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Abstract

In this paper, we study limiting embeddings of Besov-type and Triebel-Lizorkin-type spaces,
id; : Bl () — B2 (Q) and id, : Fpl i (Q) < F22(Q), where @ € R? is a
bounded domain, obtaining necessary and sufficient conditions for the continuity of id, . This
can also be seen as the continuation of our previous studies of compactness of the embeddings
in the non-limiting case. Moreover, we also construct Rychkov’s linear, bounded universal
extension operator for these spaces.

Keywords Besov-type space - Triebel-Lizorkin-type spaces - Smoothness Morrey spaces
on domains - Limiting embeddings - Extension operator.

Mathematics Subject Classification 46E35 - 42B35

1 Introduction

Besov-type spaces By, 7 (R?) and Triebel-Lizorkin-type spaces Fjz(R?), 0 < p < oo (or
p = oointhe B-case),0 < g < 00,7 > 0,s € R, are part of a class of function spaces built
upon Morrey spaces M, ,,(]Rd ), 0 < p < u < oo. They are regularly called in the literature
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as smoothness spaces of Morrey type or, shortly, smoothness Morrey spaces, and they have
been increasingly studied in the last decades, motivated firstly by possible applications.

The classical Morrey spaces M ,, 0 < p < u < 00, were introduced by Morrey in [19]
and are part of a wider class of Morrey-Campanato spaces, cf. [21]. They can be seen as a
complement to L, spaces, since M, ,(R?) = L ,(RY).

The (inhomogeneous) Besov-type and Triebel-Lizorkin-type spaces we work here with
were introduced and intensively studied in [47] by Yuan, Sickel and Yang. Their homoge-
neous versions were previously investigated by El Baraka in [3-5], and also by Yuan and
Yang [41, 42]. Considering t = 0, one recovers the classical Besov and Triebel-Lizorkin
spaces. Moreover, they are also closely connected with Besov-Morrey spaces N ». q(]Rd)
and Triebel-Lizorkin-Morrey spaces &, , q(R )L, 0<p<u<oo0<gqg<ooselR,
which are also included in the class of smoothness Morrey spaces. Namely, when p < u,

T = % =, then the Triebel-Lizorkin-type space F q(]Rd) coincides with £ u », q(Rd) and
it is also known that the Besov-Morrey space N} P (RY) is a proper subspace of By Z(Rd )
with t = i - ;, p < u and ¢ < oo. The Besov-Morrey spaces were introduced by

Kozono and Yamazaki in [15] and used by them and later on by Mazzucato [17] in the study
of Navier—Stokes equations. In [33] Tang and Xu introduced the corresponding Triebel-
Lizorkin-Morrey spaces, thanks to establishing the Morrey version of the Fefferman-Stein
vector-valued inequality. Some properties of these spaces including their wavelet character-
isations were later described in the papers by Sawano [24, 25], Sawano and Tanaka [28, 29]
and Rosenthal [22]. The surveys [31, 32] by Sickel are also worth of being consulted when
studying these scales. Recently, some limiting embedding properties of these spaces were
investigated in a series of papers [10-14]. As for the Besov-type and Triebel-Lizorkin-type
spaces, also embedding properties have been recently studied in [8, 45, 46].

Undoubtedly the question of necessary and sufficient conditions for continuous embed-
dings of certain function spaces is a natural and classical one. Beyond that, this paper should
essentially be understood as the continuation of our earlier studies in [8]. Proceeding con-
trary to the usual, there we started by studying compactness of the embeddings of Besov-type
(A = B) and Triebel-Lizorkin-type (A = F) spaces,

idr A;ll qul (§2) — A;zzrqzz(g)’

where Q@ C R? is a bounded domain. Now we finally deal with the continuity of such
embeddings, obtaining sufficient and necessary conditions on the parameters under which
they hold true. According to the results obtained in [8], the embedding id, is compact if, and
only if,

— 1 1 1 1
all S2>max{<t2——> —(rl——> ——rl—mm{——rz,—(l p1t1)+}}=l)/,
d P2/ + pP1/+ Pl p2 p

with a4 :=max{a, 0}, and there is no continuous embedding id; when s; — s> < d y. Con-
sequently, only the case when

s1—s2
=

is of interest to us here. In what follows, we call this setting ‘limiting situation’, giving

meaning to the expression ‘limiting embedding’. In that way we complement earlier results

in[11,12,46] in related settings. Our main results are stated in Theorem 4.9, Propositions 4.3

and 4.6. In the propositions we consider the situation when one of the spaces, the source one
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or the target one, coincides with some classical Besov space B, ,(€2). The outcome for the
spaces that do not satisfy this assumption can be found in the theorem. In almost all cases we
prove the sharp sufficient and necessary conditions. Only in one case we have a small gap
between them, cf. Remark 4.10.

Of independent interest is also the extension theorem we are able to prove for the spaces
under consideration. The first extension operators for Besov-type and Triebel-Lizorkin-type
spaces were constructed by Sickel, Yang and Yuan in [47], cf. Theorem 6.11 and 6.13 ibidem.
However it is assumed there that domains are C* smooth and the extension operators were
not universal. Another not universal construction for the smooth domains was given by
Moura, Neves and Schneider in [20]. The Rychkov universal extension operator for the
Triebel-Lizorkin-type spaces defined on Lipschitz domains was recently constructed by Zhou,
Hovemann and Sickel in [52] with additional assumptions p, g € [1, o). Here we considered
all admissible parameters p and g. We concentrate on the Besov-type spaces, that are not a
real interpolation space of Triebel-Lizorkin-type spaces, in contrast to the classical case, cf.
[48]. The extension theorem will not only help us to obtain the results about the continuity,
but also will allow us to improve some necessary conditions of such embeddings on R¥.
We follow Rychkov’s approach from [23] and construct such an operator, for all possible
values of p, g € (0, oo]. We learned only recently that in [51, 52] the authors followed a
similar approach to construct such an extension operator adapted to their purposes, that is,
for p, g > 1. For the convenience of the reader we keep our argument for the full range of
parameters here.

This paper is organized as follows. In Sect. 2 we recall the definition, on R¢ and on bounded
domains @ C R?, of the spaces considered in the paper and collect some basic properties,
among them the wavelet characterisations. In Sect.3 we deal with the construction of a
universal linear bounded extension operator for the spaces A}, ;. Section4 is, finally, devoted
to the study of continuity properties of limiting embeddings of the spaces Asp’fq (£2). Moreover,
we make use of these results and the extension theorem from Section 3 to improve prior results
on the continuity of embeddings of the corresponding spaces on R?, cf. [46].

2 Preliminaries

First we fix some notation. By N we denote the set of natural numbers, by Ny the set NU {0},
and by 74 the set of all lattice points in R%having integer components. Let Ng, where
d € N, be the set of all multi-indices, o = (a1, ..., ag) with o; € Np and |a|:= ZC/I":l aj. If
x =1, . x7) ERland o = (a1, ..., 0q) € Ng, then we put x® = x7" - - x;. Fora € R,
let la] :=max{k € Z : k < a} and a;:=max{a, 0}. All unimportant positive constants
will be denoted by C, occasionally with subscripts. By the notation A < B, we mean that
there exists a positive constant C such that A < C B, whereas the symbol A ~ B stands for
A < B < A.Wedenote by B(x, r):={y € R? : |x — y| < r} the ball centred at x € R? with
ragius r > 0, and | - | denotes the Lebesgue measure when applied to measurable subsets of
R?.

Given two (quasi-)Banach spaces X and Y, we write X < Y if X C Y and the natural
embedding of X into Y is continuous.
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2484 H.F. Gongalves et al.

2.1 Smoothness spaces of Morrey type on R

Let S(R?) be the set of all Schwartz functions on R?, endowed with the usual topology, and
denote by S'(R?) its topological dual, namely, the space of all bounded linear functionals
on S(RY) endowed with the weak #-topology. For all f € S (RY) or 8'(RY), we use fto
denote its Fourier transform, and f for its inverse. Let Q be the collection of all dyadic
cubes in RY, namely, Q:={Q; :=27/([0, ) + k) : j € Z, k € Z}. The symbol £(Q)
denotes the side-length of the cube Q and jy:= —log, £(Q). Moreover, we denote by XQjm
the characteristic function of the cube Q; .
Let ¢, ¢ € S(RY). We say that (¢g, @) is an admissible pair if

supp@o C {€ e RY: €] <2}, |go()| = Cif[g] <5/3, 2.1
and
supp@ C {€ € R 1/2 < |g| <2} and |§(§) = Cif3/5<5]<5/3, (22)
where C is a positive constant. In what follows, for all ¢ € S@RY) and j € N,
0 ():=2/19(2/").
Definition 2.1 Lets € R, t € [0, 00), ¢ € (0, o] and (¢p, ¢) be an admissible pair.

