uδ ∈ C∞([0, 1]) and that uδ solves (12). Furthermore, as uδ

is symmetric, Corollary 2.2 implies that maxx∈[0,1] |u′
δ(x)| = |u′

δ(0)| = β. �

Lemma 3.2 For every β > 0 and λ ≥ 0, there exists u ∈ Msym

β such that

Eλ(u) = inf
v∈Msym

β

Eλ(v).

Moreover, u belongs to C∞([0, 1]) and is a solution of (12) with δ = 0.

Proof Choose a sequence (δk)k∈N of positive real numbers with limk→∞ δk = 0. In view
of Lemma 3.1, there exists uk ∈ Msym

β such that Eλ,δk (uk) = infv∈Msym
β

Eλ,δk (v) for all

k ∈ N. Furthermore, maxx∈[0,1] |u′
k(x)| = β. Since the function ū(x) := βx(1− x) belongs

to Msym
β , we obtain

1

2

1

(1 + β2)
5
2

‖u′′
k‖2L2 ≤ 1

2

∫ 1

0

u′′
k (x)

2

(1 + u′
k(x)

2)
5
2

dx

≤ Eλ,δk (uk) ≤ Eλ,δk (ū) ≤ c, k ∈ N.

Since uk(0) = 0, k ∈ N, we infer that the sequence (uk)k∈N is bounded in H2(0, 1) so that
there exists a subsequence, again denoted by (uk)k∈N and u ∈ H2(0, 1) such that

uk → u in C1([0, 1]) and u′′
k⇀u′′ in L2(0, 1).

Clearly, u ∈ Msym
β , and we obtain for every v ∈ Msym

β that

Eλ(u) ≤ lim inf
k→∞ Eλ(uk) ≤ lim inf

k→∞ Eλ,δk (uk) ≤ lim inf
k→∞ Eλ,δk (v) = Eλ(v),
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where the first inequality follows from (23). Hence, Eλ(u) = infv∈Msym
β

Eλ(v) and similarly

as above, we deduce that u belongs to C∞([0, 1]) and is a solution of (12) with δ = 0. �

With the help of Corollary 2.3, we now show that the function u obtained in Lemma 3.2
minimizes Eλ even in the larger set Mβ and furthermore, is the unique function with this
property.

Theorem 3.3 Let β > 0, λ ≥ 0 and u ∈ Mβ ∩ C4([0, 1]) be symmetric and a solution of
(12) with δ = 0. Then, u is the unique minimum of Eλ in the class Mβ .

Proof For every v ∈ Mβ , we have

Eλ(v) − Eλ(u)

= 1

2

∫ 1

0

[
v′′(x)2

(1 + v′(x)2) 5
2

− u′′(x)2

(1 + u′(x)2) 5
2

]
dx

+ λ

∫ 1

0

(√
1 + v′(x)2 −

√
1 + u′(x)2

)
dx

= 1

2

∫ 1

0

∣∣∣ v′′(x)
(1 + v′(x)2) 5

4

− u′′(x)
(1 + u′(x)2) 5

4

∣∣∣2 dx

+ λ

∫ 1

0

(√
1 + v′(x)2 −

√
1 + u′(x)2

)
dx

+
∫ 1

0

u′′(x)
(1 + u′(x)2) 5

4

( v′′(x)
(1 + v′(x)2) 5

4

− u′′(x)
(1 + u′(x)2) 5

4

)
dx

= 1

2

∫ 1

0

∣∣∣ v′′(x)
(1 + v′(x)2) 5

4

− u′′(x)
(1 + u′(x)2) 5

4

∣∣∣2 dx

+ λ

∫ 1

0

(√
1 + v′(x)2 −

√
1 + u′(x)2

)
dx

+
∫ 1

0

d

dx
G(u′(x)) d

dx

(
G(v′) − G(u′)

)
(x) dx ≡ I + I I + I I I , (25)

with G as in (17). Using integration by parts, the fact that [G(v′) −G(u′)](x) = 0, x = 0, 1
and Corollary 2.3, we obtain

I I I = −
∫ 1

0

d2

dx2
G(u′)(x)

(
G(v′) − G(u′)

)
(x) dx

= −λ

∫ 1

0
u′(x)(1 + u′(x)2)

3
4
(
G(v′) − G(u′)

)
(x) dx .

Combining this relation with (25), we have

Eλ(v) − Eλ(u) = 1

2

∫ 1

0

∣∣∣ v′′

(1 + (v′)2) 5
4

− u′′

(1 + (u′)2) 5
4

∣∣∣2 dx

+ λ

∫ 1

0

[√
1 + (v′)2 −

√
1 + (u′)2 − u′(1 + u′2)

3
4
(
G(v′) − G(u′)

)]
dx .

