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Abstract
In Pozzi and Stinner (ESAIM: M2AN 57:445–466, 2023) a variant of the classical elastic
flow for closed curves in R

n was introduced, that is more suitable for numerical purposes.
Here we investigate the long-time properties of such evolution demonstrating that the flow
exists globally in time.

Keywords Fourth order evolution equations · Elastic curves · Long-time existence

Mathematics Subject Classification 53E40 · 35K55 · 35K25

1 Introduction

Let f : I → R
n , f = f (x), I = [0, 2π ] � S1, be the parametrization of a closed (i.e.

periodic) regular smooth curve, ds = | fx |dx its length element, �κ = fss its curvature vector,
τ = fs = ∂s f = fx

| fx | its unit tangent vector. Recall that the length L, Dirichlet D and
bending energy E are defined by

L( f ) :=
∫
I
ds =

∫
I
| fx |dx, D( f ) := 1

2

∫
I
| fx |2dx,

E( f ) := 1

2

∫
I
|�κ|2ds = 1

2

∫
I
|�κ|2| fx |dx .

The study of evolution equations associated to the bending energy E has attracted a lot of
attention in recent years: for motivation and extended references we refer here simply to [6],
which has inspired a lot of the work presented here, and to a recent survey [9], where several
recent results are discussed. Here we only remark that the study of the bending energy is very
old and essentially goes back to Bernoulli, who in 1691 investigated the problem of a bent
beam. Some years later Euler provided a first treatise on the equilibria of bent rods ([11]).
Since then the analysis of E has never ceased to awake the interest of many mathematicians,
one of the reason being that it provides a challenging fourth order problem.
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Because of the scaling properties ofE one usually penalizes the growth of the curve in some
way, a length constraint being quite a typical and natural choice. In this paper our attention
is focused on the evolution towards stationary points of the bending energy augmented with
a penalization term. Thus, for some positive given λ > 0 we set

Eλ( f ) := E( f ) + λL( f ) ≥ 0, Dλ( f ) := E( f ) + λD( f ) ≥ 0.

The corresponding L2-gradient flow are given by

ft = −∇2
s �κ − 1

2
|�κ|2�κ + λ�κ, (1.1)

for Eλ (cf. [6], where the evolution problem for Eλ is thoroughly studied) and

ft = −∇2
s �κ − 1

2
|�κ|2�κ + λ

fxx
| fx |

= −∇2
s �κ − 1

2
|�κ|2�κ + λ�κ| fx | + λ(| fx |)sτ (1.2)

for Dλ (see Sect. 2.1 below). Here ∇s �φ = ∂s �φ − 〈∂s �φ, τ 〉τ denotes the normal component
of the derivative with respect to arc length for a given vector field �φ : [0, 2π] → R

n along
the curve. The study of the evolution of Eλ is by now classical and is presented in [6]: there
it is shown that given a smooth regular closed curve the flow (1.1) exists globally in time.
The case where λ = 0 is also contemplated in their [6, Theorem 3.2]: however, in this case
the curve might “disappear” at infinity (a circle whose radius increases to infinity drives the
energy E to zero). The case where the length of the curve is kept fixed along the evolution is
also studied in [6]. A global existence result holds again, but the analysis is more subtle as
in this case λ = λ(t) is time dependent (see [6, Theorem 3.3]).

Note that the energy Eλ is invariant under reparametrization of the curve and that the
flow associated to Eλ has a velocity vector that is entirely normal to the curve. The latter
observation is quite crucial for numerical analysts, especially when a curve must undergo
strong deformations, since great grid deformations might occur. Grid degeneration is very
detrimental from a numerical point of view. This is why the author, together with B. Stinner,
tackled in [10] the problem of numerically studying alternatives to (1.1) which provide good
grid properties and at the same time are amenable for (finite element) numerical analysis (a
more detailed discussion on this delicate point can be found in [10]). In this respect the flow
associated to Dλ yields the kind of numerical properties that one usually looks for.

Therefore, motivated by the numerical investigation undertaken in [10], we study here
analytically the long-time existence properties for the L2-gradient flow associated to Dλ.

In [10] we demonstrate that Eλ and Dλ share common sets of critical points (in a suitable
sense), thus motivating the choice ofDλ as an alternative to the study of Eλ. From a numerical
point of view, the minimization of the energy Dλ (via L2-gradient flow) presents major
advantages. Indeed the presence of a specific tangential component (see (1.2)) makes it
possible to avoid the aforementioned grid-degeneration problems; moreover the numerical
analysis is significantly simplified as opposed to [5] (see [10] and related discussion in there).
In [10] one can also find interesting simulations of the evolution (1.2), as well as comparisons
with other schemes depicting the evolution associated to (1.1).

As mentioned above, long-time existence properties for the geometric L2-gradient flow
generated by Eλ are well known and investigated in [6]. Since D dominates the length func-
tional, in the sense thatL( f ) ≤ √

2π
√
2D( f ), one is inclined to believe that the L2- gradient

flow forDλ should also exist for all times. However, thismust be proved rigorously. This is the
purpose of this work. Our method of proof is similar to that employed in [6], which is based
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on L2- curvature estimates combined with Gagliardo-Nirenberg type inequalities. However,
our evolution is not geometric (the functional Dλ is not invariant under reparametrizations
of the curves) and we must take care of the specific tangential component that appears in
(1.2). Therefore new arguments are needed. In particular, upon observing a strong relation
between length element and tangential component, we exploit the second order PDE solved
by the length element. Our main result, whose proof is given in Sect. 3, is the following:

Theorem 1.1 Let λ ∈ (0,∞) and let f0 : I → R
n be smooth and regular. Assume that for

any smooth regular initial data f0 the flow (1.2) exists for some (small) time [0, T ] and is
smooth and regular on [0, T ] × I . Then: the flow (1.2) has a global solution.

This results hinges on a short-time existence result for the flow, which is outside the scope of
the paper and will be tackled elsewhere. On this matter let us here only remark, that a short-
time existence results holds for (1.1) (see [6, § 3], and also [3] where classical techniques
are discussed in detail). The differences between (1.1) and (1.2) are to be found only in the
lower order termmultiplying λ, therefore it is safe to assume that a short-time existence result
holds also in our setting. However, note that since the flow (1.2) is no longer geometric, one
can not factor out the degeneracy of the high order operator ∇2

s in the usual way (i.e. by
reparametrization), therefore some extra care must be taken in the arguments.

2 Preliminaries

We can write the (non-geometric) flow (1.2) as

∂t f = �V + ϕτ

with normal component of the velocity vector given by

�V := −∇2
s �κ − 1

2
|�κ|2�κ + λ�κ| fx | = −∇2

s �κ − 1

2
|�κ|2�κ + λ �w (2.1)

where

�w := �κ| fx |,
and (scalar) tangential component

ϕ := λ

〈
fxx
| fx | , τ

〉
= λ

〈
fxx

| fx |2 , fx

〉
= λ

1

| fx |
( | fx |2

2

)
s

= λ(| fx |)s . (2.2)

Here and in the following 〈, 〉 denotes the Euclidean scalar product in R
n . For partial

derivatives we use both notations fx and ∂x f .
Before diving into computations, let us comment on the strategy of the proof of Theo-

rem 1.1 in a very informal way, so that the reader might find it easier to follow the steps
outlined below. Theorem 1.1 is proved by a contradiction argument: we assume that the flow
exists only for some finite maximal time 0 < T < ∞, then we derive uniform estimates for
the parametrization f and its derivatives ∂mx f on the time interval [0, T ) so that we can extend
f smoothly up to T . Restarting the flow yields the wished contradiction to the maximality
of T .

To derive estimates for f and its derivatives, we first of all observe that

fx = | fx |∂s f , fxx = (| fx |∂s f )x = (| fx |)x∂s f + | fx |2∂2s f ,

and so on. In other words
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– a control of the length element | fx | (and its derivatives) and
– a control of the derivatives of f with respect to arc-length

yield a control of f and its derivatives ∂mx f in the original parametrization. This motivates
why in a first instance we try to obtain uniform bounds the curvature �κ and its derivatives ∂ms �κ
(indeed recall that ∂ms f = ∂m−2

s �κ). On the other hand, the natural operator governing the PDE
(1.2) is ∇s and not ∂s : the relation between the two operators is considered in Lemma 2.4,
where it is shown that the “two derivatives entails essentially the same information up to
lower order terms”. By Lemma 2.9 and the fact that E( f ) = 1

2‖�κ‖2
L2 remains bounded along

the flow, we infer that it is sufficient to obtain uniform control of ∇m
s �κ .