(i) Let p € (0, 0o]. The Besov-type space By 5 (RY) is defined to be the collection of all
f € 8'(R?) such that

o0

> 2f /|¢,- s f(x)|P dx < o0
P

Jj=max{jp.0}

If 1 BST (R |:= sup
P PecQ |P|T

with the usual modifications made in case of p = oo and/or g = oo.
(ii) Let p € (0, 00). The Triebel-Lizorkin-type space F;if, (IRY) is defined to be the collection
of all f € &'(R?) such that

=S

If | Fy o RDl:= sup

o0
v )| X Plesror| a <o
Pe

p LJ/=max{jp.0}
with the usual modification made in case of ¢ = oc.

Remark 2.2 These spaces were introduced in [47] and proved therein to be quasi-Banach
spaces. In the Banach case the scale of Nikol’skij-Besov type spaces B;,Z (R9) had already
been introduced and investigated in [3—5]. It is easy to see that, when T = 0, then Bf,’,g (R%)
and Ff,j; (R?) coincide with the classical Besov space Bz’ q (R?) and Triebel-Lizorkin space
Fs . (RY), respectively. In case of 7 < 0 the spaces are trivial, By, 5 (RY) = F,'7 (RY) = {0},
T < 0. There exists extensive literature on such spaces; we refer, in particular, to the series
of monographs [34-36, 39] for a comprehensive treatment.

Convention. We adopt the nowadays usual custom to write A;! q (R?) instead of BIS,, q (R?) or
F, (R%), and Ay (R?) instead of Byg (RY)or F g (RY), respectively, when both scales of
spaces are meant simultaneously in some context.
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We have elementary embeddings within this scale of spaces (see [47, Proposition 2.1]),

APETRY = AT R if e € (0,00), 1, g € (0,00, 2.3)
and
ASE RY) — AST (R if g1 < g, 2.4)
as well as
B inipy®D = FIRY) < BV (RY, 2.5)

which directly extends the well-known classical case from 7 = 0to T € [0, 00), p € (0, 00),
q € (0,00] and s € R.
It is also known from [47, Proposition 2.6] that

AT ED > BT RY), 2.6)

The following remarkable feature was proved in [44].

Proposition 2.3 Lets € R, t € [0, 00) and p, q € (0, 00] (with p < oo in the F-case). If

. s+d(r
either T > % ort = % and g = 00, then A;;;(Rd) = Bxo.co , (Rd)

Now we come to smoothness spaces of Morrey type ./\/',j (]Rd yand &, , . (R?). Recall

first that the Morrey space M, ,,(Rd ),0< p<u<oo,is deﬁned to be the set of all locally
p-integrable functions f € Lllg’c (R?) such that

d_d »
||.f|Mu,p(Rd)||5= sup R » [/ [fO)IP dy] < 00.
B(x,R)

xeR4,R>0

Remark 2.4 The spaces M,,, p(Rd) are quasi-Banach spaces (Banach spaces for p > 1).
They originated from Morrey’s study on PDE (see [19]) and are part of the wider class of
Morrey-Campanato spaces; cf. [21]. They can be considered as a complement to L, spaces.
As a matter of fact, M, p(]Rd )=1L p(]Rd) with p € (0, 00). To extend this relation, we put
Meo,00(RY) = Lo (RY). One can easily see that M, ,(RY) = {0} for u < p, and that for
O0<pr<p1=u<oo,

Lu(RY) = My (RY) > My p (RY) < My, p, (RD). 2.7)

In an analogous way, one can define the spaces M, ,,(]Rd), p € (0, 00), but using the
Lebesgue differentiation theorem, one can easily prove that M, p(]Rd) = Lo (RY).

Definition2.5 Let0 < p < u < oo orp = u = o0o0. Letg € (0,00], s € R and ¢y,
pes (RY) be as in (2.1) and (2.2), respectively.

(i) The Besov-Morrey space N (R?) is defined to be the set of all distributions f €

S’ (RY) such that

“Pq

© 1/q
1182 g @ = [ 2% oy £ 1M, @] <o 9

j=0

with the usual modification made in case of ¢ = co
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(ii) Let u € (0, 00). The Triebel-Lizorkin-Morrey space E;, . q(Rd) is defined to be the set
of all distributions f € S'(R%) such that

1/q
[ 7188, ®D] = H [Zzﬂw, * ) )ﬂ | Mupy R <00 (29)
with the usual modification made in case of ¢ = 0o
Convention. Again we adopt the usual custom to write A;, , . instead of N/ , or &, , ..

when both scales of spaces are meant simultaneously in some context.

Remark 2.6 The spaces Aj, I (R?) are independent of the particular choices of ¢y, ¢ appear-
ing in their definitions. They are quasi-Banach spaces (Banach spaces for p, ¢ > 1), and
S(RY) — A . q(Rd ) — S'(RY). Moreover, for u = p we re-obtain the usual Besov and
Triebel-Lizorkin spaces,

AR =A% (RY) = 430 (RY). (2.10)
Besov-Morrey spaces were introduced by Kozono and Yamazaki in [15]. They studied semi-
linear heat equations and Navier—Stokes equations with initial data belonging to Besov-
Morrey spaces. The investigations were continued by Mazzucato [17], where one can find
the atomic decomposition of some spaces. The Triebel-Lizorkin-Morrey spaces were later
introduced by Tang and Xu [33]. We follow the ideas of Tang and Xu [33], where a somewhat
different definition is proposed. The ideas were further developed by Sawano and Tanaka [24,
25, 28, 29]. The most systematic and general approach to the spaces of this type can be found
in the monograph [47] or in the survey papers by Sickel [31, 32], which we also recommend
for further up-to-date references on this subject. We refer to the recent monographs [26, 27]
for applications.

It turned out that many of the results from the classical situation have their counterparts
for the spaces AM », q(Rd), e.g.,

A R > A RY)if £ >0, re(0,00], Q2.11)

and A? (RY) < A5 (RY) if q1 < g». However, there also exist some differences.

u, g1 U, g2
Sawano proved in [24] that, fors e Rand 0 < p < u < oo,
d d d
Nrpmlnpq(R)c_) 1,{1)(1(IR)C_)~/\/1v (R )5 (212)

where, for the latter embedding, » = oo cannot be improved — unlike in case of u = p (see
(2.5) with T = 0). More precisely,

u », q(]Rd) — /\/’,f (]Rd) if, and only if, » =00 or u = p and r > max{p, ¢q}.
On the other hand, Mazzucato has shown in [17, Proposition 4.1] that
&) pa R = My ,RY), 1< p<u<oo,

in particular,

£ ,aRY =L,RY) = F),RY), pe(l,o0). (2.13)
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Remark 2.7 Let s, u, p and g be as in Definition 2.5 and t € [0, 00). It is known that

N, B — B @RY) with  =1/p—1/u, (2.14)

cf. [47, Corollary 3.3]. Moreover, the above embedding is proper if ¢ > 0 and ¢ < oo. If
7 = 0 or ¢ = 00, then both spaces coincide with each other, in particular,

S §
®RY) = B, L "(RY), (2.15)

u p,o0
As for the F-spaces, if 0 < v < 1/p, then

Fyr@®h =& (R with t=1/p—1/u, O<p=<u<oo: (216

cf. [47, Corollary 3.3]. Moreover, if p € (0, 00) and g € (0, c0), then

s, 1 . s, 1
Fp iR = FL, R = B, {(RY): 2.17)
cf. [31, Propositions 3.4, 3.5] and [32, Remark 10].

