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Abstract
Let (λk) be a strictly increasing sequence of positive numbers such that

∑∞
k=1

1
λk

< ∞. Let

f be a bounded smooth function and denote by u = u f the bounded classical solution to

u(x) − 1

2

m∑

k=1

D2
kku(x) +

m∑

k=1

λk xk Dku(x) = f (x), x ∈ R
m .

It is known that the following dimension-free estimate holds:

∫

Rm

[
m∑

k=1

λk (Dku(y))2
]p/2

μm(dy) ≤ (cp)
p
∫

Rm
| f (y)|pμm(dy), 1 < p < ∞

where μm is the “diagonal” Gaussian measure determined by λ1, . . . , λm and cp > 0 is
independent of f and m. This is a consequence of generalized Meyer’s inequalities [4]. We
show that, if λk ∼ k2, then such estimate does not hold when p = ∞. Indeed we prove

sup
f ∈C2

b (Rm ), ‖ f ‖∞≤1

{
m∑

k=1

λk (Dku
f (0))2

}

→ ∞ as m → ∞.

This is in contrast to the case of λk = λ > 0, k ≥ 1, where a dimension-free bound holds
for p = ∞.
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976 E. Dolera, E. Priola

1 Introduction

Let us recall dimension-free L p-gradient estimates involving Ornstein–Uhlenbeck operators
(cf. [4–6, 21, 25]). Let (λk) be a strictly increasing sequence of positive numbers such that

∞∑

k=1

1

λk
< ∞. (1)

For any m ≥ 1 we denote by Am the m ×m diagonal matrix with negative eigenvalues −λk ,
k = 1, . . . ,m. Let f : Rm → R be a bounded C2-function with all first and second bounded
derivatives, i.e., f ∈ C2

b (R
m), and denote by u ∈ C2

b (R
m) the unique bounded classical

solution to

u(x)−
(1

2
	mu(x)+〈Amx, Du(x)〉

)
= u(x)− 1

2

m∑

k=1

D2
kku(x)+

m∑

k=1

λk xk Dku(x) = f (x),

(2)
where x = (x1, . . . , xm) ∈ R

m and 〈·, ·〉 denotes the standard scalar product in R
m . Here,

Dk and D2
kk are first and second partial derivatives with respect to the canonical basis (ek)

inRm . The operator we consider is anm-dimensional Ornstein–Uhlenbeck operator, namely
Lm = 1

2	m + 〈Amx, D〉.
Then, introduce the Gaussian measure μm = N (0, (−2Am)−1) with mean 0 and

covariance matrix (−2Am)−1, with density

ϕm(x) :=
(

1

2π

)m/2
(

m∏

i=1

1

2λi

)−1/2

exp

{

−
m∑

i=1

λi x
2
i

}

, x = (x1, . . . , xm) ∈ R
m .

Note that Lm is a self-adjoint operator on L2(Rm, μm), the usual L2-space with respect to
μm . See, for instance, [4, 6, 7, 13]. It is known that, if 1 < p < ∞, there exists a constant
cp , independent of f and the dimension m, such that the following sharp gradient estimate
holds: ∫

Rm

( m∑

k=1

λk (Dku(y))2
)p/2

μm(dy) ≤ (cp)
p

∫

Rm
| f (y)|pμm(dy). (3)

The result follows from the general estimates (11) given in Theorem 5.3 of [4], which extends
Proposition 3.5 in [25] (see also the references therein). Note that (3) can be rewritten as

‖(−Am)1/2Du‖L p(Rm ,μm ) ≤ cp‖ f ‖L p(Rm ,μm ), (4)

where

(−Am)1/2Du(x) =
m∑

k=1

√
λk Dku(x)ek .

Ourmain result (cf. Theorem 6 below) shows that, when p = ∞, the dimension-free estimate
(4) in general fails to hold. Indeed, we prove the following stronger assertion.Writing u = u f

to stress the dependence of the solution u on f , we show that if λk ∼ k2 as k → ∞, then,
choosing x = 0, we have

sup
f ∈C2

b (Rm )

‖ f ‖∞≤1

|(−Am)1/2Du f (0)|2
Rm = sup

f ∈C2
b (Rm )

‖ f ‖∞≤1

{ m∑

k=1

λk (Dku
f (0))2

}
→ ∞ as m → ∞.

(5)
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A counterexample to L∞-gradient type estimates... 977

In contrast to (5), we point out that, when Am = −λIm with λ > 0 and Im them×m identity
matrix, then the following dimension-free L∞-gradient estimates

‖(λ)1/2Du f ‖∞ = sup
x∈Rm

|(λ)1/2Du f (x)|Rm ≤ π√
2

sup
x∈Rm

| f (x)|, f ∈ C2
b (R

m) (6)

hold true; see Proposition 5.

