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Abstract
In this paper,wederive a comparisonprinciple for non-negativeweak sub- and super-solutions
to doubly nonlinear parabolic partial differential equations whose prototype is

∂t u
q − div

(|∇u|p−2∇u
) = 0 in �T ,

with q > 0 and p > 1 and�T := �×(0, T ) ⊂ R
n+1. Instead of requiring a lower bound for

the sub- or super-solutions in thewhole domain�T , we only assume the lateral boundary data
to be strictly positive. Themain results yield some applications. Firstly, we obtain uniqueness
of non-negative weak solutions to the associated Cauchy–Dirichlet problem. Secondly, we
prove that any weak solution is also a viscosity solution.

Keywords Doubly nonlinear parabolic PDE · Comparison principle

Mathematics Subject Classification 35K55 · 35K65 · 35K67 · 35A02

1 Introduction andmain results

The parabolic partial differential equation

∂t u
q − div

(|∇u|p−2∇u
) = 0 in �T , (1.1)

with some arbitrary exponents q > 0 and p > 1 is a non-trivial generalization of some well-
studied problems. Here and in the following�T = �× (0, T ) denotes a space-time cylinder
over a bounded domain � ⊂ R

n and T > 0. In its general form, (1.1) is called a doubly
nonlinear pde. Only for the specific choice q = 1 and p = 2, it is linear and yields the heat
equation. If q = p − 1, it is homogeneous with respect to multiplication. The resulting pde
is sometimes called Trudinger’s equation. In the case p = 2, we obtain the porous medium
equation, whereas the case q = 1 yields the parabolic p-Laplace equation.
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Properties of weak solutions to the porous medium equation and the parabolic p-Laplace
equation are by now better understood than for the general doubly nonlinear pde (1.1). In this
paper, we will investigate comparison principles for weak sub- and super-solutions to (1.1)
as well as generalizations of (1.1). Roughly speaking, the comparison principle states that
a sub-solution u and a super-solution v which satisfy u ≤ v on the parabolic boundary
∂p�T = (� × {0}) ∪ (∂� × (0, T )) of the domain, must have the same property in the
whole domain �T . Although it is generally understood to be a rather simple property, the
comparison principle for doubly nonlinear equations is still far from being understood, and
only special cases could be treated so far. The difficulties occur due to the lack of a weak
time derivative and in particular in points where the solution is close to zero. Note that these
difficulties do not occur for parabolic p-Laplace type equations, i.e., in the case q = 1, in
which the comparison principle can be shown by standard methods. Moreover, comparison
principles for the prototype porous medium equation are presented in [30]. For more general
equation of porous medium type, the situation is less clear.

In [2], Bamberger proved a comparison principle for weak solutions to doubly nonlinear
equations under the additional assumption ∂t uq , ∂tvq ∈ L1(�T ). In a similar spirit, Alt and
Luckhaus [1] obtained a comparison principle for weak sub- and super-solutions, provided
that (∂t uq −∂tv

q) ∈ L1(�T ). Also, the result of Diaz [12] requires an additional assumption
on the time derivative. Unfortunately, these assumptions are quite restrictive, since they are
not inherent in the definition of weak solution and in general not easy to verify.

Otto followed a different approach in [27]. He proved a comparison principle for weak
sub- and super-solutions whose lateral boundary data are time independent. In particular,
he avoided any extra regularity assumption on the sub- and super-solutions. Yet another
approach was chosen by Ivanov, Mkrtychan, and Jäger in [20] for the case q ∈ (0, 1] and
p ∈ (1, 2). Note that the parameter � in [20] corresponds to (1−q)(p−1)

q in (1.1). They allow
time-dependent boundary data and prove a comparison principle for bounded and strictly
positive sub- and super-solutions, i.e., the infimum of u and v on�T is assumed to be strictly
positive. Subsequently, Ivanov [18] extended the result to the range of exponents q ∈ (0, 1]
and p > 1. A similar result for Trudinger’s equation, i.e., the case p > 1 and q = p− 1 was
established by Lindgren and Lindqvist in [26].

Our aim in this paper is to treat the full range of exponents q > 0 and p > 1.Moreover, we
are able to weaken the infimum assumption. Instead of requiring the infimum of the sub- and
super-solution to be strictly positive, we only assume the lateral boundary data of the super-
solution to be strictly positive. Postponing a formal definition of weak sub/super-solutions
to Sect. 2.2, our first main result is the following.

Theorem 1.1 Let q > 0, p > 1 and suppose that u is a non-negative weak sub-solution and
v a non-negative weak super-solution of (1.1) in �T satisfying

ess inf
∂�×(0,T )

v > 0 and ess sup
∂�×(0,T )

u < ∞ if q > 1. (1.2)

If

u ≤ v on ∂� × (0, T ), (1.3)

then the following inequality holds
∫

�×{t2}
(
uq − vq

)
+ dx ≤

∫

�×{t1}
(
uq − vq

)
+ dx (1.4)

for every 0 ≤ t1 < t2 ≤ T .
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A comparison principle for doubly nonlinear parabolic partial differential... 781

As usual, the assumption u ≤ v on ∂� × (0, T ) has to be understood in the sense
that (u − v)+ ∈ L p(0, T ;W 1,p

0 (�)). Applying Theorem 1.1 in the special situation where
additionally u(·, 0) ≤ v(·, 0) a.e. in � yields a comparison principle on parabolic cylinders.

Theorem 1.2 Let q > 0, p > 1 and u be a non-negative weak sub-solution and v a non-
negative weak super-solution of (1.1) in �T satisfying (1.2). If

u ≤ v on ∂p�T ,

then we have

u ≤ v a.e. in �T .

The approach in this paper is inspired by the proofs given in [18, 20, 26]. As mentioned
above, the assumed lower bound of either the weak sub-solution or the weak super-solution
in the whole of �T is a strong restriction one would like to relinquish. In this paper, we
were able to relax this condition to a lower bound on the lateral boundary. This has been
achieved with the two expedient Lemmas 2.4 and 3.1. The first one allows to replace the
sub-solution by another sub-solution which is bounded from below by a positive constant, as
well as to replace the super-solution by a bounded super-solution. Assumption (1.2) ensures
that the condition on the lateral boundary data is not violated. The difficulty in the proof
of the comparison principle is firstly to choose a test-function which is regular enough. As
we do not impose any assumption on the time derivatives, the choice of test-function is a
delicate issue, in particular when q �= 1. Therefore, a suitable mollification is necessary.
Secondly, without a lower bound on the weak sub/super-solution in �T , we somehow have
to work around this assumption by determining at least suitable boundary conditions. The
latter allows us to apply Lemma 2.4 in order to construct an auxiliary sub-solution which is
on the one hand strictly positive in �T and on the other hand smaller than the super-solution
on the lateral boundary of �T . This is achieved by working with max{u, κ}, for a suitable
constant κ > 0, instead of u, where u denotes the weak sub-solution. Similarly, in the case
q > 1 we also make use of Lemma 2.4 in order to replace the weak super-solution v by
the auxiliary super-solution min{v, M} for appropriate M large enough. We emphasize that
no upper bound of weak sub-solutions on the lateral boundary is necessary, except in the
case q > 1. This is achieved with the help of Lemma 3.1 that also has been used in [20].
The application of Lemma 3.1 allows to avoid a time mollification such as Steklov average
or exponential mollification in the test-function. Note that the case q = 1, which yields the
parabolic p-Laplace equation, is easier and neither a lower nor an upper bound for the lateral
boundary data is needed. Since this is classical, we do not go into further detail.

For particular ranges of exponents q and p, we obtain stronger results in a local setting. If
either 0 < q ≤ p − 1, or 0 < p − 1 < q <

n(p−1)+p
(n−p)+ , then weak sub-solutions to (1.1) are

locally bounded. This property is exploited in Corollary 3.4 below. A further restriction of
the exponents to the range 0 < p − 1 ≤ q <

n(p−1)
(n−p)+ even allows to prove in a local setting

a comparison principle for weak solutions without any additional assumptions like upper or
lower bounds.