Remark 2.8 Recall that the space bmo(IRY) is covered by the above scale. More precisely, con-
sider the local (non-homogeneous) space of functions of bounded mean oscillation, bmo(R?),
consisting of all locally integrable functions f € L10C (RY) satisfying that

1 f lomo := sup |Q|/|f()c) fol dx + sup |Q|/|f()c)|dx<oo

0]<1 Q|>1

where Q appearing in the above definition runs over all cubes in R¥, and fo denotes the
mean value of f with respect to Q namely, fp:= o1 QI f 0 f(x) dx, cf. [34, 2.2.2 (viii)]. The

space bmo(]Rd) coincides with F 2(}Rd) cf. [34, Theorem 2.5.8/2]. Hence the above result
(2.17) implies, in particular,

01/2

bmo(RY) = F, ,(RY) = F),/"(RY) = ®Y), 0<p < oo. (2.18)

Remark 2.9 In contrast to this approach, Triebel followed the original Morrey-Campanato

ideas to develop local spaces £" A S (]Rd ) in [37], and so-called ‘hybrid’ spaces L’A‘;’ q (RY)

in[38], where0 < p < 00,0 < g < 00,5 € R, and —< < r < oo. This construction is based
on wavelet decompositions and also combines local and global elements as in Definitions 2.1
and 2.5. However, Triebel proved in [38, Theorem 3.38] that

1 r
3 d T d _
LA (RY) = 45T (RY), r_;—i—g, (2.19)
in all admitted cases. We return to this coincidence below.

As mentioned previously, in this paper we are interested in studying embeddings of type

: 51,71 52,72
ide 2 AP = A

on domains. To do so, we will strongly rely on the corresponding results for these spaces
on R?, obtained in [46]. In order to make the reading easier, we recall those results here.
We begin with the situation of Besov-type spaces where the results can be found in [46,
Theorems 2.4, 2.5].

Theorem 2.10 ( [46]) Lets; e R, 0 < g; < 00,0 < p; <ococandt; >0,i =1,2.
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2488 H.F. Gongalves et al.

(i) Let v > é ortn = i and q» = oo. Then the embedding
BSU (RY) — B2 (RY) (2.20)
— 1 1
holds if, and only if, L > — —11——+1n.
P1 P2
(i) Lett; > p—ll orT = ﬁ and q1 = o0o. Then the embedding (2.20) holds if, and only if,
— 1 1 1
il s2>——t1——+r2 and 1 > —
d P P2 P2
— 1 1 1
or u:——tl———i—tz and 1 > —
d )4 P2 P2
S1— 82 1 1 1
or =——171——+417 and ©p=— and g, = oo.
d P P2 P2

(iii) Assume that t; < pi ort = pi and gi <oo,i =1,2.
13 1

(a) The embedding (2.20) holds true if

1 1 T T
— - — 4120, —<-—
P1 P2 P2 P1
and
S1— § 1 1
1 2>*—f1—f+t2
d i P2
S| — § 1 1
or ¥:——rl——+r2
d P P2
with
71 %)
(51 —s2)(t1 — 1) #0, — < —
P2 P1
7]

n T T
-2 n_=2

or (sl — SQ)(‘L’] — tg) 7+— O, = N =
P2 P12 q
or (s1—s2)(t1—1) =0, q1 <q,

and p1>pr if si=s2 and T p1 =T1p2 = 1.

(b) The conditions ﬁ -7 — % +1 > 0and % < %, and sy — sp > il —dt — % +d
as well as q1 < q» if s1 = sy are also necessary for the embedding (2.20).

The counterpart for F-spaces reads as follows, we refer to [46, Corollaries 5.8, 5.9] for
details.

Theorem 2.11 ([46]) Lets; e R, 0 < ¢q; < 00,0 < p; <ocoandt; >0,i =1,2.

(i) Lett; > i ort = i and q; = 0o, i = 1,2. Then the embedding

s d 52, d
Fprgy R — F2 0 (RY) 2.21)
. . s1 — $2 1 1
holds if, and only if, > — —7— —+1n.
d P P2

@ Springer



Limiting embeddings of Besov-type and Triebel-Lizorkin-type... 2489

(ii) Assume that T; < %, i =1, 2. Then the embedding (2.21) holds if, and only if,

1 1 T T
——n-— 4120, —<—>
P1 P2 P2 P1
and
K ) 1 1
L= ——Tu-—+n
d P1 4
s]— 8 1 1
or ! 2:——11——+12
d D1 D2

or s1=s and q1 < q.

2.2 Spaces on domains

Let € denote an open, nontrivial subset of R?. We consider smoothness Morrey spaces
on 2 defined by restriction. Let D(£2) be the set of all infinitely differentiable functions
supported in © and denote by D’() its dual. Since we are able to define the extension
operator ext : D(2) — S(RY), cf. [30], the restriction operator re : S’ (RY) — D'() can
be defined naturally as an adjoint operator

(re(f), @) = (f.ext(p)), feS®RY,
where ¢ € D(Q2). We will write f|q = re(f).

Definition 2.12 Lets € R, 7 € [0, 00), ¢ € (0, co]and p € (0, oo] (with p < 00 in the case
of Ay = Fyg). Then A}, () is defined by

AST(Q):={f € D'(Q) : f = glq for some g € A}T (R)}

endowed with the quasi-norm
| £ 1ASE (@) |:=inf {lIg | AL RDI: £ = gla. g € ASL R}

Remark 2.13 The spaces A}, () are quasi-Banach spaces (Banach spaces for p, g > 1).
When t = 0 we re-obtain the usual Besov and Triebel-Lizorkin spaces defined on domains.
For the particular case of §2 being a bounded C* domain in R?, some properties were studied
in [47, Section 6.4.2]. In particular, according to [47, Theorem 6.13], for such a domain €2,
there exists a linear and bounded extension operator

ext : A;’fq(Q) — A“p’fq(]Rd), where 1<p<o00,0<g<oo,seR,t>0, (2.22)

such that
reoext =id in A;”Z(Q), (2.23)

where re : A} (R?) — A7 (Q) is the restriction operator as above.
Moreover, in [9] we studied the question under what assumptions these spaces consist of
regular distributions only.

Remark 2.14 Let us mention that we have the counterparts of many continuous embeddings
stated in the previous subsection for spaces on R? when dealing with spaces restricted to
bounded domains. We recall them in further detail if appropriate and necessary for our
arguments below.
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2490 H.F. Gongalves et al.

Later we shall mainly deal with Lipschitz domains. Therefore we recall the concept for
convenience. By a Lipschitz domain we mean either a special or bounded Lipschitz domain.
A special Lipschitz domain is defined as an open set Q@ C R¢ lying above a graph of a
Lipschitz function @ : R?~! — R. More precisely,

Q={(,x2) e RY : xy > 0(x)},
where
lo(x) —w() < AlX' =y, ¥,y eRITL (2.24)

A bounded Lipschitz domain is a bounded domain €2 whose boundary 92 can be covered
by a finite number of open balls By so that, possibly after an appropriate rotation, 92 N By,
for each k is a part of the graph of a Lipschitz function. Let 2 be a special Lipschitz domain
defined by a Lipschitz function w that satisfies the condition (2.24). We put

Ki={(x",x,) e RY 1 x| < A7'x,)

and —K:={—x : x € K}. Then K has the property that x + K C Q2 forany x € Q. Moreover
let S’(2) denote the subspace of D'(€2) consisting of all distributions of finite order and of
at most polynomial growth at infinity, that is, f € S’() if, and only if, the estimate

(foml<c sup  [D*n)I(1+IxPM, 5 e D),
XeQ,|a|<M

holds with some constants ¢ and M depending on f.

Remark 2.15 As already mentioned, we shall study continuous embeddings of function
spaces on domains. For convenience let us recall what is well known for the classical function
spaces A‘;,’q(Q). Lets; e R,0 < pi,gi <o0,i =1,2,and Q C R? a bounded Lipschitz
domain. Then

id3 - B} . (Q) = B3 . (Q)

is continuous if, and only if,

. S] — 82 1 1
either >max{— — —,0

d P D2
S| — 82 1 1

or =max{— — —,0¢ and ¢q; <. (2.25)
d P p2

Assume, in addition, p; < 0o, i = 1, 2. Then

idh - F3l () = F2 . (Q)

is continuous if, and only if, either (2.25) is satisfied,

ST — 52 1 1 1 1
or =max{—— —,0t = — — — >0,

d P P2 P P2
_ 1 1

or S1 52=max{7_7, }:0 and ¢q; < q».
d P1 P2

For (partial) results we refer to [2, Section 2.5.1], [36, p. 60], and, quite recently, the extension
to spaces Fgo,q(Q) in [39, Section 2.6.5]; cf. also our results in [11, Theorem 3.1] and [12,
Theorem 5.2]. However, in most of the above cases, the domain €2 is there assumed to be
smooth.
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2.3 Wavelet decomposition in Besov-type and Triebel-Lizorkin-type spaces

In this section we describe the wavelet characterisation of Besov-type and Triebel-Lizorkin-
type spaces proved in [16]. This is a key tool when studying embedding properties of function
spaces, since it allows one to transfer the problem to the corresponding sequence spaces.