1.1 Infinite dimensional Ornstein–Uhlenbeck semigroups

Let us comment on the previous dimension-free L p
μ-estimate (4). Such kind of inequalities

can be deduced from known results for infinite dimensional Ornstein–Uhlenbeck operators.
This point of view is of interest in probability because of its connection with SPDEs (see
also [8] and the references therein).

To introduce this setting, we replaceRm by a real separable Hilbert space H with orthonor-
mal basis (ek)k≥1 and inner product 〈·, ·〉. Then, we consider the unbounded self-adjoint
operator A : D(A) ⊂ H → H such that

D(A) =
{
x ∈ H :

∑

k≥1

(〈x, ek〉)2 λ2k < ∞
}
, Aek = −λkek, k ≥ 1 (7)

(cf. [1, 8, 9, 22]). Our condition (1) is equivalent to require that the inverse operator A−1 :
H → H is a trace class operator. The operator A generates a strongly continuous semigroup
(et A) on H , given by et Aek = e−tλk ek for any t ≥ 0 and k ≥ 1. We can define the
corresponding Ornstein–Uhlenbeck semigroup (Pt ) by

Pt f (x) =
∫

H
f (et Ax +

√
I − e2t A y) N (

0,−(2A)−1) (dy), f ∈ Bb(H), x ∈ H , t ≥ 0

(8)
where f : H → R is a Borel, bounded function (i.e., f ∈ Bb(H)); N (

0,−(2A)−1
)
stands

for the centered Gaussian measure defined on the Borel σ -algebra of H (see Chapter 1 in
[7], [9] and Section 2.2); I : H → H is the identity.

Formula (8) is an extension of a well-known formula used in finite dimension. From the
probabilistic point of view (Pt ) is the transition Markov semigroup of the OU stochastic
process (Xx

t ) which solves dXt = AXtdt + dWt , X0 = x where W is a cylindrical Wiener
process on H ; cf. [7, 8, 14].When f ∈ C2

b (H), i.e. f is bounded, twice Fréchet-differentiable
with first and second bounded and continuous derivatives, we consider u : H → R given by

u(x) = R(1, L) f (x) =
∫ ∞

0
e−t (Pt f )(x)dt, x ∈ H . (9)

Following Chapter 6 in [7], u is the generalized bounded solution to u − Lu = f , where L
is formally given by 1

2Tr(D
2) + 〈x, AD〉. Here, we only note that if f is also cylindrical,

i.e., there exist m ≥ 1 and f̃ ∈ C2
b (R

m) such that

f (x) = f̃ (〈x, e1〉, . . . , 〈x, em〉), x ∈ H , (10)

then u given in (9) depends only on a finite number of variables, i.e.,

u(x) = ũ(〈x, e1〉, . . . , 〈x, em〉), x ∈ H

(cf. Sect. 2.2). Moreover, ũ solves (2) with f replaced by f̃ . In addition, if f ∈ C2
b (H), we

have that u = R(1, L) f ∈ C2
b (H), and Du(x) ∈ D((−A)1/2), x ∈ H (cf. [9] for stronger
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978 E. Dolera, E. Priola

results). By Theorem 5.3 of [4] (see also Corollary 5.4 in [4] and Remark 1), there exists a
constant cp (independent of f ) such that

‖(−A)1/2Du‖L p(H ,μ) ≤ cp‖ f ‖L p(H ,μ), 1 < p < ∞, (11)

where μ = N (
0,−(2A)−1

)
. Moreover, we have ‖D2u‖L p(H ,μ) ≤ cp‖ f ‖L p(H ,μ), i.e.,

∫

H

( ∞∑

k=1

(Dkku(y))2
)p/2

μ(dy) ≤ (cp)
p

∫

H
| f (y)|pμ(dy). (12)

It is not difficult to show that (11) implies (4) using cylindrical functions f as in (10); see
Remark 8. Estimates (11) and (12) are part of the generalized Meyer’s inequalities proved in
[4] using the elliptic Littlewood-Paley-Stein inequalities associated with the OU semigroup
(Pt ). For applications of the classical Meyer’s inequalities to the Malliavin Calculus we
refer to [15, 20, 21, 26] (see also Remark 2). The results given in [4] give a characterization
of the domain of the generator of (Pt ) in L p(H , μ); see also [5] (the case p = 2 was
obtained earlier in [6]).We alsomention the characterization of the domain of non self-adjoint
Ornstein–Uhlenbeck generators given in [17, 19]. Estimates (12) have been used to prove
strong uniqueness for a class of SPDEs in [10]. For related results on Ornstein–Uhlenbeck
operators in Gaussian harmonic analysis we refer to [2, 3, 13, 18] and the references therein.

Our main result implies that (11) fails to hold for p = ∞, i.e. it is not true that there exists
C > 0, independent of f , such that

sup
x∈H

|(−A)1/2DR(1, L) f (x)|H ≤ C sup
x∈H

| f (x)|, f ∈ C2
b (H), (13)

where we have used u = R(1, L) f as in (9) (see in particular Corollary 7). This estimate is
stated in [22, Theorem 7] which is based on [22, Lemma 6]. However, there is a mistake in
the proof of that lemma. In particular, we show that [22, Theorem 7] cannot hold.

