A free boundary problem for the p-Laplacian with nonlinear boundary conditions

P. Acampora ${ }^{1}$ • E. Cristoforoni ${ }^{1,2}$ (D)

Received: 10 February 2023 / Accepted: 14 June 2023 / Published online: 1 July 2023
© The Author(s) 2023

Abstract

We study a nonlinear generalization of a free boundary problem that arises in the context of thermal insulation. We consider two open sets $\Omega \subseteq A$, and we search for an optimal A in order to minimize a nonlinear energy functional, whose minimizers u satisfy the following conditions: $\Delta_{p} u=0$ inside $A \backslash \Omega, u=1$ in Ω, and a nonlinear Robin-like boundary (p, q) condition on the free boundary ∂A. We study the variational formulation of the problem in SBV, and we prove that, under suitable conditions on the exponents p and q, a minimizer exists and its jump set satisfies uniform density estimates.

Keywords p-Laplacian • Free boundary • Robin • Nonlinear
Mathematics Subject Classification 35A01 • 35J66 • 35J92 • 35R35

1 Introduction

Let $\Omega \subseteq \mathbb{R}^{n}$ be a bounded open set with smooth boundary, and let A be a set containing Ω. Consider the functional

$$
\begin{equation*}
F(A, v)=\int_{A}|\nabla v|^{2} \mathrm{~d} \mathcal{L}^{n}+\beta \int_{\partial A} v^{2} \mathrm{~d} \mathcal{H}^{n-1}+C_{0} \mathcal{L}^{n}(A), \tag{1.1}
\end{equation*}
$$

with $v \in H^{1}(A), v=1$ in Ω and $\beta, C_{0}>0$ fixed positive constants. The problem of minimizing this functional arises in the environment of thermal insulation: F represents the energy of a heat configuration v when the temperature is maintained constant inside the body Ω and there's a bulk layer $A \backslash \Omega$ of insulating material whose cost is represented by C_{0} and the heat transfer with the external environment is conveyed by convection. For simplicity's

[^0]sake in the following we will set $C_{0}=1$. The variational formulation in (1.1) leads to an Euler-Lagrange equation, which is the weak form of the following problem:
\[

$$
\begin{cases}\Delta u=0 & \text { in } A \backslash \Omega \tag{1.2}\\ \frac{\partial u}{\partial v}+\beta u=0 & \text { on } \partial A \\ u=1 & \text { in } \Omega\end{cases}
$$
\]

The problems we are interested in concern the existence of a solution and its regularity. In this sense, one could be interested in studying a more general setting in which it is possible to consider possibly irregular sets A. Specifically, we could generalize the problem into the context of SBV functions, aiming to minimize the functional

$$
F(v)=\int_{\mathbb{R}^{n}}|\nabla v|^{2} \mathrm{~d} \mathcal{L}^{n}+\beta \int_{J_{v}}\left(\underline{v}^{2}+\bar{v}^{2}\right) \mathrm{d} \mathcal{H}^{n-1}+\mathcal{L}^{n}(\{v>0\} \backslash \Omega)
$$

with $v \in \operatorname{SBV}\left(\mathbb{R}^{n}\right)$ and $v=1$ in Ω. This problem has been studied in [7], where the authors have proved the existence of a solution u for the problem and the regularity of its jump set. Similar two-phase problems in the linear case can be found in [1], and [3]. With regards to the nonlinear context, analogous versions of the problem have been addressed in [4], and in [6] with a boundedness constraint.

In this paper, our main aim is to generalize the problem and techniques employed in [7] to a nonlinear formulation. In detail, for $p, q>1$ fixed, we consider the functional

$$
\begin{equation*}
\mathcal{F}(v)=\int_{\mathbb{R}^{n}}|\nabla v|^{p} \mathrm{~d} \mathcal{L}^{n}+\beta \int_{J_{v}}\left(\underline{v}^{q}+\bar{v}^{q}\right) \mathrm{d} \mathcal{H}^{n-1}+\mathcal{L}^{n}(\{v>0\} \backslash \Omega), \tag{1.3}
\end{equation*}
$$

and in the following we are going to study the problem

$$
\inf \left\{\begin{array}{l|l}
\mathcal{F}(v) & \begin{array}{l}
v \in \operatorname{SBV}\left(\mathbb{R}^{n}\right) \\
v(x)=1 \text { in } \Omega
\end{array}
\end{array}\right\} .
$$

Notice that if $v \in \operatorname{SBV}\left(\mathbb{R}^{n}\right)$ with $v=1$ a.e. in Ω, letting $v_{0}=\max \{0, \min \{v, 1\}\}$ we have that $v_{0} \in \operatorname{SBV}\left(\mathbb{R}^{n}\right)$ with $v_{0}=1$ a.e. in Ω and $\mathcal{F}\left(v_{0}\right) \leq \mathcal{F}(v)$ so it suffices to consider the problem

$$
\inf \left\{\begin{array}{l|l}
\mathcal{F}(v) & \begin{array}{l}
v \in \operatorname{SBV}\left(\mathbb{R}^{n}\right), \\
v(x) \in[0,1] \mathcal{L}^{n} \text {-a.e., } \\
v(x)=1 \text { in } \Omega
\end{array} \tag{1.4}
\end{array}\right\}
$$

In a more regular setting, problem (1.4) can be seen as a PDE. Let us fix Ω, A sufficiently smooth open sets, $u \in W^{1, p}(A)$ with $u=1$ on Ω, and let us define the functional

$$
\begin{equation*}
F(u, A)=\int_{\Omega}|\nabla u|^{p} \mathrm{~d} \mathcal{L}^{n}+\beta \int_{\partial \Omega}|u|^{q} \mathrm{~d} \mathcal{H}^{n-1}+\mathcal{L}^{n}(A \backslash \Omega) . \tag{1.5}
\end{equation*}
$$

minimizers u to (1.5) solve the following boundary value problem

$$
\begin{cases}\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)=0 & \text { in } A \backslash \Omega, \tag{1.6}\\ |\nabla u|^{p-2} \frac{\partial u}{\partial v}+\beta \frac{q}{p}|u|^{q-2} u=0 & \text { on } \partial A, \\ u=1 & \text { in } \Omega\end{cases}
$$

In Sect. 2 we give some preliminary tools and definitions, and then we will prove the existence of a minimizer u of (1.4), under a prescribed condition on p and q. Finally, we will prove density estimates for the jump set J_{u}.

We resume in the following theorems the main results of this paper.
Theorem 1.1 Let $\Omega \subseteq \mathbb{R}^{n}$ be a bounded open set, and let $p, q>1$ be exponents satisfying one of the following conditions:

- $1<p<n$, and $1<q<\frac{p(n-1)}{n-p}:=p_{*}$;
- $n \leq p<\infty$, and $1<q<\infty$.

Then there exists a solution u to problem (1.4) and there exists a constant $\delta_{0}=$ $\delta_{0}(\Omega, \beta, p, q)>0$ such that

$$
\begin{equation*}
u>\delta_{0} \tag{1.7}
\end{equation*}
$$

\mathcal{L}^{n}-almost everywhere in $\{u>0\}$, and there exists $\rho\left(\delta_{0}\right)>0$ such that

$$
\operatorname{supp} u \subseteq B_{\rho\left(\delta_{0}\right)} .
$$

Theorem 1.2 Let $\Omega \subseteq \mathbb{R}^{n}$ be a bounded open set, and let $p, q>1$ be exponents satisfying the assumptions of Theorem 1.1. Then there exist positive constants $C(\Omega, \beta, p, q), c(\Omega, \beta, p, q)$, $C_{1}(\Omega, \beta, p, q)$ such that if u is a minimizer to problem (1.4), then

$$
c r^{n-1} \leq \mathcal{H}^{n-1}\left(J_{u} \cap B_{r}(x)\right) \leq C r^{n-1},
$$

and

$$
\mathcal{L}^{n}\left(B_{r}(x) \cap\{u>0\}\right) \geq C_{1} r^{n},
$$

for every $x \in \overline{J_{u}}$ with $B_{r}(x) \subseteq \mathbb{R}^{n} \backslash \Omega$.
In particular, this implies the essential closedness of the jump set J_{u} outside of Ω, namely

$$
\mathcal{H}^{n-1}\left(\left(\overline{J_{u}} \backslash J_{u}\right) \backslash \bar{\Omega}\right)=0 .
$$

In Sect. 3 we prove that the a priori estimate (1.7) holds for inward minimizers (see Definition 3.1), such an estimate will be crucial in the proof of Theorem 1.1 in Sect. 4. Finally, in Sect. 5 we prove Theorem 1.2.

Remark 1.3 Notice that the condition on the exponents is undoubtedly verified when $p \geq$ $q>1$. Furthermore, if Ω is a set with Lipschitz boundary, the exponent p_{*} is the optimal exponent such that

$$
W^{1, p}(\Omega) \subset \subset L^{q}(\partial \Omega) \quad \forall q \in\left[1, p_{*}\right) .
$$

2 Notation and tools

In this section, we give the definition of the space SBV, and some useful notations and results that we will use in the following sections. We refer to $[2,5,9]$ for a more intensive study of these topics.