Theorem 1.3 Let 0 < p − 1 ≤ q <
n(p−1)
(n−p)+ and u, v be non-negative local weak solutions

of (1.1) in �T . Further, let K � � and 0 < t1 < t2 < T . If

u ≤ v on ∂p
(
K × (t1, t2)

)
,

then we have

u ≤ v in K × (t1, t2).
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782 V. Bögelein, M. Strunk

Note that we can also allow t1 = 0 if u and v are defined until the initial time t = 0.
The key ingredient to the proof of Theorem 1.3 is a Harnack inequality which ensures that
non-negative local weak solutions of (1.1) are either zero or strictly positive on any time
slice.

Naturally, the interest in a comparison principle for (1.1) with a nonzero right-hand side
f arises. Thus, instead of (1.1), one could rather consider its inhomogeneous version

∂t u
q − �pu = f in �T . (1.5)

We obtain similar comparison principles for the preceding equation by slightly adapting the
proofs of the main results in Theorems 1.1 and 1.2, provided f belongs to a suitable parabolic
Lebesgue space; see Definition 4.1 below. A further generalization concerns the vector field
in the diffusion part of (1.1). Instead of the pure p-Laplace operator, our results continue to
hold for vector fields of the form

A(x, t, u, ξ) : �T × R+ × R
n → R

n

and the associated doubly nonlinear differential equation

∂t u
q − div A(x, t, u,∇u) = f in �T . (1.6)

Here, we assume A to be aCarathéodory functionwhich satisfies suitable p-growth, Lipschitz
and monotonicity conditions; see the set of assumptions (4.5). We obtain similar comparison
principles also for (1.6). However, in contrast to the comparison principle derived for the
prototype equation, the proof in the general setting requires more care and a careful use of
the assumed monotonicity and Lipschitz conditions is required. Since our results for both
equations (1.5) and (1.6) are similar to those for the model equation (1.1), we only state the
latter here.

Finally, we note that also the comparison principles shown in [18, 20] apply to more
general doubly nonlinear partial differential equations than the prototype one (1.1). To obtain
the addressed pde in [18, 20], one may substitute v = uq in (1.1) to derive the equivalent
form

∂tv − div

(
q1−pv

(1−q)(p−1)
q |∇v|p−2 ∇v

)
= 0 in �T , (1.7)

for q > 0 and p > 1. The preceding presentation illustrates the correspondence � =
(1−q)(p−1)

q . Therefore, the assumption � ≥ 0 in [18, 20] corresponds to q ∈ (0, 1] in (1.1).
Plan of the paper. Firstly, in Sect. 2 we will introduce the setting and notations we

are working with, including the definition of (non-negative) weak (sub-/super-)solutions
to (1.1). We also define the two auxiliary functions Hδ andGδ , δ > 0, used in the proof of the
comparison principle in Theorem 1.1. Additionally, we introduce two different mollifications
in time, namely the Steklov-average and the exponential mollification.

Section 3 contains the main part of the paper, where the comparison principles from
Theorems 1.1 and 1.2 are proved. Respective results for the local setting are given in Sub-
section 3.2, where the comparison principle from Theorem 1.3 is shown. We will then, in
Sect. 4, discuss possible generalizations of the comparison principle to inhomogeneous dou-
bly nonlinear equations and more general vector fields. In Sect. 5, we provide uniqueness
results for Cauchy–Dirichlet problems associated with a doubly nonlinear equation, which
are a direct consequence of the comparison principles obtained before.

Finally, in Sect. 6 we will show as application of the comparison principle that every weak
solution of (1.1) is also a viscosity solution in the sense of [11]. In particular, this result
implies existence of viscosity solutions.
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A comparison principle for doubly nonlinear parabolic partial differential... 783

2 Preliminaries

2.1 Notation

Throughout �T = � × (0, T ) denotes a space-time cylinder, where � ⊂ R
n is a bounded

domain and (0, T ) represents a time interval for a certain time T > 0. The parabolic boundary
of �T will be denoted by

∂p�T = (
� × {0}) ∪ (

∂� × (0, T )
)
.

For a function f ∈ L1(�T ) ∼= L1(0, T ; L1(�)), we also write f (t) instead of f (·, t)
whenever it is convenient. Moreover, we will abbreviate the p-Laplace operator by

�pu := div
(|∇u|p−2∇u

)
. (2.1)

Throughout the paper, we will not distinguish between the Euclidean norm ‖ · ‖ in R
n for

n ≥ 2 and the absolute value | · | in R. Both shall be denoted by | · | and the meaning will
be clear from the context. For matrices X ∈ R

n×n , we will always use the spectral norm
given by ‖X‖ = √

λmax, where λmax denotes the largest eigenvalue of X�X . Recall that the
spectral norm is consistent with the Euclidean vector norm, that is

|Xv| ≤ ‖X‖ |v| for any v ∈ R
n and X ∈ R

n×n .

Furthermore, the trace of a matrix X ∈ R
n×n shall be expressed by Tr(X).

The positive part of some quantity a ∈ R is denoted by a+ = max{a, 0}, whereas the
negative part by a− = max{−a, 0}. Constants will always be denoted by c or c(·), where
only the dependence of the constants is stated. However, constants may change from line to
line without further explanation.

2.2 Definition of weak solution

Although it is standard, we briefly state the definition of a (local) weak solution that we use
throughout the paper.

Definition 2.1 (Weak solution) A non-negative measurable function u : �T → R≥0 in the
class

u ∈ C
([0, T ]; Lq+1(�)

) ∩ L p(0, T ;W 1,p(�)
)

is a non-negative weak sub(super)-solution of (1.1) if
∫∫

�T

[ − uq∂tφ + |∇u|p−2∇u · ∇φ
]
dxdt ≤ (≥) 0 (2.2)

for any non-negative function

φ ∈ W 1,q+1
0

(
0, T ; Lq+1(�)

) ∩ L p(0, T ;W 1,p
0 (�)

)
.

A non-negative function u is a non-negative weak solution of (1.1) if it is both, a weak
sub-solution and a weak super-solution.

Definition 2.2 (Local weak solution) A non-negative measurable function u : �T → R≥0 in
the class

u ∈ C
(
0, T ; Lq+1

loc (�)
) ∩ L p

loc

(
0, T ;W 1,p

loc (�)
)
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784 V. Bögelein, M. Strunk

is a non-negative local weak sub(super)-solution of (1.1) if for every K � � and every
sub-interval [t1, t2] ⊂ (0, T ) we have

∫

K
uqφ dx

∣
∣
∣
t2

t1
+

∫∫

K×(t1,t2)

[ − uq∂tφ + |∇u|p−2 ∇u · ∇φ
]
dxdt ≤ (≥) 0

for any non-negative function

φ ∈ W 1,q+1
loc

(
0, T ; Lq+1(K )

) ∩ L p
loc

(
0, T ;W 1,p

0 (K )
)
.

A non-negative function u is a non-negative local weak solution of (1.1) if it is both, a local
weak sub-solution and a local weak super-solution.

Existence of weak solutions to the Cauchy–Dirichlet problem associated with (1.1) has
been shown in [1]. It is worth noticing that due to Definition 2.1 weak sub/super-solutions
belong to the space

u ∈ C
([0, T ]; Lq+1(�)

) ∩ L p(0, T ;W 1,p(�)
)

and thus, are assumed to be continuous functions in time. However, this is not restrictive as
shown in [6, Proposition 4.9].

2.3 Mollification in time

In view of their definition, weak solutions are not necessarily weakly differentiable with
respect to the time variable. This difficulty is usually overcome by certain regularization
procedures. We will work with two different mollifications. The first one is the Steklov-
average, cf. [10]. For a function f ∈ L1(�T ) and 0 < h < T , we define its Steklov-average
[ f ]h by

[ f ]h(x, t) :=
⎧
⎨

⎩

1

h

∫ t+h

t
f (x, τ ) dτ, t ∈ (0, T − h),

0, t ∈ [T − h, T ).

(2.3)

Rewriting inequality (2.2) in terms of Steklov-means [u]h of u, yields
∫

�×{t}

[
∂t [uq ]hφ + [|∇u|p−2∇u

]
h · ∇φ

]
dx ≤ (≥) 0 (2.4)

for any non-negative function φ ∈ W 1,p
0 (�) and any t ∈ (0, T ).