Remark 1 Let us recall the notation used in [4] to study general symmetric Ornstein–
Uhlenbeck semigroups in Hilbert spaces. For the sake of notational clarity, the operator
C used in [4] corresponds to our−(2A)−1, while our semigroup (et A) corresponds to (e−t A)

in [4]. They use the Malliavin gradient DI = C1/2D (where D is the Fréchet derivative)
and DA = 1√

2
D. Moreover, the symbol DA2 = ADI , which is used in the definition of the

Sobolev space W 1,p
A2 (see Corollary 5.4 in [4]) corresponds to our operator 1√

2
(−A)1/2D.

Remark 2 Let us recall the classical Ornstein–Uhlenbeck semigroup (St )

St f (x) =
∫

H
f (e−t x +

√
1 − e−2t y) ν (dy), f ∈ Bb(H), x ∈ H , (14)

where ν is a centered Gaussian measure on H (see Sect. 2.2). The classical Meyer’s inequal-
ities give a complete characterization of the domains of (I − Np)

m/2 in L p(H , ν) for all
p ∈ (1,∞) and m = 1, 2, . . . in terms of Gaussian Sobolev spaces related to ν. Here, Np

denotes the generator of (St ) in L p(H , ν) (see [15, 20, 21]). For a discussion of Meyer’s
inequalities in the Malliavin Calculus we refer to [15] and [26, Chapter 4].

Remark 3 Estimates like (11) and (12) hold true also in Hölder spaces (see [9, 23] for more
details). In particular, for any θ ∈ (0, 1), there exists an absolute constant cθ only depending
on θ such that

‖(−A)1/2DR(1, L) f ‖Cθ
b (H ,H) ≤ cθ‖ f ‖Cθ

b (H). (15)
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A counterexample to L∞-gradient type estimates... 979

Remark 4 We do not know if for p �= 2 the constant cp appearing in (3) is an absolute
constant (independent of the positive eigenvalues (λk)). Indeed, aswe havementioned before,
the dimension-free estimate (3) follows from infinite dimensional estimates like (11) and
(12) which are proved in Theorem 5.3 of [4] (extending Proposition 3.5 in [25]). However,
Theorem 5.3 uses Lemma 5.1 in [4], whose proof invokes results on sums of operators with
bounded imaginary powers (see Theorem 4 and Corollary 2 in [24]). The approach of [11]
and [24], which has been also used in [19], does not provide sharp constants in the estimates
and so we do not know if cp also depends on A. We point out that the estimates given in
Proposition 3.5 of [25] provide absolute constants.

2 Notations andmain results

Let Q be a symmetric and positive definitem×mmatrix.We denote byN (0, Q) theGaussian
measure with mean 0 and covariance matrix Q, which has density

(
1

2π

)m/2 1√
det Q

exp

{

−1

2
|Q−1/2x |2

}

(16)

with respect to them-dimensional Lebesguemeasure.Wefirst consider forλ > 0 the equation

v(x) −
(1

2
	mv(x) − λ〈x, Dv(x)〉

)
= v(x) − Mmv(x) = f (x), x ∈ R

m, (17)

with Mm = 1
2	m − λ〈x, D〉. We assume that f ∈ C2

b (R
m). Equation (17) is similar to (2)

with Am replaced by −λIm . Using the following Ornstein–Uhlenbeck semigroup (Smt )

Smt f (x) =
∫

Rm
f (e−λt x +

√
1 − e−2λt y) N (

0,
1

2λ
Im

)
(dy), x ∈ R

m, t ≥ 0, (18)

we find (cf. (9), and [7])

v(x) = R(1, Mm) f (x) =
∫ ∞

0
e−t (Smt f )(x)dt, x ∈ R

m .

Then, we have the following

Proposition 5 For any λ > 0 it holds:

sup
x∈Rm

√
λ|DR(1, Mm) f (x)|Rm ≤ π√

2
sup
x∈Rm

| f (x)|, f ∈ C2
b (R

m). (19)

Proof Let v(x) = R(1, Mm) f ∈ C2
b (R

m). We set v(x) = u(
√

λ x) and so, for y ∈ R
m , we

get

u(y) − λ

2
	u(y) + λ〈y, Du(y)〉 = f (y/

√
λ)

and

1

λ
u(y) − 1

2
	u(y) + 〈y, Du(y)〉 = 1

λ
f (y/

√
λ) = f̃ (y).