Definition 2.1 (BV) Let $u \in L^{1}\left(\mathbb{R}^{n}\right)$. We say that u is a function of bounded variation in \mathbb{R}^{n} and we write $u \in \mathrm{BV}\left(\mathbb{R}^{n}\right)$ if its distributional derivative is a Radon measure, namely

$$
\int_{\Omega} u \frac{\partial \varphi}{\partial x_{i}}=\int_{\Omega} \varphi \mathrm{d} D_{i} u \quad \forall \varphi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right),
$$

with $D u$ a \mathbb{R}^{n}-valued measure in \mathbb{R}^{n}. We denote with $|D u|$ the total variation of the measure $D u$. The space $\operatorname{BV}\left(\mathbb{R}^{n}\right)$ is a Banach space equipped with the norm

$$
\|u\|_{\mathrm{BV}\left(\mathbb{R}^{n}\right)}=\|u\|_{L^{1}\left(\mathbb{R}^{n}\right)}+|D u|\left(\mathbb{R}^{n}\right) .
$$

Definition 2.2 Let $E \subseteq \mathbb{R}^{n}$ be a measurable set. We define the set of points of density 1 for E as

$$
E^{(1)}=\left\{x \in \mathbb{R}^{n} \left\lvert\, \lim _{r \rightarrow 0^{+}} \frac{\mathcal{L}^{n}\left(B_{r}(x) \cap E\right)}{\mathcal{L}^{n}\left(B_{r}(x)\right)}=1\right.\right\},
$$

and the set of points of density 0 for E as

$$
E^{(0)}=\left\{x \in \mathbb{R}^{n} \left\lvert\, \lim _{r \rightarrow 0^{+}} \frac{\mathcal{L}^{n}\left(B_{r}(x) \cap E\right)}{\mathcal{L}^{n}\left(B_{r}(x)\right)}=0\right.\right\} .
$$

Moreover, we define the essential boundary of E as

$$
\partial^{*} E=\mathbb{R}^{n} \backslash\left(E^{(0)} \cup E^{(1)}\right)
$$

Definition 2.3 (Approximate upper and lower limits) Let $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a measurable function. We define the approximate upper and lower limits of u, respectively, as

$$
\bar{u}(x)=\inf \left\{t \in \mathbb{R} \left\lvert\, \limsup _{r \rightarrow 0^{+}} \frac{\mathcal{L}^{n}\left(B_{r}(x) \cap\{u>t\}\right)}{\mathcal{L}^{n}\left(B_{r}(x)\right)}=0\right.\right\},
$$

and

$$
\underline{u}(x)=\sup \left\{t \in \mathbb{R} \left\lvert\, \limsup _{r \rightarrow 0^{+}} \frac{\mathcal{L}^{n}\left(B_{r}(x) \cap\{u<t\}\right)}{\mathcal{L}^{n}\left(B_{r}(x)\right)}=0\right.\right\} .
$$

We define the jump set of u as

$$
J_{u}=\left\{x \in \mathbb{R}^{n} \mid \underline{u}(x)<\bar{u}(x)\right\} .
$$

We denote by K_{u} the closure of J_{u}.
If $\bar{u}(x)=\underline{u}(x)=l$, we say that l is the approximate limit of u as y tends to x, and we have that, for any $\varepsilon>0$,

$$
\limsup _{r \rightarrow 0^{+}} \frac{\mathcal{L}^{n}\left(B_{r}(x) \cap\{|u-l| \geq \varepsilon)\right\}}{\mathcal{L}^{n}\left(B_{r}(x)\right)}=0 .
$$

If $u \in \operatorname{BV}\left(\mathbb{R}^{n}\right)$, the jump set J_{u} is a $(n-1)$-rectifiable set, i.e., $J_{u} \subseteq \bigcup_{i \in \mathbb{N}} M_{i}$, up to a \mathcal{H}^{n-1}-negligible set, with M_{i} a C^{1}-hypersurface in \mathbb{R}^{n} for every i. We can then define \mathcal{H}^{n-1}-almost everywhere on J_{u} a normal v_{u} coinciding with the normal to the hypersurfaces M_{i}. Furthermore, the direction of $v_{u}(x)$ is chosen in such a way that the approximate upper and lower limits of u coincide with the approximate limit of u on the half-planes

$$
H_{v_{u}}^{+}=\left\{y \in \mathbb{R}^{n} \mid v_{u}(x) \cdot(y-x) \geq 0\right\}
$$

and

$$
H_{v_{u}}^{-}=\left\{y \in \mathbb{R}^{n} \mid v_{u}(x) \cdot(y-x) \leq 0\right\}
$$

, respectively.

Definition 2.4 Let $\Omega \subseteq \mathbb{R}^{n}$ be an open set, and $E \subseteq \mathbb{R}^{n}$ a measurable set. We define the relative perimeter of E inside Ω as

$$
P(E ; \Omega)=\sup \left\{\begin{array}{l|l}
\int_{E} \operatorname{div} \varphi \mathrm{~d} \mathcal{L}^{n} & \begin{array}{c}
\varphi \in C_{c}^{1}\left(\Omega, \mathbb{R}^{n}\right) \\
|\varphi| \leq 1
\end{array}
\end{array}\right\}
$$

If $P\left(E ; \mathbb{R}^{n}\right)<+\infty$ we say that E is a set of finite perimeter.
Theorem 2.5 (Decomposition of BV functions) Let $u \in \mathrm{BV}\left(\mathbb{R}^{n}\right)$. Then we have

$$
\mathrm{d} D u=\nabla u \mathrm{~d} \mathcal{L}^{n}+|\bar{u}-\underline{u}| v_{u} \mathrm{~d} \mathcal{H}^{n-1}\left\lfloor_{J_{u}}+\mathrm{d} D^{c} u,\right.
$$

where ∇u is the density of $D u$ with respect to the Lebesgue measure, v_{u} is the normal to the jump set J_{u} and $D^{c} u$ is the Cantor part of the measure Du. The measure $D^{c} u$ is singular with respect to the Lebesgue measure and concentrated out of J_{u}.

Definition 2.6 Let $v \in \operatorname{BV}\left(\mathbb{R}^{n}\right)$, let $\Gamma \subseteq \mathbb{R}^{n}$ be a \mathcal{H}^{n-1}-rectifiable set, and let $v(x)$ be the generalized normal to Γ defined for \mathcal{H}^{n-1}-a.e. $x \in \Gamma$. For \mathcal{H}^{n-1}-a.e. $x \in \Gamma$ we define the traces $\gamma_{\Gamma}^{ \pm}(v)(x)$ of v on Γ by the following Lebesgue-type limit quotient relation

$$
\lim _{r \rightarrow 0} \frac{1}{r^{n}} \int_{B_{r}^{ \pm}(x)}\left|v(y)-\gamma_{\Gamma}^{ \pm}(v)(x)\right| \mathrm{d} \mathcal{L}^{n}(y)=0,
$$

where

$$
\begin{aligned}
& B_{r}^{+}(x)=\left\{y \in B_{r}(x) \mid \nu(x) \cdot(y-x)>0\right\}, \\
& B_{r}^{-}(x)=\left\{y \in B_{r}(x) \mid v(x) \cdot(y-x)<0\right\} .
\end{aligned}
$$

Remark 2.7 Notice that, by [2, Remark 3.79], for \mathcal{H}^{n-1}-a.e. $x \in \Gamma,\left(\gamma_{\Gamma}^{+}(v)(x), \gamma_{\Gamma}^{-}(v)(x)\right)$ coincides with either $(\bar{v}(x), \underline{v}(x))$ or $(\underline{v}(x), \bar{v}(x))$, while, for $\mathcal{H}^{n-1}-$ a.e. $x \in \Gamma \backslash J_{v}$, we have that $\gamma_{\Gamma}^{+}(v)(x)=\gamma_{\Gamma}^{-}(v)(x)$ and they coincide with the approximate limit of v in x. In particular, if $\Gamma=J_{v}$, we have

$$
\gamma_{J_{v}}^{+}(v)(x)=\bar{v}(x) \quad \gamma_{J_{v}}^{-}(v)(x)=\underline{v}(x)
$$

for \mathcal{H}^{n-1}-a.e. $x \in J_{v}$.
We now focus our attention on the BV functions whose Cantor parts vanish.
Definition 2.8 (SBV) Let $u \in \operatorname{BV}\left(\mathbb{R}^{n}\right)$. We say that u is a special function of bounded variation and we write $u \in \operatorname{SBV}\left(\mathbb{R}^{n}\right)$ if $D^{c} u=0$.

For SBV functions we have the following.
Theorem 2.9 (Chain rule) Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function. Then if $u \in \operatorname{SBV}\left(\mathbb{R}^{n}\right)$, we have

$$
\nabla g(u)=g^{\prime}(u) \nabla u .
$$

Furthermore, if g is increasing,

$$
\overline{g(u)}=g(\bar{u}), \quad \underline{g(u)}=g(\underline{u})
$$

while, if g is decreasing,

$$
\overline{g(u)}=g(\underline{u}), \quad \underline{g(u)}=g(\bar{u}) .
$$

We now state a compactness theorem in SBV that will be useful in the following.
Theorem 2.10 (Compactness in SBV) Let u_{k} be a sequence in $\operatorname{SBV}\left(\mathbb{R}^{n}\right)$. Let $p, q>1$, and let $C>0$ such that for every $k \in \mathbb{N}$

$$
\int_{\mathbb{R}^{n}}\left|\nabla u_{k}\right|^{p} \mathrm{~d} \mathcal{L}^{n}+\left\|u_{k}\right\|_{\infty}+\mathcal{H}^{n-1}\left(J_{u_{k}}\right)<C .
$$

Then there exists $u \in \operatorname{SBV}\left(\mathbb{R}^{n}\right)$ and a subsequence $u_{k_{j}}$ such that

- Compactness:

$$
u_{k_{j}} \xrightarrow{L_{\mathrm{oc}}^{1}\left(\mathbb{R}^{n}\right)} u
$$

- Lower semicontinuity: for every open set A we have

$$
\int_{A}|\nabla u|^{p} \mathrm{~d} \mathcal{L}^{n} \leq \liminf _{j \rightarrow+\infty} \int_{A}\left|\nabla u_{k_{j}}\right|^{p} \mathrm{~d} \mathcal{L}^{n}
$$

and

$$
\int_{J_{u} \cap A}\left(\bar{u}^{q}+\underline{u}^{q}\right) \mathrm{d} \mathcal{H}^{n-1} \leq \liminf _{j \rightarrow+\infty} \int_{J_{u_{k_{j}}} \cap A}\left(\bar{u}_{k_{j}}^{q}+\underline{u}_{k_{j}}^{q}\right) \mathrm{d} \mathcal{H}^{n-1}
$$

We refer to [2, Theorem 4.7, Theorem 4.8, Theorem 5.22] for the proof of this theorem. We now conclude this section with the following proposition whose proof can be found in [7, Lemma 3.1].