Finally, to control ∇m
s �κ we study the evolution in time of its L2-norm. This is described

in an abstract way in Lemma 2.3. When we choose φ = ∇m
s �κ in Lemma 2.3, we observe that

in trying to control the right-hand side of (2.16) (with the help of interpolation inequalities)
a big role is played by the term Y = (∇t + ∇4

s )φ = (∇t + ∇4
s )∇m

s �κ , a quantity that is
studied in Lemma 2.5. Again here the main observation lies in the PDE itself, which written
as ∂t f + ∇2

s �κ = l.o.t yields the ideas that “one derivative in time plus four derivatives in
space” give terms of lower order.

In the following we proceed as follows; after identifying the evolution of all relevant
geometric quantities in Lemma 2.1 as well as some important uniform bounds (which are
fundamental to apply interpolation inequalities later on), we divide our study in two sections:
one is concerned with the evolution of the length element (and its derivatives) and one
is concerned with the evolution of the curvature vector (and its derivatives). Interpolation
inequalities and important embeddings are recalled in Sect. 2.2. All preliminaries results are
then strung together in the proof of the main Theorem 1.1 in Sect. 3 where we obtain the
wished uniform estimates by a rather technical induction procedure.

2.1 Evolution of geometric quantities

For �φ any smooth normal field along f and h a scalar map we have that for any m ∈ N

∇s(h �φ) = (∂sh) �φ + h∇s �φ, ∇m
s (h �φ) =

m∑
r=0

(
m

r

)
∂m−r
s h∇r

s
�φ (2.3)

where recall that ∇s �φ = ∂s �φ − 〈∂s �φ, ∂s f 〉∂s f . Similarly we write ∇t �φ = ∂t �φ −
〈∂t �φ, ∂s f 〉∂s f .
Lemma 2.1 (Evolution of geometric quantities) Let f : [0, T ) × I → R

n be a smooth
solution of ∂t f = �V + ϕτ for t ∈ (0, T ) with �V the normal velocity. Given �φ any smooth
normal field along f , the following formulas hold.

∂t (ds) = (∂sϕ − 〈�κ, �V 〉)ds (2.4)

∂t∂s − ∂s∂t = (〈�κ, �V 〉 − ∂sϕ)∂s (2.5)

∂tτ = ∇s �V + ϕ�κ (2.6)

∂t �φ = ∇t �φ − 〈∇s �V + ϕ�κ, �φ〉τ (2.7)

∂t �κ = ∂s∇s �V + 〈�κ, �V 〉�κ + ϕ∂s �κ (2.8)

∇t �κ = ∇2
s

�V + 〈�κ, �V 〉�κ + ϕ∇s �κ (2.9)

(∇t∇s − ∇s∇t ) �φ = (〈�κ, �V 〉 − ∂sϕ)∇s �φ + [〈�κ, �φ〉∇s �V − 〈∇s �V , �φ〉�κ]. (2.10)
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Proof The proof follows by straightforward computation: see for instance [6, Lemma 2.1]
or [4, Lemma 2.1]. ��

The above lemma holds in fact for any smooth evolution equation that can be written in
the form ∂t f = �V + ϕτ with �V the normal velocity. It allows to compute the first variation
of Dλ and derive (1.2) (cf. [4, Lemma A.1]). Another important application is the following
verification that the energy Dλ decreases along the flow.

Decrease in energy along the flow. To retrieve some fundamental bounds it is important
to notice that the energy decreases along the flow (1.2). Precisely, using (2.9), (2.4), and
integration by parts we obtain

d

dt
Dλ( f )=

∫
I
〈�κ,∇2

s
�V+〈�κ, �V 〉�κ+ϕ∇s �κ〉ds+

∫
I

1

2
|�κ|2(∂sϕ−〈�κ, �V 〉)ds+λ

∫
I
〈 fx , fxt 〉dx

=
∫
I
〈�κ,∇2

s
�V+1

2
〈�κ, �V 〉�κ〉ds−

∫
I
〈λ fxx , ft 〉dx

=
∫
I
〈∇2

s �κ+1

2
|�κ|2�κ, �V 〉ds−

∫
I
〈(ϕ| fx |τ+λ�κ| fx |2), ( �V+ϕτ)〉dx

=−
∫
I
| �V |2ds−

∫
I
ϕ2ds ≤ 0.

Uniform bounds along the flow. As a consequence of the energy decrease we infer that the
following uniform bounds hold for as long the the flow exists:

Dλ( f (t)) ≤ Dλ( f (0)),

‖�κ‖2L2(I )(t) =
∫
I
|�κ|2ds ≤ 2Dλ( f (0)),

D( f (t)) = 1

2

∫
I
| fx |2dx ≤ 1

λ
Dλ( f (0)),

L( f (t)) ≤ 2

√
π

λ
Dλ( f (0)).

Moreover, as observed in [6, (2.18)], since the curve is closed, the Poincaré inequality for
∂s f = τ implies

2π ≤ √
L( f (t))‖�κ‖L2 ,

so that in view of the uniform bound from above for the curvature we obtain a uniform bound
for the length from below. Hence along the flow we have that

0 < C−1 < L( f (t)) ≤ C

where C = C(Dλ( f (0)), λ). Last but not least we have that for any time t where the flow is
well defined

∫ t

0
‖ϕ‖2L2dt

′+
∫ t

0
‖ �V ‖2L2dt

′=
∫ t

0

∫
I
ϕ2dsdt ′+

∫ t

0

∫
I
| �V |2dsdt ′ ≤ Dλ( f (0)). (2.11)

PDEs for the length element | fx | and tangential component ϕ. Next we derive and investi-
gate the evolution equation satisfied by the length element | fx | and the tangential component
ϕ. Note that in view of (2.2) there is a strong relation between the two of them.
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We start by considering the length element. For as long as | fx | ≥ C > 0, classical
embedding theory yields that

‖ | fx | ‖C0[0,2π ] ≤
∫
I
|| fx |x |dx + 1

2π

∫
I
| fx |dx .

Using the uniform bounds on the length and the fact that λ is a fixed contant, it follows then
that

‖ | fx | ‖L∞ ≤ C +
∫
I

|ϕ|
λ
ds ≤ C(1 + ‖ϕ‖L2) (2.12)

where C = C(Dλ( f (0)), λ).
Next, let us have a closer look at the evolution equation satisfied by the length element.

Using the definition of the tangential component (2.2) we can write

∂t (| fx |) = 〈τ, ft x 〉 = ϕx − 〈�κ, ft 〉| fx | = λ((| fx |)s)x − 〈�κ, �V 〉| fx |
= λ

| fx | (| fx |)xx + λ(| fx |)x
(

1

| fx |
)
x

− 〈�κ, �V 〉| fx |.

Note that to apply a maximum principle we would need some uniform bounds on �V and �κ ,
which at the moment are out of reach.