We have

u(x) =
∫ ∞

0
e− 1

λ
tdt

∫

Rm
f̃ (e−t x + y)N

(
0,

1 − e−2t

2
Im

)
(dy)
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980 E. Dolera, E. Priola

and, considering the directional derivative 〈Du(x), h〉 = Dhu(x), h ∈ R
m , |h| = 1, we get,

differentiating under the integral sign,

Dhu(x) = 2
∫ ∞

0
e− 1

λ
t
∫

Rm
f̃ (e−t x + y)

e−t

1 − e−2t 〈h, y〉N
(
0,

1 − e−2t

2
Im

)
(dy)

(cf. Theorem 6.2.2 in [7], [9]). Then, changing variable in the integral over Rm , we obtain

‖Dhu‖∞ ≤ 2‖ f̃ ‖∞
∫ ∞

0

e− 1
λ
t e−t

1 − e−2t dt
∫

Rm

∣
∣
∣〈h,

(1 − e−2t

2

)1/2
y〉

∣
∣
∣N

(
0, Im

)
(dy)

≤
√
2

λ
‖ f ‖∞

∫ ∞

0

e−t

(1 − e−2t )1/2
dt

∫

Rm

∣
∣〈h, y〉∣∣N (

0, Im
)
dy ≤ π

λ
√
2
‖ f ‖∞.

Since Dhu(y) = 1√
λ
Dhv(

y√
λ
), we have ‖Dhu‖∞ = 1√

λ
‖Dhv‖∞ and (19) follows. ��

Let us start the proof of the main estimate (5) concerning equation (2) involving the
Ornstein–Uhlenbeck operator Lm . Similarly to the proof of Proposition 5 the solution u ∈
C2
b (R

m) to (2) is given by

u(x) = R(1, Lm) f (x) =
∫ ∞

0
e−t (Pm

t f )(x)dt (20)

with

Pm
t f (x) =

∫

Rm
f (et Am x +

√
Im − e2t Am y) N

(
0,−1

2
A−1
m

)
(dy)

=
∫

Rm
f (et Am x + y) N (

0, Qm
t

)
(dy), f ∈ C2

b (R
m), x ∈ R

m,

where

Qm
t =

∫ t

0
e2s Am ds = (−2Am)−1(Im − e2t Am ), t ≥ 0

(Qm
t is a diagonal matrix with positive eigenvalues). Letμm

t = N (
0, Qm

t

)
. By differentiating

under the integral sign, the following formula holds for the directional derivative of Pm
t f

along h ∈ R
m :

Dh P
m
t f (x) = 〈DPm

t f (x), h〉 =
∫

Rm
〈�m

t h, (Qm
t )−

1
2 y〉 f (et Am x + y)μm

t (dy), x ∈ R
m , t > 0,

(21)
where �m

t = (Qm
t )−1/2et Am ; cf. Theorem 6.2.2 in [7]. Hence, the term

(−Am)1/2Du f (0) = (−Am)1/2DR(1, Lm) f (0) ∈ R
m

that appears in (5) has components

〈(−Am)1/2Du f (0), ek〉 =
∫ ∞

0
e−tdt

∫

Rm
〈(−Am)1/2�m

t ek, (Q
m
t )−

1
2 y〉 f (y)μm

t (dy)

=
∫ ∞

0
e−tdt

∫

Rm
〈(−Am)1/2�m

t ek, y〉 f ((Qm
t )

1
2 y)N (0, Im)(dy)
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A counterexample to L∞-gradient type estimates... 981

for k = 1, . . . ,m. An easy calculation shows that

|(−Am)1/2DR(1, Lm) f (0)|2

=
m∑

k=1

( ∫ ∞

0

λke−t e−λk t

(1 − e−2λk t )1/2

1√
(2π)m

∫

Rm
f (c1(t)x1, . . . , cm(t)xm) xk e

− |x |2
2 dxdt

)2
,

(22)

where, for t ≥ 0, ck(t) =
(
1 − e−2λk t

2λk

)1/2

and (Qm
t )1/2 = diag[c1(t), . . . , cm(t)].

We will prove the following result.

Theorem 6 Let (λk) be a strictly increasing sequence of positive numbers, such that λk ∼ k2

as k → +∞. Then, assertion (5) is in force, i.e., taking into account (22), there holds

sup
m∈N

sup
f ∈C2

b (Rm )

‖ f ‖∞≤1

m∑

k=1

(∫ ∞

0

λke−t e−λk t

(1 − e−2λk t )1/2
×

× 1√
(2π)m

∫

Rm
f (c1(t)x1, . . . , cm(t)xm) xk e

− |x |2
2 dxdt

)2

= ∞.

The proof of this theorem is given in Section 3.
Finally, we show that Theorem 6 implies that the infinite dimensional estimate (13) cannot

hold.

Corollary 7 Under the same assumptions of Theorem 6, there holds

sup
f ∈C2

b (H), ‖ f ‖∞≤1

|(−A)1/2D(R(1, L) f ) (0)|H = ∞.