Proposition 2.11 Let $u \in \operatorname{BV}\left(\mathbb{R}^{n}\right) \cap L^{\infty}\left(\mathbb{R}^{n}\right)$. Then

$$
\int_{0}^{1} P\left(\{u>s\} ; \mathbb{R}^{n} \backslash J_{u}\right) \mathrm{d} s=|D u|\left(\mathbb{R}^{n} \backslash J_{u}\right)
$$

3 Lower bound

In the following, we assume that $\Omega \subset \mathbb{R}^{n}$ is a bounded open set and that p and q are two positive real numbers such that

$$
\begin{equation*}
\frac{q^{\prime}}{p^{\prime}}>1-\frac{1}{n} \tag{3.1}
\end{equation*}
$$

where p^{\prime} and q^{\prime} are the Hölder conjugates of p and q, respectively.
Definition 3.1 Let $v \in \operatorname{SBV}\left(\mathbb{R}^{n}\right)$ be a function such that $v=1$ a.e. in Ω. We say that v is an inward minimizer if

$$
\mathcal{F}(v) \leq \mathcal{F}\left(v \chi_{A}\right),
$$

for every set of finite perimeter A containing Ω, where χ_{A} is the characteristic function of set A.

Let $A \subset \mathbb{R}^{n}$ be a set of finite perimeter such that $\Omega \subset A$, and let $v \in \operatorname{SBV}\left(\mathbb{R}^{n}\right)$. We will make use of the following expression

$$
\begin{align*}
\mathcal{F}\left(v \chi_{A}\right)= & \int_{A}|\nabla v|^{p} \mathrm{~d} \mathcal{L}^{n}+\beta \int_{J_{v} \cap A^{(1)}}\left(\underline{v}^{q}+\bar{v}^{q}\right) \mathrm{d} \mathcal{H}^{n-1}+\beta \int_{\partial^{*} A \backslash J_{v}} v^{q} \mathrm{~d} \mathcal{H}^{n-1} \tag{3.2}\\
& +\beta \int_{J_{v} \cap \partial^{*} A} \gamma_{\partial A}^{-}(v)^{q} \mathrm{~d} \mathcal{H}^{n-1}+\mathcal{L}^{n}((\{v>0\} \cap A) \backslash \Omega),
\end{align*}
$$

Let B be a ball containing Ω, then $\chi_{B} \in \operatorname{SBV}\left(\mathbb{R}^{n}\right)$ and $\chi_{B}=1$ in Ω, we will denote $\mathcal{F}\left(\chi_{B}\right)$ by $\tilde{\mathcal{F}}$.

Theorem 3.2 There exists a positive constant $\delta=\delta(\Omega, \beta, p, q)$ such that if u is an inward minimizer with $\mathcal{F}(u) \leq 2 \tilde{\mathcal{F}}$, then

$$
u>\delta
$$

\mathcal{L}^{n}-almost everywhere in $\{u>0\}$.
Proof Let $0<t<1$ and

$$
f(t)=\int_{\{u \leq t\rangle \backslash J_{u}} u^{q-1}|\nabla u| \mathrm{d} \mathcal{L}^{n}=\int_{0}^{t} s^{q-1} P\left(\{u>s\} ; \mathbb{R}^{n} \backslash J_{u}\right) \mathrm{d} s .
$$

For every such t, we have

$$
\begin{equation*}
f(t) \leq\left(\int_{\{u \leq t\}} u^{(q-1) p^{\prime}} \mathrm{d} \mathcal{L}^{n}\right)^{\frac{1}{p^{\prime}}}\left(\int_{\{u \leq t\rangle \backslash J_{u}}|\nabla u|^{p} \mathrm{~d} \mathcal{L}^{n}\right)^{\frac{1}{p}} \leq \mathcal{F}(u) \leq 2 \tilde{\mathcal{F}} \tag{3.3}
\end{equation*}
$$

Let $u_{t}=u \chi_{\{u>t\}}$. Using (3.2) we have

$$
\begin{aligned}
0 \leq & \mathcal{F}\left(u_{t}\right)-\mathcal{F}(u) \\
= & \beta \int_{\partial^{*}\{u>t\} \backslash J_{u}} \bar{u}^{q} \mathrm{~d} \mathcal{H}^{n-1}-\int_{\{u \leq t\} \backslash J_{u}}|\nabla u|^{p} \mathrm{~d} \mathcal{L}^{n}-\beta \int_{J_{u} \cap \partial^{*}\{u>t\}} \underline{u}^{q} \mathrm{~d} \mathcal{H}^{n-1} \\
& -\beta \int_{J_{u} \cap\{u>t\}^{(0)}}\left(\bar{u}^{q}+\underline{u}^{q}\right) \mathrm{d} \mathcal{H}^{n-1}-\mathcal{L}^{n}(\{0<u \leq t\}),
\end{aligned}
$$

and rearranging the terms,

$$
\begin{align*}
& \int_{\{u \leq t\rangle \backslash J_{u}}|\nabla u|^{p} \mathrm{~d} \mathcal{L}^{n}+\beta \int_{J_{u} \cap \partial^{*}\{u>t\}} \underline{u}^{q} \mathrm{~d} \mathcal{H}^{n-1}+\beta \int_{J_{u} \cap\{u>t\}^{(0)}}\left(\bar{u}^{q}+\underline{u}^{q}\right) \mathrm{d} \mathcal{H}^{n-1} \tag{3.4}\\
& \quad+\mathcal{L}^{n}(\{0<u \leq t\}) \leq \beta t^{q} P\left(\{u>t\} ; \mathbb{R}^{n} \backslash J_{u}\right)=\beta t f^{\prime}(t) .
\end{align*}
$$

On the other hand,

$$
\begin{aligned}
f(t) & =\int_{\{u \leq t\} \backslash J_{u}} u^{q-1}|\nabla u| \mathrm{d} \mathcal{L}^{n} \\
& \leq\left(\int_{\{u \leq t\}} u^{(q-1) p^{\prime}} \mathrm{d} \mathcal{L}^{n}\right)^{\frac{1}{p^{\prime}}}\left(\int_{\{u \leq t\} \backslash J_{u}}|\nabla u|^{p} \mathrm{~d} \mathcal{L}^{n}\right)^{\frac{1}{p}} \\
& \leq\left(\mathcal{L}^{n}(\{0<u \leq t\})\right)^{\frac{1}{p^{\prime} \gamma^{\prime}}}\left(\int_{\{u \leq t\}} u^{q 1^{*}} \mathrm{~d} \mathcal{L}^{n}\right)^{\frac{1}{q^{\prime} 1^{*}}}\left(\int_{\{u \leq t\} \backslash J_{u}}|\nabla u|^{p} \mathrm{~d} \mathcal{L}^{n}\right)^{\frac{1}{p}},
\end{aligned}
$$

where we used

$$
1^{*}=\frac{n}{n-1}, \quad \text { and } \quad \gamma=\frac{q 1^{*}}{(q-1) p^{\prime}},
$$

and $\gamma>1$ by (3.1). By classical BV embedding in $L^{1^{*}}$ applied to the function $\left(u \chi_{\{u \leq t\}}\right)^{q}$ and the estimate (3.4), we have

$$
f(t) \leq C(n, \beta)\left(t f^{\prime}(t)\right)^{1-\frac{n-1}{q^{\prime} n}}\left(\int_{\mathbb{R}^{n}} \mathrm{~d}\left|D\left(u \chi_{\{u \leq t\}}\right)^{q}\right|\right)^{\frac{1}{q^{\prime}}}
$$

We can compute

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} \mathrm{~d}\left|D\left(u \chi_{\{u \leq t\}}\right)^{q}\right| \leq & q\left(\mathcal{L}^{n}(\{0<u \leq t\})\right)^{\frac{1}{p^{\prime}}}\left(\int_{\{u \leq t\} \backslash J_{u}}|\nabla u|^{p} \mathrm{~d} \mathcal{L}^{n}\right)^{\frac{1}{p}} \\
& +\int_{J_{u} \cap\{u>t\}^{(0)}}\left(\bar{u}^{q}+\underline{u}^{q}\right) \mathrm{d} \mathcal{H}^{n-1}+\int_{J_{u} \cap \partial^{*}\{u>t\}} \underline{u}^{q} \mathrm{~d} \mathcal{H}^{n-1} \\
& +t^{q} P\left(\{u>t\} ; \mathbb{R}^{n} \backslash J_{u}\right) \leq(2+q \beta) t f^{\prime}(t)
\end{aligned}
$$

We therefore get

$$
f(t) \leq C(n, \beta, q)\left(t f^{\prime}(t)\right)^{1+\frac{1}{n q^{\prime}}}
$$

Let $0<t_{0}<1$ such that $f\left(t_{0}\right)>0$, then for every $t_{0}<t<1$, we have $f(t)>0$ and

$$
\frac{f^{\prime}(t)}{f(t)^{\frac{n q}{q(n+1)-1}}} \geq \frac{C(n, \beta, q)}{t},
$$

integrating from t_{0} to 1 , we have

$$
f(1)^{\frac{q-1}{q(n+1)-1}}-f\left(t_{0}\right)^{\frac{q-1}{q(n+1)-1}} \geq C(n, \beta, q) \log \frac{1}{t_{0}}
$$

so that, using (3.3),

$$
f\left(t_{0}\right)^{\frac{q-1}{q(n+1)-1}} \leq(2 \tilde{\mathcal{F}})^{\frac{q-1}{q(n+1)-1}}+C(n, \beta, q) \log t_{0} .
$$

Let

$$
\delta=\exp \left(-\frac{(2 \tilde{\mathcal{F}})^{\frac{q-1}{q(n+1)-1}}}{C(n, \beta, q)}\right),
$$

for every $t_{0}<\delta$ we would have $f\left(t_{0}\right)<0$, which is a contradiction. Therefore $f(t)=0$ for every $t<\delta$, from which $u>\delta \mathcal{L}^{n}$-almost everywhere on $\{u>0\}$.

Remark 3.3 From Theorem 3.2, if u is an inward minimizer with $\mathcal{F}(u) \leq 2 \tilde{\mathcal{F}}$, we have that

$$
\partial^{*}\{u>0\} \subseteq J_{u} \subseteq K_{u} .
$$

Indeed, on $\partial^{*}\{u>0\}$ we have that, by definition, $\underline{u}=0$ and that, since $u \geq \delta \mathcal{L}^{n}$-almost everywhere in $\{u>0\}, \bar{u} \geq \delta$.