(26)

In order to analyze the second integral, we introduce f : R2 → R,

f (p, q) :=
√
1 + q2 −

√
1 + p2 − p(1 + p2)

3
4
(
G(q) − G(p)

)
.
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A straightforward calculation shows that

∂ f

∂ p
(p, q) = − 1 + 5

2 p
2

(1 + p2)
1
4

(
G(q) − G(p)

)
,

so that

f (p, q) = f (p, q) − f (q, q) = ∂ f

∂ p
(ξ, q)(p − q) = 1 + 5

2 ξ
2

(1 + ξ2)
1
4

(
G(q) − G(ξ)

)
(q − p)

for some ξ between p and q . Using the fact that G is strictly increasing, we deduce that
f (p, q) ≥ 0 for all (p, q) ∈ R

2, so that we infer from (26) that

Eλ(v) − Eλ(u) ≥ 1

2

∫ 1

0

∣∣∣ v′′(x)
(1 + v′(x)2) 5

4

− u′′(x)
(1 + u′(x)2) 5

4

∣∣∣2 dx ≥ 0, (27)

and u is a minimizer of Eλ in the set Mβ . If Eλ(v) = Eλ(u) for some v ∈ Mβ , then, we have
from (27) that

d

dx
G(v′)(x) = v′′(x)

(1 + v′(x)2) 5
4

= u′′(x)
(1 + u′(x)2) 5

4

= d

dx
G(u′)(x), x ∈ [0, 1].

Since v′(0) = u′(0), we deduce that G(v′) ≡ G(u′) and hence v′ ≡ u′ in [0, 1]. This implies
that v ≡ u as v(0) = u(0), and the proof is complete. �


3.2 Qualitative properties of minimizers

In the following, uβ,λ ∈ Mβ denotes the unique minimizer of Eλ found in Theorem 3.3. We
prove precise bounds on the curvature depending on the relation between β and λ, which
will in particular imply that uβ,λ is strictly concave. In order to formulate the corresponding
result, we define

β0 :=
{√

λ
2−λ

, 0 ≤ λ < 2;
∞, λ ≥ 2.

(28)

Lemma 3.4 (Concavity) Let λ ≥ 0 and uβ,λ be the minimizer of Eλ in Mβ . Then, uβ,λ is
strictly concave and its curvature κ satisfies:

(i) If 0 < β < β0, then −√
2λ < κ < 0 in [0, 1];

(ii) If β = β0, then κ ≡ −√
2λ in [0, 1];

(iii) If β > β0, then κ < −√
2λ in [0, 1].

Proof In each case, the proof relies on identifying the sign of c2 in (20). Observing that
u′

β,λ(0) = −u′
β,λ(1) = β we have

− 2β√
1 + β2

= u′
β,λ(1)√

1 + u′
β,λ(1)

2
− u′

β,λ(0)√
1 + u′

β,λ(0)
2

=
∫ 1

0
κ(x) dx = κ(ξ)

for some ξ ∈ [0, 1], so that by (20)

c2 = (
λ − 1

2
κ(ξ)2

)√
1 + u′(ξ)2 = (

λ − 2β2

1 + β2

)√
1 + u′(ξ)2 . (29)
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(i) In this case, we have from (29) and the definition of β0 that c2 > 0 and hence (by (20))
λ > 1

2κ(x)2 for all x ∈ [0, 1]. Let us write (9) in the form

− 1√
1 + u′(x)2

d

dx

( κ ′(x)√
1 + u′(x)2

)
+ c(x)κ(x) = 0, x ∈ [0, 1], (30)

where c(x) = λ− 1
2κ(x)2 > 0 in [0, 1]. Recalling that u′

β,λ(x) ≤ β = u′
β,λ(0), x ∈ [0, 1]

by (16), we infer that u′′
β,λ(0), u

′′
β,λ(1) ≤ 0. Themaximum principle, applied to (30), then

implies that κ ≤ 0 in [0, 1]. If κ(x0) = 0 for some x0 ∈ (0, 1), then, κ ≡ 0 contradicting
the fact that uβ,λ(0) = uβ,λ(1) = 0 and β > 0. If κ(0) = 0, then, κ ′(0) ≤ 0 contradicting
(21). By symmetry, this excludes also the case κ(1) = 0. Hence, κ < 0 in [0, 1] and the
inequality κ > −√

2λ then immediately follows from the estimate λ > 1
2κ

2.
(ii) If β = β0, then, we deduce from (29) that c2 = 0 and hence κ ≡ −√

2λ using again that
κ(0) ≤ 0 by (16).

(iii) In this case, we infer from (29) that c2 < 0 and hence again by (20) that λ− 1
2κ(x)2 < 0

for all x ∈ [0, 1]. Thus, |κ(x)| >
√
2λ, x ∈ [0, 1] which yields that κ(x) < −√

2λ for
all x ∈ [0, 1] since κ(0) ≤ 0.

�

Proof of Theorem 1.1 All assertions of the theorem except the concavity follow from com-
bining Lemma 3.2 and Theorem 3.3. The strict concavity of the solution is established in
Lemma 3.4. �

Remark 3.5 By integrating (20) over (0, 1) and recalling the value of c2 in each of the three
cases, we deduce that

λ

∫ 1

0

√
1 + u′

β,λ(x)
2dx − E0(u) = c2

⎧⎨
⎩

> 0, 0 < β < β0,

= 0, β = β0,

< 0, β > β0.