Proof of Corollary 7 Recall that we are considering a real separable Hilbert space H with
inner product 〈·, ·〉. According to Chapter 1 in [7], we can rewrite the OU semigroup (Pt ) in
(8) as follows

Pt f (x) =
∫

H
f (et Ax + y) N (

0, Qt
)
(dy), f ∈ C2

b (H), x ∈ H , (23)

where Qt = ∫ t
0 e

2s Ads := (−2A)−1(I − e2t A), t ≥ 0, and A is given in (7). Suppose
that f ∈ C2

b (H) is also cylindrical, i.e. that (10) holds for some m ≥ 1 and f̃ ∈ C2
b (R

m).
Identifying H with l2, we have that f (et Ax + y) = f̃ (et Am x (m) + y(m)), where Am is
the same matrix given in (2) and (20) and h(m) := (〈h, e1〉, . . . , 〈h, em〉) ∈ R

m , for any
h ∈ H . Moreover, we put μ := N (

0,−(2A)−1
) = N (

0,−(2Am)−1
) × νm , where νm =

∏∞
k=m+1 N (0, (2λk)−1); see Theorem 1.2.1 in [7]. It follows that, for any x ∈ H ,

Pt f (x) = Pm
t ( f̃ )(x (m)) =

∫

Rm
f̃ (et Am x (m) +

√
Im − e2t Am y) N (

0,−(2Am)−1) (dy),

u(x) = R(1, L) f (x) =
∫ ∞

0
e−t (Pt f )(x)dt = ũ(〈x, e1〉, . . . , 〈x, em〉)

123



982 E. Dolera, E. Priola

where ũ is given in (20) with f̃ in place of f therein. Setting μm := N (
0,−(2Am)−1

)
and

using that C2
b (H) contains the cylindrical functions displayed in (10), we get that

sup
f̃ ∈C2

b (Rm )

‖ f̃ ‖∞)≤1

|(−Am)1/2Dũ(0)| ≤ sup
f ∈C2

b (H)

‖ f ‖∞≤1

|(−A)1/2Du(0)|H , (24)

holds for any m ≥ 1. Notice that on the left-hand side of (24) we have 0 ∈ R
m while on

the right-hand side we have 0 ∈ H . Thus, as a consequence of Theorem 6, we deduce the
assertion. ��

Remark 8 By the same argument as in the previous proof we get easily

sup
f̃ ∈C2

b (Rm )

‖ f̃ ‖L p (Rm ,μm )≤1

‖(−Am)1/2Dũ‖L p(Rm ,μm ) ≤ sup
f ∈C2

b (H)

‖ f ‖L p (H ,μ)≤1

‖(−A)1/2Du‖L p(H ,μ), (25)

for any m ≥ 1 and p ∈ (1,+∞). This can be used to deduce that (3) or (4) follow from (11)
and (12).

3 Proof of Theorem 6

Let δ ∈ (0,+∞). Then, put Sm = Sm(δ) with

Sm(δ) = sup
f ∈C2

b (Rm )

‖ f ‖∞≤1

m∑

k=1

( ∫ δ

0

λke−λk t

(1 − e−2λk t )1/2

∫

Rm
f (c1(t)x1, . . . , cm(t)xm) xk

e− |x |2
2√

(2π)m
dxdt

)2
.

If we show that
sup
m≥2

Sm = ∞ (26)

holds under the assumption that λk ∼ k2 as k → +∞, then the validity of Theorem 6 will
follow.

3.1 Two useful lemmas

The following identity will be important. Recall that xk = 〈x, ek〉, k = 1, . . . ,m where (e j )
denotes the canonical basis in Rm .

Lemma 9 For any m ≥ 2, k ∈ {1, . . . ,m}, c = (c1, . . . , cm) ∈ R
m \ {0} and F ∈ Bb(R), it

holds

Im,k(F) = 1√
(2π)m

∫

Rm
F(〈c, x〉)xk e− |x |2

2 dx

= 2π(
√

π)m−3

(2π)m/2

(m−1

2

)
ck
|c|

∫ +∞

0

∫ π

0
e− 1

2 ρ2
ρm cosϑ(sin ϑ)m−2F(|c|ρ cosϑ)dρdϑ.

(27)

123
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Proof Weprovide additional details for the sake of completeness. Let us first considerm = 2.
We introduce the unitary vectors γ1 = c/|c| and γ2 ∈ R