Now we turn to the tangential component (2.2). We first explain some useful notation. In
the following we write Ba,c

2 (ϕ) for any linear combination of terms of type

(∂ i1s ϕ)(∂ i2s ϕ), with i1 + i2 = a and max i j ≤ c

with universal, constant coefficients. Notice that a records the total number of derivatives
and c gives the highest number of derivatives falling on one factor. We have that ∂s B

a,c
2 (ϕ) =

Ba+1,c+1
2 (ϕ). Similarly we write Ma,c

2 (〈�κ, �V 〉, ϕ) for any linear combination of terms of type

∂ i1s (〈�κ, �V 〉) ∂ i2s ϕ, with i1 + i2 = a and max i j ≤ c

with universal, constant coefficients. Note that ∂sM
a,c
2 (〈�κ, �V 〉, ϕ) = Ma+1,c+1

2 (〈�κ, �V 〉, ϕ).
Using (2.5), the previous computations, and recalling that ϕ = λ(| fx |)s we immediately

infer

∂tϕ = λ∂t∂s(| fx |) = λ∂s∂t (| fx |) + (〈�κ, �V 〉 − ϕs)∂s(λ| fx |)
= λ∂s(ϕx − 〈�κ, ft 〉| fx |) + (〈�κ, �V 〉 − ϕs)ϕ

= λ(| fx |ϕs)s − λ(〈�κ, �V 〉| fx |)s + (〈�κ, �V 〉 − ϕs)ϕ. (2.13)

This gives also

∂tϕ = ϕϕs + λ| fx |ϕss − (〈�κ, �V 〉)sλ| fx | − 〈�κ, �V 〉ϕ + 〈�κ, �V 〉ϕ − ϕϕs

= λ| fx |ϕss − (〈�κ, �V 〉)sλ| fx |.
Next we compute in a similar manner

∂t (ϕs) = ∂t∂sϕ = ∂s∂tϕ + (〈�κ, �V 〉 − ϕs)ϕs

= (λ| fx |ϕss)s −
(
(〈�κ, �V 〉)sλ| fx |

)
s
+ (〈�κ, �V 〉 − ϕs)ϕs (2.14)

= (λ| fx |ϕss)s −
(
(〈�κ, �V 〉)sλ| fx |

)
s
+ M1,1

2 (〈�κ, �V 〉, ϕ) + B2,1
2 (ϕ).
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This gives also

∂t (ϕs) = λ| fx |∂3s ϕ + ϕ∂2s ϕ − λ| fx |∂2s (〈�κ, �V 〉) − ϕ∂s(〈�κ, �V 〉) + 〈�κ, �V 〉ϕs − (ϕs)
2

= λ| fx |∂3s ϕ − λ| fx |∂2s (〈�κ, �V 〉) + M1,1
2 (〈�κ, �V 〉, ϕ) + B2,2

2 (ϕ).

Proceeding inductively one finds:

Lemma 2.2 For any m ∈ N we have

∂t (∂
m
s ϕ) = (λ| fx |∂m+1

s ϕ)s−
(
λ| fx |∂ms (〈�κ, �V 〉)

)
s
+Mm,m

2 (〈�κ, �V 〉, ϕ)+Bm+1,m
2 (ϕ)

= λ| fx |∂m+2
s ϕ − λ| fx |∂m+1

s (〈�κ, �V 〉) + Mm,m
2 (〈�κ, �V 〉, ϕ) + Bm+1,m+1

2 (ϕ). (2.15)

On the curvature vector and its derivatives. For geometric terms such as the curvature
vector and its derivativeswewillmake use of the following lemma,which is a straight-forward
generalisation of [6, Lemma 2.2].

Lemma 2.3 Suppose ∂t f = �V + ϕτ on (0, T ) × I . Let �φ be a normal vector field along f
and Y = ∇t �φ + ∇4

s
�φ. Then

d

dt

1

2

∫
I
| �φ|2ds +

∫
I
|∇2

s
�φ|2ds =

∫
I
〈Y + 1

2
�φ ϕs, �φ〉ds − 1

2

∫
I
| �φ|2〈�κ, �V 〉ds, (2.16)

Proof The claim follows using (2.4) and integration by parts. ��
As in [2, Sec. 3], [6, Lem.2.3] and [4, Sec. 3] we denote by �φ1 ∗ �φ2 ∗ · · · ∗ �φk the product

of k normal vector fields �φi (i = 1, .., k) defined as 〈 �φ1, �φ2〉 · .. · 〈 �φk−2, �φk−1〉 �φk if k is odd
and as 〈 �φ1, �φ2〉 · .. · 〈 �φk−1, �φk〉, if k is even. The expression Pa,c

b (�κ) stands for any linear
combination of terms of the type

(∇ i1
s �κ) ∗ · · · ∗ (∇ ib

s �κ) with i1 + · · · + ib = a and max i j ≤ c

with universal, constant coefficients. Thus a gives the total number of derivatives, b denotes
the number of factors and c gives a bound on the highest number of derivatives falling on one
factor. Using (2.3) we observe that for b ∈ N, b odd, we have ∇s P

a,c
b (�κ) = Pa+1,c+1

b (�κ).

With a slight abuse of notation, |Pa,c
b (�κ)| denotes any linear combination with non-negative

coefficients of terms of type

|∇ i1
s �κ| · |∇ i2

s �κ| · ·|∇ ib
s �κ| with i1 + · · · + ib = a and max i j ≤ c.

Similarly we write Qa,c
b (�κ, �w) for any linear combination of terms of the type

(∇ i1
s �w) ∗ (∇ i2

s �κ) ∗ · · · ∗ (∇ ib
s �κ) with i1 + · · · + ib = a and max i j ≤ c

with universal, constant coefficients. Also in this case for odd b ∈ Nwe have∇s Q
a,c
b (�κ, �w) =

Qa+1,c+1
b (�κ, �w). For sums we write

∑
[[a,b]]≤[[A,B]]

c≤C

Pa,c
b (�κ) :=

A∑
a=0

2A+B−2a∑
b=1

C∑
c=0

Pa,c
b (�κ). (2.17)

Similarly we set
∑

[[a,b]]≤[[A,B]]
c≤C

|Pa,c
b (�κ)| := ∑A

a=0
∑2A+B−2a

b=1
∑C

c=0 |Pa,c
b (�κ)| .

With this notation we can state the following result, which relates the operator ∇m
s to the

full derivative ∂ms . Loosely speaking one can say that ∂ms �κ and ∇m
s �κ “are the same” up to

lower order terms.
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Lemma 2.4 We have the identities

∂s �κ = ∇s �κ − |�κ|2τ,
∂ms �κ = ∇m

s �κ + τ
∑

[[a,b]]≤[[m−1,2]]
c≤m−1, b even

Pa,c
b (�κ) +

∑
[[a,b]]≤[[m−2,3]]
c≤m−2 b odd

Pa,c
b (�κ) for m ≥ 2 .

Proof The proof can be found for instance in [4, Lemma 4.5] (see also [6, Lemma 2.6]). The
first claim is obtained directly using that

∂s �κ = ∇s �κ + 〈∂s �κ, τ 〉τ = ∇s �κ − |�κ|2τ.
The second claim follows by induction. ��

We are now able to describe in detail the evolution of the curvature vector and its
derivatives.

Lemma 2.5 Suppose ∂t f = −∇2
s �κ − 1

2 |�κ|2�κ + λ �w + ϕτ , where λ = λ(t). Then for m ∈ N0

we have

∇t∇m
s �κ + ∇4

s ∇m
s �κ = Pm+2,m+2

3 (�κ) + λ(∇m+2
s �w + Qm,m

3 (�κ, �w)) + Pm,m
5 (�κ) + ϕ∇m+1

s �κ.

Proof For m = 0 the claim follows directly from (2.9). For m = 1 it follows using (2.10)
and (2.9), namely

∇t∇s �κ + ∇5
s �κ = ∇s∇t �κ + (〈�κ, �V 〉 − ∂sϕ)∇s �κ + [〈�κ, �κ〉∇s �V − 〈∇s �V , �κ〉�κ] + ∇5

s �κ
= ∇s(−∇4

s �κ + P2,2
3 (�κ) + λ(∇2

s �w + Q0,0
3 (�κ, �w)) + P0,0

5 (�κ) + ϕ∇s �κ)

+ (〈�κ, �V 〉 − ∂sϕ)∇s �κ + [〈�κ, �κ〉∇s �V − 〈∇s �V , �κ〉�κ] + ∇5
s �κ.

Since ∇s(ϕ∇s �κ) = ϕs∇s �κ + ϕ∇2
s �κ and

〈�κ, �V 〉∇s �κ = P3,2
3 (�κ) + P1,1

5 (�κ) + λQ1,1
3 (�κ, �w)

and |�κ|2∇s �V = P3,3
3 (�κ) + P1,1

5 (�κ) + λQ1,1
3 (�κ, �w),

we infer

∇t∇s �κ + ∇5
s �κ = P3,3

3 (�κ) + λ(∇3
s �w + Q1,1

3 (�κ, �w)) + P1,1
5 (�κ) + ϕ∇2

s �κ ,

noticing that the terms appearing in P3,2
3 (�κ) can be collected in P3,3

3 (�κ). The general
statement follows with an induction argument. ��

2.2 Interpolation inequalities and embeddings

Westart by recalling some fundamental interpolation inequalities.Consider the scale invariant
norms for k ∈ N0 and p ∈ [1,∞)

‖�κ‖k,p :=
k∑

i=0

‖∇ i
s �κ‖p with ‖∇ i

s �κ‖p := L( f )i+1−1/p
( ∫

I
|∇ i

s �κ|p ds
)1/p

,

(cf. [6]) and the usual L p- norm ‖∇ i
s �κ‖p

L p := ∫
I |∇ i

s �κ|p ds.
Most of the following results can be found in several papers (e.g. [4, 6, 7]). We provide

reference to the papers where complete proofs can be found.
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Lemma 2.6 (Lemma 4.1 [4]) Let f : I → R
n be a smooth regular curve. Then for all k ∈ N,

p ≥ 2 and 0 ≤ i < k we have

‖∇ i
s �κ‖p ≤ C‖�κ‖1−α

2 ‖�κ‖α
k,2,

with α = (i + 1
2 − 1

p )/k and C = C(n, k, p).