Thus, we obtain a relation between the two parts contributing to the energy Eλ. In particular,
we have equipartition of energy if the graph of uβ,λ is an arc of a circle.

We now prove our assertions about the ordering of the minimizers with respect to the param-
eters β and λ.

Proof of Theorem 1.2 a) Let ui := uβi ,λ, i = 1, 2 as well as vi (x) := G(u′
i (x)) with G as in

(17). We claim that

v1(x) < v2(x) for all x ∈ [0, 1
2
). (31)

Let us first consider the case λ = 0. Corollary 2.3 implies that v′′
i (x) = 0 in [0, 1] and hence

vi (x) = G(βi )(1− 2x), so that (31) immediately follows from the strict monotonicity of G.
Next, let λ > 0. Since v1(

1
2 ) = v2(

1
2 ) = 0, we have that maxx∈[0, 12 ](v1 − v2)(x) ≥ 0.

Assume that there exists x0 ∈ [0, 1
2 ) such that (v1 − v2)(x0) = maxx∈[0, 12 ](v1 − v2)(x).

Since v1(0) − v2(0) = G(β1) − G(β2) < 0, we must have x0 ∈ (0, 1
2 ). Therefore,

0 < u′
2(x0) = G−1(v2(x0)) ≤ G−1(v1(x0)) = u′

1(x0),

and v′
1(x0) = v′

2(x0), v′′
1 (x0) ≤ v′′

2 (x0).
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Corollary 2.3 implies

v′′
1 (x0) ≤ v′′

2 (x0) = λu′
2(x0)(1 + u′

2(x0)
2)

3
4 ≤ λu′

1(x0)(1 + u′
1(x0)

2)
3
4 = v′′

1 (x0),

and hence u′
1(x0) = u′

2(x0) since λ > 0. Furthermore,

u′′
1(x0)

(1 + u′
1(x0)

2)
5
4

= v′
1(x0) = v′

2(x0) = u′′
2(x0)

(1 + u′
2(x0)

2)
5
4

= u′′
2(x0)

(1 + u′
1(x0)

2)
5
4

so that u′′
1(x0) = u′′

2(x0). By considering u
′
1, u

′
2 as solutions of the second orderODE (derived

from (22))

w′′ = 5

2

w(w′)2

1 + w2 + λw(1 + w2)2 (32)

we obtain that u′
1 ≡ u′

2 on [0, 1], a contradiction. Therefore, v1(x) − v2(x) < 0 for all
x ∈ [0, 1

2 ), i.e., (31). Since G is strictly increasing, we infer that u′
1(x) < u′

2(x), x ∈ [0, 1
2 ).

The relation u1(x) < u2(x), x ∈ (0, 1) now follows by integration and taking into account
the symmetry of ui . �

Proof of Theorem 1.2 b) The strategy is similar to a). Let ui := uβ,λi , i = 1, 2 and vi (x) :=
G(u′

i (x))withG as in (17). Clearly, vi (x) > 0, x ∈ [0, 1
2 ), v1(0) = v2(0) and v1(

1
2 ) = v2(

1
2 ).

Assume that there exists x0 ∈ (0, 1
2 ) such that (v2 − v1)(x0) = maxx∈[0, 12 ](v2 − v1)(x) ≥ 0.

Then 0 < u′
1(x0) = G−1(v1(x0)) ≤ G−1(v2(x0)) = u′

2(x0) and v′′
2 (x0) ≤ v′′

1 (x0). Corollary
2.3 implies

v′′
2 (x0) = λ2u

′
2(x0)(1 + u′

2(x0)
2)

3
4 > λ1u

′
1(x0)(1 + u′

1(x0)
2)

3
4 = v′′

1 (x0),

a contradiction. Hence, v2(x) < v1(x), x ∈ (0, 1
2 ) which implies that u′

2(x) < u′
1(x),

x ∈ (0, 1
2 ). The relation u2(x) < u1(x), x ∈ (0, 1) now follows as in a). �


4 Existence of minimizers for the inextensible problem

We consider now the minimization problem with prescribed length � and β > 0. Due to the
boundary condition, we see that necessarily � > 1. Recall that for β > 0 and λ ≥ 0, uβ,λ

denotes the unique minimizer of Eλ in Mβ found in Theorem 1.1.
Our approach is based on the observation that uβ,λ is the minimizer of the inextensible

problem with length � provided that λ solves the equation L(λ) = �, with the function L
defined in (11). The idea of using the extensible problem in order to study the inextensible
problem has previously been used by Miura in [16].
We first study the monotonicity of L(λ) and of the energy.

Lemma 4.1 Let β > 0 be fixed and 0 ≤ λ1 < λ2. Then,

(i) L(λ1) > L(λ2);
(ii) E0(uβ,λ1) < E0(uβ,λ2);
(iii) Eλ1(uβ,λ1) < Eλ2(uβ,λ2).