Let 5 be a scaling function on R with compact support and of sufficiently high regularity,
and {ﬁ the corresponding orthonormal wavelet. Then we can extend these wavelets from R
to R4 by the usual tensor procedure, cf. [40, Section 5.1]. This yields a scaling function ¢
and associated wavelets V¥, ..., ¥,4_, all defined on RY; see, e.g. [40, Proposition 5.2]. We
suppose that

¢.¥i e CM(@®RY)  and  suppo,suppyy; C [—Na, Nol?, i=1,...,2¢ -1,

for some N, N> € N.
Fork € Z¢, j e Ngandi € {1,...,2¢ — 1}, define

G (x):=2/12¢2Ix —k) and Yy jp(x):=272y;20x — k), x eRY
It is well known that
[esswxrar=0 it yi=m
R4

(see [40, Proposition 3.1]), and
{pok: keZiY Uy ji: keZl jeNy iefl,...,29 1}

forms an orthonormal basis of L,(R?) (see, e.g., [18, Section 3.9] or [36, Section 3.1]).
Hence

29-1 o0
F= Mdox+ Y>> Mk (2.26)
kezd i=1 j=0kezd

in Ly(RY), where Ap:=(f, dox) and A; j k:=(f, Vi jx). We will denote by A(f) the fol-
lowing sequence:

A= (e Mi k) = ((Fs dok)s (F. Vi k)

Definition 2.16 Lets € R, T € [0, 00) and g € (0, oo].

(i) Let p € (0, oo]. The sequence space bf;ﬁf, :=b‘;’fq (R) is defined to be the space of all
complex-valued sequences t:={t; j,, : i € {1,...,2d —1},j e Ng,m € Zd} such
that ||7 | b5 || < oo, where

) L 241 A K
$,T || JG+5-)q
e 1by5 = sup ooy D0 2T DT gl
PeQ j=max{jp,0} i=1 | m: QjnmCP

with the usual modification when p = oo or g = oo.

@ Springer



2492 H.F. Gongalves et al.

(ii) Let p € (0, 00). The sequence space f, g:=fpq(R?) is defined to be the space of all
complex-valued sequences t:={t; j,» : i € {1,..., 2d _ 1},j € No,m € 74} such
that ||z | fp:gll < oo, where

1
P L

5171 q 4
1 o] ) P 2
i1 ili= s e [ 2 2“”2”2ermanQ,‘.Ax)} det
P

pe j=max{jp,0} i=1 mezd

with the usual modification when g = oco.

As a special case of [16, Theorem 4.12], we have the following wavelet characterisation
of A% (RY).

Proposition 2.17 ([16]) Lets € R, t € [0, 00), g € (0, o0]. Moreover, let N1 € Ng be such
that, when A = B and p € (0, o],

d d d d
Ny +1>max{d+ — —dt —s +dr+l,d—|———|—§,d+s,——s,s—l—dr ,
p p p

" min{p, 1}

and when A = F and p € (0, 00),

2d

d
Ni+1 >max{d—|—f—dt—s,,7
p min{p, g, 1}

d d d
+dr+1,d+—+f,d+s,f—s,s+dr}.
p 2 P

Let f € S’ (RY). Then f € A% (R?) if, and only if. f can be represented as (2.26) in S'(R%)
and

P

ST U bl E A g | @ < 0.

m: Qo.mCP

IA(f) | ayyll*:= sup
P4 PeQ |P|T

Moreover, || f | A;,Tq R || is equivalent to ||L(f) | a;’LH*.

3 Extension Operator

As mentioned in Remark 2.13 above, if Q is a bounded C* domain in RY, an extension
theorem for the spaces A;’j] (£2) was stated in [47], but with the assumption that p € [1, c0).
It is our aim in this section to establish an extended result, which holds for all p € (0, o]
(p € (0, 00) in the F-case). Similarly to what was done in [48, Proposition 4.13] for Besov-
Morrey spaces ;. ».q» We will follow Rychkov [23, Theorem 2.2] in the construction of such
an operator. We start with some preparation.

Letg € (0, 00] and 7 € [0, 00). Denote by ¢, (L;) the set of all sequences {g;}en, of
measurable functions on R such that

1/q
o0
gj)jeno | La(Lp)ll= sup S g ILyP?t  <oo.  (3.0)
PeQ j=max{jp.0}
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Similarly, L;(ﬁq) with p € (0, 0o) denotes the set of all sequences {g}jcn, of measurable
functions on R¥ such that

o 1/q
(g}t | L (E)ll= sup Yo lgltt ILy(P)| <o0. (32
Peg j=max(jp.0}

The first auxiliary lemma can be seen as a particular case of [16, Lemma 2.9], where the
authors considered more general quasi-norms.

Lemma3.1 Let g € (0,00], T € [0, 00). Let D1, Dy € (0, 00) with D, > dt. For any
sequence {gy}ven, of measurable functions on R4, consider

J 00
Gj(x):= ZZ_(j_“)ngv(x) + Z 27=DDig (x), jeNy, xeR?.
v=0 v=j+1

Then there exists a positive constant C, independent of { gy }veN,, such that, forall p € (0, o0],
IHG j}jeno | €g (LI = C I{gv}veny | Lg (LI,

and, for all p € (0, 00),
HGj}jeno | L DN = C l{gv}veny | L, Q]I

Let (¢o, ¢) be an admissible pair and f € S’ (R?). For all j € No,a € (0,00) and x € R,
we denote

lpj * f(D)I
%Sa X).:= sSu j—
(P] fx) ye]lgd (14 2/]x — y|)*

Another tool we will need later is the characterisation of the spaces via Peetre maximal
functions. For the homogeneous version of the spaces, this result was proved in [43, Theo-
rem 1.1]. Here we use the results proved in [50, Theorem 5.1] and [49, Theorem 3.11] for
the more general scale of Besov-type spaces and Triebel-Lizorkin-type spaces with variable
exponents, respectively, which in particular cover our spaces. Adapted to our case, the results
read as follows.

Theorem 3.2 Lets € R, T € [0, 00), g € (0, 0o] and (¢o, ¢) be an admissible pair.

d
(i) Let p € (0,00]anda > — +dt. Then
p
1LF 1 BYE @RI~ 12707 fjeny | € (L)

d
(ii) Let p € (0,00) anda > ——  +dt. Then
min{p, g}

IF 1 ESR @I~ 127565 £1jeny | L5

Remark 3.3 Note that in the above theorem the sequence {¢;} e, is built upon an admissible
pair (o, ¢), as in Definition 2.1. Hence ||f|B;’,Z R ~ ||{2j3(<pj * f)}jeng | Zq(L;)H

and || f1Fpg RO ~ [{275(p; * )} jen, | L%, (£4)|l. However, in [6] and [7] the authors
proved that, for Besov-type and Triebel-Lizorkin-type spaces with variable exponents, one
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can consider more general pairs of functions not only in this result, but also in the definition
of the spaces.

Following Rychkov [23], we will prove the existence of a universal linear bounded exten-
sion operator if €2 is a Lipschitz domain, recall the explanations given at the end of Sect.2.2.
We first recall two results of Rychkov we shall need in our argument below.

Lemma 3.4 ([23, Proposition 3.1]) Let Q2 be a special Lipschitz domain. The distribution
f € D(RQ) belongs to S'(Q) if, and only if, there exist g € S'(R?) such that f = g|q.

Lemma 3.5 ([23, Theorem 4.1 (a)]) Let 2 be a special Lipschitz domain and K its associated
cone. Let — K :={—x : x € K} bea ‘reflected’ cone. Then there exist functions ¢o, ¢, Yo, ¥ €
S(R?) supported in —K such that

/ x¢(x) dx = f x*Y(x) dx =0 for all multi-indices a, (3.3)
R4 R4
and
f=Y_Wjx¢jxf in D(Q), forany feS Q). (3.4)
Jj€Noy

where ¢j(-) = 274427y and r; () = 29y (27+), j e N.
We can now state the main result of this section.

Theorem 3.6 Let Q@ C R? be a special or bounded Lipschitz domain if d > 2, or an interval
ifd = 1. Then there exists a linear bounded operator Ext which maps A;’,Z (RQ) into A;,’fq (RY)
foralls € R, t € [0,00), p € (0,00] (p < o0 in the F-case) and q € (0, 0o], such that,
forall f € D'(Q), Extf|g = f in D'(Q).