In the course of the paper, we will also need another mollification in time. For any f ∈
L1(�T ) and h > 0, we introduce the exponential mollification

� f �h(x, t) := 1

h

∫ t

0
e

τ−t
h f (x, τ ) dτ and � f �h̄(x, t) := 1

h

∫ T

t
e
t−τ
h f (x, τ ) dτ, (2.5)

as defined in [23].

2.4 Auxiliary material

The following lemma that can be found in [14, Lemma 2.2] will be useful in order to deal
with the nonlinearity of the differential equation.
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A comparison principle for doubly nonlinear parabolic partial differential... 785

Lemma 2.3 Let k ∈ N. For any α > 1, there exists a constant c = c(α) such that

1

c

∣
∣|a|α−1a − |b|α−1b

∣
∣ ≤ (|a|α−1 + |b|α−1)|a − b| ≤ c

∣
∣|a|α−1a − |b|α−1b

∣
∣

for all a, b ∈ R
k .

Weak sub(super)-solutions preserve this property when taking themaximum, respectively,
minimum,with a constant. For the proof of this fact, we proceed similar as in [7, LemmaA.1].
For the sake of completeness, we provide the details.

Lemma 2.4 Let q > 0, p > 1 and u be a non-negative weak sub-solution of (1.1) in the sense
of Definition 2.1. Then, for any κ > 0 the function max{u, κ} is also a weak sub-solution of
(1.1).

Similarly, if v is a non-negative weak super-solution of (1.1), then for any M > 0 also
min{v, M} is a weak super-solution.

Proof Only the sub-solution case is treated. The super-solution case may be treated in a
similar way. For h, μ > 0 and η ∈ C1

0 (�T ) such that η ≥ 0 in �T , we choose the test
function

φ = ηφh, where φh := (�u�h̄ − κ)+
(�u�h̄ − κ)+ + μ

in the weak form (2.2) of the differential equation, i.e.,
∫∫

�T

[ − uq∂tφ + |∇u|p−2∇u · ∇φ
]
dxdt ≤ 0. (2.6)

We start by considering the term involving the time derivative. We obtain

−
∫∫

�T

uq∂tφ dxdt

=
∫∫

�T

(
�u�

q
h̄

− uq
)
∂tφ dxdt −

∫∫

�T

�u�
q
h̄
∂tφ dxdt

=
∫∫

�T

η
(
�u�

q
h̄

− uq
)
∂tφh dxdt

+
∫∫

�T

∂tη
(
�u�

q
h̄

− uq
)
φh dxdt +

∫∫

�T

∂t �u�
q
h̄
φ dxdt

= I + II + III, (2.7)

with the obvious meaning of I – III. The first term on the right-hand side of (2.7) is non-
negative, which can be seen by the following computation

I = μ

∫∫

�T

η
(
�u�

q
h̄

− uq
) ∂t (�u�h̄ − κ)+
[
(�u�h̄ − κ)+ + μ

]2 dxdt

= μ

h

∫∫

�T

η
(
�u�

q
h̄

− uq
)(

�u�h̄ − u
) χ{�u�h̄>κ}
[
(�u�h̄ − κ)+ + μ

]2 dxdt ≥ 0.

From the second to last line, we used the identity ∂t �u�h̄ = 1
h (�u�h̄ − u). Now, we turn our

attention to the third term in (2.7).To this aim, we define

f (u, κ, μ) := κq + q
∫ u

κ

sq−1(s − κ)+
(s − κ)+ + μ

ds.
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786 V. Bögelein, M. Strunk

In view of the chain rule, it is easy to see that

∂t f
(
�u�h̄, κ, μ

) = ∂t �u�
q
h̄

(�u�h̄ − κ)+
(�u�h̄ − κ)+ + μ

= ∂t �u�
q
h̄
φh .

Using the previous computation and integrating by parts yields

III =
∫∫

�T

η∂t �u�
q
h̄
φh dxdt =

∫∫

�T

η∂t f
(
�u�h̄, κ, μ

)
dxdt

= −
∫∫

�T

∂tη f
(
�u�h̄, κ, μ

)
dxdt .

Inserting these informations into (2.7), we obtain

−
∫∫

�T

uq∂tφ dxdt ≥
∫∫

�T

∂tη
(
�u�

q
h̄

− uq
)
φh dxdt −

∫∫

�T

∂tη f
(
�u�h̄, κ, μ

)
dxdt .

The first term on the right-hand side vanishes in the limit h ↓ 0. Therefore, inserting this
inequality into (2.6) and then, letting h ↓ 0, we arrive at

−
∫∫

�T

∂tη f (u, κ, μ) dxdt +
∫∫

�T

|∇u|p−2∇u · ∇
[
η

(u − κ)+
(u − κ)+ + μ

]
dxdt ≤ 0.

Next, we will treat the diffusion term, i.e., the second term on the left hand side of the
preceding inequality. We have
∫∫

�T

|∇u|p−2∇u · ∇
[
η

(u − κ)+
(u − κ)+ + μ

]
dxdt

=
∫∫

�T

[
|∇u|p−2∇u · ∇η

(u − κ)+
(u − κ)+ + μ

+ |∇u|p−2∇u · ημ∇(u − κ)+
[(u − κ)+ + μ]2

]
dxdt

≥
∫∫

�T

|∇u|p−2∇u · ∇η
(u − κ)+

(u − κ)+ + μ
dxdt .

Inserting this above yields

−
∫∫

�T

∂tη f (u, κ, μ) dxdt +
∫∫

�T

|∇u|p−2∇u · ∇η
(u − κ)+

(u − κ)+ + μ
dxdt ≤ 0.

A direct calculation shows that

lim
μ↓0 f (u, κ, μ) = max{u, κ}q

and

lim
μ↓0

(u − κ)+

(u − κ)+ + μ
= χ{u>κ}.

Furthermore, note that χ{u>κ}|∇u|p−2∇u = |∇ max{u, κ}|p−2∇ max{u, κ}. Therefore, let-
ting μ ↓ 0 and using an approximating argument in order to obtain the desired inequality for
an arbitrary test function

φ ∈ Wq+1
0

(
0, T ; Lq+1(�)

) ∩ L p(0, T ;W 1,p
0 (�)

)

yields
∫∫

�T

[ − max{u, κ}q∂tφ + |∇ max{u, κ}|p−2 ∇ max{u, κ} · ∇φ
]
dxdt ≤ 0,
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A comparison principle for doubly nonlinear parabolic partial differential... 787

proving that max{u, κ} is a weak sub-solution of (1.1). ��

3 Comparison principles

Our aim in this section is to prove the comparison principles for the doubly nonlinear equa-
tion (1.1).We first turn our attention toweak sub- and super-solutions in�T and subsequently
consider the local setting.

3.1 Comparison principles in a global setting

In this subsection, wewill accomplish the proofs of Theorems 1.1 and 1.2. Themain difficulty
stems from the nonlinearity appearing in the time derivative part of (1.1). As illustrated for the
homogeneous equation, i.e., the case q = p−1 in [26, (3.1)], a comparison principle can be
derived quite easily if the weak time derivative of uq exists. However, such a property is not
implemented in the definition of aweak solution.Without existence of aweak time derivative,
the test function has to be chosen very carefully and certain approximation arguments are
needed.

Throughout the proof, we shall use the following two auxiliary functions. The first one is
a piecewise affine approximation of the indicator function

Hδ(x) :=

⎧
⎪⎨

⎪⎩

1, x ≥ δ,
x
δ
, 0 < x < δ,

0, x ≤ 0

(3.1)

for δ > 0. The second one is its primitive and approximates the positive part

Gδ(x) :=

⎧
⎪⎨

⎪⎩

x − δ
2 , x ≥ δ,

x2
2δ , 0 < x < δ,

0, x ≤ 0.

Note that G ′
δ(x) = Hδ(x) for any x ∈ R. The inequality stated in the next Lemma was

already used in the proof of [20, Proposition 2.1]. It allows to choose a test function without
dependency on any mollifiers like Steklov-average or exponential mollification in the proof
of the comparison principle.