Proof We define ui := uβ,λi ∈ Mβ , i = 1, 2.

(i) The claim follows directly since ui , i = 1, 2, are symmetric with respect to 1
2 and

u′
1(x) > u′

2(x) > 0 for x ∈ (0, 1
2 ) by Theorem 1.2 b).
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(ii) We have by (i) for 0 < λ1 < λ2 that

E0(u1) =Eλ1(u1) − λ1L(λ1) ≤ Eλ1(u2) − λ1L(λ1)

=E0(u2) + λ1
(
L(λ2) − L(λ1)

)
< E0(u2).

If λ1 = 0, let λ3 = 1
2λ2 and u3 = uλ3 . Then, by minimality of u1, E0(u1) ≤ E0(u3)

whereas by the previous argument, E0(u3) < E0(u2). Combining the two inequalities
the statement follows also in this case.

(iii) Clearly, Eλ1(u1) ≤ Eλ1(u2) = Eλ2(u2) + (λ1 − λ2)L(λ2) < Eλ2(u2).

�

Lemma 4.2 (Continuous dependence onλ)Forβ > 0, the function S : [0,∞) �→ C1([0, 1]),
λ �→ uβ,λ is continuous. In particular, the function λ �→ L(λ) is continuous.

Proof Consider λ0 ∈ [0,∞) and a sequence (λn)n∈N ⊂ [0,∞) such that λn → λ0. Then,
the sequence of minimizers (uβ,λn )n∈N is by (16) uniformly bounded in C1. As in the proof
of Lemma 3.2 considering the function ū ∈ Mβ given by ū(x) = βx(1− x), we see that the
sequence is also uniformly bounded in H2. Hence, there exists a subsequence (uβ,λn j

) j∈N
and u∗ ∈ H2 such that

uβ,λn j
⇀u∗ in H2 and uβ,λn j

→ u∗ in C1. (33)

We show that u∗ = uλ0 . For any v ∈ Mβ , we have

Eλn j
(uβ,λn j

) ≤ Eλn j
(v) . (34)

By (33) it follows that λn j L(λn j ) → λ0
∫ 1
0

√
1 + (u′∗)2 dx as j → ∞. Arguing as in (23)

taking the limit j → ∞ in (34), it follows

Eλ0(u∗) = E0(u∗) + λ0

∫ 1

0

√
1 + (u′∗)2 dx ≤ Eλ0(v), for any v ∈ Mβ,

from which we see that u∗ minimizes Eλ0 in Mβ and hence u∗ = uβ,λ0 as the minimum is
unique. Thus, uβ,λn j

→ uβ,λ0 in C1. A standard argument yields uβ,λn → uβ,λ0 in C1 and
hence the continuity of S. The continuity of L(λ) is then immediate. �

Remark 4.3 The Noether identity (20) and the Euler-Lagrange equations allow even to prove
that the function S : [0,∞) �→ Ck([0, 1]), λ �→ uβ,λ is continuous for all k ∈ N.

We need an auxiliary result describing the behavior of the energy for large λ.

Lemma 4.4 Consider β > 0 and fixed. There exists a constant C which is independent of λ
such that for all λ > 4β2

1

2(1 + β2)
5
2

∫ 1

0
u′′

β,λ(x)
2dx + λ (L(λ) − 1) ≤ C

√
λ. (35)

Proof Let ε > 0 with βε < 1
2 and define

vε(x) :=
{

−ε + √
(1 + β2)ε2 − (x − βε)2, 0 ≤ x ≤ βε;
ε(
√
1 + β2 − 1), βε < x ≤ 1

2
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and vε(x) = vε(1 − x) for 1
2 < x ≤ 1. It is not difficult to verify that vε ∈ Mβ so that

Eλ(uβ,λ) = 1

2

∫
(u′′

β,λ)
2

(1 + (u′
β,λ)

2)
5
2

dx + λ

∫ 1

0

√
1 + (u′

β,λ)
2 dx

≤ Eλ(vε) = 1

2

π√
1 + β2

1

ε
+ λ

(
π

√
1 + β2 ε + (1 − 2βε)

)
.

After rearranging and choosing ε = λ− 1
2 , we infer that

1

2

∫ 1

0

u′′
β,λ(x)

2

(1 + u′
β,λ(x)

2)
5
2

dx + λ

∫ 1

0

(√
1 + u′

β,λ(x)
2 − 1

)
dx ≤ C

√
λ (36)

and the result follows from the fact that maxx∈[0,1] |u′
β,λ(x)| = β independently of λ. �


Proof of Theorem 1.3 Dividing by λ in (35) we see that limλ→∞ L(λ) = 1. In order to calcu-
late L(0), we apply [6, Lemma 4] which gives u′

β,0(x) = G−1(c/2− cx), with c = 2G(β),

see also (19). Using the substitution τ = G−1(c/2 − cx) we obtain

L(0) =
∫ 1

0

√
1 + G−1

( c
2

− cx
)2

dx = 1

c

∫ G−1( c
2 )

−G−1( c
2 )