2 such that (γ1, γ2) is an orthonormal
basis in R

2. Using the polar coordinates with respect to such basis we can write

x = ρ cos θ γ1 + ρ sin θ γ2,

which entails that

I2,k(F) = 1

2π

∫ 2π

0

∫ +∞

0
ρ2F(|c|ρ cos θ) (cos θ 〈γ1, ek〉 + sin θ 〈γ2, ek〉) e− ρ2

2 dρdθ

= 1

π

∫ π

0

∫ +∞

0
ρ2F(|c|ρ cos θ) cos θ 〈γ1, ek〉 e− ρ2

2 dρdθ, k = 1, 2

since
∫ 2π
0 F(|c|ρ cos θ) sin θ dθ = 0. Indeed, to prove this last identity under the sole

assumption that F ∈ Bb(R), we just notice that
∫ 2π

0
F(|c|ρ cos θ) sin θ dθ =

∫ π

0
F(|c|ρ cos θ) sin θ dθ +

∫ 2π

π

F(|c|ρ cos θ) sin θ dθ

=
∫ 1

−1
F(|c|ρt) dt −

∫ 1

−1
F(|c|ρt) dt = 0

holds as a consequence of the change of variable cos θ = t . Finally, we get easily (27) for
m = 2 upon recalling that 
(1/2) = √

π .
In the general case of m ≥ 3, we consider an orthonormal basis (γk) of Rm where γ1 =

c/|c|. Then, we introduce polar coordinates with respect to (γk). Let ρ = |x |. Proceeding
similarly to [12, Sect. 5.9], we have, for x �= 0,

x = ρ cos θ1γ1 + ρ sin θ1 cos θ2γ2 + . . . + ρ sin θ1 · · · sin θm−2 sin θm−1γm,

where ρ > 0 (radial distance), θ1, . . . , θm−2 ∈ [0, π ] (latitudes; θ1 is the angle between x
and γ1) and θm−1 ∈ [0, 2π ] (longitude). Let θ = (θ1, . . . , θm−1). Denote by

J (ρ, θ) = ρm−1(sin θ1)
m−2(sin θ2)

m−3 · · · (sin θm−2)

the Jacobian determinant. Moreover, set γ (k)
i = 〈γi , ek〉, for i, k = 1, . . . ,m. Let

ξ1(θ) = cos θ1, ξ2(θ) = sin θ1 cos θ2, . . . ,

ξm−1(θ) = sin θ1 · · · sin θm−2 cos θm−1, ξm(θ) = sin θ1 · · · sin θm−2 sin θm−1.

We infer that

Im,k(F) = 1√
(2π)m

∫ ∞

0

∫

[0,π ]m−2×[0,2π ]
ρe− ρ2

2 F(|c| ρ cos θ1)

(
m∑

i=1

ξi (θ)γ
(k)
i

)

J (ρ, θ)dρdθ

= 1√
(2π)m

∫ ∞

0

∫

[0,π ]m−2×[0,2π ]
ρe− ρ2

2 F(|c| ρ cos θ1) ξ1(θ)γ
(k)
1 J (ρ, θ)dρdθ (28)

using that

1√
(2π)m

∫ ∞

0

∫

[0,π ]m−2×[0,2π ]
ρe− ρ2

2 F(|c| ρ cos θ1)

(
m∑

i=2

ξi (θ)γ
(k)
i

)

J (ρ, θ)dρdθ = 0.

(29)
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In order to prove (29) we check that if ρ > 0 then
∫

[0,π ]m−2×[0,2π ]
F(|c| ρ cos θ1) ξi (θ)J (ρ, θ)dθ = 0, 2 ≤ i ≤ m. (30)

If i = m, we find that
∫

[0,π ]m−2×[0,2π ]
F(|c| ρ cos θ1) ξm(θ) (sin θ1)

m−2(sin θ2)
m−3 · · · (sin θm−2)dθ

=
∫ π

0
F(|c| ρ cos θ1)(sin θ1)

m−2 sin θ1dθ1×

×
∫

[0,π ]m−3×[0,2π ]
sin θ2 · · · sin θm−1 (sin θ2)

m−3 · · · (sin θm−2)dθ2 · · · dθm−1 = 0

by the Fubini theorem, since
∫ 2π
0 sin θm−1dθm−1 = 0. Similarly we obtain that (30) holds

with i = m − 1. Note that up to now we have already proved (30) when m = 3. Let m ≥ 4.
We check (30) when 2 < i ≤ m − 2. We have

∫

[0,π ]m−2×[0,2π ]
F(|c| ρ cos θ1) ξi (θ) (sin θ1)

m−2(sin θ2)
m−3 · · · (sin θm−2)dθ

=
∫ π

0
F(|c| ρ cos θ1)(sin θ1)

m−2 sin θ1dθ1×

×
∫

[0,π ]m−3×[0,2π ]
sin θ2 · · · cos θi (sin θ2)

m−3 · · · (sin θm−2)dθ2 · · · dθm−1 = 0,

because
∫ π

0 cos θi (sin θi )
m−1−idθi = 0. Similarly, for i = 2, we get

∫ π

0
F(|c| ρ cos θ1)(sin θ1)

m−2 sin θ1dθ1×

×
∫

[0,π ]m−3×[0,2π ]
cos θ2 (sin θ2)

m−3 · · · (sin θm−2)dθ2 · · · dθm−1 = 0.