Lemma 3.1 Let δ > 0 and f ∈ C(0, T ; L1(�)). Then, for any 0 < h < T the following
inequality holds

∂t [Gδ( f )]h ≤ ∂t [ f ]h Hδ( f ) a.e. in �T (3.2)

Proof For t ∈ [T − h, T ) inequality, (3.2) is trivial. Therefore, it remains to consider t ∈
(0, T − h). The definition of the Steklov-average in (2.3) yields

∂t [Gδ( f )]h(t) = 1
h

[
Gδ ( f (t + h)) − Gδ( f (t))

]

and

∂t [ f ]h = 1
h

[
f (t + h) − f (t)

]
.

Thus, inequality (3.2) simplifies to

Gδ ( f (t + h)) − Gδ ( f (t)) ≤ (
f (t + h) − f (t)

)
Hδ ( f (t)) .
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In view of the convexity of the mapping R � x �→ Gδ(x), we have

Gδ(y) − Gδ(x) ≥ G ′
δ(x)(y − x) for any x, y ∈ R.

Thus, setting y = f (t + h) and x = f (t) yields the desired inequality. ��
We start with the following preliminary version of the comparison principle, where we
additionally require either the sub- or the super-solution to be bounded from above and
below by positive constants.

Proposition 3.2 Let q > 0, p > 1 and u be a non-negative weak sub-solution and v a
non-negative weak super-solution of (1.1) in �T . Suppose that either

u ≥ ε or v ≥ ε a.e. in �T (3.3)

for some ε > 0 and in the case q > 1 assume furthermore that either u or v is bounded. If

u ≤ v on ∂� × (0, T ),

then the following inequality holds
∫

�×{t2}
(
uq − vq

)
+ dx ≤

∫

�×{t1}
(
uq − vq

)
+ dx (3.4)

for every 0 ≤ t1 < t2 ≤ T .

Proof For h ∈ (0, T ), we consider the Steklov formulation (2.4) of (2.2) for u and v. Adding
both inequalities yields

∫

�×{t}
∂t [uq − vq ]hφ dx ≤

∫

�×{t}
[|∇v|p−2∇v − |∇u|p−2∇u

]
h · ∇φ dx

for any φ ∈ W 1,p
0 (�) and any t ∈ (0, T ). Note that a weak time derivative for the test

functions is not needed in this formulation. We now integrate this inequality with respect to
t ∈ (t1, t2) ⊂ (0, T ) and choose the test-functionφ = Hδ(uq−vq)with 0 < δ ≤ min{1, εq

2 },
which is admissible since uq ≤ vq on the lateral boundary ∂� × (0, T ). Recall that Hδ is
defined in (3.1). In this way, we obtain

∫∫

�×(t1,t2)
∂t [uq − vq ]h Hδ(u

q − vq) dxdt

≤
∫∫

�×(t1,t2)

[|∇v|p−2∇v − |∇u|p−2∇u
]
h · ∇Hδ(u

q − vq) dxdt . (3.5)

Applying Lemma 3.1 with f = uq − vq to the integrand on the left-hand side, we find
∫∫

�×(t1,t2)
∂t [Gδ(u

q − vq)]h dxdt

≤
∫∫

�×(t1,t2)

[|∇v|p−2∇v − |∇u|p−2∇u
]
h · ∇Hδ(u

q − vq) dxdt . (3.6)

We now focus on the integral on the left-hand side of (3.6). Letting h ↓ 0, we obtain

lim
h↓0

∫∫

�×(t1,t2)
∂t [Gδ(u

q − vq)]h dxdt = lim
h↓0

∫

�

[Gδ(u
q − vq)]h dx

∣∣∣∣

t2

t1

=
∫

�

Gδ(u
q − vq) dx

∣∣∣∣

t2

t1

.
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Next, we justify the passage to the limit h ↓ 0 for the integral on the right-hand side of (3.6).
A direct computation yields

∫∫

�×(t1,t2)

[|∇v|p−2∇v − |∇u|p−2∇u
]
h · ∇Hδ

(
uq − vq

)
dxdt

= 1

δ

∫∫

�δ

[|∇v|p−2∇v − |∇u|p−2∇u
]
h · ∇(uq − vq) dxdt,

where

�δ := {
(x, t) ∈ � × (t1, t2) : 0 < uq(x, t) − vq(x, t) < δ

}
.

Since

|∇v|p−2∇v − |∇u|p−2∇u ∈ L
p

p−1 (�T ),

we have
[|∇v|p−2∇v − |∇u|p−2∇u

]
h → |∇v|p−2∇v − |∇u|p−2∇u in L

p
p−1 (�T )

as h ↓ 0. Our next aim is to ensure that ∇(uq − vq) ∈ L p(�δ). This will be a consequence
of assumption (3.3) and the definition of �δ . We first consider the case 0 < q ≤ 1. If v ≥ ε

in �T , then we have u > ε in �δ . Otherwise, if u ≥ ε in �T , then we have v > 2− 1
q ε in �δ

by the choice of δ. In any case, we find that

|∇uq | = quq−1|∇u| ≤ qεq−1|∇u| in �δ

and

|∇vq | = qvq−1|∇v| ≤ c(q)εq−1|∇v| in �δ.

On the other hand, in the case q > 1 we assume that either u or v is bounded. Therefore,
there exists a constant M > 0 such that either u ≤ M or v ≤ M in �T . Since δ ≤ 1, this
implies uq < 1 + Mq and vq < 1 + Mq in �δ , so that

|∇vq | ≤ c(q, M)|∇v| in �T and |∇uq | ≤ c(q, M)|∇u| in �δ.

Thus, we have shown in any case that ∇(uq − vq) ∈ L p(�δ) and therefore, we may pass to
the limit h ↓ 0 also on the right-hand side of (3.6) and derive

lim
h↓0

∫∫

�×(t1,t2)

[|∇v|p−2∇v − |∇u|p−2∇u
]
h · ∇Hδ(u

q − vq) dxdt

= 1

δ

∫∫

�δ

(|∇v|p−2∇v − |∇u|p−2∇u
) · ∇(uq − vq) dxdt .

In conclusion, after passing to the limit h ↓ 0 on both sides of (3.6), we obtain
∫

�×{t2}
Gδ

(
uq − vq

)
dx −

∫

�×{t1}
Gδ

(
uq − vq

)
dx

≤ 1

δ

∫∫

�δ

(|∇v|p−2∇v − |∇u|p−2∇u
) · ∇(uq − vq) dxdt . (3.7)

A simple calculation yields the identity

∇(uq − vq) = quq−1(∇u − ∇v) + q∇v(uq−1 − vq−1), (3.8)
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so that
∫

�×{t2}
Gδ(u

q − vq) dx −
∫

�×{t1}
Gδ(u

q − vq) dx

≤ −q

δ

∫∫

�δ

uq−1 (|∇u|p−2∇u − |∇v|p−2∇v
) · (∇u − ∇v)

︸ ︷︷ ︸
≥0

dxdt

− q

δ

∫∫

�δ

(
uq−1 − vq−1) (|∇u|p−2∇u − |∇v|p−2∇v

) · ∇v dxdt

≤ −q

δ

∫∫

�δ

(
uq−1 − vq−1) (|∇u|p−2∇u − |∇v|p−2∇v

) · ∇v dxdt .

In view of Lemma 2.3 and assumption (3.3), we obtain in the set �δ the following estimate

0 < uq−1 − vq−1 =
∣
∣
∣
∣u

q q−1
q − v

q q−1
q

∣
∣
∣
∣ ≤ c(q)(uq + vq)

− 1
q |uq − vq | ≤ c(q)

ε
δ.

This yields
∫

�×{t2}
Gδ(u

q − vq) dx −
∫

�×{t1}
Gδ(u

q − vq) dx

≤ c(q)

ε

∫∫

�δ

∣∣|∇u|p−2∇u − |∇v|p−2∇v
∣∣ |∇v| dxdt .

We now pass to the limit δ ↓ 0 on both sides. The integral on the right-hand side vanishes,
since |�δ| → 0 as δ ↓ 0. Therefore, we obtain

∫

�×{t2}
(uq − vq)+ dx ≤

∫

�×{t1}
(uq − vq)+ dx,

which finishes the proof of the proposition. ��

We are now in the position to prove our first main result.

Proof of Theorem 1.1 The assumptions of the theorem ensure that there exists ε > 0 such
that v ≥ ε on ∂� × (0, T ).

We first consider the case 0 < q ≤ 1. We choose κ ∈ (0, ε] and define
uκ := max {u, κ} .