Proposition 3.4 There exists a positive constant $\delta_{0}=\delta_{0}(\Omega, \beta, p, q)<\delta$ such that if u is an inward minimizer with $\mathcal{F}(u) \leq 2 \tilde{\mathcal{F}}$, then u is supported on $B_{\rho\left(\delta_{0}\right)}$, where $\rho\left(\delta_{0}\right)=\delta_{0}^{1-q}$ and $B_{\rho\left(\delta_{0}\right)}$ is the ball centered at the origin with radius $\rho\left(\delta_{0}\right)$. Moreover there exist positive constants $C(\Omega, \beta, p, q), C_{1}(\Omega, \beta, p, q)$ such that, for any $B_{r}(x) \subseteq \mathbb{R}^{n} \backslash \Omega$ we have

$$
\begin{equation*}
\mathcal{H}^{n-1}\left(J_{u} \cap B_{r}(x)\right) \leq C(\Omega, p, q) r^{n-1} \tag{3.5}
\end{equation*}
$$

and if $x \in K_{u}$, then

$$
\begin{equation*}
\mathcal{L}^{n}\left(B_{r}(x) \cap\{u>0\}\right) \geq C_{1}(\Omega, p, q) r^{n} . \tag{3.6}
\end{equation*}
$$

Proof By Theorem 3.2, if u is an inward minimizer, we have

$$
\int_{J_{u} \cap B_{r}(x)}\left(\bar{u}^{q}+\underline{u}^{q}\right) \mathrm{d} \mathcal{H}^{n-1} \geq \delta^{q} \mathcal{H}^{n-1}\left(J_{u} \cap B_{r}(x)\right),
$$

on the other hand, using $u \chi_{\mathbb{R}^{n} \backslash B_{r}(x)}$ as a competitor for u, we have

$$
\int_{J_{u} \cap B_{r}(x)}\left(\bar{u}^{q}+\underline{u}^{q}\right) \mathrm{d} \mathcal{H}^{n-1} \leq \int_{\partial B_{r}(x) \cap\{u>0\}^{(1)}}\left(\bar{u}^{q}+\underline{u}^{q}\right) \mathrm{d} \mathcal{H}^{n-1} \leq C(n) r^{n-1}
$$

Let now $x \in K_{u}$ and consider $\mu(r)=\mathcal{L}^{n}\left(B_{r}(x) \cap\{u>0\}^{(1)}\right)$. Using the isoperimetric inequality and inequality (3.5), we have that for almost every $r \in(0, d(x, \Omega))$

$$
\begin{aligned}
0<\mu(r) & \leq K(n) P\left(B_{r}(x) \cap\{u>0\}^{(1)}\right)^{\frac{n}{n-1}} \\
& \leq K(\Omega, \beta, p, q) P\left(B_{r}(x) ;\{u>0\}^{(1)}\right)^{\frac{n}{n-1}} .
\end{aligned}
$$

Notice that we used Remark 3.3 in the last inequality. We have

$$
\mu(r) \leq K \mu^{\prime}(r)^{\frac{n}{n-1}} .
$$

Integrating the differential inequality, we obtain

$$
\mathcal{L}^{n}\left(B_{r}(x) \cap\{u>0\}\right) \geq C_{1}(\Omega, \beta, p, q) r^{n} .
$$

Finally, let $\delta_{0}>0$ and $x \in K_{u}$ such that $d(x, \Omega)>\rho\left(\delta_{0}\right)=\delta_{0}^{1-q}$. By (3.6)

$$
C_{1}(\Omega, \beta, p, q) \rho\left(\delta_{0}\right)^{n} \leq \mathcal{L}^{n}(\{u>0\} \cap \Omega) \leq 2 \tilde{\mathcal{F}},
$$

which leads to a contradiction if δ_{0} is too small, hence there exists a positive value $\delta_{0}(\Omega, \beta, p, q)$ such that $\{u>0\} \subset B_{\rho\left(\delta_{0}\right)}$.

4 Existence

In this section, we are going to prove the existence of a solution u to the problem (1.4). Let us denote

$$
H_{a}=\left\{\begin{array}{l|l}
u \in \operatorname{SBV}\left(\mathbb{R}^{n}\right) & \begin{array}{l}
u(x)=1 \text { in } \Omega \\
u(x) \in\{0\} \cup[a, 1] \mathcal{L}^{n} \text {-a.e. } \\
\operatorname{supp} u \subseteq B \frac{1}{a^{q-1}}
\end{array}
\end{array}\right\} .
$$

We also denote by H_{0} the set

$$
H_{0}=\left\{\begin{array}{l|l}
u \in \operatorname{SBV}\left(\mathbb{R}^{n}\right) & \begin{array}{l}
u(x)=1 \text { in } \Omega \\
u(x) \in[0,1] \mathcal{L}^{n} \text {-a.e. }
\end{array}
\end{array}\right\}
$$

Notice that if $u \in H_{0}$ is an inward minimizer, by Theorem 3.2 and Corollary 3.4, then $u \in H_{\delta_{0}}$.

Proposition 4.1 Let $u \in H_{0}$. Then u is a minimizer for the functional (1.3) on H_{0} if and only if $u \in H_{\delta_{0}}$ and

$$
\mathcal{F}(u) \leq \mathcal{F}(v) \quad \forall v \in H_{\delta_{0}} .
$$

Proof As we observed before, if u is a minimizer over H_{0} then u is in $H_{\delta_{0}}$, hence it is a minimizer over $H_{\delta_{0}}$. Conversely, let us take $u \in H_{\delta_{0}}$ a minimizer over $H_{\delta_{0}}$, and let us consider in addition $v \in H_{0}$. Without loss of generality assume $\mathcal{F}(v) \leq 2 \tilde{\mathcal{F}}$. We will prove that there exists a sequence w_{k} of inward minimizers such that

$$
\mathcal{F}\left(w_{k}\right) \leq \mathcal{F}(v)+\frac{C}{k^{q-1}} .
$$

We first construct a family of functions $v_{a} \in H_{a}$ such that

$$
\mathcal{F}\left(v_{a}\right) \leq \mathcal{F}(v)+r(a),
$$

with $\lim _{a \rightarrow 0} r(a)=0$. Let $0<a<1$, and let $v_{a}=v \chi_{\{v \geq a\} \cap B_{\rho(a)}}$, where $\rho(a)=a^{1-q}$, we have

$$
\begin{align*}
\mathcal{F}\left(v_{a}\right)-\mathcal{F}(v) & \leq \beta \int_{\partial^{*}\left(\{v \geq a\} \cap B_{\rho(a)}\right) \backslash J_{v}} v^{q} \mathrm{~d} \mathcal{H}^{n-1} \\
& \leq \beta a^{q} P(\{v \geq a\})+\beta \int_{\left(\partial B_{\rho(a)} \cap\{v \geq a\}\right) \backslash J_{v}} v^{q} \mathrm{~d} \mathcal{H}^{n-1} \tag{4.1}\\
& \leq \beta a^{q}\left(P(\{v \geq a\})+\frac{1}{a^{q}} \int_{\left(\partial B_{\rho(a)} \cap\{v \geq a\}\right) \backslash J_{v}} v \mathrm{~d} \mathcal{H}^{n-1}\right) .
\end{align*}
$$

In order to estimate the right-hand side, fix $t \in(0,1)$, and observe that by the coarea formula

$$
\begin{equation*}
\int_{0}^{t} P(\{v \geq a\}) d a \leq|D v|\left(\mathbb{R}^{n}\right) \tag{4.2}
\end{equation*}
$$

while, with a change of variables,

$$
\begin{aligned}
& \int_{0}^{t} \frac{1}{a^{q}} \int_{\left(\partial B_{\rho(a)} \cap\{v \geq a\}\right) \backslash J_{v}} v \mathrm{~d} \mathcal{H}^{n-1} d a \leq(q-1) \int_{0}^{+\infty} \int_{\partial B_{r} \backslash J_{v}} v \mathrm{~d} \mathcal{H}^{n-1} d r \\
& \quad=(q-1)\|v\|_{L^{1}\left(\mathbb{R}^{n}\right)} . \\
& \int_{0}^{t}\left(P(\{v \geq a\})+\frac{1}{a^{q}} \int_{\left(\partial B_{\rho(a)} \cap\{v \geq a\}\right) \backslash J_{v}} v \mathrm{~d} \mathcal{H}^{n-1}\right) d a \leq q\|v\|_{\mathrm{BV}} .
\end{aligned}
$$

By mean value theorem, for every $k \in \mathbb{N}$ we can find $a_{k} \leq 1 / k$ such that

$$
P\left(\left\{v \geq a_{k}\right\}\right)+\frac{1}{a_{k}^{q}} \int_{\left(\partial B_{\rho\left(a_{k}\right)} \cap\left\{v \geq a_{k}\right\}\right) \backslash J_{v}} v \mathrm{~d} \mathcal{H}^{n-1} \leq \frac{q\|v\|_{\mathrm{BV}}}{a_{k}}
$$

and in (4.1) we get

$$
\mathcal{F}\left(v_{a_{k}}\right) \leq \mathcal{F}(v)+q \beta a_{k}^{q-1}\|v\|_{\mathrm{BV}} \leq \mathcal{F}(v)+q \beta \frac{\|v\|_{\mathrm{BV}}}{k^{q-1}} .
$$

We now construct the aforementioned sequence of inward minimizers: let us consider the functional

$$
\mathcal{G}_{k}(A)=\mathcal{F}\left(v_{a_{k}} \chi_{A}\right),
$$

with A containing Ω and contained in $\left\{v_{a_{k}}>0\right\}$. If we consider A_{j} a minimizing sequence for \mathcal{G}_{k}, then they are certainly equibounded. Moreover,

$$
\begin{aligned}
\mathcal{G}_{k}\left(A_{j}\right) & \geq \mathcal{L}^{n}\left(A_{j} \backslash \Omega\right)+\beta \int_{J_{\chi_{A_{j}}} v_{a_{k}}}\left(\underline{\chi_{A_{j}} v_{a_{k}}}{ }^{q}+{\overline{\chi_{A_{j}} v_{a_{k}}}}^{q}\right) \mathrm{d} \mathcal{H}^{n-1} \\
& \geq \mathcal{L}^{n}\left(A_{j}\right)+\beta a_{k}^{q} \mathcal{H}^{n-1}\left(J_{\chi_{A_{j}} v_{a_{k}}}\right)-\mathcal{L}^{n}(\Omega)
\end{aligned}
$$