Proof We concentrate now on Besov-type spaces with d > 2 and give some details on the
Triebel-Lizorkin scale at the end of the proof.

We apply the extension operator constructed by V. Rychkov in [23] and follow the main
ideas of his proof. By a standard procedure (see [23, Subsection 1.2]), we only need to
consider the case when 2 is a special Lipschitz domain.

Let @ be a special Lipschitz domain. The spaces B;’,Z (€2) are defined by restriction
therefore it follows from Lemma 3.4 and Lemma 3.5 that any distribution f € By, 7 (£2) can
be represented in the form (3.4) with the functions ¢ and i satisfying (3.3).

For any distribution f € S'(£2), we define the mapping

ext f:= Z Vi * (@) * fa. (3.5)
Jj€No
Here we use the notation g, to denote the extension of a function g : 2 — R from 2 to R4

by setting

gx), ifx e Q,

sa(x) = :0, ifx e R\ Q.

Step 1. Let {g;}jen, be a sequence of measurable functions. Moreover, let ./\/li,j (x) denote
the Peetre maximal function of g;, namely,

. 18]
M (x):= sup ——220
N e (L4 27 [x — yDV
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forall x € RY and N € N ity 00). We prove that if (2 M{ }eri € £q(Lp), then

the series ZJEN() ¥ * g; converges in S’ (R?) and the Bp q(Rd) norm of its sum can be

estimated by [[{2/° M/ }jen, | g (LE)].
We start with the following elementary inequality

e Yrj * g (X)] < vaj(X)/ | 5 Y (DI +27[yDN dy . (3.6)

Bui, Paluszyrski and Taibleson proved in [1] that

/ e 5 ;NI 427 [yDN dy < Cy n27 1M forall M > 0, (3.7

cf.[1,Lemma2.1] or [23, proof of Theorem 4.1]. We take M > |s|—dt and putc = M —|s|.
Then

251 %y % g ()] S 27102 M (x), x eRY, £ eN.

If the sequence {g;} jen, is such that I{27s /\/lgj}jeNO | £ (LT)|| < 00, then there exists a
constant ¢ such that for any dyadic cube P we have ||./\/l |L (P)]| < c|P|*.In consequence,
any function g; is a tempered distribution and v/; * g; € S’ (Rd) Jj € Np.

It holds true that

/g
1 > _ . . .
iee; | B ™ OIS sp e 30 7 2505 | Ly(P)|
£=max{jp,0}
$2797 | M heeny 1 a2 (3.8)

using that |¢ — j| > j — £. Therefore Z;eNo Y * gj converges in B; q20 *(RY) and hence
in §'(RY), since B, ; 29T (Rd) < §'(RY). In this way, we further have

o o0
25 e [ D owjwg | 0] D272 MY (), x eRY, LeN,.
j=0 j=0

Applying this, we see that

kg | ByL(RY
| ~ ~ ) a/p) V4
= sup TR Z 2tsq / ’W* ij*gj (x)‘ dx
© PeQ ¢=max{jp.,0} P j=0
| 00 . p 1/q
Spprl L [Eeereagine
peQ |PI" |, max{jp,0}

Now we can apply Lemma 3.1 since o > dt. We get
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> , 1/q
d i g
H > ¥jxg; | ByL(R )H < SUppeg o [Zf'o:max{/p,m |27 My | Lp(P)Hq}
~

= [[{275 M }jeno | £g(LD)].- (3.9)

Step 2. Let f € By, 3(). Then, for any & € (0, 00), there exists an & € B} 5 (RY) such
that h|q = f in D/(2) and

|71 B35 @D < | £1By5@] +e. (3.10)

We have ¢; x f(y) = ¢ xh(y)if y € Q since suppg; C —K and y + K C €2 for any point
y € Q. In consequence

loj * fFI u g * h(y)]

T ——— S — v, X 5, 3.11
SR 2=y S a7 *F G

where ¥:=(x’, 20 (x') — x,,) € Q is the symmetric point to x = (x’, x,) ¢ Q with respect to
082,
Let gj:=(¢; * f)q forall j € Ny. It was proved in [23, p.248] that

B g * ()
lg; I ~yeq (L427x —ypN’
_ ? 3.12
b 2l 3D | < g Wi ION g (3-12)
veo (1+27|% — yp¥N

Now, we conclude from (3.9), (3.11) and (3.12) that

e Q,

A

Jexcr 1 B ®D| = [ 3055 6+ Pra 1 BE D] < |27 M ey 1 €02
j=0

! S h 1/q
. . q
IR > 2 sup% I Lp(P)H
peg |P] j=maxtjp,0) veb L+ 27]- =y
! S h 1/q
. . q
Sonpry 2] s B 1)
reolf] Jj=max{jp,0} yeRd aQ+27]-=y)

Thus the last inequalities, the characterisation of B;’,Z (R?) via the Peetre maximal functions
stated in Theorem 3.2 (i) and the choice of g imply that

Hextf | BT (RY) H < Hh | B;;;;(Rd)H < Hf | BYT(Q) H +e (3.13)

Letting & — 0, we then know that ext is a bounded linear operator from B 5 () into
By g (RY).
Finally, since the supports of ¥y and ¥ lie in —K, it follows that

extflo=Y Wj*¢;*f=f inD(Q).

j=0

Therefore, ext is the desired extension operator from B, () into Bj; 5 (R?), which con-
cludes the proof for the Besov-type spaces.
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Step 3. The proof for the Triebel-Lizorkin-type spaces follows similarly. We can define the
extension operator by the formula (3.5) and use once more the Peetre maximal function M ‘i,j
as the main tool for estimations. Therefore, we point out the differences without giving the
details. The estimation of the norm || Yixgj | F ;,;2‘” (RY) || is the first difference, but it can
be done similarly as in (3.8), now with the L;(Zq) norm instead of £ (L;) norm on the right
hand side of the inequality. Afterwards, the counterpart of (3.9) can be obtained using again
Lemma 3.1, but now the estimate related to the spaces L;(Eq). Finally, the characterisation
of F;,j; (RY) via the Peetre maximal functions stated in Theorem 3.2 (ii) leads us to obtain a

similar estimate as (3.13). ]

Remark 3.7 As mentioned above essentially the same proof for Triebel-Lizorkin-type spaces
can be found in [52] with additional restrictions p, g > 1. Note that, in view of the coincidence
(2.16), also the Triebel-Lizorkin-Morrey spaces &, ), , are covered by our theorem. This
complements the corresponding result obtained in [48, Proposition 4.13] for the class of
Besov-Morrey spaces /\/,j’ p.q- very recently similar arguments were used in [51, 52] for the
construction of the extension operator, but restricted to the case p, g > 1. For the sake of

completeness, we briefly sketched our proof here.

Corollary 3.8 Let Q@ C R? be an interval if d = 1 or a Lipschitz domain ifd > 2. Then there
exists a linear bounded operator ext which maps &, ,, () into &, , .( RY) for all s € R,
q € (0,00]and0 < p < u < oo, such that, for all f € D'(Q), extf|g = f in D'(Q).

Proof This follows immediately from Theorem 3.6 and (2.16). ]

Using Theorem 3.6 and the wavelet decomposition of the spaces A}, (R%), cf. Proposi-
tion 2.17, we can now prove a result on the monotonicity of the spaces A} (2) regarding
the parameter 7, which in fact does not hold when considering the spaces on R¢.

Proposition3.9 Ler 0 < p < oco(p < oo inthe F-case),s e R,0 < g <00,0 <1 < 19.
Let Q@ C R? be a bounded interval if d = 1 or a bounded Lipschitz domain if d > 2. Then

id, AA W q () = AA TZ(SZ)

Proof Let éo be a dyadic cube that contains Q in its interior and let é be a (fixed) dyadic cube
that contains the supports of all the functions ¥; j x and ¢ x with non-empty intersection with
Qo Let f € As o ¢ (§2). The compactly supported smooth functions are pointwise multipliers
in A;,,Tq (Rd), cf. [31] or [47, Theorem 6.1] for T < ; and Proposition 2.3 for t > %,
therefore

If 1AL @I~ inflllg | AYL R : g € ALY (RY) and suppg € Qo). (3.14)

There exists a dyadlc cube Q1 such that (g, ¥; jm) = (g, %o, m) = 0 for any g€ AS W (]Rd)
with suppg C Qo and ¢ ¢, Vi, jm such that suppgo ¢ € 01, supp¥i. jm € 0. Moreover
there exists a positive constant C such that

1

<C for 0<1m <1
[P [P|m

if P C é 1. Therefore
I4(g) lay 21" < cllr(g) | ay g II*. (3.15)
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By Theorem 3.6 there exists a linear and bounded extension operator ext from A} (2)
into A;’fql (Rdl; So, using also the wavelet decomposition of these spaces, if ¢ € C§° R7) is

supported in Qg and equals 1 on €2, then by (3.15)

If 1 A2 < C lIgext()) | a5 2 [* < C [a(pext() | al|*

»q
< Cllpext(f) | AST®R| < C|If | AT (@ (3.16)

The proof is complete. O

4 Limiting embeddings

We shall always assume in the sequel that Q is a bounded Lipschitz domain in R¢. As
already mentioned, we shall deal — differently from the standard approach — with continuous
embeddings of type

idy Ajﬂll’fqll (§2) = A;zzyyfqzz (€2)

only after we studied their compactness in [8].