Corollary 2.7 (Corollary 4.2 [4]) Let f : I → R
n be a smooth regular curve. Then for all

k ∈ N we have

‖�κ‖k,2 ≤ C(‖∇k
s �κ‖2 + ‖�κ‖2),

with C = C(n, k).

Lemma 2.8 (Lemma 3.4 [1]) Let f : I → R
n be a smooth regular curve. For any a, c, 
 ∈

N0, b ∈ N, b ≥ 2, c ≤ 
 + 2 and a < 2(
 + 2) we find∫
I
|Pa,c

b (�κ)| ds ≤ CL( f )1−a−b‖�κ‖b−γ
2 ‖�κ‖γ


+2,2, (2.18)

with γ = (a + 1
2b− 1)/(
 + 2) and C = C(n, 
, a, b). Further if a + 1

2b < 2
 + 5, then for
any ε > 0∫

I
|Pa,c

b (�κ)| ds≤ε

∫
I
|∇
+2

s �κ|2 ds+Cε
− γ

2−γ (‖�κ‖2L2)
b−γ
2−γ +CL( f )1−a− b

2 ‖�κ‖bL2 , (2.19)

with C = C(n, 
, a, b).

We finish this section with some important results that are based on classical embedding
theory.

Lemma 2.9 (Lemma 2.7 [6]) Assume that the bounds ‖�κ‖L2 ≤ 0 and ‖∇m
s �κ‖L1 ≤ m for

m ≥ 1. Then for any m ≥ 1 one has

‖∂m−1
s �κ‖L∞ + ‖∂ms �κ‖L1 ≤ cm(0, . . . , m). (2.20)

Lemma 2.10 For any smooth scalar map h : I → R and normal vector field �φ : I → R
n

along f we have that

‖ �φ‖∞ ≤ C(‖ �φ‖L2 + ‖∇s �φ‖L2)

‖h‖∞ ≤ C(‖h‖L2 + ‖∂sh‖L2)

where C = C( 1
L( f ) ).

Proof The proof of both statements can be found in the proof of [2, Lemma 3.7]. It is an
application of classical embedding theory to the map | �φ|2 respectively h2. ��
More generally we can state the following.

Lemma 2.11 (Lemma 3.7 [2]) We have that for any x ∈ I there holds

|Pa,c
b (�κ)(x)|2 ≤ C

∫
I

(|P2a+1,c+1
2b (�κ)| + |P2a,c

2b (�κ)|)ds, if b is odd, (2.21)

|Pa,c
b (�κ)(x)| ≤ C

∫
I

(|Pa+1,c+1
b (�κ)| + |Pa,c

b (�κ)|)ds, if b is even, (2.22)

where C = C( 1
L( f ) ).
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3 Long-time existence

This section is devoted to the proof of Theorem 1.1. By assumption we know that given any
smooth regular initial data f0, there exists a smooth regular solution f : [0, T ) × I → R

n

of (1.2) with f (0, ·) = f0. Assume by contradiction that the solution does not exist globally
in time and let 0 < T < ∞ be the maximal time. Recall that on [0, T ) the uniform bounds
listed in Sect. 2.1 hold (with constants that depend on λ and the initial energy but not on T ).
In particular

‖�κ(t)‖L2 ≤ C,
1

C
≤ L( f (t)) ≤ C, t ∈ [0, T ) (3.1)

withC = C(λ,Dλ( f0)). These bounds are essential in order to be able to apply interpolation
inequalities. In the following a constant C may vary from line to line, but we will indicate
what it depends on.

Our first task is to derive uniform bounds for �κ , ϕ and their derivatives. This is performed
in several steps, using an induction procedure.

First Step - Part A: bound on ‖∇s �κ‖L2 . Recalling (2.1), using Lemma 2.3 with �φ := ∇s �κ ,
Lemma 2.5, and exploiting the fact that ϕ〈∇2

s �κ,∇s �κ〉 + 1
2ϕs |∇s �κ|2 = ∂s

( 1
2ϕ|∇s �κ|2) we

obtain

d

dt

(
1

2

∫
I
|∇s �κ|2ds

)
+

∫
I
|∇3

s �κ|2ds + 1

2

∫
I
|∇s �κ|2ds

=
∫
I
〈(∇t + ∇4

s )∇s �κ,∇s �κ〉 + 1

2
ϕs |∇s �κ|2ds − 1

2

∫
I
|∇s �κ|2〈�κ, �V 〉ds + 1

2

∫
I
|∇s �κ|2ds

=
∫
I
〈P3,3

3 (�κ) + λ(∇3
s �w + Q1,1

3 (�κ, �w)) + P1,1
5 (�κ),∇s �κ〉ds

− 1

2

∫
I
|∇s �κ|2〈�κ, �V 〉ds + 1

2

∫
I
|∇s �κ|2ds

=
∫
I
P4,3
4 (�κ) + P2,1

6 (�κ) + P2,1
2 (�κ) + P4,2

4 (�κ)ds + λ

∫
I
〈∇3

s �w + Q1,1
3 (�κ, �w),∇s �κ〉ds

=
∫
I
P4,3
4 (�κ)+P2,1

6 (�κ)+P2,1
2 (�κ)ds+λ

∫
I
〈∇s �w,∇3

s �κ〉ds+λ

∫
I
〈Q1,1

3 (�κ, �w),∇s �κ〉ds
= J1 + J2 + J3,

where we have used integration by parts in the last step and absorbed the terms P4,2
4 (�κ) into

P4,3
4 (�κ). By applying Lemma 2.8 and (3.1) we find

|J1| = |
∫
I
P4,3
4 (�κ) + P2,1

6 (�κ) + P2,1
2 (�κ)ds| ≤ ε

∫
I
|∇3

s �κ|2ds + C(ε, n, λ,Dλ( f0)).

Since

∇s( �w) = ∇s(| fx |�κ) = | fx |∇s �κ + (| fx |)s �κ = | fx |∇s �κ + ϕ

λ
�κ (3.2)

we can write

J2 = λ

∫
I
〈∇s �w,∇3

s �κ〉ds = λ

∫
I
| fx |〈∇s �κ,∇3

s �κ〉ds +
∫
I
ϕ〈�κ,∇3

s �κ〉ds = J2,1 + J2,2.

We have
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J2,1 ≤ ε

∫
I
|∇3

s �κ|2ds + Cε‖| fx |‖2∞
∫
I
|∇s �κ|2ds

≤ ε

∫
I
|∇3

s �κ|2ds + Cε(1 + ‖ϕ‖2L2)

∫
I
|∇s �κ|2ds

where we have used (2.12) in the last step. Note that here Cε = C(ε, λ,Dλ( f0)). Next, we
compute

J2,2 =
∫
I
ϕ〈�κ,∇3

s �κ〉ds ≤ ‖�κ‖L∞‖ϕ‖L2‖∇3
s �κ‖L2 ≤ ε

∫
I
|∇3

s �κ|2ds + Cε‖�κ‖2L∞‖ϕ‖2L2 .

Since ‖�κ‖2L∞ ≤ C(‖�κ‖2
L2 + ‖∇s �κ‖2

L2) by Lemma 2.10 and (3.1) we obtain

J2,2 ≤ ε

∫
I
|∇3

s �κ|2ds + Cε(1 + ‖∇s �κ‖2L2)‖ϕ‖2L2 .