Notice in addition that since $v_{a_{k}} \geq a_{k}$ on its support, then the jump set $J_{\chi_{A_{j}}} v_{a_{k}}$ clearly contains $\partial^{*} A_{j}$. We now have that $\chi_{A_{j}}$ satisfies the conditions of Theorem 2.10, and eventually extracting a subsequence we can suppose that

$$
A_{j} \xrightarrow{L^{1}} A^{(k)},
$$

with a suitable $A^{(k)}$, and moreover, letting $w_{k}=\chi_{A^{(k)}} v_{a_{k}}$, we have

$$
\mathcal{F}\left(w_{k}\right) \leq \inf _{\Omega \subseteq A \subseteq\left\{v_{a_{k}}>0\right\}} \mathcal{G}_{k}(A) \leq \mathcal{F}\left(v_{a_{k}}\right) \leq \mathcal{F}(v)+q \beta \frac{\|v\|_{\mathrm{BV}}}{k^{q-1}} .
$$

By construction w_{k} is an inward minimizer, therefore we have $w_{k} \in H_{\delta_{0}}$, and consequently, we can compare it with u, obtaining

$$
\mathcal{F}(u) \leq \mathcal{F}\left(w_{k}\right) \leq \mathcal{F}(v)+q \beta \frac{\|v\|_{\mathrm{BV}}}{k^{q-1}} .
$$

Letting k go to infinity we get the thesis.
Proposition 4.2 There exists a minimizer for problem (1.4).
Proof By Proposition 4.1 and Theorem 3.2 it is enough to find a minimizer in $H_{\delta_{0}}$. Let u_{k} be a minimizing sequence in $H_{\delta_{0}}$, then, for k large enough, we have

$$
\beta \delta_{0}^{q} \mathcal{H}^{n-1}\left(J_{u_{k}}\right)+\int_{\mathbb{R}^{n}}\left|\nabla u_{k}\right|^{p} \mathrm{~d} \mathcal{L}^{n} \leq \mathcal{F}\left(u_{k}\right) \leq 2 \tilde{\mathcal{F}}
$$

From Theorem 2.10 we have that there exists $u \in H_{\delta_{0}}$ such that, up to a subsequence, u_{k} converges to u in $L_{\text {loc }}^{1}$ and

$$
\mathcal{F}(u) \leq \liminf _{k} \mathcal{F}\left(u_{k}\right),
$$

therefore u is a solution.
Proof of Theorem 1.1 The result is obtained by joining Theorems 4.2 and 3.2.

5 Density estimates

In this section, we prove the density estimates in Theorem 1.2 by adapting techniques used in [7] analogous to classical ones used in [8] to prove density estimates for the jump set of almost-quasi minimizers of the Mumford-Shah functional.

Definition 5.1 Let $u \in \operatorname{SBV}\left(\mathbb{R}^{n}\right)$ be a function such that $u=1$ a.e. in Ω. We say that u is a local minimizer for \mathcal{F} on a set of finite perimeter $E \subset \mathbb{R}^{n} \backslash \Omega$, if

$$
\mathcal{F}(u) \leq \mathcal{F}(v)
$$

for every $v \in \operatorname{SBV}\left(\mathbb{R}^{n}\right)$ such that $u-v$ has support in E.

Let E be a set of finite perimeter. We introduce the notation

$$
\mathcal{F}(u ; E)=\int_{E}|\nabla u|^{p} \mathrm{~d} \mathcal{L}^{n}+\beta \int_{J_{u} \cap E}\left(\bar{u}^{q}+\underline{u}^{q}\right) \mathrm{d} \mathcal{H}^{n-1}+\mathcal{L}^{n}(\{u>0\} \cap E) .
$$

To prove Theorem 1.2 we will use the following Poincaré-Wirtinger type inequality whose proof can be found in [8, Theorem 3.1 and Remark 3.3]. Let γ_{n} be the isoperimetric constant relative to the balls of \mathbb{R}^{n}, i.e.,

$$
\min \left\{\mathcal{L}^{n}\left(E \cap B_{r}\right)^{\frac{n-1}{n}}, \mathcal{L}^{n}\left(E \backslash B_{r}\right)^{\frac{n-1}{n}}\right\} \leq \gamma_{n} P\left(E ; B_{r}\right)
$$

for every Borel set E, then
Proposition 5.2 Let $p \geq 1$ and let $u \in \operatorname{SBV}\left(B_{r}\right)$ such that

$$
\begin{equation*}
\left(2 \gamma_{n} \mathcal{H}^{n-1}\left(J_{u} \cap B_{r}\right)\right)^{\frac{n}{n-1}}<\frac{\mathcal{L}^{n}\left(B_{r}\right)}{2} . \tag{5.1}
\end{equation*}
$$

Then there exist numbers $-\infty<\tau^{-} \leq m \leq \tau^{+}<+\infty$ such that the function

$$
\tilde{u}=\max \left\{\min \left\{u, \tau^{+}\right\}, \tau^{-}\right\}
$$

satisfies

$$
\|\tilde{u}-m\|_{L^{p}} \leq C\|\nabla u\|_{L^{p}}
$$

and

$$
\mathcal{L}^{n}(\{u \neq \tilde{u}\}) \leq C\left(\mathcal{H}^{n-1}\left(J_{u} \cap B_{r}\right)\right)^{\frac{n}{n-1}}
$$

where the constants depend only on n, p, and r.
Lemma 5.3 Let $u \in H_{s}$ be a local minimizer on $B_{r}(x)$ in the sense of definition Definition 5.1. For sufficiently small values of τ, there exist values r_{0}, ε_{0} depending only on n, τ, β, p, q and s such that, if $r<r_{0}$,

$$
\mathcal{H}^{n-1}\left(J_{u} \cap B_{r}(x)\right) \leq \varepsilon_{0} r^{n-1}
$$

and

$$
\mathcal{F}\left(u ; B_{r}(x)\right) \geq r^{n-\frac{1}{2}}
$$

then

$$
\mathcal{F}\left(u ; B_{\tau r}(x)\right) \leq \tau^{n-\frac{1}{2}} \mathcal{F}\left(u ; B_{r}(x)\right) .
$$

Proof Without loss of generality, assume $x=0$. Assume by contradiction that the conclusion fails, then for every $\tau>0$ there exists a sequence $u_{k} \in H_{s}$ of local minimizers on $B_{r_{k}}$, with $\lim _{k} r_{k}=0$, such that

$$
\frac{\mathcal{H}^{n-1}\left(J_{u_{k}} \cap B_{r_{k}}\right)}{r_{k}^{n-1}}=\varepsilon_{k},
$$

with $\lim _{k} \varepsilon_{k}=0$,

$$
\begin{equation*}
\mathcal{F}\left(u_{k} ; B_{r_{k}}\right) \geq r_{k}^{n-\frac{1}{2}} \tag{5.2}
\end{equation*}
$$

and yet

$$
\begin{equation*}
\mathcal{F}\left(u_{k} ; B_{\tau r_{k}}\right)>\tau^{n-\frac{1}{2}} \mathcal{F}\left(u_{k} ; B_{r_{k}}\right) . \tag{5.3}
\end{equation*}
$$

For every $t \in[0,1]$, we define the sequence of monotone functions

$$
\alpha_{k}(t)=\frac{\mathcal{F}\left(u_{k} ; B_{t r_{k}}\right)}{\mathcal{F}\left(u_{k}, B_{r_{k}}\right)} \leq 1 .
$$

By compactness of $\mathrm{BV}([0,1])$ in $L^{1}([0,1])$, we can assume that, up to a subsequence, α_{k} converges \mathcal{L}^{1}-almost everywhere to a monotone function α. Moreover, notice that, by (5.3), for every k

$$
\begin{equation*}
\alpha_{k}(\tau)>\tau^{n-\frac{1}{2}} . \tag{5.4}
\end{equation*}
$$

Our final aim is to prove that there exists a p-harmonic function $v \in W^{1, p}\left(B_{1}\right)$ such that for every t

$$
\lim _{k \rightarrow+\infty} \alpha_{k}(t)=\alpha(t)=\int_{B_{t}}|\nabla v|^{p} \mathrm{~d} \mathcal{L}^{n} .
$$

Let

$$
E_{k}=r_{k}^{p-n} \mathcal{F}\left(u_{k} ; B_{r_{k}}\right), \quad v_{k}(x)=\frac{u_{k}\left(r_{k} x\right)}{E_{k}^{1 / p}}
$$

Then $v_{k} \in \operatorname{SBV}\left(B_{1}\right)$, and

$$
\int_{B_{1}}\left|\nabla v_{k}\right|^{p} \mathrm{~d} \mathcal{L}^{n} \leq 1, \quad \quad \mathcal{H}^{n-1}\left(J_{v_{k}} \cap B_{1}\right)=\varepsilon_{k} .
$$

Thus, applying the Poincaré-Wirtinger type inequality in Proposition 5.2 to functions v_{k} we obtain truncated functions \tilde{v}_{k} and values m_{k}, such that

$$
\int_{B_{1}}\left|\tilde{v}_{k}-m_{k}\right|^{p} \mathrm{~d} \mathcal{L}^{n} \leq C
$$

and

$$
\begin{equation*}
\mathcal{L}^{n}\left(\left\{v_{k} \neq \tilde{v_{k}}\right\}\right) \leq C\left(\mathcal{H}^{n-1}\left(J_{v_{k}} \cap B_{1}\right)\right)^{\frac{n}{n-1}} \leq C \varepsilon_{k}^{\frac{n}{n-1}} \tag{5.5}
\end{equation*}
$$

Step 1: We prove that there exists $v \in W^{1, p}\left(B_{1}\right)$ such that

$$
\begin{align*}
& \tilde{v}_{k}-m_{k} \xrightarrow{L^{p}\left(B_{1}\right)} v, \\
& \int_{B_{\rho}}|\nabla v|^{p} \mathrm{~d} \mathcal{L}^{n} \leq \alpha(\rho), \quad \text { for } \mathcal{L}^{1} \text {-a.e. } \rho<1, \tag{5.6}
\end{align*}
$$

and

$$
\begin{equation*}
\lim _{k} \frac{r_{k}^{p-1}}{E_{k}} \mathcal{H}^{n-1}\left(\left\{v_{k} \neq \tilde{v}_{k}\right\} \cap \partial B_{\rho}\right)=0, \quad \text { for } \mathcal{L}^{1} \text {-a.e. } \rho<1 \tag{5.7}
\end{equation*}
$$