Due to Lemma 2.4, we know that uκ is a weak sub-solution to (1.1) in �T . Moreover, in
view of assumptions (1.2) and (1.3) we have (uκ − v)+ ∈ L p(0, T ;W 1,p

0 (�)). Therefore,
we may apply Proposition 3.2 to uκ and v to conclude that

∫

�×{t2}
(
uqκ − vq

)
+ dx ≤

∫

�×{t1}
(
uqκ − vq

)
+ dx

for every 0 ≤ t1 < t2 ≤ T . Letting κ ↓ 0 finishes the proof for 0 < q ≤ 1.
Next, we consider the case q ≥ 1. By assumption, there exists a constant M > 0 such

that u ≤ M on ∂� × (0, T ). For κ ∈ (0, ε], we now define

uκ := max {u, κ} and vM := min {v, M} . (3.9)
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Thanks to Lemma 2.4, we know that uκ is a weak sub-solution and vM is a bounded weak
super-solution to (1.1) in �T . Moreover, in view of (1.2) and (1.3) we have (uκ − vM )+ ∈
L p(0, T ;W 1,p

0 (�)). As before, we apply Proposition 3.2 to uκ and vM to conclude that
∫

�×{t2}
(
uqκ − v

q
M

)
+ dx ≤

∫

�×{t1}
(
uqκ − v

q
M

)
+ dx

for every 0 ≤ t1 < t2 ≤ T . The claim now follows by letting κ ↓ 0 and M → ∞. ��
Theorem 1.2 is an immediate consequence of Theorem 1.1.

Proof of Theorem 1.2 Applying Theorem 1.1 with the choice t1 = 0, we obtain
∫

�×{t}
(uq − vq)+ dx ≤

∫

�×{0}
(uq − vq)+ dx

for any t ∈ (0, T ). Since u(·, 0)q ≤ v(·, 0)q a.e. in �, the right-hand side of the preceding
inequality vanishes, so that

∫

�×{t}
(uq − vq)+ dx ≤ 0

for any t ∈ (0, T ). This yields (uq − vq)+ = 0 a.e. in � for any t ∈ (0, T ), which implies
the desired inequality. ��

3.2 Comparison principles in a local setting

The comparison principles in Theorems 1.1 and 1.2 require an upper bound of the weak
sub-solution on the lateral boundary of �T in the case q > 1. However, some typical
applications of the comparison principle are in a local setting. For instance, two solutions
shall be compared on a compactly contained subset of �T . For certain ranges of exponents,
it is known that weak sub-solutions are locally bounded. We summarize these results in the
following remark.

Remark 3.3 Letq > 0 and p > 1 satisfy either 0 < q ≤ p−1, or 0 < p−1 < q <
n(p−1)+p
(n−p)+ .

Then, any non-negative weak sub-solution u of (1.1) in �T is locally bounded.
The results are scattered in the literature for different ranges of exponents. A natural

classification is the following one:

• 0 < q < p − 1 (slow diffusion case), cf. [19] or [8, Theorem 4.1];
• 0 < q = p − 1 (homogeneous case), cf. [19] or [22, Lemma 5.1];

• 0 < p − 1 < q <
n(p−1)+p
(n−p)+ (fast diffusion case), cf. [19] or [6, Theorem 1.3].

This information allows to omit the boundedness assumption in the comparison principle
in a local setting.

Corollary 3.4 Let q > 0 and p > 1 satisfy either 0 < q ≤ p − 1, or 0 < p − 1 < q <
n(p−1)+p
(n−p)+ , and let u be a non-negative local weak sub-solution and v a non-negative local

weak super-solution of (1.1) in �T . Further, let K � � and 0 < t1 < t2 < T and suppose
that

ess inf
∂K×(t1,t2)

v > 0
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holds. If

u ≤ v on ∂p
(
K × (t1, t2)

)
,

then we have

u ≤ v a.e. in K × (t1, t2).

Proof In view of Remark 3.3, we know that under the present assumptions u is locally
bounded in �T . Hence, u is bounded in K × [t1, t2] and u is a non-negative weak sub-
solution and v a non-negative weak super-solution of (1.1) in K × (t1, t2). This allows to
apply Theorem 1.2 to u and v on the parabolic cylinder K × (t1, t2)with the result that u ≤ v

a.e. in K × (t1, t2). ��

Corollary 3.4 still requires the super-solution to be strictly positive on the lateral boundary
of the considered subcylinder. We are able to omit this assumption in the smaller range of
exponents p − 1 < q <

n(p−1)
(n−p)+ . In fact, in this case there holds a Harnack inequality

without time gap [6, 22]. This allows to prove the comparison principle for non-negative
weak solutions stated in Theorem 1.3 without a lower bound on the lateral boundary data.

Proof of Theorem 1.3 From [22] in the case q = p−1, respectively, [6, Theorem 1.11] in the
case p − 1 < q <

n(p−1)
(n−p)+ we know that for any t ∈ [t1, t2] either u(·, t) > 0 or u(·, t) ≡ 0

in K . Moreover, from [6, 7, 24] we know that u and v are Hölder continuous in K × [t1, t2].
We now let

τo := sup
{
t ∈ [t1, t2] : u(·, t) ≤ v(·, t) in K

}
.

Note that u(·, τo) ≤ v(·, τo) in K by the continuity of u and v if τo > t1, respectively, by the
initial condition u(·, t1) ≤ v(·, t1) if τo = t1.

We claim that τo < t2. As explained above, we either have u(·, τo) > 0 or u(·, τo) ≡ 0 in
K . In the former case, there exist ε > 0 and 0 < δ ≤ t2−τo such that u ≥ ε in K×[τo, τo+δ].
Moreover, we have u ≤ v on ∂p(K × (τo, τo + δ)). This allows to apply Theorem 1.2 to
conclude that u ≤ v in K × (τo, τo + δ), contradicting τo < t2.

In the latter case, where u(·, τo) ≡ 0 in K , there exists τ1 ∈ (τo, t2] such that u > 0
in K × (τo, τ1]. Moreover, there exist ε > 0 and 0 < δ < τ1 − τo such that u ≥ ε in
K × [τo + δ, τ1]. Since v ≥ u ≥ ε on ∂K × [τo + δ, τ1], Theorem 1.1 implies

∫

K×{t}
(
uq − vq

)
+ dx ≤

∫

K×{τo+δ}
(
uq − vq

)
+ dx

for any τo + δ ≤ t ≤ t2. Letting δ ↓ 0 in the inequality above, the integral on the right hand
side vanishes, since u and v are continuous and u(·, τo) = 0 in K . This, however, implies
u ≤ v in K × [τo, τ1], again contradicting τo < t2.

Hence, we have τo = t2, which implies u ≤ v in K × (t1, t2) as claimed. ��

4 General structures

In this section,we present some generalizations underwhich the statements of the comparison
principles continue to hold.
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4.1 Inhomogeneous equations

The first generalization concerns the presence of a right-hand side. Instead of (1.1), we now
consider its inhomogeneous variant

∂t u
q − �pu = f in �T (4.1)

for some

f ∈ L p̃′
(�T ),

where

p̃ := max{p, q + 1}
and p̃′ = p̃

p̃−1 denotes the Hölder conjugate of p̃.

Definition 4.1 A non-negative measurable function u : �T → R≥0 in the class

u ∈ C
([0, T ]; Lq+1(�)

) ∩ L p(0, T ;W 1,p(�)
)

is a weak sub(super)-solution of (4.1) if
∫∫

�×(t1,t2)

[ − uq∂tφ + |∇u|p−2∇u · ∇φ
]
dxdt ≤ (≥)

∫∫

�×(t1,t2)
f φ dxdt (4.2)

for any non-negative function

φ ∈ W 1,q+1
0

(
0, T ; Lq+1(�)

) ∩ L p(0, T ;W 1,p
0 (�)

)
.

A function u is a non-negative weak solution of (4.1) if it is both, a weak sub-solution and a
weak super-solution.

The next lemma is a generalization of Lemma 2.4 for the inhomogeneous case.

Lemma 4.2 Let q > 0, p > 1 and u be a non-negative weak sub-solution of (4.1) in the
sense of Definition 4.1. Then, for any κ > 0 the function max{u, κ} is a weak sub-solution
of

∂t u
q − �pu = fχ {u>κ} in�T .