(1 + τ 2)−3/4 dτ

= 1

2G(β)

∫ β

−β

(1 + τ 2)−3/4 dτ =
∫ β

−β
(1 + τ 2)−3/4dτ∫ β

−β
(1 + τ 2)−5/4dτ

= Lβ. (37)

By the strict monotonicity of λ �→ L(λ) (Lemma 4.1) and its continuity (Lemma 4.2), the
intermediate value theorem implies that for every � ∈ (1, Lβ ] there exists a unique λ = λβ,�

such that L(λβ,�) = �. The uniqueminimizeruλβ,�
of Eλβ,�

inMβ is then the uniqueminimizer
of E0 under the constraint of fixed length equal to �. By Theorem 1.1, this minimizer is C∞,
symmetric, strictly concave and satisfies (9), (10) with λ = λβ,� ≥ 0. �


5 Asymptotic behavior

5.1 Analysis of the limitˇ → ∞ and � ↘ 0

We study the limit behavior of the minimizers uβ,λ for β → ∞ and λ ↘ 0. Let us introduce
U0 : [0, 1] → R,U0(x) := limβ→∞ uβ,0(x), with uβ,0 as in (19). As this limit corresponds
to taking the limit c ↗ c0 it is not difficult to check that

U0(x) = 2

c0
4
√
1 + (G−1(c0/2 − c0x))2

. (38)

Note that U0 is smooth in (0, 1), continuous in [0, 1] and symmetric with respect to x = 1
2

with U0(0) = U0(1) = 0. Furthermore, the graph of U0 has vertical tangent vectors at
x = 0, 1.

Theorem 5.1 For each β > 0, λ ≥ 0 we have that uβ,λ(x) ≤ U0(x) for all x ∈ [0, 1].
Furthermore, uβ,λ converges uniformly on [0, 1] to U0 as (β, λ) → (+∞, 0).
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Fig. 1 The minimizer uβ,λ for β = 100, λ = 0.1 and for β = 400, λ = 0.01

Proof Using Theorem 1.2 b), (19) and the definition of U0 we obtain

uβ,λ(x) ≤ uβ,0(x) ≤ U0(x), x ∈ [0, 1].
In order to prove the uniform convergence of uβ,λ, we first consider the sequence ũk := uk, 1k

.

Clearly, ũk ≤ ũk+1 ≤ U0 by Theorem 1.2 and what we have already shown, so that ũ(x) :=
limk→∞ ũk(x) exists for every x ∈ [0, 1] with ũ ≤ U0 in [0, 1]. On the other hand, we infer
from Lemma 4.2 and Theorem 1.2 for x ∈ [0, 1] and fixed β > 0 that

uβ,0(x) = lim
k→∞ uβ, 1k

(x) ≤ lim
k→∞ uk, 1k

(x) = lim
k→∞ ũk(x) = ũ(x) .

Taking the limit β → ∞, we deduce that U0(x) ≤ ũ(x), x ∈ [0, 1], so that ũ ≡ U0. Since
U0 is continuous, Dini’s theorem implies that (ũk)k∈N converges uniformly on [0, 1] to U0.
Thus, given ε > 0, there exists k0 ∈ N such that maxx∈[0,1]

(
U0(x) − ũk0(x)

)
< ε. Again by

Theorem 1.2, we have for all β > k0, 0 ≤ λ < 1
k0

that uβ,λ(x) ≥ uk0,λ(x) ≥ uk0, 1
k0

(x) =
ũk0(x), x ∈ [0, 1] and therefore

max
x∈[0,1] |uβ,λ(x) −U0(x)| = max

x∈[0,1]
(
U0(x) − uβ,λ(x)

) ≤ max
x∈[0,1]

(
U0(x) − ũk0(x)

)
< ε,

for all β > k0, 0 ≤ λ < 1
k0
. �


In Fig. 1, we show plots of the solutions uβ,λ for the choices β = 100, λ = 0.1 and β =
400, λ = 0.01, respectively. The simulations were done with a descent algorithm based on a
splitting of the fourth order problem into two second order problems, see [4, Section 6] for
a similar approach in the context of the obstacle problem for elastic graphs.

Remark 5.2 The function Lβ is strictly increasing in β and

L∞ := lim
β→∞ Lβ =

∫∞
0 (1 + τ 2)−3/4dτ∫∞
0 (1 + τ 2)−5/4dτ

=
∫ 1
0 x−3/4(1 − x)−1/2dx∫ 1
0 x−1/4(1 − x)−1/2dx

= B(1/4, 1/2)

B(3/4, 1/2)
= �(1/4)�(5/4)

(�(3/4))2
∼ 2.18844.. ,

with the substitution x = 1/(1 + τ 2) and B the Beta function. Arguing similarly as in (37)
one sees that L∞ is the length of the graph of U0, see (38).