Notice that

$$
\int_{B_{1}}\left|\nabla\left(\tilde{v}_{k}-m_{k}\right)\right|^{p} \mathrm{~d} \mathcal{L}^{n} \leq \int_{B_{1}}\left|\nabla v_{k}\right|^{p} \mathrm{~d} \mathcal{L}^{n} \leq 1,
$$

since \tilde{v}_{k} is a truncation of v. From compactness theorems in SBV (see for instance [8, Theorem 3.5]), we have that $\tilde{v}_{k}-m_{k}$ converges in $L^{p}\left(B_{1}\right)$ and \mathcal{L}^{n}-almost everywhere to
a function $v \in W^{1, p}\left(B_{1}\right)$, since $\mathcal{H}^{n-1}\left(J_{\tilde{v}_{k}}\right)$ goes to 0 as $k \rightarrow+\infty$. Moreover, for every $\rho<1$,

$$
\int_{B_{\rho}}|\nabla v|^{p} \mathrm{~d} \mathcal{L}^{n} \leq \liminf _{k} \int_{B_{\rho}}\left|\nabla \tilde{v}_{k}\right|^{p} \mathrm{~d} \mathcal{L}^{n},
$$

and

$$
\int_{B_{\rho}}|\nabla v|^{p} \mathrm{~d} \mathcal{L}^{n} \leq \liminf _{k} \int_{B_{\rho}}\left|\nabla \tilde{v}_{k}\right|^{p} \mathrm{~d} \mathcal{L}^{n} \leq \liminf _{k} \alpha_{k}(\rho)=\alpha(\rho),
$$

since by definition

$$
\int_{B_{\rho}}\left|\nabla v_{k}\right|^{p} \mathrm{~d} \mathcal{L}^{n}=\frac{r_{k}^{p-n}}{E_{k}} \int_{B_{\rho r_{k}}}\left|\nabla u_{k}\right|^{p} \mathrm{~d} \mathcal{L}^{n} \leq \frac{r_{k}^{p-n}}{E_{k}} \mathcal{F}\left(u_{k} ; B_{\rho r_{k}}\right) \leq \alpha_{k}(\rho) .
$$

Finally, up to a subsequence,

$$
\lim _{k} \frac{r_{k}^{p-1}}{E_{k}} \mathcal{L}^{n}\left(\left\{v_{k} \neq \tilde{v}_{k}\right\}\right)=0 .
$$

Indeed, by (5.5),

$$
\frac{r_{k}^{p-1}}{E_{k}} \mathcal{L}^{n}\left(\left\{v_{k} \neq \tilde{v}_{k}\right\}\right) \leq C \frac{r_{k}^{p-1}}{E_{k}} \varepsilon_{k}^{\frac{n}{n-1}},
$$

which tends to zero as long as r_{k}^{p-1} / E_{k} is bounded. On the other hand, if r_{k}^{p-1} / E_{k} diverges, we could use the fact that $\varepsilon_{k} \leq s^{-q} \mathcal{F}\left(u_{k} ; B_{r_{k}}\right) r_{k}^{1-n}$ and get

$$
\frac{r_{k}^{p-1}}{E_{k}} \mathcal{L}^{n}\left(\left\{v_{k} \neq \tilde{v}_{k}\right\}\right) \leq C \frac{r_{k}^{p-1}}{E_{k}}\left(\frac{E_{k}}{r_{k}^{p-1}}\right)^{\frac{n}{n-1}}
$$

which goes to zero. Using Fubini's theorem we have (5.7).
Let $\tilde{u}_{k}(x)=E_{k}^{1 / p} \tilde{v}_{k}\left(\frac{x}{r_{k}}\right)$, and for every $t \in[0,1]$ we define

$$
\tilde{\alpha}_{k}(t)=\frac{\mathcal{F}\left(\tilde{u}_{k} ; B_{t r_{k}}\right)}{\mathcal{F}\left(u_{k}, B_{r_{k}}\right)} .
$$

The $\tilde{\alpha}_{k}$ functions are also monotone and bounded: the jump set of \tilde{u}_{k} is contained in $J_{u_{k}}$, therefore we can write

$$
\tilde{\alpha}_{k}(t) \leq \alpha_{k}(t)+\frac{2 \beta \mathcal{H}^{n-1}\left(J_{u_{k}} \cap B_{t r_{k}}\right)}{\mathcal{F}\left(u_{k} ; B_{r_{k}}\right)} \leq\left(1+\frac{2}{s^{q}}\right) \alpha_{k}(t),
$$

using the fact that $u_{k} \in H_{s}$. As done for α_{k}, we can assume that $\tilde{\alpha}_{k}$ converges \mathcal{L}^{1}-almost everywhere to a function $\tilde{\alpha}$.

Step 2: Let $I \subset[0,1]$ be the set of values ρ for which (5.7) holds, α_{k} and $\tilde{\alpha}_{k}$ converge and α and $\tilde{\alpha}$ are continuous. Notice that $\mathcal{L}^{1}(I)=1$. Fix $\rho, \rho^{\prime} \in I$ with $\rho<\rho^{\prime}<1$ and let

$$
\mathcal{I}_{k}(\xi)=\beta E_{k}^{q / p-1} r_{k}^{p-1} \int_{J_{\xi} \cap\left(B_{\left.\rho^{\prime} \backslash B_{\rho}\right)}\right.}\left(\bar{\xi}^{q}+\underline{\xi}^{q}\right) \mathrm{d} \mathcal{H}^{n-1}
$$

with $\xi \in \operatorname{SBV}\left(B_{1}\right)$. Let $w \in W^{1, p}\left(B_{1}\right)$ and consider η a smooth cutoff function supported on $B_{\rho^{\prime}}$ and identically equal to 1 in B_{ρ}. Let

$$
\varphi_{k}=\left(\left(w+m_{k}\right) \eta+\tilde{v}_{k}(1-\eta)\right) \chi_{B_{\rho^{\prime}}}+v_{k} \chi_{B_{1} \backslash B_{\rho^{\prime}}} .
$$

We want to prove that

$$
\begin{equation*}
\tilde{\alpha}_{k}\left(\rho^{\prime}\right)-\tilde{\alpha}_{k}(\rho) \geq \int_{B_{\rho^{\prime}} \backslash B_{\rho}}\left|\nabla \tilde{v}_{k}\right|^{p} \mathrm{~d} \mathcal{L}^{n}+\mathcal{I}_{k}\left(\tilde{v}_{k}\right), \tag{5.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha_{k}\left(\rho^{\prime}\right) \leq R_{k}+\int_{B_{\rho^{\prime}}}\left|\nabla \varphi_{k}\right|^{p} \mathrm{~d} \mathcal{L}^{n}+\mathcal{I}_{k}\left(\varphi_{k}\right), \tag{5.9}
\end{equation*}
$$

where R_{k} goes to zero as k goes to infinity. We immediately compute

$$
\begin{aligned}
\tilde{\alpha}_{k}\left(\rho^{\prime}\right)-\tilde{\alpha}_{k}(\rho)= & \mathcal{F}\left(u_{k} ; B_{r_{k}}\right)^{-1}\left[\int_{B_{\rho^{\prime} r_{k}} \cap B_{\rho r_{k}}}\left|\nabla \tilde{u}_{k}\right|^{p} \mathrm{~d} \mathcal{L}^{n}\right. \\
& \left.+\beta \int_{J_{\tilde{u}_{k}} \cap\left(B_{\rho^{\prime} r_{k}} \backslash B_{\left.\rho_{r_{k}}\right)}\right.}\left({\overline{\tilde{u}_{k}}}^{q}+\underline{\tilde{u}}_{k}^{q}\right) \mathrm{d} \mathcal{H}^{n-1}\right] \\
& +\mathcal{F}\left(u_{k} ; B_{r_{k}}\right)^{-1} \mathcal{L}^{n}\left(\left\{\tilde{u}_{k}>0\right\} \cap\left(B_{\rho^{\prime} r_{k}} \backslash B_{\rho r_{k}}\right)\right) \\
\geq & \int_{B_{\rho^{\prime} \backslash B_{\rho}}}\left|\nabla \tilde{v}_{k}\right|^{p} \mathrm{~d} \mathcal{L}^{n}+E_{k}^{q / p-1} r_{k}^{p-1} \beta \int_{J_{\tilde{J}_{k}} \cap\left(B_{\rho^{\prime}} \backslash B_{\rho}\right)}\left({\overline{\tilde{v}_{k}}}^{q}+{\underline{\tilde{v}_{k}}}^{q}\right) \mathrm{d} \mathcal{H}^{n-1},
\end{aligned}
$$

and then we have (5.8). Now let $\psi_{k}=E_{k}^{1 / p} \varphi_{k}\left(x / r_{k}\right)$ and observe that ψ_{k} coincides with u_{k} outside $B_{\rho^{\prime} r_{k}}$. We get from the local minimality of u_{k} that

$$
\begin{align*}
\mathcal{F}\left(u_{k} ; B_{r_{k}}\right) \leq \mathcal{F}\left(\psi_{k} ; B_{r_{k}}\right)= & \mathcal{F}\left(\psi_{k} ; B_{\rho^{\prime} r_{k}}\right)+\beta \int_{\left\{u_{k} \neq \tilde{u}_{k}\right\} \cap \partial B_{\rho^{\prime} r_{k}}}\left(\underline{\psi}^{q}+\bar{\psi}_{k}^{q}\right) \mathrm{d} \mathcal{H}^{n-1} \\
& +\mathcal{F}\left(u_{k} ; B_{r_{k}} \backslash \overline{B_{\rho^{\prime} r_{k}}}\right) \tag{5.10}\\
\leq & \mathcal{F}\left(\psi_{k} ; B_{\rho^{\prime} r_{k}}\right)+2 \beta r_{k}^{n-1} \mathcal{H}^{n-1}\left(\left\{v_{k} \neq \tilde{v}_{k}\right\} \cap \partial B_{\rho^{\prime}}\right) \\
& +\mathcal{F}\left(u_{k} ; B_{r_{k}} \backslash \overline{B_{\rho^{\prime} r_{k}}}\right) .
\end{align*}
$$