We have verified (30) and so (28) holds. We rewrite (28) as follow

Im,k(F) = Rm
γ

(k)
1√

(2π)m

∫ ∞

0

∫ π

0
ρme− ρ2

2 F(|c| ρ cos θ1) cos θ1 (sin θ1)
m−2dρdθ1

γ
(k)
1 = ck

|c| , (31)

where Rm = 2π if m = 3 and if m > 3

Rm =
∫

[0,π ]m−3×[0,2π ]
(sin θ2)

m−3(sin θ3)
m−4 · · · sin θm−2dθ2 · · · dθm−1

= 2π
m−3∏

j=1

∫ π

0
(sin φ) jdφ = 2π

m−3∏

j=1

B

(
j + 1

2
,
1

2

)

= 2π
m−3∏

j=1



(

j+1
2

)

( 12 )



(

j+2
2

) .

We have used the Beta function B(·, ·) (cf. page 103 of [28]). Hence since 
(1/2) = √
π ,

we get Rm = 2π(
√

π)m−3
(



(m−1
2

))−1
. Inserting Rm in (31) we obtain (27), i.e.,

123



A counterexample to L∞-gradient type estimates... 985

Im,k(F) = 2π(
√

π)m−3

(2π)m/2

(m−1

2

)
ck
|c|

∫ +∞

0

∫ π

0
e− 1

2 ρ2
ρm cosϑ(sin ϑ)m−2F(|c|ρ cosϑ)dρdϑ.

��
Lemma 10 If F ∈ Bb(R) verifies F(x) = −F(−x) for any x ∈ R, then we have, for any
m ≥ 2, k ∈ {1, . . . ,m}, c = (c1, . . . , cm) ∈ R

m \ {0},

Im,k(F) = 4π(
√

π)m−3

(2π)m/2

(m−1

2

)
ck
|c|

∫ +∞

0
e− 1

2 ρ2
ρmdρ

∫ 1

0
x(1 − x2)

m−3
2 F(|c|ρx)dx (32)

(cf. (27)). In the special case of F = F0 := 1(0,∞) − 1(−∞,0), we obtain

Im,k(F0) = 1√
(2π)m

∫

Rm
F0(〈c, x〉)xk e− |x |2

2 dx =
√
2√
π

ck
|c| . (33)

Proof By changing variable x = cos θ and using that F(x) = −F(−x), x �= 0, we have
∫ π

0
cosϑ(sin ϑ)m−2F(|c|ρ cosϑ)dϑ = 2

∫ 1

0
x(1 − x2)

m−3
2 F(|c|ρx)dx .

Whence,

Im,k(F) = 2 · 2π(
√

π)m−3

(2π)m/2

(m−1

2

)
ck
|c|

∫ +∞

0
e− 1

2 ρ2
ρmdρ

∫ 1

0
x(1 − x2)

m−3
2 F(|c|ρx)dx .

Let us assume that F = F0 = 1(0,∞) − 1(−∞,0). We find

Im,k(F0) = 4π(
√

π)m−3

(2π)m/2

(m−1

2

)
ck
|c|

∫ +∞

0
e− 1

2 ρ2
ρmdρ

∫ 1

0
x(1 − x2)

m−3
2 dx .

Using that
∫ 1
0 x(1 − x2)

m−3
2 dx = 1

m−1 and
∫ +∞
0 e− 1

2 ρ2
ρmdρ = 


(m+1
2

)
2

m−1
2 we find

Im,k(F0) = 4π(
√

π)m−3

(2π)m/2

(m−1

2

)


(
m + 1

2

)

2
m−1
2

1

m − 1

ck
|c| =

√
2√
π

ck
|c| ,

since x
(x) = 
(x + 1), x > 0 and this finishes the proof. ��

3.2 Proof of assertion (26)

Recall that ck(t) :=
(
1 − e−2λk t

2λk

)1/2

for k ∈ {1, . . . ,m} and t ≥ 0. Set c(t) =
(c1(t), . . . , cm(t)) ∈ R

m . Fix m ≥ 2 and δ > 0, and put Sm := Sm(δ). Then, for m ≥ 2,
define

Am := 2

π

m∑

k=1

(∫ δ

0

λke−λk t

(1 − e−2λk t )1/2

ck(t)

|c(t)| dt
)2

. (34)

We prove that limm→∞ Sm = ∞ in two steps.
I step. We prove

Sm ≥ Am, ∀ m ≥ 2. (35)

We start by constructing an approximating sequence of smooth functions for F0 := 1(0,∞) −
1(−∞,0). For any n ≥ 1, consider a non-decreasing Fn ∈ C2

b (R+) such that Fn(y) = 0 if
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0 ≤ y ≤ 1/(n + 1) and Fn(y) = 1 if y ≥ 1/n. Then, extend each Fn to an odd function on
R by the rule Fn(x) = −Fn(−x) if x < 0, and define

fn(x1, . . . , xm) = Fn(x1 + . . . + xm), x1, . . . , xm ∈ R.