Using the definition of Q1,1
3 (�κ, �w), �w, (3.2), and (2.18) we observe that

J3 = λ

∫
I
〈Q1,1

3 (�κ, �w),∇s �κ〉ds =
∫
I
λ| fx |P2,1

4 (�κ) + ϕP1,1
4 (�κ)ds

≤ |λ|‖| fx |‖L∞
∫
I
|P2,1

4 (�κ)|ds + ‖ϕ‖L2

(∫
I
|P2,1

8 (�κ)|ds
) 1

2

≤ C |λ|‖| fx |‖L∞L( f )−5‖�κ‖32‖�κ‖3,2 + C‖ϕ‖L2L( f )−9/2‖�κ‖
8−5/3

2
2 ‖�κ‖

5
6
3,2.

Using the bounds for the length and curvature (3.1), Corollary 2.7, Young inequality, and
(2.12) we obtain

J3 ≤ C‖| fx |‖L∞(1 + ‖∇3
s �κ‖L2) + C‖ϕ‖2L2 + C‖�κ‖

5
3
3,2

≤ ε

∫
I
|∇3

s �κ|2ds + Cε(1 + ‖ϕ‖2L2).

Collecting all estimates found so far for J1, J2, J3, and choosing ε appropriately we find

d

dt

(
1

2

∫
I
|∇s �κ|2ds

)
+ 1

2

∫
I
|∇3

s �κ|2ds + 1

2

∫
I
|∇s �κ|2ds

≤ C(1 + ‖ϕ‖2L2) + C(1 + ‖ϕ‖2L2)

∫
I
|∇s �κ|2ds

where C = C(n, λ,Dλ( f0)). On the other hand using again Lemma 2.8 we can write∫
I
|∇s �κ|2ds =

∫
I
|P2,1

2 (�κ)|ds ≤ ε

∫
I
|∇3

s �κ|2ds + C(ε, n, λ,Dλ( f0)),

so that, upon choosing ε small enough, we can finally write

d

dt

(
1

2

∫
I
|∇s �κ|2ds

)
+ 1

4

∫
I
|∇3

s �κ|2ds + 1

2

∫
I
|∇s �κ|2ds

≤ C(1 + ‖ϕ‖2L2) + C‖ϕ‖2L2

∫
I
|∇s �κ|2ds

where C = C(n, λ,Dλ( f0)). It follows for ξ(t) := et
∫
I |∇s �κ|2(t)ds that

ξ ′(t) ≤ Cet (1 + ‖ϕ‖2L2) + C‖ϕ‖2L2ξ(t).
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Using that
∫ t
0 e

t ′(1 + ‖ϕ‖2
L2)dt

′ ≤ et + et
∫ t
0 ‖ϕ‖2

L2dt
′ ≤ Cet by (2.11) we infer

ξ(t) ≤ ξ(0) + Cet + C
∫ t

0
‖ϕ‖2L2(t

′)ξ(t ′) dt ′

and a Gronwall Lemma gives that ξ(t) ≤ C(ξ(0) + Cet ), that is

sup
[0,T )

‖∇s �κ‖2L2(t) ≤ C1 = C1(n, λ,Dλ( f0), f0). (3.3)

Note that the above bound together with (2.11), (3.1), Lemma 2.10 yields

sup
[0,T )

‖�κ(t)‖L∞ ≤ C1 = C1(n, λ,Dλ( f0), f0), (3.4)

sup
[0,T )

∫ t

0
‖∇3

s �κ‖2L2dt
′ ≤ C1,1 = C1,1(n, λ,Dλ( f0), f0, T ). (3.5)

First Step-Part B: Bound on ‖ϕ‖L2 . Although we know already that the L2-norm of the
tangential component behaves well in time (in the sense of (2.11)), we need to refine this
information. To that end we consider

d

dt

(
1

2

∫
I
ϕ2ds

)
=

∫
I
ϕϕtds + 1

2

∫
I
ϕ2(ϕs − 〈�κ, �V 〉)ds

=
∫
I
ϕλ(| fx |ϕs)s − λϕ(〈�κ, �V 〉| fx |)s + (〈�κ, �V 〉 − ϕs)ϕ

2ds

+ 1

2

∫
I
ϕ2(ϕs − 〈�κ, �V 〉)ds

where we have used (2.4) and (2.13). Integration by parts and the fact that
∫
I ϕ2ϕsds = 0

(this can be seen using integration by parts) yields

d

dt

(
1

2

∫
I
ϕ2ds

)
+ λ

∫
I
(∂sϕ)2| fx |ds = λ

∫
I
ϕs〈�κ, �V 〉| fx |ds + 1

2

∫
I
〈�κ, �V 〉ϕ2ds

= A1 + A2.

Using the L∞-bound on the curvature (3.4) we can write

A1 = λ

∫
I
ϕs〈�κ, �V 〉| fx |ds ≤ ελ

∫
I
(∂sϕ)2| fx |ds + λCε

∫
I
| �V |2| fx |ds

≤ ελ

∫
I
(∂sϕ)2| fx |ds + λCε(1 + ‖ϕ‖2L2)‖ �V ‖2L2

where we have used (2.12) in the last step. For the second term A2 we obtain, using (3.4),
(2.12), and (2.1), that

A2 = 1

2

∫
I
〈�κ, �V 〉ϕ2ds ≤ C

∫
I
|P2,2

2 (�κ)|ϕ2ds + C(1 + ‖| fx |‖∞)

∫
I
ϕ2ds

≤ C(‖|P2,2
2 (�κ)|‖∞ + 1 + ‖ϕ‖2L2)

∫
I
ϕ2ds.

Using (2.22), (2.19), (3.1), we obtain
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|P2,2
2 (�κ)| ≤ C

∫
I
|P3,3

2 (�κ)| + |P2,2
2 (�κ)|ds ≤ C(‖∇3

s �κ‖2L2 + 1),

so that

A2 ≤ C(1 + ‖∇3
s �κ‖2L2 + ‖ϕ‖2L2)

∫
I
ϕ2ds.

Putting all estimates together we obtain (recall that | ft |2 = | �V |2 + ϕ2)

A1 + A2 ≤ ελ

∫
I
(∂sϕ)2| fx |ds + Cε‖ �V ‖2L2 + Cε(‖∇3

s �κ‖2L2 + 1 + ‖ ft‖2L2)

∫
I
ϕ2ds

with Cε = Cε(n, λ,Dλ( f0), f0). Choosing ε appropriately we can write

d

dt

(
1

2

∫
I
ϕ2ds

)
+ 1

2

∫
I
ϕ2ds + λ

2

∫
I
(∂sϕ)2| fx |ds

≤ C(‖ �V ‖2L2 + ‖ϕ‖2L2) + C(‖∇3
s �κ‖2L2 + ‖ ft‖2L2)

∫
I
ϕ2ds

where C = C(n, λ,Dλ( f0), f0). Recalling (2.11) and (3.5), a Gronwall argument (as
performed in First Step -Part A) gives

sup
t∈[0,T )

‖ϕ‖2L2(t) ≤ C̃1 = C̃1(n, λ,Dλ( f0), f0, T ). (3.6)

Note that the dependence of the constant on T is caused by (3.5). As a consequence we obtain
also

sup
t∈[0,T )

∫ t

0

∫
I
(∂sϕ)2| fx |dsdt ′ ≤ C̃1 = C̃1(n, λ,Dλ( f0), f0, T ). (3.7)

Moreover recalling (2.12), the definition of �w, and (3.4) we can state

sup
t∈[0,T )

‖ | fx |‖∞ + ‖ �w‖∞ ≤ C̃1 = C̃1(n, λ,Dλ( f0), f0, T ). (3.8)

From the expression (3.2) together with the bounds (3.3), (3.4), (3.6) and (3.8) it follows

sup
t∈[0,T )

‖∇sw‖2L2(t) ≤ C̃1 = C̃1(n, λ,Dλ( f0), f0, T ). (3.9)

Finally note that since fxx = | fx |2�κ + ϕ
λ
| fx |τ we derive

sup
t∈[0,T )

∫
I
| fxx |2dx ≤ C̃1 = C̃1(n, λ,Dλ( f0), f0, T ).

Intermezzo: bound from below for the length element | fx |. In Sect. 2.1 we computed

∂t (| fx |) = λ

| fx | (| fx |)xx + λ(| fx |)x
(

1

| fx |
)
x

− 〈�κ, �V 〉| fx |.