So, in particular, we have

$$
\begin{aligned}
\mathcal{F}\left(u_{k} ; B_{\rho^{\prime} r_{k}}\right) & =\mathcal{F}\left(u_{k} ; B_{r_{k}}\right)-\mathcal{F}\left(u_{k} ; B_{r_{k}} \backslash \overline{B_{\rho^{\prime} r f c f c_{k}}}\right)-\beta \int_{J_{u_{k}} \cap \partial B_{\rho^{\prime} r_{k}}}\left({\overline{u_{k}}}^{q}+\underline{u}_{k}^{q}\right) \mathrm{d} \mathcal{H}^{n-1} \\
& \leq 2 \beta r_{k}^{n-1} \mathcal{H}^{n-1}\left(\left\{v_{k} \neq \tilde{v}_{k}\right\} \cap \partial B_{\rho^{\prime}}\right)+\mathcal{F}\left(\psi_{k} ; B_{\rho^{\prime} r_{k}}\right) .
\end{aligned}
$$

Dividing by $\mathcal{F}\left(u_{k} ; B_{r_{k}}\right)$ and using (5.7) we get

$$
\alpha_{k}\left(\rho^{\prime}\right) \leq R_{k}+r_{k}^{p-n} E_{k}^{-1} \mathcal{F}\left(\psi_{k} ; B_{\rho^{\prime} r_{k}}\right)
$$

With appropriate rescalings we have

$$
r_{k}^{p-n} E_{k}^{-1} \mathcal{F}\left(\psi_{k} ; B_{\rho^{\prime} r_{k}}\right)=\int_{B_{\rho^{\prime}}}\left|\nabla \varphi_{k}\right|^{p} \mathrm{~d} \mathcal{L}^{n}+\mathcal{I}_{k}\left(\varphi_{k}\right)+r_{k}^{p} E_{k}^{-1} \mathcal{L}^{n}\left(\left\{\varphi_{k}>0\right\} \cap B_{\rho^{\prime}}\right) .
$$

From (5.2) and the definition of E_{k}, we have

$$
r_{k}^{p} E_{k}^{-1} \mathcal{L}^{n}\left(\left\{\varphi_{k}>0\right\} \cap B_{\rho^{\prime}}\right) \leq \omega_{n} r_{k}^{1 / 2}
$$

and then we get (5.9).

Step 3: We want to prove that for every $\varphi \in W^{1, p}\left(B_{1}\right)$ such that $v-\varphi$ is supported on B_{ρ}, we have

$$
\begin{equation*}
\alpha\left(\rho^{\prime}\right) \leq \int_{B_{\rho}}|\nabla \varphi|^{p} \mathrm{~d} \mathcal{L}^{n}+C\left[\tilde{\alpha}\left(\rho^{\prime}\right)-\tilde{\alpha}(\rho)\right]+C \int_{B_{\rho^{\prime}} \backslash B_{\rho}}|\nabla \varphi|^{p} \mathrm{~d} \mathcal{L}^{n}, \tag{5.11}
\end{equation*}
$$

where C does not depend on either ρ or ρ^{\prime}. From the definition of φ_{k}, we have that on B_{ρ}

$$
\nabla \varphi_{k}=\nabla w
$$

and on $B_{\rho^{\prime}} \backslash B_{\rho}$

$$
\nabla \varphi_{k}=\eta \nabla w+\left(w+m_{k}-\tilde{v}_{k}\right) \nabla \eta+\nabla \tilde{v}_{k}(1-\eta),
$$

so that

$$
\begin{align*}
\int_{B_{\rho^{\prime}}}\left|\nabla \varphi_{k}\right|^{p} \mathrm{~d} \mathcal{L}^{n} \leq & \int_{B_{\rho}}|\nabla w|^{p} \mathrm{~d} \mathcal{L}^{n} \\
& +C\left[\int_{B_{\rho^{\prime} \backslash B_{\rho}}}\left|\nabla \tilde{v}_{k}\right|^{p} \mathrm{~d} \mathcal{L}^{n}+\int_{B_{\rho^{\prime} \backslash B_{\rho}}}\left(|\nabla w|^{p}+\left|w+m_{k}-\tilde{v}_{k}\right|^{p}|\nabla \eta|^{p}\right) \mathrm{d} \mathcal{L}^{n}\right] . \tag{5.12}
\end{align*}
$$

We split the proof into two cases: either

$$
\begin{equation*}
\limsup _{k} E_{k}>0 \tag{5.13}
\end{equation*}
$$

or

$$
\begin{equation*}
\lim _{k} E_{k}=0 . \tag{5.14}
\end{equation*}
$$

Assume (5.13) occurs. Notice that $s \leq u_{k} \leq 1$ for every k, then by definition we have that, for every $k, s \leq E_{k}^{1 / p} \tilde{v}_{k} \leq 1$ and, since m_{k} is a median of $v_{k}, 0 \leq E_{k}^{1 / p} m_{k} \leq 1$. In particular we have that

$$
\left|\tilde{v}_{k}-m_{k}\right| \leq \frac{2}{E_{k}^{1 / p}}
$$

passing to the limit when k goes to infinity we have that

$$
\|v\|_{\infty} \leq \liminf _{k} \frac{2}{E_{k}^{1 / p}}<+\infty \quad \mathcal{L}^{n} \text {-a.e. }
$$

then v belongs to $L^{\infty}\left(B_{1}\right)$ and there exists a positive constant C independent of k, and a natural number \bar{k} such that

$$
\left|v+m_{k}-\tilde{v}_{k}\right| \leq \frac{C}{E_{k}^{1 / p}} \leq \frac{C}{s} \tilde{v}_{k} \quad \mathcal{L}^{n} \text {-a.e. }
$$

for all $k>\bar{k}$. Let $\varphi \in W^{1, p}\left(B_{1}\right)$ with $v-\varphi$ supported on B_{ρ}, and let $w=\varphi$ in the definition of φ_{k}, then, for every $k>\bar{k}$, we have

$$
\begin{equation*}
\left|\varphi_{k}\right|=\left|\tilde{v}_{k}+\left(v+m_{k}-\tilde{v}_{k}\right) \eta\right| \leq C \tilde{v}_{k} \tag{5.15}
\end{equation*}
$$

\mathcal{L}^{n}-a.e. on $B_{\rho^{\prime}} \backslash B_{\rho}$. From (5.15) we have that

$$
\begin{equation*}
\mathcal{I}_{k}\left(\varphi_{k}\right) \leq C \mathcal{I}_{k}\left(\tilde{v}_{k}\right) . \tag{5.16}
\end{equation*}
$$

Notice, in addition, that (5.12) reads as

$$
\begin{align*}
\int_{B_{\rho^{\prime}}}\left|\nabla \varphi_{k}\right|^{p} \mathrm{~d} \mathcal{L}^{n} \leq & \int_{B_{\rho}}|\nabla \varphi|^{p} \mathrm{~d} \mathcal{L}^{n} \\
& +C \int_{B_{\rho^{\prime} \backslash B_{\rho}}}\left|\nabla \tilde{v}_{k}\right|^{p} \mathrm{~d} \mathcal{L}^{n}+C \int_{B_{\rho^{\prime}} \backslash B_{\rho}}|\nabla \varphi|^{p} \mathrm{~d} \mathcal{L}^{n}+R_{k} \tag{5.17}
\end{align*}
$$

finally joining (5.9), (5.17), (5.16), and (5.8), we have

$$
\alpha_{k}\left(\rho^{\prime}\right) \leq \int_{B_{\rho}}|\nabla \varphi|^{p} \mathrm{~d} \mathcal{L}^{n}+C\left[\tilde{\alpha}_{k}\left(\rho^{\prime}\right)-\tilde{\alpha}_{k}(\rho)\right]+C \int_{B_{\rho^{\prime}} \backslash B_{\rho}}|\nabla \varphi|^{p} \mathrm{~d} \mathcal{L}^{n}+R_{k} .
$$

Letting k go to infinity we get (5.11).
Suppose now that (5.14) occurs. The functions $\left|\tilde{v}_{k}-m_{k}\right|^{p},|v|^{p}$ are uniformly integrable, namely for every $\varepsilon>0$ there exists a $\sigma=\sigma_{\varepsilon}<\varepsilon$ such that if A is a measurable set with $|A|<\sigma$, then

$$
\begin{equation*}
\int_{A}\left|\tilde{v}_{k}-m_{k}\right|^{p} \mathrm{~d} \mathcal{L}^{n}+\int_{A}|v|^{p} \mathrm{~d} \mathcal{L}^{n}<\varepsilon . \tag{5.18}
\end{equation*}
$$

Since $v \in L^{p}\left(B_{1}\right)$, we can find $M>1 / \varepsilon$ such that

$$
\begin{equation*}
|\{|v|>M\}|<\sigma . \tag{5.19}
\end{equation*}
$$

Setting $w=\varphi_{M}=\max \{-M, \min \{\varphi, M\}\}$, then (5.12) reads as

$$
\begin{align*}
\int_{B_{\rho^{\prime}}}\left|\nabla \varphi_{k}\right|^{p} \mathrm{~d} \mathcal{L}^{n} \leq & \int_{B_{\rho} \cap\{|\varphi| \leq M\}}|\nabla \varphi|^{p} \mathrm{~d} \mathcal{L}^{n}+C \int_{\left(B_{\rho^{\prime} \backslash B_{\rho}}\right) \cap\{|\varphi| \leq M\}}|\nabla \varphi|^{p} \mathrm{~d} \mathcal{L}^{n} \\
& +C\left[\int_{B_{\rho^{\prime}} \backslash B_{\rho}}\left|\nabla \tilde{v}_{k}\right|^{p} \mathrm{~d} \mathcal{L}^{n}+\int_{B_{\rho^{\prime} \backslash B_{\rho}}}\left|\varphi_{M}+m_{k}-\tilde{v}_{k}\right|^{p}|\nabla \eta|^{p} \mathrm{~d} \mathcal{L}^{n}\right] . \tag{5.20}
\end{align*}
$$