Similarly, if v is a non-negative weak super-solution of (4.1), then for any M > 0 also
min{v, M} is a weak super-solution of

∂tv
q − �pv = fχ {v<M} in �T .

Proof We only treat the first part of the Lemma concerning sub-solutions, since the second
one follows with a similar reasoning. We argue exactly as in the proof of Lemma 2.4 with
the only exception that we have to treat the additional term

∫∫

�T

f φ dxdt

that appears on the right-hand side of (2.6). Inserting the test-function

φ = ηφh, where φh := (�u�h̄ − κ)+
(�u�h̄ − κ)+ + μ

,
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as defined in the proof of Lemma 2.4, passing first to the limit h ↓ 0 and afterward to the
limit μ ↓ 0, the integral converges to

∫∫

�T ∩{u>κ}
f η dxdt .

As in the proof of Lemma 2.4, we now use an approximation argument in order to replace η

by an arbitrary testing function

φ ∈ W 1,q+1
0

(
0, T ; Lq+1(�)

) ∩ L p(0, T ;W 1,p
0 (�)

)
.

This proves that max{u, k} is a sub-solution as claimed. ��
In the inhomogeneous case, we obtain the following variant of Theorem 1.1.

Corollary 4.3 Let p > 1, q > 0 and

f1, f2 ∈ L p̃′
(�T ).

Further, let u be a non-negative weak sub-solution of

∂t u
q − �pu = f1 in �T

and v be a weak non-negative super-solution of

∂tv
q − �pv = f2 in �T

satisfying

ess inf
∂�×(0,T )

v > 0 and ess sup
∂�×(0,T )

u < ∞ if q > 1. (4.3)

If

u ≤ v on ∂� × (0, T ),

then the following inequality holds
∫

�×{t2}
(uq − vq)+ dx ≤

∫

�×{t1}
(uq − vq)+ dx +

∫∫

�×(t1,t2)∩{v<u}
( f1 − f2) dxdt

for every 0 ≤ t1 < t2 ≤ T .

Proof The claimed inequality may be shown in a similar way as Theorem 1.1 taking also
into account the additional terms containing f1 and f2. In the following, we will explain in
the case q ≥ 1 how these terms are dealt with. We choose 0 < κ < ε ≤ M < ∞ and define
uκ = max{u, κ} and vM = min{v, M} as in the proof of Theorem 1.1. Instead of Lemma
2.4, we now apply Lemma 4.2 to infer that uκ is a weak sub-solution to

∂t u
q
κ − �puκ = f1χ {u>κ} in �T

and vM is a weak super-solution to

∂
q
t vM − �pvM = f2χ {v<M} in �T .

Subsequently, we need a variant of Proposition 3.2 for inhomogeneous equations. Performing
the same arguments as in the proof of Proposition 3.2, we obtain in inequality (3.5) the
additional term

∫∫

�×(t1,t2)

[
f1χ {u>κ} − f2χ {v<M}

]
h∇Hδ(u

q
κ − v

q
M ) dxdt
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on the right-hand side. Passing to the limit h ↓ 0 and δ ↓ 0, we obtain instead of (3.4) the
following inequality:

∫

�×{t2}
(
uqκ − v

q
M

)
+ dx ≤

∫

�×{t1}
(
uqκ − v

q
M

)
+ dx

+
∫∫

�×(t1,t2)∩{uκ>vM }
(
f1χ {u>κ} − f2χ {v<M}

)
dxdt .

Note that {uκ > vM } = {u > v}, since κ < M . Finally, passing to the limits κ ↓ 0 and
M → ∞, yields the claimed inequality for q ≥ 1. The modifications in the case 0 < q ≤ 1
are similar. ��

In the case f1 = f2, integral term on the right-hand side vanishes and therefore, we obtain
the following variant of Theorem 1.2, which immediately follows from Corollary 4.3.

Corollary 4.4 Let q > 0, p > 1 and

f ∈ L p̃′
(�T )

and u be a non-negative weak sub-solution and v a non-negative weak super-solution of
(4.1) in �T satisfying (4.3). If

u ≤ v on ∂p�T ,

then we have

u ≤ v a.e. in �T .

4.2 General coefficients

Instead of the model equation (1.1), respectively, (4.1), one may consider some more general
doubly nonlinear equations. More precisely, instead of the p-Laplacian operator we consider
vector fields

A(x, t, u, ξ) : Rn × R+ × R+ × R
n → R

n

and the associated doubly nonlinear equation

∂t u
q − div A(x, t, u,∇u) = f in �T , (4.4)

where q > 0. The vector field A is supposed to be a Carathéodory function, which means

(x, t) �→ A(x, t, u, ξ) is measurable for every(u, ξ) ∈ R × R
n,

(u, ξ) �→ A(x, t, u, ξ) is continuous for almost every (x, t) ∈ �T ,

and further to satisfy the following conditions
⎧
⎪⎪⎨

⎪⎪⎩

A(x, t, u, 0) = 0(
A(x, t, u, ξ) − A(x, t, u, η)

) · (ξ − η) ≥ 0
|A(x, t, u, ξ)| ≤ C

(
1 + |ξ |p−1 )

|A(x, t, u, ξ) − A(x, t, v, ξ)| ≤ L |u − v| (1 + |ξ |p−1 )
(4.5)

for a.e. (x, t) ∈ �T and any u, v ∈ R, and any ξ, η ∈ R
n , where p > 1 and C and L denote

positive constants.
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Definition 4.5 A non-negative measurable function u : �T → R≥0 in the class

u ∈ C
(
0, T ; Lq+1(�)

) ∩ L p(0, T ;W 1,p(�)
)

is a non-negative weak sub(super)-solution of (4.4) if
∫∫

�×(t1,t2)

[ − uq∂tφ + A(x, t, u,∇u) · ∇φ
]
dxdt ≤ (≥)

∫∫

�×(t1,t2)
f φ dxdt (4.6)

for any non-negative function

φ ∈ W 1,q+1
0

(
0, T ; Lq+1(�)

) ∩ L p(0, T ;W 1,p
0 (�)

)
.

A function u is a non-negative weak solution of (4.4) if it is both, a weak sub-solution and a
weak super-solution.

Due to the structure condition (4.5)3 and the definition of p̃′, both integrals in (4.6)
are finite. Moreover, we mention that the assumed continuity in time of weak sub/super-
solutions in the sense of Definition 4.5 is not restrictive, see [6, Proposition 4.9]. Note that the
doubly nonlinear equation (1.1) is a special case of (4.4), since A(x, t, u,∇u) = A(∇u) =
|∇u|p−2 ∇u satisfies hypothesis (4.5).

The subsequent Lemma is a variant of Lemma 2.4 for the more general equations consid-
ered above.

Lemma 4.6 Let q > 0, p > 1 and u be a non-negative weak sub-solution of (4.4) in the
sense of Definition 4.5. Then, for any κ > 0 the function max{u, κ} is a weak sub-solution
of

∂t u
q − div A(x, t, u,∇u) = fχ {u>κ} in �T .

Similarly, if v is a non-negative local weak super-solution of (4.4), then for any M > 0
also min{v, M} is a local weak super-solution of

∂t u
q − div A(x, t, u,∇u) = fχ {v<M} in �T .

Proof The proof is similar to the one of Lemma 2.4, respectively, Lemma 4.2 for the model
pdes (1.1) and (4.1). The proof for the case f ≡ 0 a.e. in �T can be found in [6, Propo-
sition 4.7]. Note that assumption (4.5)1 is needed here in order to avoid a multiplicative
factor χ {u>κ}, respectively, χ {v<M} of the vector field A, see [6, Remark 4.8]. Moreover,
the right-hand side f can be treated as in the proof of Lemma 4.2. ��

The following Corollary illustrates another version of Theorem 1.1, which is the most
general comparison principle in this paper.