Hence, using [8, Lemma 2.1.3] and the uniform bound on the curvature (3.4) we infer that
g(t) := minI | fx (x, t)| is a positive map that satisfies

gt ≥ −g〈�κ, �V 〉 ≥ −Cg‖ �V ‖L∞ .

Since ∇s �V = −∇3
s �κ + P1,1

3 (�κ) + λ∇s �w, Lemma 2.10, (3.1), (3.4), (3.3), and (3.9) yield

‖ �V ‖∞ ≤ C(‖ �V ‖L2 + ‖∇s �V ‖L2) ≤ C(1 + ‖ �V ‖2L2 + ‖∇3
s �κ‖2L2), (3.10)
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so that, upon recalling (3.5) and (2.11), we can state that

sup
t∈[0,T )

∫ t

0
‖ �V ‖∞(t ′)dt ′ ≤ C

where C = C(n, λ,D( f0), f0, T ). Thus, integrating in time the inequality (ln g)t ≥
−C‖ �V ‖L∞ gives

g(t) ≥ e−Cg(0)

with C = C(n, λ,Dλ( f0), f0, T ). This yields

inf
t∈[0,T )

| fx | ≥ C = C(n, λ,Dλ( f0), f0, T ). (3.11)

An important consequence iss that (3.7) now yields

sup
t∈[0,T )

∫ t

0

∫
I
(∂sϕ)2dsdt ′ ≤ C̃1 = C̃1(n, λ,Dλ( f0), f0, T ). (3.12)

Induction step: Assume that for some m ≥ 1 we have the following induction hypothesis:
{

supt∈[0,T )(
∑m

j=0 ‖∇ j
s �κ‖L2 + ∫ t

0 ‖∇m+2
s �κ‖2

L2dt
′) ≤ Cm,

supt∈[0,T )(
∑m−1

j=0 ‖∂ j
s ϕ‖L2 + ∫ t

0 ‖∂ms ϕ‖2
L2dt

′ + ∑m
j=0 ‖∇ j

s �w‖L2) ≤ C̃m,
(IP)

with Cm = Cm(n, λ,D( f0), f0, T ), C̃m = C̃m(n, λ,D( f0), f0, T ).
Note that by Lemma 2.10 this means in particular that

⎧⎪⎨
⎪⎩
supt∈[0,T )(

∑m−1
j=0 ‖∇ j

s �κ‖L∞ + ‖∇m
s �κ‖L2 + ∫ t

0 ‖∇m+2
s �κ‖2

L2dt
′) ≤ Cm,

supt∈[0,T )(
∑m−2

j=0 ‖∂ j
s ϕ‖L∞ + ‖∂m−1

s ϕ‖L2 + ∫ t
0 ‖∂ms ϕ‖2

L2dt
′) ≤ C̃m,

supt∈[0,T )(‖∇m
s �w‖L2 + ∑m−1

j=0 ‖∇ j
s �w‖L∞) ≤ C̃m .

(3.13)

Induction Step - Part A: Using Lemma 2.3 with �φ := ∇m+1
s �κ , Lemma 2.5, and exploiting

the fact that ϕ〈∇m+1
s �κ,∇m+2

s �κ〉 + 1
2ϕs |∇m+1

s �κ|2 = ∂s
( 1
2ϕ|∇m+1

s �κ|2) we obtain
d

dt

(
1

2

∫
I
|∇m+1

s �κ|2ds
)

+
∫
I
|∇m+3

s �κ|2ds + 1

2

∫
I
|∇m+1

s �κ|2ds

=
∫
I
〈(∇t + ∇4

s )∇m+1
s �κ,∇m+1

s �κ〉 + 1

2
ϕs |∇m+1

s �κ|2ds

− 1

2

∫
I
|∇m+1

s �κ|2〈�κ, �V 〉ds + 1

2

∫
I
|∇m+1

s �κ|2ds

=
∫
I
〈Pm+3,m+3

3 (�κ) + λ(∇m+3
s �w + Qm+1,m+1

3 (�κ, �w)) + Pm+1,m+1
5 (�κ),∇m+1

s �κ〉ds

− 1

2

∫
I
|∇m+1

s �κ|2〈�κ, �V 〉ds + 1

2

∫
I
|∇m+1

s �κ|2ds

=
∫
I
P2m+4,m+3
4 (�κ) + P2m+2,m+1

6 (�κ) + P2m+2,m+1
2 (�κ) + P2m+4,m+1

4 (�κ)ds

+ λ

∫
I
〈∇m+3

s �w + Qm+1,m+1
3 (�κ, �w),∇m+1

s �κ〉ds

=
∫
I
P2m+4,m+3
4 (�κ) + P2m+2,m+1

6 (�κ) + P2m+2,m+1
2 (�κ)ds
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+ λ

∫
I
〈∇m+1

s �w,∇m+3
s �κ〉ds + λ

∫
I
〈Qm+1,m+1

3 (�κ, �w),∇m+1
s �κ〉ds

= J1 + J2 + J3,

wherewe have used integration by parts in the last step and absorbed the terms P2m+4,m+1
4 (�κ)

into P2m+4,m+3
4 (�κ). Using (3.1) we find by applying Lemma 2.8

|J1| = |
∫
I
P2m+4,m+3
4 (�κ) + P2m+2,m+1

6 (�κ) + P2m+2,m+1
2 (�κ)ds|

≤ ε

∫
I
|∇m+3

s �κ|2ds + C(ε, n,Dλ( f0)).

Using (2.3) and the expression for ϕ we can write for m ≥ 1

∇m+1
s �w = ∇m+1

s (| fx |�κ) =
m+1∑
r=0

(
m + 1

r

)
∂m+1−r
s (| fx |)∇r

s �κ

= | fx |∇m+1
s �κ + dm

λ
ϕ∇m

s �κ

+ 1

λ

(
dm−1∂sϕ∇m−1

s �κ + · · · + d2∂
m−2
s ϕ∇2

s �κ)

+ d1
λ

∂m−1
s ϕ∇s �κ + 1

λ
�κ∂ms ϕ

= | fx |∇m+1
s �κ + dm

λ
ϕ∇m

s �κ + d1
λ

∂m−1
s ϕ∇s �κ + 1

λ
�κ∂ms ϕ + 1

λ
W (3.14)

(for appropriate coefficients d j which we do not specify for notation purposes) where

W := dm−1∂sϕ∇m−1
s �κ + · · · + d2∂

m−2
s ϕ∇2

s �κ
and with the convention thatW = 0 ifm = 1, 2. Note that ifm ≥ 3 then |W | ≤ C by (3.13),
so in what follows we can treat W as a bounded term. Therefore we can write

J2 = λ

∫
I
〈∇m+1

s �w,∇m+3
s �κ〉ds = λ

∫
I
| fx |〈∇m+1

s �κ,∇m+3
s �κ〉ds +

∫
I
∂ms ϕ〈�κ,∇m+3

s �κ〉ds

+
∫
I
d1∂

m−1
s ϕ〈∇s �κ,∇m+3

s �κ〉ds +
∫
I
dmϕ〈∇m

s �κ,∇m+3
s �κ〉ds +

∫
I
〈W ,∇m+3

s �κ〉ds
= J2,1 + J2,2 + J2,3 + J2,4 + J2,5.

Using (3.1), (3.8), (3.13), Young inequality, and Lemma 2.8, one can verify that

J2,1 + J2,5 ≤ ε

∫
I
|∇m+3

s �κ|2ds + C(ε, n,Dλ( f0), f0, T ).