We can estimate the last integral as follows

$$
\begin{align*}
\int_{B_{\rho^{\prime} \backslash B_{\rho}}}\left|\varphi_{M}+m_{k}-\tilde{v}_{k}\right|^{p}|\nabla \eta|^{p} \mathrm{~d} \mathcal{L}^{n} & \left.\leq C \varepsilon+\int_{\left(B_{\rho^{\prime} \backslash B_{\rho}}\right) \cap\{|v| \leq M\}}\left|v+m_{k}-\tilde{v}_{k}\right|^{p}|\nabla \eta|^{p} \mathrm{~d} \mathcal{L}^{n}\right] . \\
& =C \varepsilon+R_{k}, \tag{5.21}
\end{align*}
$$

where we used (5.19) and (5.18), and C only depends on ρ and ρ^{\prime}. Furthermore, we have

$$
\begin{equation*}
\mathcal{I}_{k}\left(\varphi_{k}\right) \leq R_{k}+C \mathcal{I}_{k}\left(\tilde{v}_{k}\right) . \tag{5.22}
\end{equation*}
$$

Indeed, as before, $\left|\tilde{v}_{k}-m_{k}\right| \leq C \tilde{v}_{k}$, while

$$
\begin{aligned}
E_{k}^{q / p-1} r_{k}^{p-1} \int_{J_{\tilde{v}_{k}} \cap\left(B_{\rho^{\prime}} \backslash B_{\rho}\right)}\left|\varphi_{M}\right|^{q} \mathrm{~d} \mathcal{H}^{n-1} & \leq M^{q} E_{k}^{q / p-1} r_{k}^{p-1} \mathcal{H}^{n-1}\left(J_{\tilde{v}_{k}} \cap\left(B_{\rho^{\prime}} \backslash B_{\rho}\right)\right) \\
& \leq M^{q} E_{k}^{\frac{q}{p}} \frac{r_{k}^{p-1} \varepsilon_{k}}{E_{k}} \\
& \leq \frac{M^{q}}{s^{q}} E_{k}^{\frac{q}{p}}
\end{aligned}
$$

which goes to 0 as $k \rightarrow \infty$. Finally, joining (5.9), (5.20), (5.21), (5.22), and (5.8), we have

$$
\begin{aligned}
\alpha_{k}\left(\rho^{\prime}\right) \leq & R_{k}+\int_{B_{\rho} \cap\{|\varphi| \leq M\}}|\nabla \varphi|^{p}+C\left[\tilde{\alpha}\left(\rho^{\prime}\right)-\tilde{\alpha}(\rho)\right] \\
& +C \int_{\left(B_{\left.\rho^{\prime} \backslash B_{\rho}\right) \cap\{|\varphi| \leq M\}}|\nabla \varphi|^{p} \mathrm{~d} \mathcal{L}^{n}+C \varepsilon .\right.}
\end{aligned}
$$

Taking the limit as k tends to infinity, and then the limit as ε tends to 0 , we get (5.11).
We are now in a position to prove that v is p-harmonic: taking the limit as ρ^{\prime} tends to ρ in (5.11), we have that if $\varphi \in W^{1, p}\left(B_{1}\right)$, with $v-\varphi$ supported on B_{ρ},

$$
\int_{B_{\rho}}|\nabla v|^{p} \mathrm{~d} \mathcal{L}^{n} \leq \alpha(\rho) \leq \int_{B_{\rho}}|\nabla \varphi|^{p} \mathrm{~d} \mathcal{L}^{n},
$$

for every $\rho \in I$, therefore v is p-harmonic in B_{1}. Notice that this implies that v is a locally Lipschitz function (see [2, Theorem 7.12]). Moreover, if $\varphi=v$, we have

$$
\int_{B_{\rho}}|\nabla v|^{p} \mathrm{~d} \mathcal{L}^{n}=\alpha(\rho)
$$

for every $\rho \in I$, so that α is continuous on the whole interval [0, 1], $\alpha(1)=1$ and $\alpha(\tau)=$ $\lim _{k} \alpha_{k}(\tau) \geq \tau^{n-1 / 2}$. Nevertheless, if τ is sufficiently small this contradicts the fact that v is locally Lipschitz, since

$$
\tau^{n-\frac{1}{2}} \leq \int_{B_{\tau}}|\nabla v|^{p} \mathrm{~d} \mathcal{L}^{n} \leq C \tau^{n},
$$

where C is a positive constant depending only on n and p.
Proof of Theorem 1.2 Let u be a minimizer for the problem (1.4). By Corollary 3.4 there exist two positive constants $C(\Omega, \beta, p, q), C_{1}(\Omega, \beta, p, q)$ such that if $B_{r}(x) \subseteq \mathbb{R}^{n} \backslash \Omega$, then

$$
\mathcal{H}^{n-1}\left(J_{u} \cap B_{r}(x)\right) \leq C(\Omega, \beta, p, q) r^{n-1},
$$

and if $x \in K_{u}$

$$
\mathcal{L}^{n}\left(B_{r}(x) \cap\{u>0\}\right) \geq C_{1}(\Omega, \beta, p, q) r^{n} .
$$

We now prove that there exists a positive constant $c=c(\Omega, \beta, p, q)$ such that

$$
\begin{equation*}
\mathcal{H}^{n-1}\left(J_{u} \cap B_{r}(x)\right) \geq c(\Omega, \beta, p, q) r^{n-1} \tag{5.23}
\end{equation*}
$$

for every $x \in K_{u}$ and $B_{r}(x) \subset \mathbb{R}^{n} \backslash \Omega$. Assume by contradiction that there exists $x \in J_{u}$ such that, for $r>0$ small enough,

$$
\mathcal{H}^{n-1}\left(J_{u} \cap B_{r}(x)\right) \leq \varepsilon_{0} r^{n-1},
$$

where ε_{0} is the one in Lemma 5.3. Iterating Lemma 5.3 it can be proven (see [7, Theorem 5.1]) that

$$
\lim _{r \rightarrow 0^{+}} r^{1-n} \mathcal{F}\left(u ; B_{r}\right)=0,
$$

which, in particular, implies

$$
\begin{equation*}
\lim _{r \rightarrow 0^{+}} r^{1-n}\left[\int_{B_{r}(x)}|\nabla u|^{p} \mathrm{~d} \mathcal{L}^{n}+\mathcal{H}^{n-1}\left(J_{u} \cap B_{r}(x)\right)\right]=0 . \tag{5.24}
\end{equation*}
$$

By [8, Theorem 3.6], (5.24) implies that $x \notin J_{u}$, which is a contradiction. Finally, if $x \in K_{u}$ and

$$
\mathcal{H}^{n-1}\left(J_{u} \cap B_{2 r}(x)\right) \leq \varepsilon_{0} r^{n-1},
$$

there exists $y \in J_{u} \cap B_{r}(x)$ such that

$$
\mathcal{H}^{n-1}\left(J_{u} \cap B_{r}(y)\right) \leq \varepsilon_{0} r^{n-1}
$$

which, again, is a contradiction. Then the assertion is proved. The density estimate (5.23) implies in particular that

$$
K_{u} \backslash \bar{\Omega} \subset\left\{x \in \mathbb{R}^{n} \mid \limsup _{r \rightarrow 0^{+}} r^{1-n}\left[\int_{B_{r}(x)}|\nabla u|^{p} \mathrm{~d} \mathcal{L}^{n}+\mathcal{H}^{n-1}\left(J_{u} \cap B_{r}(x)\right)\right]>0\right\},
$$

hence $\mathcal{H}^{n-1}\left(\left(K_{u} \backslash J_{u}\right) \backslash \bar{\Omega}\right)=0$ (see for instance [8, Lemma 2.6]).
Remark 5.4 Let u be a minimizer for problem (1.4), then from Theorem 3.2 we have that the function $u^{*}=\left(\beta \delta^{q}\right)^{-1 / p} u$ is an almost-quasi minimizer for the Mumford-Shah functional

$$
M S(v)=\int_{\mathbb{R}^{n}}|\nabla v|^{p} \mathrm{~d} \mathcal{L}^{n}+\mathcal{H}^{n-1}\left(J_{v}\right)
$$

with the Dirichlet condition $u^{*}=\left(\beta \delta^{q}\right)^{-1 / p}$ on Ω. If Ω is sufficiently smooth we can apply the results in [4] to have that the density estimate for the jump set of minimizers holds up to the boundary of Ω.

Funding Open access funding provided by Università degli Studi di Napoli Federico II within the CRUI-CARE Agreement.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Acampora, P., Cristoforoni, E., Nitsch, C., Trombetti, C.: A free boundary problem in thermal insulation with a prescribed heat source. ESAIM Control Optim. Calc. Var. 29. Paper No. 3, 29. ISSN:1292-8119 (2023)
2. Ambrosio, L., Fusco, N., Pallara, D.: Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs (2000)
3. Bianco, S.G.L., Manna, D.A.L., Velichkov, B.: A two-phase problem with Robin conditions on the free boundary. J. École. Polytech. Math. 8, 1-25 (2021). (ISSN:2429-7100)
4. Bucur, D., Giacomini, A.: Shape optimization problems with Robin conditions on the free boundary. Ann. Inst. H. Poincaré Anal. Non Linéaire (2015)
5. Bucur, D., Giacomini, A.: A variational approach to the isoperimetric inequality for the Robin eigenvalue problem. Arch. Ration. Mech. Anal. 198(3), 927-961 (2010)
6. Buttazzo, G., Maiale, F.P.: Shape optimization problems for functionals with a boundary integral. J. Convex Anal. 28(2), 429-456 (2021)
7. Caffarelli, L.A., Kriventsov, D.: A free boundary problem related to thermal insulation. Commun. Partial Differ. Equ. 41(7), 1149-1182 (2016)
8. de Giorgi, E., Carriero, M., Leaci, A.: Existence theorem for a minimum problem with free discontinuity set. Arch. Ration. Mech. Anal. 108, 195-218 (1989)
9. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Textbooks in Mathematics, Revised edition. CRC Press (2015)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: E. Cristoforoni
 emanuele.cristoforoni@unina.it
 P. Acampora
 paolo.acampora@unina.it
 1 Dipartimento di Matematica e Applicazioni "R. Caccioppoli", Università degli studi di Napoli Federico II, Via Cintia, Complesso Universitario Monte S. Angelo, 80126 Napoli, Italy

 2 Mathematical and Physical Sciences for Advanced Materials and Technologies, Scuola Superiore Meridionale, Largo San Marcellino 10, 80126 Napoli, Italy