Corollary 4.7 Let q > 0, p > 1 and

f1, f2 ∈ L p̃′
(�T )

Further, let u be a non-negative weak sub-solution of

∂t u
q − div (A(x, t, u,∇u)) = f1 in �T

and v be a non-negative weak super-solution of

∂tv
q − div (A(x, t, u,∇v)) = f2 in �T
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satisfying

ess inf
∂�×(0,T )

v > 0 and ess sup
∂�×(0,T )

u < ∞ if q > 1. (4.7)

If

u ≤ v on ∂� × (0, T ),

then the following inequality holds

∫

�×{t2}
(uq − vq)+ dx ≤

∫

�×{t1}
(uq − vq)+ dx +

∫∫

�×(t1,t2)∩{v<u}
( f1 − f2) dxdt

for every 0 ≤ t1 < t2 ≤ T .

Proof The proof can be achieved by similar arguments as in Theorem 1.1, taking into account
themore general vector field A. The right-hand side can be treated exactly as in Corollary 4.3.
Therefore, we only explain the arguments needed to treat the vector field A and omit the terms
containing the functions f1 and f2. In the case q ≥ 1, a similar approach to the proof of
Theorem 1.1 leads us to the following version of (3.7)

∫

�×{t2}
Gδ

(
uqκ − v

q
M

)
dx −

∫

�×{t1}
Gδ

(
uqκ − v

q
M

)
dx

≤ −1

δ

∫∫

�δ

(
A(x, t, uκ ,∇uκ ) − A(x, t, vM ,∇vM )

) · ∇(uqκ − v
q
M ) dxdt .

Here, �δ denotes the set

�δ := {
(x, t) ∈ � × (t1, t2) : 0 < uqκ (x, t) − v

q
M (x, t) < δ

}
.

Due to identity (3.8), the right-hand side of the preceding inequality may be re-written as

− 1

δ

∫∫

�δ

(
A(x, t, uκ ,∇uκ ) − A(x, t, vM ,∇vM )

) · ∇(uqκ − v
q
M ) dxdt

= −1

δ

∫∫

�δ

uq−1
κ

(
A(x, t, uκ ,∇uκ ) − A(x, t, vM ,∇vM )

) · (∇uκ − ∇vM ) dxdt

− 1

δ

∫∫

�δ

q
(
uq−1

κ − v
q−1
M

)(
A(x, t, uκ ,∇uκ ) − A(x, t, vM ,∇vM )

) · ∇vM dxdt .

The second term on the right-hand side of the above identity vanishes in the limit δ ↓ 0,
which follows similarly as in the proof of Theorem 1.1. Therefore, we will concentrate on
the first term. Using assumptions (4.5)2 and (4.5)4 together with the fact that uκ ≥ κ in �T ,
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we obtain

−1

δ

∫∫

�δ

uq−1
κ

(
A(x, t, uκ ,∇uκ ) − A(x, t, vM ,∇vM )

) · (∇uκ − ∇vM ) dxdt

= −1

δ

∫∫

�δ

uq−1
κ

(
A(x, t, uκ ,∇uκ ) − A(x, t, uκ ,∇vM )

) · (∇uκ − ∇vM )
︸ ︷︷ ︸

≥0

dxdt

− 1

δ

∫∫

�δ

uq−1
κ

(
A(x, t, uκ ,∇vM ) − A(x, t, vM ,∇vM )

) · (∇uκ − ∇vM ) dxdt

≤ 1

δ

∫∫

�δ

uq−1
κ |A(x, t, uκ ,∇vM ) − A(x, t, vM ,∇vM )| |∇uκ − ∇vM | dxdt

≤ L

δ

∫∫

�δ

uq−1
κ |uκ − vM | (1 + |∇vM |p−1 ) |∇uκ − ∇vM | dxdt

≤ L c(q, κ)

∫∫

�δ

uq−1
κ

(
1 + |∇vM |p−1 ) |∇uκ − ∇vM | dxdt .

The last integral vanishes in the limit δ ↓ 0. Finally, letting κ ↓ 0 and M → ∞ finishes the
proof in the case q ≥ 1. Since the case 0 < q < 1 is similar, we omit the details. ��

The following corollary represents a generalization of Theorem 1.2 for the doubly non-
linear equation (4.4).

Corollary 4.8 Let q > 0, p > 1 and

f ∈ L p̃′
(�T )

and u be a non-negative weak sub-solution and v a non-negative weak super-solution of
(4.4) in �T satisfying (4.7). If

u ≤ v on ∂p�T ,

then we have

u ≤ v a.e. in �T .

Remark 4.9 Similar local results as obtained in Sect. 3.2 also hold true for the doubly-
nonlinear equation (4.4). Corollary 3.4 still holds true, provided the right-hand side f is
integrable enough to ensure local boundedness of the sub-solution. Theorem 1.3 continues
to hold for homogeneous equations of the more general structure (4.4), i.e., f ≡ 0. Note that
the main ingredient in the proof is a time insensitive Harnack inequality, which is available
also under these more general assumptions; see [6, Theorem 1.10].

5 Uniqueness

The comparison principles derived so far imply uniqueness of weak solutions to the associ-
ated Cauchy–Dirichlet problem. Since only non-negative weak solutions are considered, the
boundary and initial data are assumed to be non-negative as well. Note that due to Corol-
lary 4.3 we are able to also consider a nontrivial right-hand side f in the Cauchy–Dirichlet
problem.
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Theorem 5.1 Consider the data
⎧
⎨

⎩

f ∈ L p̃′
(�T ),

g ∈ L p
(
0, T ;W 1,p(�)

)
,

uo ∈ L2
(
�,R≥0

)
.

Suppose furthermore that g ≥ ε for some ε > 0 and in the case q > 1 additionally assume
that g is bounded. Then, there exists a unique non-negative weak solution of the Cauchy–
Dirichlet problem

⎧
⎪⎨

⎪⎩

∂t uq − �pu = f in � × (0, T ),

u = g on ∂� × (0, T ),

u(·, 0) = uo in �.

(5.1)

Proof The existence of a weak solution can be inferred for instance from [1]. Let u1 and u2
be two non-negative weak solutions of (5.1). Then, we have

u1 − u2 = (u1 − g) − (u2 − g) ∈ L p(0, T ;W 1,p
0 (�)

)

and similarly for the initial datum

u1(·, 0) − u2(·, 0) = 0 a.e. in �.

Applying Corollary 4.4 twice, we first derive u1 ≤ u2 and similarly u1 ≥ u2 a.e. in �T . In
turn, this yields u1 = u2 a.e. in �T . ��

A similar uniqueness result for non-negative weak solutions holds for the more general
doubly nonlinear equation (4.4). In the proof, Corollary 4.4 has to be replaced by 4.8.

Theorem 5.2 Let f , g, uo be as in Theorem 5.1 and suppose that the vector field A satisfies
the set of assumptions (4.5). Then, there exists a unique non-negative weak solution of the
Cauchy–Dirichlet problem

⎧
⎪⎨

⎪⎩

∂t uq − div A(x, t, u,∇u) = f in � × (0, T ),

u = g on ∂� × (0, T ),

u(·, 0) = uo in �.

Remark 5.3 A uniqueness result is also available in the case that the lateral boundary datum g
vanishes entirely, see [26, 27]. Moreover, in the case 0 < p− 1 ≤ q <

n(p−1)
(n−p)+ , Theorem 1.3

ensures local uniqueness of weak solutions without imposing any additional upper or lower
bounds.

6 Viscosity solutions

In this final section, we will give an application of the comparison principle and show that
every weak solution of (1.1) is also a viscosity solution. The result is interesting in itself as
existence of a weak solution thus guarantees existence of a viscosity solution. In a similar
fashion, we are also able to give a respective result for the homogeneous version of the
generalized pde (4.4). Throughout we refer to [3, 11] for the definition and properties of
viscosity solutions.
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Definition 6.1 Let q > 0, p ≥ 2 and u : �T → R≥0 be an upper semi-continuous function.
In the case 0 < q < 1, we additionally require u > 0. u is a viscosity sub-solution of (1.1)
if for any function φ ∈ C1((0, T );C2(�)) such that φ(x0, t0) = u(x0, t0) and φ > u in a
deleted neighborhood of (x0, t0), we have

∂tφ
q(x0, t0) − �pφ(x0, t0) ≤ 0.

Similarly, a lower semi-continuous function u : �T → R≥0 is a viscosity super-solution of
(1.1) if for any function φ ∈ C1((0, T );C2(�)) such that φ(x0, t0) = u(x0, t0) and φ < u
in a deleted neighborhood of (x0, t0), we have

∂tφ
q(x0, t0) − �pφ(x0, t0) ≥ 0.