Young inequality, (3.4), (IP), (3.13), and Lemma 2.10 yield

J2,2 + J2,3 + J2,4

≤ ε

∫
I
|∇m+3

s �κ|2ds + Cε(‖∂ms ϕ‖2L2 + ‖∂m−1
s ϕ‖2L∞‖∇s �κ‖2L2 + ‖ϕ‖2L∞‖∇m

s �κ‖2L2)

≤ ε

∫
I
|∇m+3

s �κ|2ds + Cε(‖∂ms ϕ‖2L2 + ‖∂m−1
s ϕ‖2L2 + ‖ϕ‖2L2 + ‖∂sϕ‖2L2)

≤ ε

∫
I
|∇m+3

s �κ|2ds + Cε(‖∂ms ϕ‖2L2 + ‖∂m−1
s ϕ‖2L2 + 1).
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Next, observe that (neglecting here for simplicity the coefficients multiplying each term)

Qm+1,m+1
3 (�κ, �w) = ∇m+1

s �w ∗ �κ ∗ �κ + ∇m
s �w ∗ �κ ∗ ∇s �κ + Rm+1 + �w ∗ ∇s �κ ∗ ∇m

s �κ
+ ∇s �w ∗ ∇m

s �κ ∗ �κ + �w ∗ �κ ∗ ∇m+1
s �κ

where Rm+1 contains all terms of type ∇ i1
s �w ∗ ∇ i2

s �κ ∗ ∇ i2
s �κ with i1 + i2 + i3 = m + 1

and i1 ≤ m − 1, i2, i3 ≤ m − 1 (In case m = 1, Rm+1 = 0). Due to (3.13) we see that
|Rm+1| ≤ C . Thus, using (3.13) we can write

|λ〈Qm+1,m+1
3 (�κ, �w),∇m+1

s �κ〉| ≤ C(|∇m+1
s �w||∇m+1

s �κ| + |∇m
s �w ∗ �κ ∗ ∇s �κ ∗ ∇m+1

s �κ|
+ |∇m+1

s �κ| + | �w ∗ ∇s �κ ∗ ∇m
s �κ ∗ ∇m+1

s �κ|
+ |∇s �w ∗ ∇m

s �κ ∗ �κ ∗ ∇m+1
s �κ| + |∇m+1

s �κ|2).
Taking into account the expression (3.14) derived above, (3.8), and (3.13) we obtain

|∇m+1
s �w||∇m+1

s �κ| ≤ C(|∇m+1
s �κ|2 + |ϕ||∇m

s �κ||∇m+1
s �κ| + |∇m+1

s �κ|
+ |∂m−1

s ϕ||∇s �κ||∇m+1
s �κ| + |∂ms ϕ||∇m+1

s �κ|)
≤ C(|∇m+1

s �κ|2 + ‖ϕ‖2∞|∇m
s �κ|2 + 1 + ‖∂m−1

s ϕ‖2∞|∇s �κ|2 + |∂ms ϕ|2).
Similarly

|∇s �w ∗ ∇m
s �κ ∗ �κ ∗ ∇m+1

s �κ| ≤ C(‖ϕ‖2∞|∇m
s �κ|2 + |∇m+1

s �κ|2 + |P2m+2,m+1
3 (�κ)|),

| �w ∗ ∇s �κ ∗ ∇m
s �κ ∗ ∇m+1

s �κ| ≤ C |P2m+2,m+1
3 (�κ)|,

and for m ≥ 2 (note that if m = 1 the following term has already been dealt with, since for
m = 1 we have ∇m

s �w ∗ �κ ∗ ∇s �κ ∗ ∇m+1
s �κ = ∇s �w ∗ ∇m

s �κ ∗ �κ ∗ ∇m+1
s �κ )

|∇m
s �w ∗ �κ ∗ ∇s �κ ∗ ∇m+1

s �κ|
≤ C(|P2m+2,m+1

3 (�κ)| + |ϕ||∇m−1
s �κ||∇m+1

s �κ| + |∇m+1
s �κ| + |∂m−1

s ϕ||∇m+1
s �κ|)

≤ C(|P2m+2,m+1
3 (�κ)| + ‖ϕ‖2∞|∇m−1

s �κ|2 + 1 + |∇m+1
s �κ|2 + |∂m−1

s ϕ|2)
so that using (IP), (3.13), (3.1), Lemma 2.8 and Lemma 2.10 we obtain that

J3 =
∫
I
λ〈Qm+1,m+1

3 (�κ, �w),∇m+1
s �κ〉ds ≤ ε

∫
I
|∇m+3

s �κ|2ds + Cε

+ C(‖ϕ‖2L2 + ‖∂sϕ‖2L2 + ‖∂m−1
s ϕ‖2L2 + ‖∂ms ϕ‖2L2)

≤ ε

∫
I
|∇m+3

s �κ|2ds + Cε + C(‖∂m−1
s ϕ‖2L2 + ‖∂ms ϕ‖2L2).

Collecting the estimates for J1, J2 and J3 we find

d

dt

(
1

2

∫
I
|∇m+1

s �κ|2ds
)

+
∫
I
|∇m+3

s �κ|2ds + 1

2

∫
I
|∇m+1

s �κ|2ds

= J1 + J2 + J3 ≤ ε

∫
I
|∇m+3

s �κ|2ds + Cε(1 + ‖∂m−1
s ϕ‖2L2 + ‖∂ms ϕ‖2L2).

Choosing ε appropriately and using (IP), a Gronwall Lemma yields

sup
t∈[0,T )

‖∇m+1
s �κ‖L2 + sup

t∈[0,T )

∫ t

0
‖∇m+3

s �κ‖2L2dt
′ ≤ Cm+1 (3.15)
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with Cm+1 = Cm+1(n, λ,Dλ( f0), T , f0). Together with Lemma 2.10 and (IP) we also infer
that

sup
t∈[0,T )

‖∇m
s �κ‖L∞ ≤ Cm+1 = Cm+1(n, λ,Dλ( f0), T , f0). (3.16)

Induction Step - Part B: We compute

d

dt

(
1

2

∫
I
(∂ms ϕ)2ds

)
=

∫
I
∂ms ϕ ∂t∂

m
s ϕds + 1

2

∫
I
(∂ms ϕ)2(ϕs − 〈�κ, �V 〉)ds

=
∫
I
∂ms ϕ

(
(λ| fx |∂m+1

s ϕ)s − (λ| fx |∂ms (〈�κ, �V 〉))s

+Mm,m
2 (〈�κ, �V 〉, ϕ)+Bm+1,m+1

2 (ϕ)
)
ds

+ 1

2

∫
I
(∂ms ϕ)2(ϕs−〈�κ, �V 〉)ds

where we have used (2.4) and (2.15). Integration by parts gives

d

dt

(
1

2

∫
I
(∂ms ϕ)2ds

)
+

∫
I
λ| fx |(∂m+1

s ϕ)2ds =
∫
I
(∂m+1

s ϕ)λ| fx |∂ms (〈�κ, �V 〉)ds

+
∫
I
(∂ms ϕ) Mm,m

2 (〈�κ, �V 〉, ϕ)ds +
∫
I
(∂ms ϕ) Bm+1,m+1

2 (ϕ)ds = A1 + A2 + A3.

Note that exploiting the bound from below for the length element (3.11) we can write

d

dt

(
1

2

∫
I
(∂ms ϕ)2ds

)
+ C

∫
I
(∂m+1

s ϕ)2ds + 1

2

∫
I
λ| fx |(∂m+1

s ϕ)2ds

≤
∫
I
(∂m+1

s ϕ)λ| fx |∂ms (〈�κ, �V 〉)ds +
∫
I
(∂ms ϕ) Mm,m

2 (〈�κ, �V 〉, ϕ)ds

+
∫
I
(∂ms ϕ) Bm+1,m+1

2 (ϕ)ds = A1 + A2 + A3. (3.17)

Observing that by (3.13) and (3.16)

|∂ms (〈�κ, �V 〉)| ≤ C(| �V | + · · · + |∇m
s

�V |) ≤ C(1 + |∇m+1
s �κ| + |∇m+2

s �κ| + |∇m
s �w|)

|∂m−1
s (〈�κ, �V 〉)| ≤ C(1 + |∇m+1

s �κ|)
|∂m−2
s (〈�κ, �V 〉)| ≤ C,

and recalling (3.8) we derive immediately that

A1 ≤ ε

∫
I
λ| fx |(∂m+1

s ϕ)2ds + Cε

∫
I
(1 + |∇m+1

s �κ|2 + |∇m+2
s �κ|2 + |∇m

s �w|2)ds

≤ ε

∫
I
λ| fx |(∂m+1

s ϕ)2ds + Cε(1 + ‖∇m+2
s �κ‖2L2)

where we have used the induction hypthesis, (3.1), and (3.15) in the last step. Using the
definition of Mm,m