But it will turn out that only the limiting cases are of particular interest. So we collect
first what is more or less obvious. Note that we use the above notation always with the
understanding that either both, source and target space, are of Besov-type (A = B), or both
are of Triebel-Lizorkin-type (A = F).

For convenience we use the following abbreviation:

1 1 1 1
y(t1, T2, P1, P2) ::max{(rz——> —(rl——> ,— — T — — + 1o,
P2/ . r1/) . p1 )23

1 . 1 1
— — 11 —min{— — 12, —(1 — p171) ¢
P2 j22)

P1
L _g-Lyn if on>—
1711 p2 ’ - plz’ |
= — — i > — —
o Tl,l 1 if ‘cl_pl], 1:2<plz,
P :
- -7 - — £ < — -,
max{0, FTE + max{ry, ” 71}}, if o 2 <4
“4.1)

Here and in the sequel we put p;7; = 1 in case of p; = oo and 7; = 0. Similarly we shall
understand % =1if p; = p; = 0.

Theorem4.1 ([8]) Lets; e R, 0 < ¢g; < 00,0 < p; < o0 (with p; < oo incaseof A= F),
;,>0,i=1,2.
(i) The embedding

idy A?lﬂl (§2) — A?z’,r6122 (€2)

is compact if, and only if,
s1— 82
d

(ii) There is no continuous embedding

id: AT (2) = AT()

> y(t1, 12, p1, P2)-
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if
S1— 82

d

< y(11, 2, p1, P2)- 4.2)

This result was proved in [8] and shows us that we are indeed left to deal with the limiting
case

51— 52
=y(t1, 72, p1, p2)-
d
First we prove the following lemma thatextends [11, Theorem 3.1]tothe caseu = p = oo.
We recall that N, o, ,(RY) = B, , (R?).

Lemmad.2 Lets; € R,0<qi <00,0< p; <uj <ocorpi =u; =00,i =1,2. Then

Ny () = N2 0.4,() if, and only if,

ur,p1.4q1
s]— 8 1 S1— 8 1
! 2, — or ! CR and q1 < q2, 4.3)
d Ui d uj
and
N&'] ooq|(Q) — ./\/Lg . qz(Q) if, and only if, s; > sy or sy =s2 and q1 < q>.

(4.4)

Proof The necessity of the conditions in (4.3) follows easily by the following chain of embed-
dings

(Q) — NI (2) — Ngg.oo,qz (@) =Bg QZ(Q)

”1 q1 ui,p1,91

and the properties of embeddings of classical Besov spaces. Whereas the sufficiency can be
proved in the same way as in the proof of [11, Theorem 3.1].
To prove the second embedding it is sufficient to note that

N oo.q1 () = BL 4, () = By 4, () = N2, 0, ().

Oo 41 uz,p2,92

uz,q2
On the other hand it follows from (4.3) that

s1+ d 5 5

Buy g () = N3 oo 4, () = N2 (€2).

u2,p2,92

So if the last embedding holds, then it follows from [11, Corollary 3.7] that s > s, or
s1 =82 and g1 < q3. ]

Proposition4.3 Lers; e R, 0 < g < 00,0 < p; < 0o (with p; < o0 in case of A = F),
7, >0,i=1,2. Assume
1 . . 1
T >— with gg =00 if 9 =—.
P2 P2

Then the embedding

id; A;‘l qul () — Ai}z’fqzz (2)

is continuous if, and only if,

s — 82

d

> y(t1, @2, p1, P2)-
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Proof Note that by Theorem 4.1 we are left to deal with the limiting case s; —
s2 = dy(t1, 12, p1, p2) only. In view of Proposition 2.3 we always have Ai,zz’fqzz () =
so+d(—-L)
o:oo h (2) now. Assume first 71 > ﬁ with g1 = oo if 11 = ﬁ, then by the same

sp+d(n—-L)
resultalso Ap; ) (2) = Boo,oo ' () such that id, is continuous if, and only if,

. S|+d(f1—ﬁ) 52+d(f2—$)
id : Boo,00 () = B (2).

But this is always true if =22 = y (11, 12, p1, p2) = % -7 — piz + 1o, recall Remark 2.15.
Assume next 0 < 11 < il We put u]—l = pi — 711. We first show the sufficiency of
s1 —s2 =dy(t1, T2, p1, p2) for the continuity of id,;. We use (2.15), (2.5), Proposition 2.3

and Lemma 4.2 to obtain

‘ sp+d(—-5)
A;‘l’fq‘l(Q) — B;ll’folo(ﬂ) = Nj}’pl,oo(Q) — Boo.o 2@ = A?Z'ZZ(Q).
On the other hand, for the necessity,
5 ’ ) s2+d(n—-1)
M‘::Pl,min{Pl»QI}(Q) = A;llfqll(g) = A;zzfqzz (Q) = Brooo " (Q)

and (4.3) implies s1 — 52 = dy(t1, 12, p1, p2) if id; is continuous.
It remains to consider the case 7] = %, q1 < oo. Now we benefit from the following
chains of embeddings

si+d(n—-1) sp+d(r—-L)

AT (Q) > Baooo D (Q) > Boooo 2 (Q) = AL (Q) 4.5)
for the sufficiency of the condition s; — s» = dy (71, 12, p1, p2), and
sp+d(m—-1)
B;’min(phql)(ﬂ) — ASP‘I’EI(Q) — A;}z’fé (Q) = Brooo 7 (Q), (4.6)
for its necessity, cf. (2.5) and [47, Proposition 2.4]. ]

Remark 4.4 Note that the above result is the direct counterpart of our result for spaces on
R9 obtained in Theorem 2.10 (i), since y (11, 72, p1, p2) = % e % + 17 in the above
setting.

Remark 4.5 Recall the definition of the spaces bmo(R?) in Remark 2.8 and define bmo(£2)
by restriction, that is, in analogy to Definition 2.12. Then

0,1/2

bmo(Q) = F,,/" (@) = By, 2 (), 0<p <o, 4.7)

extending (2.18) and (2.17) to domains 2. Taking bmo(€2) as the source space, that is,
T = ﬁ, s1 = 0, then Proposition 4.3 implies that fors € R, 0 < p,q < 0o, and t > %
withg = oo if T = % then

id; : bmo(Q) — Aj;fq(Q)

is continuous if, and only if, s < —d(t — %) < 0. If bmo(£2) was the target space, then
Proposition 4.3 cannot be applied since g» = 2 < o0.
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In view of Theorem 4.1 and Proposition 4.3 we are left to study the situation

— 1 1
L y(t1, 0, p1,p2) and 1) < — with gy <oo if Hm=—  (4.8)
d P2 P2

in the sequel. Next we give some counterpart of Proposition 4.3 dealing with the case when
in the source space the parameter 7| is large.

Proposition4.6 Lets; e R, 0 < qg; <00,0 < p; <00, 17 >0,i = 1,2. Assume that (4.8)
is satisfied and

1 1
T > — with g =00 if 11 = —.
P1 P1
Then the embedding

id; A;'I’q‘l(Q) — A;}z’fqzz (2)

is continuous if, and only if,

g2 =0
Proof First note that y(ty, 72, p1, p2) = % — 11 by (4.1) and thus Aép'lfq'l(Q) =
+d(11—50)
B; 0 t (Q) = B3, (R) in view of Proposition 2.3.