123



A. Dall’Acqua, K. Deckelnick

5.2 Analysis of the singular limit � → ∞

By considering λ → ∞, we see the elastic energy as a singular perturbation of the length
functional. The energy then forces the minimizers to approach a straight line while the
boundary conditions induce a non-trivial boundary layer. The shape of this layer turns out to
be a borderline elastica, as in [16] where general parameterized curves are considered. Let
us also mention that [15] considers a corresponding limit in a graph setting for a functional
that contains an additional adhesion term.

In what follows, we fix β > 0. In order to study the dependence of uβ,λ on the parameters
β and λ, we write c2 = c2(β, λ), where c2 is given by (20).

Lemma 5.3 We have uβ,λ → 0 uniformly in [0, 1] and uβ,λ → 0 in H2(a, 1−a) as λ → ∞
for every 0 < a < 1

2 .

Proof Let (λk)k∈N be an arbitrary sequence such that λk → ∞, k → ∞. Abbreviating
uk := uβ,λk , we find in view of maxx∈[0,1] |u′

k(x)| = β and (35) that

1

1 + √
1 + β2

∫ 1

0
u′
k(x)

2dx ≤ ∫ 1
0

(√
1 + u′

k(x)
2 − 1

)
dx

≤ C√
λk

→ 0, k → ∞. (39)

Since uk(0) = 0, we deduce from (39)

max
x∈[0,1] |uk(x)| ≤ ‖u′

k‖L2(0,1) → 0, k → ∞,

i.e., the uniform convergence of (uβ,λ)λ to zero for λ → ∞ and that uβ,λ → 0 in H1.
Next, let us fix 0 < a < 1

2 . Since uk is concave, we have 0 ≤ u′
k(x) ≤ u′

k(y) for all
0 ≤ y ≤ a

2 , a
2 ≤ x ≤ 1

2 and hence

max
a
2 ≤x≤ 1

2

u′
k(x) ≤ u′

k

(a
2

)
≤ 2

a

∫ a
2

0
u′
k(y)dy → 0, k → 0

in view of (39), so that the symmetry of uk yields

max
x∈[ a2 ,1− a

2 ]
|u′

k(x)| → 0, k → ∞. (40)

Next, recall that uk satisfies with κk(x) = u′′
k (x)

(1+u′
k (x)

2)
3
2

κ ′
k(x)

1 + u′
k(x)

2 + 1

2

u′
k(x)κk(x)

2√
1 + u′

k(x)
2

− λk
u′
k(x)√

1 + u′
k(x)

2
= 0, x ∈ [0, 1]. (41)
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Let ϕ ∈ C1([0, 1]) be a cut-off function such that supp(ϕ) ⊂ ( a2 , 1 − a
2 ) and ϕ ≡ 1 on

[a, 1 − a]. If we multiply (41) by −ϕ2 u′
k and integrate by parts, we obtain∫ 1

0
ϕ(x)2

(
1 − 5

2

u′
k(x)

2

1 + u′
k(x)

2

) u′′
k (x)

2

(1 + u′
k(x)

2)
5
2

dx + λk

∫ 1

0

ϕ(x)2u′
k(x)

2√
1 + u′

k(x)
2
dx

≤ 2
∫ 1

0
|ϕ(x)| |ϕ′(x)| |u′

k(x)| |u′′
k (x)|

(1 + u′
k(x)

2)
5
2

dx

≤ 1

2

∫ 1

0
ϕ(x)2

u′′
k (x)

2

(1 + u′
k(x)

2)
5
2

dx + 2
(
max
x∈[0,1] |ϕ

′(x)|)2
∫ 1

0
u′
k(x)

2 dx .

We deduce from (40) that maxx∈[ a2 ,1− a
2 ] 5

2
u′
k (x)

2

1+u′
k (x)

2 ≤ 1
4 for k ≥ k0 so that

∫ 1−a

a
u′′
k (x)

2 dx ≤ C
∫ 1

0
u′
k(x)

2 dx → 0, k → ∞, (42)

where we have used again (39) as well as the fact that (u′
k)k∈N is uniformly bounded. The

claim follows. �

Corollary 5.4 We have for β > 0 that

lim
λ→∞

c2(β, λ)

λ
= 1. (43)

Proof Integrating the relation (20) over [0, 1], we obtain

c2(β, λ) = λ

∫ 1

0

√
1 + u′

β,λ(x)
2 dx − 1

2

∫ 1

0

u′′
β,λ(x)

2

(1 + u′
β,λ(x)

2)
5
2

dx .