2 , the calculation above for |∂ms (〈�κ, �V 〉)|, (3.16), and (3.13) we infer that
for any m ≥ 1 there holds

|Mm,m
2 (〈�κ, �V 〉, ϕ)| ≤ C(1 + |∇m+1

s �κ| + |∇m+2
s �κ| + |∇m

s �w|)|ϕ|
+ C(1 + |∇m+1

s �κ|)|∂sϕ| + C + C(|∂m−1
s ϕ| + |∂ms ϕ|).
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Thus together with Lemma 2.10, (3.13), and (3.15) we obtain

A2 ≤ C
(‖ϕ‖L2‖∂ms ϕ‖L2 + ‖ϕ‖L2‖∂ms ϕ‖L2

[‖∇m+1
s �κ‖L∞ + ‖∇m+2

s �κ‖L∞
]

+ ‖ϕ‖L∞‖∂ms ϕ‖L2‖∇m
s �w‖L2

)
+ C

( [‖∂sϕ‖L2 + ‖∂m−1
s ϕ‖L2

] ‖∂ms ϕ‖L2
) + C‖∂ms ϕ‖2L2

+ C‖∇m+1
s �κ‖L∞‖∂ms ϕ‖L2‖∂sϕ‖L2 + C

≤ C + C(‖ϕ‖2L2 + ‖∂sϕ‖2L2 + ‖∂m−1
s ϕ‖2L2 + ‖∂ms ϕ‖2L2)

+ C‖ϕ‖L2‖∂ms ϕ‖L2 [‖∇m+1
s �κ‖L2 + ‖∇m+2

s �κ‖L2 + ‖∇m+3
s �κ‖L2 ]

+ C‖∂ms ϕ‖L2‖∂sϕ‖L2(‖∇m+1
s �κ‖L2 + ‖∇m+2

s �κ‖L2)

≤ C + C(‖∂m−1
s ϕ‖2L2 + ‖∂ms ϕ‖2L2) + C(‖∇m+2

s �κ‖2L2 + ‖∇m+3
s �κ‖2L2)

∫
I
|∂ms ϕ|2ds.

Finally, recalling the definition of Bm+1,m+1
2 (ϕ) we see that every term appearing in A3 is

of type ∫
I
(∂ms ϕ)(∂ i1s ϕ)(∂ i2s ϕ)ds

with i1+i2 = m+1 and 0 ≤ i j ≤ m+1. Each such term can be estimated using Lemma 2.10,
(3.1) and (3.13) as follows: if i1 = m + 1 (hence i2 = 0) then

|
∫
I
(∂ms ϕ)(∂m+1

s ϕ) ϕds| ≤ ε‖∂m+1
s ϕ‖2L2 + Cε‖ϕ‖2L∞

∫
I
|∂ms ϕ|2ds

≤ ε‖∂m+1
s ϕ‖2L2 + Cε(‖ϕ‖2L2 + ‖∂sϕ‖2L2)

∫
I
|∂ms ϕ|2ds

≤ ε‖∂m+1
s ϕ‖2L2 + Cε(1 + ‖∂ms ϕ‖2L2)

∫
I
|∂ms ϕ|2ds

wherewehaveused (3.13) in the last step (note that form ≥ 2weactually have‖∂sϕ‖2
L2 ≤ C).

If i1 = m, i2 = 1 with m ≥ 2 then we write using Lemma (2.10) and (3.13)∫
I
(∂ms ϕ)(∂ms ϕ)(∂sϕ)ds ≤ ‖∂sϕ‖L∞

∫
I
|∂ms ϕ|2ds ≤ C(‖∂sϕ‖L2 + ‖∂2s ϕ‖L2)

∫
I
|∂ms ϕ|2ds

≤ C(1 + ‖∂m−1
s ϕ‖2L2 + ‖∂ms ϕ‖2L2)

∫
I
|∂ms ϕ|2ds.

On the other hand if i1 = m, i2 = 1 with m = 1 then integration by parts yields∫
I
(∂ms ϕ)(∂ms ϕ)(∂sϕ)ds =

∫
I
(∂ms ϕ)3ds = −2

∫
I
(∂ms ϕ)(∂m−1

s ϕ)(∂m+1
s ϕ)ds

≤ ε‖∂m+1
s ϕ‖2L2 + Cε‖∂m−1

s ϕ‖2L∞

∫
I
|∂ms ϕ|2ds

≤ ε‖∂m+1
s ϕ‖2L2 + Cε(‖∂m−1

s ϕ‖2L2 + ‖∂ms ϕ‖2L2)

∫
I
|∂ms ϕ|2ds.

If i1 = m − 1, i2 = 2 and m = 1 then similar arguments as above yield∫
I
(∂ms ϕ)(∂m−1

s ϕ)(∂2s ϕ)ds =
∫
I
(∂ms ϕ)(∂m−1

s ϕ)(∂m+1
s ϕ)ds

≤ ε‖∂m+1
s ϕ‖2L2 + Cε(‖∂m−1

s ϕ‖2L2 + ‖∂ms ϕ‖2L2)

∫
I
|∂ms ϕ|2ds.
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On the other hand if i1 = m − 1, i2 = 2 and m ≥ 2 then∫
I
(∂ms ϕ)(∂m−1

s ϕ)(∂2s ϕ)ds ≤ ‖∂2s ϕ‖2L2 + ‖∂m−1
s ϕ‖2L∞

∫
I
|∂ms ϕ|2ds

≤ C + C(1 + ‖∂m−1
s ϕ‖2L2 + ‖∂ms ϕ‖2L2)

∫
I
|∂ms ϕ|2ds.

Finally if i1 ≤ m − 2 i2 = m + 1− i1, then by (3.13) we know that |∂ i1s ϕ| ≤ C and therefore
we can write

|
∫
I
(∂ms ϕ)(∂ i1s ϕ)(∂ i2s ϕ)ds| ≤ C‖∂ i2s ϕ‖L2‖∂ms ϕ‖L2 ≤ ‖∂ i2s ϕ‖2L2 +

∫
I
|∂ms ϕ|2ds

≤ C +
∫
I
|∂ms ϕ|2ds

where we have taken (IP) and i2 < m into account. According to all considerations outlined
so far we can state that

|A3| ≤ ε‖∂m+1
s ϕ‖2L2 + Cε(1 + ‖∂m−1

s ϕ‖2L2 + ‖∂ms ϕ‖2L2)

∫
I
|∂ms ϕ|2ds + C .

Fron (3.17) together with the obtained estimates for A1, A2, A3, (IP), and choosing ε

appropriately we obtain

d

dt

(
1

2

∫
I
(∂ms ϕ)2ds

)
+ C

∫
I
(∂m+1

s ϕ)2ds

≤ C(1 + ‖∇m+2
s �κ‖2L2) + C(1 + ‖∂ms ϕ‖2L2 + ‖∇m+2

s �κ‖2L2 + ‖∇m+3
s �κ‖2L2)

∫
I
|∂ms ϕ|2ds.

A Gronwall argument that takes into account (IP) and (3.15) finally yields

sup
t∈[0,T )

(‖∂ms ϕ‖L2 +
∫ t

0
‖∂m+1

s ϕ‖2L2dt
′) ≤ C̃m+1,

with C̃m+1 = C̃m+1(n, λ,Dλ( f0), f0, T ). The uniform L2-bound for ∇m+1
s �w follows from

(3.14) and the uniform bounds obtained so far. The induction step is now completed.

Final steps: As observed in [6, Thm 3.1], for a function h : I → R we
have that ∂mx h = | fx |m∂ms h + Pm(| fx |, . . . , ∂m−1

x (| fx |), h, . . . , ∂m−1
s h) where Pm is

a polynomial. With h = | fx | and (2.2) it follows ∂mx (| fx |) = 1
λ
| fx |m∂m−1

s ϕ +
Pm(| fx |, . . . , ∂m−1

x (| fx |), ϕ, . . . , ∂m−2
s ϕ), so that taking into account (3.8), and the uniform

bounds obtained for ϕ and its derivatives (recall that (3.13) holds for any m), we obtain
uniform bounds for the derivatives of the length element in the original parametrization.
Similarly, using Lemma 2.9 and (3.13) we can also state that on [0, T ) we have for any
m ∈ N

‖∂mx f ‖L∞ ≤ C(m, n, λ,D( f0), f0, T ).

Moreover ‖ f ‖L∞ ≤ C(n, λ,D( f0), f0, T ). Therefore we can extend f smoothly over
[0, T ] × I and even beyond by short-time existence contradicting the maximality of T .
This proves that the flow exists globally in time.
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