We first deal with the case A = B and start with the sufficiency of go = oo. Then
Proposition 4.3 covers the case 1 = é and we may assume 1 < é, recall (4.8). But in
view of (2.6) and (2.15) we get

1+ (t1—
B;II le (§2) = 00 o0 pl () — N,j; D2, oo(Q) ijzz 2@(9)
+d(t
Now assume A = F and again 15 < i If f e F];} 211(52) = Bolo oo ) (), recall
s1+d(t—

Proposition 2.3, then there exists some g € By 0o p ! (Rd) such that f = g|q We can
choose g such that it can be represented as in (2.26) with the summation overk € 74 restricted
to the indices k such that |k| < K for some fixed K since 2 is a bounded domain. Moreover
we can choose g in such a way that

(51 4d (1 — L yd sid(ti—5-)
I | oo (@] + sup 2/ CTH 5T sup i ikl <CIf | Boooo ()1,

jeN i=l1,..,2d-1; keZd
for some constant C > 0 independent of f. We have to show that f € F ;i:?o(Q) and || f |

( — L
FR @l <clf| BoQ 0 ) (2)]]. It is sufficient to note that forany i = 1, ...,29 —1,

sup 2’27 2)|)Li,j,k|2] “2 x k() | MMQ,pz(Rd)H

J.k

i(s _1lyid

< Csup2 O syl (4.9)
jeN i=1,...,.24~1; kezd

The rest follows from the wavelet characterisation of &3 ,,. ow@®) = Fp2 2 (RY), L =

plz 77, cf. [16]. But (4.9) follows easily from the identities so = s1 + d(t] — pu) and

1274 z Xjk () | Muy py RO = 1.
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2502 H.F. Gongalves et al.

Now we prove the necessity and assume thatid, : A}, () < A}, 2, (Q) is continuous.
We start with the case A = B. If p; = 0o, then T = 0 by assumption (4.8) and B3% 222 () =
B3 14> (§2). So both the source and the target space are classical Besov spaces and it is well-
known that, in that case, go = o0, recall Remark 2.15. So it remains to consider the case
p2 < oo. To simplify the notation we assume that the support of the wavelets ¥; ; ,, such
that Q; ,» C Qo,o are contained in £2. If it is not true one can easily rescale the argument.

We take a sequence A = (A j,m)i, jm,1 =1, ..., 2d _1q, jeNy,me 74, defined by the
formula

276249 if =1 and Q). C Qoo

P r—
s 0 otherwise.

Then, using the sequence space version of Proposition 2.3,

s1+d(T1—

I’
BT~ W | bl =

since s» = 51 +d(t] — ﬁ). Here we used the notation b;y = b;:g. On the other hand, for
any dyadic cube P C Qg and any j > jp, we have

(st d_d _i, L
IS gl =27
QjmCP
Soif ¢» < oo, then
121 by |l = o0

Therefore, if go < oo, the function

£= hijmVijm

i,j,m

belongs to B;]f,rq]] (€2) but not to B;)22:7(-'122 (€2), which contradicts our assumption and thus finishes
the proof of the necessity for the B-case.

The case A = F follows by (2.5) and by what we just proved for the Besov-type spaces.
Note that, for the F-spaces, we always have p < oo. Therefore, by the following chain of
embeddings

lellzf'flli"{[’l;ql](g) FSI Il (Q) g Fsz Tz (Q) - stfz Em {p2.92} (Q)

we obtain the necessity of the condition max{p», go} = oo, which here reads as g» = co. O

Remark 4.7 Note that the above result differs from its R¢-counterpart in Theorem 2.10 (ii).
In that case, there is never a continuous embedding in the setting of Proposition 4.6, that is,
when conditions (4.8) and t; > % with g1 = co when 71 = % are satisfied.

Remark 4.8 Again we return to the special case when the source or target space of id;
coincides with bmo(€2). Parallel to Remark 4.5 we cannot apply Proposition 4.6 in case

of A}, () = bmo(R). Otherwise, if A}, 7, () = bmo(£2), then Proposition 4.6 implies
that there is never a continuous embedding of type

idr : AST(Q) < bmo(€)
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in the limiting case (4.8) which reads here as 0 < p < oo (with p < oo incase of A = F),
0<g<oo,t>0ands =d (% — 7). Moreover, there is no such continuous embedding

1

o and g2 < oo in the limiting case (4.8).

whenever 7, =

For the rest of this section we shall now assume that

1 1
0<7<— with gi<oo if =—, i=1,2, and 71+ 17 >0, (4.10)
i Pi
and thus
s] — 82 1 1 D1
=y(t1, 7, p1, p2) =max 10, — — 7] — — +max {1, —11 (. (4.11)
d P1 P2 )

In view of the embeddings and coincidences (2.14), (2.15) and (2.16), together with our

previous findings for the spaces A;, , (€2) in [11, 12] (as well as some R¢-counterparts of

Aj;i{ (R?) in Theorems 2.10 and 2.11), we expect some g-dependence now. For the moment,

we restrict ourselves to the case of B}, spaces.

Theorem4.9 Let0 < p1,pr < 00,5 € R 0< ¢ <00,0=<1 < i, i =1, 2. Assume
that the conditions (4.10) hold and that

S1 — $2 1 1 Pl
=y(t1, 72, p1, p2) =max 0, — — 11 — — +max {72, — 7Ty (.
d P P2 P2
(i) The embedding
id; : BT (Q) <> B2 (Q) 4.12)

is continuous if one of the following conditions holds:

s — $2 1 1
——=——171—-——+4+1 >0, and pi71 < pr12, 4.13)
d P P2
— 1 1
or L :——tl———i-ﬂrl >0 and q fﬂqz, (4.14)
d 141 P2 P2 P2
or sy =usy and q Sminil,ﬂ}qz. (4.15)
p2
(i) If the embedding (4.12) is continuous and one of the following conditions holds
v(t1, 72, p1, p2) =0, (4.16)
1 1 p
or y@,n,p,p)=—-1——+—1 >0, 4.17)
P1 P2 P2

then q1 < q.
If the embedding (4.12) is continuous for any q1 and q> with fixed s1, s2, p1, p2, T1, T2,
then (4.13) holds.

Remark 4.10 As mentioned above, we are left to consider the embedding in the limiting case
(4.11) when (4.10) is satisfied. However, in case of 7, = % gi =oo,fori = 1ori =2,the
above Theorem 4.9 coincides with Propositions 4.3 or 4.6, respectively. So in fact situation
(4.10) is the only interesting one now.

We have always p; < p2in(4.14) so we have a small gap between sufficient and necessary
conditions on ¢; here. We meet a similar situation if s; = 52, p1 < p2, 71 = % and g1 < 00
in (4.15). In all other cases the result is sharp.
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Proof (of Theorem 4.9) Step 1. We start by proving part (i). For this, we use an argument
similar to the one used in the proof of Proposition 3.9, based on the extension operator from
Theorem 3.6 and the wavelet decomposition of the spaces B;’,Z (RY), cf. Proposition 2.17.

We use the same notation as there. Let us denote by b}, ( Qo) the sequence space defined by

b;’,@(éo)lz {l ={ti,jmbi,jm : ti,jm €C, j €Ng,i = 1,...,27 —1,

me ', Qjm c Bo. llt| b1 < o0,

where
PN
1 00 Loy 2 7|7
s4d_d
I 1bp5li=  sup AR TN S
PeQ; PCQo j=max{jp,0} i=1 [ m: Q;mCP
(4.18)
Then, we have to prove that for some C > 0
Iz | bﬁffqzz | <Clit|bp; Tq‘l I 4.19)

holds true for all € b;)lf,lel . Here and in the sequel we assume for convenience that p;, ¢; <
oo, otherwise the modifications are obvious. Please note, once more, that the assumption

P C @0 implies that

1 1. a indy e
P SCW if a<b and #{m: Q;, C P} ~2/min{1,27/74} if j > jp.
(4.20)
Moreover, if 1 < |P| < |§0|, then
L L 4.21)
[Pl |P|n '

for any 71 and 7,. To shorten the notation we put y = y (11, 12, p1, p2).

Substep 1.1. If y = ﬁ -1 — p—lz + 1 > 0, then %1’1 < 17. In this case the statement
follows from Theorem 3.6 and Theorem 2.10 (iii) if 71 # 5.

Indeed Theorem 3.6 and Remark 3.7 imply that there exists a common bounded exten-
sion operator ext for the spaces B)\'¢, () and B, 7, () and we thus have the following
commutative diagram

id

lel’-,fill Q) —— 3)322’,?2(9)

| T

BT (R id $2.72 md
By g1 (RY) ——— Bpy g, (RY).