Finally, a function u is a viscosity solution of (1.1) if it is both, a viscosity sub-solution and
a viscosity super-solution.

Remark 6.2 In the case 1 < p < 2, the definition of viscosity solution is delicate, since �pφ

is not well defined for test functions φ whose gradient vanishes at the touching point; see
[21, 28] for more discussion on this topic. For this reason, we restrict ourselves to the case
p ≥ 2.

Remark 6.3 In the literature, often strict inequalities are used, cf. [9, 21, 28]. Note that vis-
cosity sub/super-solutions may equivalently be defined without strict inequalities of the test
functions touching u from either below or above. However, it is always possible to obtain
strict inequalities by modifying the test-function, which leads to equivalent Definitions.

We will need the following Lemma to prove the result for viscosity solutions afterward.
In the theory of viscosity solutions, the stated property usually is referred to as degenerate
ellipticity, see [11].

Lemma 6.4 Let p ≥ 2 and φ ∈ C2(�) such that D2φ ∈ R
n×n is positive semi-definite.

Then, there holds �pφ ≥ 0.

Proof Let x0 ∈ �. In order to simplify notation, we abbreviate v = ∇φ(x0) and X =
D2φ(x0). We compute

�pφ(x0) = (p − 2)|v|p−4 (Xv · v) + |v|p−2 Tr(X)

≥ |v|p−2 (−|v|−2 (Xv, v) + Tr(X)
)

≥ |v|p−2
(

− max
i∈{1,...,n}{λi } +

n∑

i=1

λi

)
≥ 0,

where λi for i ∈ {1, ..., n} denote the eigenvalues of X and the estimate

〈Xv, v〉
|v|2 = 〈Xv, v〉

〈v, v〉 ≤ max{λ1, ..., λn}
was used. ��

We now state the result about viscosity solutions as an application of the comparison
principle in Theorem 1.2. We only show that any weak solution is a viscosity solution in the
sense of Definition 6.1. We did not attempt to prove the reverse implication, which is more
involved. In the elliptic case, this property has for example been shown in [21], whereas the
parabolic p-Laplace equation with a more general right hand side has been considered in
[28]. In both cases, the weak and viscosity solutions coincide.
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Theorem 6.5 Let q > 0, p ≥ 2 and u be a bounded non-negative weak solution of

∂t u
q − �pu = 0 in �T .

Then, u is a viscosity solution of

∂t u
q − �pu = 0 in �T ∩ {u > 0}.

If 1 ≤ p − 1 < q <
n(p−1)
(n−p)+ , then u is a viscosity solution of

∂t u
q − �pu = 0 in �T .

Proof Instead of u, we consider its upper semi-continuous regularization u∗, which is, for
locally bounded solutions, uniquely determined and verifies u = u∗ a.e. in �T , see [25,
Theorem 2.3].

We first show that any upper semi-continuous non-negative weak sub-solution is a vis-
cosity sub-solution in the set �T ∩ {u > 0}. Let z0 = (x0, t0) ∈ �T with u(z0) > 0 and
consider a test-function φ ∈ C1((0, T );C2(�)) with φ(z0) = u(z0) and φ > u in a deleted
neighborhood of z0. Arguing by contradiction, we assume

∂tφ
q(z0) − �pφ(z0) > 0.

Since φ ∈ C1((0, T );C2(�)), this inequality continues to hold in a neighborhood of z0.
Hence, we may find γ0 ∈ (0, 1) and ε, δ, λ ∈ (0, 1) such that

∂tφ
q − �pφ ≥ λ > 0 and φ ≥ ε in Qδ(z0) (6.1)

and

u ≤ γ0φ on ∂pQδ(z0), (6.2)

where Qδ(z0) := Bδ(x0) × (t0 − δ, t0 + δ). The latter is a consequence of the upper semi-
continuity of u. We abbreviate

M := 1 + ∥∥∂tφ
q
∥∥
L∞(Qδ(z0))

< ∞.

Note that this expression is bounded for any q > 0, since φ ≥ ε in Qδ(z0). Choosing
γ ∈ [γ0, 1) large enough to have

|γ q−p+1 − 1| ≤ λ

M
,

we obtain

∂t (γ φ)q − �p(γ φ) = γ p−1[∂tφq − �pφ + (γ q−p+1 − 1)∂tφ
q]

≥ γ p−1[λ − |γ q−p+1 − 1|M] ≥ 0

in Qδ(z0). Thus, γφ ≥ γ ε > 0 is a classical super-solution and therefore, also a weak
super-solution in Qδ(z0). Now, Theorem 1.2 applied with u as weak sub-solution and γφ as
weak super-solution yields u ≤ γφ in Qδ(z0). Since 0 < γ < 1, this contradicts u(x0, t0) =
φ(x0, t0) > 0. This ensures that u is a viscosity sub-solution.

Next, we prove that any lower semi-continuous non-negative weak super-solution is a
viscosity super-solution in the set �T ∩ {u > 0}. To this aim, we consider z0 ∈ �T with
u(z0) > 0 and a function φ ∈ C1((0, T );C2(�))with φ(z0) < u(z0) and φ < u in a deleted
neighborhood of z0. Again we argue by contradiction and assume

∂tφ
q(z0) − �pφ(z0) < 0.
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Similarly to before, we find γ0 > 1 and ε, δ, λ ∈ (0, 1) such that

∂tφ
q − �pφ ≤ −λ < 0 and φ ≥ ε in Qδ(z0)

and

u ≥ γ0φ on ∂pQδ(z0).

With M defined as above, we choose γ ∈ (1, γ0] small enough to have

|γ q−p+1 − 1| ≤ λ

M
.

In this way, we obtain

∂t (γ φ)q − �p(γ φ) = γ p−1[∂tφq − �pφ + (γ q−p+1 − 1)∂tφ
q]

≤ γ p−1[ − λ + |γ q−p+1 − 1|M] ≤ 0

in Qδ(z0). Now, applying Theorem 1.2 with γφ ≥ γ ε > 0 as weak sub-solution and u
as weak super-solution we derive a contraction as in the viscosity sub-solution case. This
finishes the first part of the Theorem.

To show the second part of the Theorem, we consider z0 = (x0, t0) ∈ �T . If u(z0) > 0,
the first part of the theorem applies. Therefore, it remains to consider the case u(z0) = 0.

In view of the Harnack inequality from [6, Theorem 1.11], we have u(·, t0) = 0 a.e. in �.
We first consider some test function φ ∈ C1((0, T );C2(�)) such that φ(z0) = u(z0) and

φ > u in a deleted neighborhood of z0. Since u and φ both vanish in z0, it follows that φ

and hence, also φq attains a minimum there which implies ∂tφ
q(z0) = 0 and ∇φ(z0) = 0

and D2φ(z0) is positive semi-definite. Now, in view of Lemma 6.4 we obtain the desired
inequality

∂tφ
q(z0) − �pφ(z0) = −�pφ(z0) ≤ 0.

Next, we consider a test function φ ∈ C1((0, T );C2(�)) such that φ(z0) = u(z0) and
φ < u in a deleted neighborhood of z0. Since u(·, t0) = 0 a.e. in�, we have that∇φ(z0) = 0
and D2φ(z0) is negative semi-definite. Moreover, since q > 1, we have ∂tφ

q(z0) = (q − 1)
φq−1(z0)∂tφ(z0) = 0, so that

∂tφ
q(z0) − �pφ(z0) = −�pφ(z0) ≥ 0.

Overall, this shows that u is a viscosity solution of (1.1) in �T . ��
Note that the Theorem also holds in the range of parameters p and q , where weak solutions

might fail to be locally continuous. This is achieved through the semi-continuous regulariza-
tion u∗ which is defined in the proof. The second part of Theorem 6.5 holds in the whole of
�T due to infinite speed of propagation of weak solutions as shown in [6].

Remark 6.6 Note that in the second part of Theorem 6.5 we are able to show that any non-
negative weak sub-solution is a viscosity sub-solution in �T for any q ≥ 1 and p ≥ 2. The
restriction 1 ≤ p − 1 < q <

n(p−1)
(n−p)+ is only necessary for the argument ensuring that u is a

viscosity super-solution.
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