If we divide by λ and rearrange, we infer that

c2(β, λ)

λ
− 1 =

∫ 1

0

(√
1 + u′

β,λ(x)
2 − 1

)
dx − 1

2

1

λ

∫ 1

0

u′′
β,λ(x)

2

(1 + u′
β,λ(x)

2)
5
2

dx → 0,

for λ → ∞, in view of (36). �

Theorem 5.5 (Boundary layer) Let us define vλ : [0, 1

2

√
λ] → R by vλ(y) = √

λ uβ,λ(
y√
λ
)

for any fixed β > 0. Then, vλ → v in C1
loc([0,∞)) as λ → ∞, where v : [0,∞) → R is the

unique solution of the initial value problem

v′′(y) = −√
2
(
1 + v′(y)2

) 3
2
(
1 − 1√

1 + v′(y)2
) 1

2
, (44)

v(0) = 0, v′(0) = β. (45)

Proof Let (λk)k∈N be an arbitrary sequence with λk → ∞, k → ∞ and abbreviate vk = vλk ,
uk = uβ,λk . Let us fix R > 0. Since max0≤y≤ 1

2

√
λk

|v′
k(y)| = max0≤x≤ 1

2
|u′

k(x)| = β, we

easily see that (vk)k≥kR is bounded in C1([0, R]). Furthermore, (36) implies that

∫ R

0
v′′
k (y)

2 dy ≤ 1√
λk

∫ 1
2

0
u′′
k (x)

2 dx ≤ C, k ≥ kR .
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Fig. 2 The minimizer uβ,λ for β = 5, λ = 100 (left) and vλ (near 0) as in Theorem 5.5 (right)

Hence, there exists a subsequence, again denoted by (vk)k∈N, and vR ∈ H2(0, R) such that

vk⇀vR in H2(0, R), vk → vR in C1([0, R]).
Using a diagonal argument, we obtain a further subsequence and a function v : [0,∞) → R

such that

vk⇀v in H2(0, R), vk → v in C1([0, R]) for all R > 0. (46)

In order to identify v, we deduce from (20) that

u′′
k (x)

2

(1 + u′
k(x)

2)3
= 2

⎛
⎝λ − c2(β, λk)√

1 + u′
k(x)

2

⎞
⎠ , 0 ≤ x ≤ 1

2
.

Since u′′
k (x) ≤ 0, x ∈ [0, 1], we infer that

u′′
k (x) = −√

2
(
1 + u′

k(x)
2) 3

2
√

λk

⎛
⎝1 − 1

λk

c2(β, λk)√
1 + u′

k(x)
2

⎞
⎠

1
2

, 0 ≤ x ≤ 1

2

and hence

v′′
k (y) = −√

2
(
1 + v′

k(y)
2) 3

2

⎛
⎝1 − c2(β, λk)

λk

1√
1 + v′

k(y)
2

⎞
⎠

1
2

, 0 ≤ y ≤ 1

2

√
λk .

Passing to the limit k → ∞ using (46) and (43), we obtain (44). Clearly, (45) is satisfied
since vk(0) = 0, v′

k(0) = β for each k ∈ N. �

In Fig. 2, we show plots of the solution uβ,λ for the choice β = 5 and λ = 100 together with
the rescaled function vλ on the interval [0, 3].

Critical points of the elastic energy Eλ, called elastica, have been classified in [10] with
the help of formulae for the curvature. Using explicit formulae for the curves derived in [17],
we are able to show that the function v describing the boundary layer is a piece of a so-called
borderline elastica, similar to the findings in Miura [16]. By Müller [17, Proposition B.8]
(and changing the orientation), an arclength parametrization of the borderline elastica is

γ̃ (s) =
(
s − 2 tanh(s)
−2sech (s)

)
with γ̃ ′(s) = 1

cosh(s)2

(
cosh(s)2 − 2
2 sinh(s)

)
= eiθ(s), (47)
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where the angle function θ is smooth and strictly decreasing on [arcosh (
√
2),∞)with values

in (0, π/2]. Hence, for β > 0, there exists a unique s0 ∈ (arcosh (
√
2),∞) such that the

shifted borderline elastica

γ : R → R
2, γ (s) = γ̃ (s + s0) − γ̃ (s0) ,

satisfies γ (0) = (0, 0) and γ ′(0) = 1√
1+β2

(
1
β

)
. We may describe γ|[0,∞) as a graph via

w : [0,∞) → R, where

w(y) := γ 2(s(y)) = −2sech (s(y) + s0) − γ̃ 2(s0),

with s(·) the inverse of y : [0,∞) → [0,∞), y(s) := γ 1(s) = s+s0−2 tanh(s+s0)−γ̃ 1(s0).
The function w satisfies w(0) = 0 as well as

w′(y) = 2
sinh(s(y) + s0)

(cosh(s(y) + s0))2
s′(y) = 2

sinh(s(y) + s0)

(cosh(s(y) + s0))2 − 2
,

w′′(y) = −2
(cosh(s(y) + s0))5

((cosh(s(y) + s0))2 − 2)3
.

In particular, we have that w′(0) = 2 sinh(s0)
cosh(s0)2−2

= β by (47). Furthermore, elementary
calculations show that

w′′(y) = −√
2
(
1 + w′(y)2

) 3
2
(
1 − 1√

1 + w′(y)2
) 1

2
, y ≥ 0,

so that w solves (44), (45) and hence coincides with the function v from Theorem 5.5.
Summarizing, similarly, as in [16], we have the following

Corollary 5.6 The graph of the solution v of (44), (45) is a piece of a borderline elastica.