It is clear that each fn ∈ C2
b (R

m) and ‖ fn‖∞ ≤ 1. Whence,

Sm ≥ sup
n≥1

m∑

k=1

( ∫ δ

0

λke−λk t

(1 − e−2λk t )1/2

1√
(2π)m

∫

Rm
fn(c1(t)x1, . . . , cm(t)xm) xk e

− |x |2
2 dxdt

)2

= sup
n≥1

m∑

k=1

( ∫ δ

0

λke−λk t

(1 − e−2λk t )1/2

1√
(2π)m

∫

Rm
Fn(〈c(t), x〉)xk e− |x |2

2 dxdt
)2

.

Moreover, combining the fact that each Fn is an odd functions with (32), with c replaced by
c(t), yields

sup
n≥1

m∑

k=1

( ∫ δ

0

λke−λk t

(1 − e−2λk t )1/2

1√
(2π)m

∫

Rm
Fn(〈c(t), x〉)xk e− |x |2

2 dxdt
)2

= sup
n≥1

4π(
√

π)m−3

(2π)m/2

(m−1

2

)

m∑

k=1

( ck(t)

|c(t)|
∫ +∞

0
e− 1

2 ρ2
ρmdρ

∫ 1

0
x(1 − x2)

m−3
2 Fn(|c(t)|ρx)dx

)2
.

Then, using that both Fn(x) ≤ Fn+1(x) and Fn(x) → F0(x) hold for any x ≥ 0, apply the
monotone convergence theorem to get

Sm ≥ sup
n≥1

4π(
√

π)m−3

(2π)m/2

(m−1

2

)

m∑

k=1

( ck(t)

|c(t)|
∫ +∞

0
e− 1

2 ρ2
ρmdρ

∫ 1

0
x(1 − x2)

m−3
2 Fn(|c(t)|ρx)dx

)2

= 4π(
√

π)m−3

(2π)m/2

(m−1

2

)

m∑

k=1

( ck(t)

|c(t)|
∫ +∞

0
e− 1

2 ρ2
ρmdρ

∫ 1

0
x(1 − x2)

m−3
2 F0(|c(t)|ρx)dx

)2

=
m∑

k=1

( ∫ δ

0

λke−λk t

(1 − e−2λk t )1/2

1√
(2π)m

∫

Rm
F0(〈c(t), x〉)xk e− |x |2

2 dxdt
)2 = Am,

for m ≥ 2. In the last line we have used both (32) and (33) with c replaced by c(t). This
proves (35).
II step. We prove that

lim
m→∞ Am = ∞ , (36)

thus completing the proof of (26). Recalling the definition of ck(t), we have

Am = 2

π

m∑

k=1

( ∫ δ

0

√
λke−λk t

√
2

1

|c(t)| dt
)2 ≥ 1

π

m∑

k=1

λk

(∫ δ

0

e−λk t

|c(t)| dt
)2

, m ≥ 2. (37)

To bound (37) from below, note that

|c(t)| =
(

m∑

k=1

1 − e−2λk t

2λk

)1/2

≤
(+∞∑

k=1

1 − e−2λk t

2λk

)1/2

=
(∫ t

0

[+∞∑

k=1

e−2λk s

]

ds

)1/2
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holds for any t ≥ 0. Now, if there is a positive constant c0 such that λk ≥ c0k2 for any k ≥ 1,
then

+∞∑

k=1

e−2λk s ≤
+∞∑

k=1

e−2c0k2s ≤
∫ +∞

0
e−2c0z2sdz =

√
π

2c0s
, s > 0,

yielding

|c(t)| ≤
(∫ t

0

√
π

2c0s
ds

)1/2

=
(
2π t

c0

)1/4

.

Up to now we have found that

Am ≥ 1

π

m∑

k=1

λk

(∫ δ

0
e−λk t

( c0
2π t

)1/4
dt

)2

, m ≥ 2.

Now, exploit that

∫ δ

0
t−

1
4 e−λtdt =

(
1

λ

) 3
4
∫ λδ

0
s− 1

4 e−sds ≥
(
1

λ

) 3
4
∫ c0δ

0
s− 1

4 e−sds

holds for every λ ≥ c0, to get (after recalling that, in particular, λk ≥ c0, for any k ≥ 1)

Am ≥ 1

π

√
c0
2π

m∑

k=1

λk

(∫ δ

0
t−

1
4 e−λk tdt

)2

≥ 1

π

√
c0
2π

m∑

k=1

λk

(
1

λk

) 3
2
(∫ c0δ

0
s− 1

4 e−sds

)2

= 1

π

√
c0
2π

(∫ c0δ

0
s− 1

4 e−sds

)2 m∑

k=1

1√
λk

.

Thus, if λk ∼ k2 as k → +∞, then
∑m

k=1
1√
λk

∼ logm as m → +∞, and (36) holds. This
finishes the proof.
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