Remark 5.7 We may use the above results in order to describe the asymptotic behavior of
the minimizer of the inextensible problem for � ↘ 1. For β > 0 and � ∈ (1, Lβ ] denote by
u� the unique minimizer of E0 in Mβ,�. Then, by the proof of Theorem 1.3, there exists a
unique λ� ∈ [0,∞) such that � = L(λ�) and u� = uβ,λ�

. We claim that

λ� → ∞ as � ↘ 1. (48)

To see this, consider a sequence (� j ) j∈N ⊂ (1, Lβ ] such that � j → 1 and set λ j = λ� j . If (48)
were not true there would exist a bounded and converging subsequence, λ jk → λ̄ ∈ [0,∞)

for k → ∞. By Lemma 4.2, � jk = L(λ jk ) → L(λ̄) > 1 as k → ∞, a contradiction.
Summarizing, the behavior of the minimizers of the inextensible problem for � ↘ 1 corre-
sponds to the behavior for λ → ∞ of the minimizers of the extensible problem. In particular,
we may use Theorems 5.3 and 5.5 and Corollary 5.6 in order to describe the shape of u� as
� ↘ 1.
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A Derivation of conserved quantities

We give here the main steps in the derivation of (14) and (15) in the case δ = 0. These
equations can be seen as Noether identities resulting from the invariance of Eλ with respect
to translations. Similar ideas have been used in Dall’Acqua et al. [2, 3] and to prove existence
and uniqueness results for Willmore boundary value problems. Here, it is convenient to work
with smooth regular curves γ : [0, 1] → R

2 and consider the energy

Eλ(γ ) = 1

2

∫ 1

0
|�κ|2 ds + λ

∫ 1

0
ds,

where ds = |∂xγ |dx and

τ = ∂sγ = 1

|∂xγ |∂xγ and �κ = ∂2s γ,

are the tangential and curvature vector, respectively. This is the same energy as in (1) since
κ2 = |�κ|2. Next, let γ be a critical point of Eλ, i.e., a (classical) solution of the Euler-Lagrange
equation

∇2
s �κ + 1

2
|�κ|2�κ − λ�κ = 0 . (A1)

Here, the differential operator ∇s is the component of ∂s orthogonal to the curve, i.e.,
∇s� = ∂s� − 〈∂s�, ∂sγ 〉∂sγ , with 〈·, ·〉 the Euclidean scalar product in R

2. By a direct
computation, one finds for a smooth vector field ϕ : [0, 1] → R

2 along γ that

d

dt
Eλ(γ + tϕ)

∣∣∣∣
t=0

=
[
〈�κ, ∂sϕ〉 − 〈∇s �κ, ϕ〉 − 1

2
|�κ|2〈∂sγ, ϕ〉 + λ〈∂sγ, ϕ〉

]1
0

+
∫ 1

0
〈∇2

s �κ + 1

2
|�κ|2�κ − λ�κ, ϕ〉 ds

=
[
〈�κ, ∂sϕ〉 − 〈∇s �κ, ϕ〉 − 1

2
|�κ|2〈∂sγ, ϕ〉 + λ〈∂sγ, ϕ〉

]1
0
, (A2)

since γ satisfies (A1).
We observe now two things. First, the previous computation could be done in any compact

interval [x1, x2] contained in [0, 1]. Second, if we takeϕ such that t �→ Eλ(u+tϕ) is constant,
then the boundary terms need to add to zero.

The idea is now to combine these two observations together as follows. If we choose
ϕ such that the integrand in the energy is pointwise invariant with respect to t , then, the
boundary terms in (A2) have still to add to zero, but since we can take any interval [x1, x2]
contained in [0, 1], this actually means that the boundary terms evaluated at x1 and x2 have
to coincide and since these are arbitrary, it needs to be a constant function!

Since the curvature vector and |∂xγ | are invariant with respect to translation of the curve,
the idea is to consider a constant vector field ϕ = �w = (w1, w2)

t . Then, (A2) yields

− 〈∇s �κ, �w〉 − 1

2
|�κ|2〈∂sγ, �w〉 + λ〈∂sγ, �w〉 = constant . (A3)

Since �w ∈ R
2 is arbitrary, there exists a constant vector �d = (d1, d2)t ∈ R

2 such that

− ∇s �κ − 1

2
|�κ|2∂sγ + λ∂sγ = �d . (A4)
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Considering now the case that γ is the graph of a function u, we find

∂sγ = τ = 1√
1 + (u′)2

(
1
u′
)

, n = 1√
1 + (u′)2

(−u′
1

)

�κ = κ n, ∇s �κ = ∂sκ n = κ ′√
1 + (u′)2

n,

so that (A4) can be rewritten as

κ ′u′

1 + (u′)2
− 1

2
κ2 1√

1 + (u′)2
+ λ

1√
1 + (u′)2

= d1, (A5)

− κ ′

1 + (u′)2
− 1

2
κ2 u′√

1 + (u′)2
+ λ

u′√
1 + (u′)2

= d2, (A6)

these are (15) and (14) for δ = 0, respectively, taking d1 = c2 and d2 = −c1. The same ideas
have been used also in [19, Section 1] for curves not necessarily given by graphs.
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