Now the case (4.13) follows from Theorem 2.10 (iii), as well as the situation when

— 1 1
S =—-11——+1>0, 11#17, P e and g < &q; (4.22)
d 4 D2 p2 T 2
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Substep 1.2. Let y = ﬁ e é + 1 > 0 and 71 = 12. In that case p; < p> and
51— % =5 — % Let t = {t; jm}i,jm € by, and let || | by, || = 1. To simplify the

- —js1+g =)
notation we put A; j , =2 Pt imand T =11 = 1.

For any i, j and m we have
A jml <2777,
and in consequence
A joml P2 < A jm P12 4T (P2mP)) (4.23)

In a parallel way, for any dyadic cube P C éo we have

—ijpd
D Dl <27 (4.24)
QjmCP
so in consequence
o [}
P2 P2 o
—jdt(pr—p1) L
ST gl = DD gl | 27T
Qj,mCP Qj,mCP
inde Pl —idr(1—PL
<¢2 ./Pdf,,2q22 Jdr(1=5)q2 (4.25)
foranyi =1,...,29 — 1. Summing up over j we get
@
co 24-1 P2 ) ’ 00 ) )
S Y igml? | sc2dam e N pm TR  comirdra:,
j=jr i=1 \Q;mCP j=jre
(4.26)
This proves that = {t; j m}i,j.m € byy.dy and ||t | b2 || < C.

Substep 1.3. Let y =0, i.e., s1 = s2. Then pp < p; and % — 712 <711 —T0r P2 > p|
and 7] = ﬁ First we assume that py < pj and ﬁ — p—lz < 11 — 2. We conclude by Holder’s
inequality forany i =1, ...,2% — 1, that

1 €
P2 1 . P1
dii—imy(L_L
S gl | <2/TPETI N | @2
m: Q;mCP m: QjmCP
In consequence, for any ¢ € (0, o],
PNt
0 N n|? o
Z 2](6‘24—7—5)11 Z Z |ti.j m|p2 < 2]Pd(ﬂ—ﬁ)
Jj=max{jp,0} i=1 m: Qj.mCP
P
0 o 241 o
x 13 T md S Ny . 428)
Jj=max{jp,0} i=1 [ m: Q;CP
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If y(t1, 72, p1, p2) = 0, thens; = s anda = - — L 4+ 1, < 7 = b. So (4.19) follows

P P
from (4.28) and (4.20)-4.21) forany ¢1 < q2.
Nowlety =0, p» > p1and 71 = ﬁ. First we consider the case 7, = é. Let

—

Iz | byl =1, (4.29)

which implies that, for every cube P € O, P C éo and for every j > max{jp, 0}, we have

y qr
291 1
1

L i —ha m
[P 2 . Z Z |7, j.m] <l1.

i=1 [ m: QjuCP

In particular, we know that for every cube Q, ,, € Q, Qv.m C éo, with v > 0 and for every
i=1,..,29 — 1, we have

d_d

d_d g d

21)(Sl+2 [11+ Tl)lti’p,m| — 2U(S1+2)|ti,v,m| E 1
So the condition p; < p; implies

d d
2V(Sl+7)172|ti,v,m|p2 < ov(s1+3)p1 |ti,v,m|m~ (4.30)

We have to prove that ||¢ | bf};ﬁfz | < 1.Letusfixacube P € Q, P C éo. Thus, by the
inequality (4.30), it follows that for ¢; = %qz we have

?2

o 4o 2 .
Js2+5—5)92
)R Dl D DR Y
Jj=max{jp,0} i=1 | m:QjmCP
_ _a
0 .2l . 2
= ) 2mEY L D TR
Jj=max{jp,0} i=1 | m:QjmCP |
_ — a1
00 , 241 1
_id . d
s D WUl X 2SR
Jj=max{jp,0} i=l | m:Q;mCP i
" a1
[e'S) 29—-1 r1
. d_d
4 d_d
- Y RS e
Jj=max{jp,0} i=1 | m: Q;uCP
S1,7T1 T
< It [ bpy g 1 1P

In consequence for any cube P C éo we have

° 7

LN g
241 P2
1 s ; d_d T4 _
J(s2+ )42 ™
e oo TRy > il <I|ple " =1
Jj=max{jp,0} i=1 | m: QjmCP
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since 7191 — 12g> = 0. So by monotonicity if o, = i, then for any ¢ and ¢» such that

PL
q1 = 5,92,
Hr A BT
Ify =0and 11 = —, then 1o < —. If 1 < —, then it follows from Substep 1.2 that

52, T,
I = e

so the final statement follows from the last two inequalities.
Substep 1.4. Nowlety = — — 11 — — S+ Ty "1 >0and0 <1 < il Please note that

o >tz piTI <1andp1 < pa.

The case 71 2L p =11s covered by (4.22) since 1 = 11 Z;

this assumptlon 1mphes T,
<1.Lety > 0and1p < %TI-
We take 7( such that 79 = p 1 ST The above considerations show that

It 1 Dpsgnll < Cllt | byl

if g < %qg. Since 75 < 79 it follows from Substep 1.2 that

It 1 b3l < Clit 1 D5 g0 -

Step 2. Now we come to the necessity. We do some preparation first.

By the diffeomorphic properties of Besov-type spaces, using translations and dilations if
necessary we can assume that the domain €2 satisfies the following conditions: there exists
some number vy € Z such that

e 0,0 C K,
e if Qjm C Quo. j=0, then suppyijm CQ,
o if Qo C Qyy0, then suppgo, C 2.

Due to the isomorphism resulting from the wavelet decomposition between function and
sequence spaces, and similar to the explanation given in Substep 2.1 of the proof of [11,
Theorem 3.1], one can equivalently prove the necessary conditions for the embedding

—~

bt Tty
by, ‘III(QUO 0) = bpzz qzz(QVU,U)’

with vy < 0. For convenience, let us denote Q = Q0.

Substep 2.1. We show that g1 < g7 is necessary when s; = sp. We assume g; > ¢». Then
we can choose a sequence of positive numbers {y;}jen, € €4, (No)\£y, (No). Let us define
— [ . . L d _ . d
the sequence t = {t; jm}i,jm- i =1,...,2 1,j € No,m € Z%, by

276Dy if i=1 and Qj, C [0, 1)Y,

) 4.31)
0 otherwise.

L jm=

Then,
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o | 0 L g 2 )"
S1,T JG1+5—"-)q1
UEIEETIE ol B DEEL LD D I DRI
PeQ; PCQ Jj=max{jp,0} i=1 | m: QjmCP
1
P
1 [} 241 n ﬁ “
i d
— sup FEE Z 21+ 50 Z / Z It Xjm () dx
PeQ; PCQ j=max{;jp.0} i=1 | P \seze
1
i a\"
fread (e d a1
— sup Z 2J(s1+5)q19 j(“+2)q'|]/j|q'|Pﬂ[0, 1)d|p1

~ T]
peg; pcg P Jj=max{;jp.0}
= H{yjljeng | €q Il < o0,

where the last equality holds because 11 < % On the other hand, we obtain similarly that

92

d
o ! Y ORI B m |
llz | bpz,qz = sup e Z 2 2 Z Z Iti,qu|
PeQ; PCQ j=max{jp,0} i=1 | m: QjuCP

I{yj}jeno | £gy |l = o0,

which contradicts the embedding.
Substep 2.2. Now we show that the condition g < ¢ is also necessary when % =

% -1 — i + p—;n > 0. Let us assume g1 > g2. We adapt the counter-example used in
§ubstep 2.4 of the proof [10, Theorem 3.2]. For any 0 > v > vg, we put
kU:=|_2d|v|p1r1J,

where |x| = max{l € Z : [ < x}. Then 1 < k,, < 29"l and
ky < cpyy 290k, i v < <. (4.32)

For convenience, we assume ¢, ¢, = 1 (otherwise the proper modifications have to be done).
As there, we define a sequence W = {’i(,vj),m}i,j,m’ i=1,..29 - 1,j € Ng,m € 74, in
the following way: we assume that &, elements of the sequence equal 1 and the rest equals
0.If j #0,i # 1 or Qom 7@ Qy,0, then ’,'(,vj),m = 0. Because of (4.32), we can choose the
elements that equal 1 in such a way that the following property holds:

Q*dﬂ
if Qu1C0vo and Qu = U Qo,m;, then at most k;, elements tl(j)O),m,- equal 1.
i=1
Now we define a new sequence = {t; j.m}i,j.m € bpya, by
tijm =Yj l,-(yvo)ym, if j=v—v and Qom C QV,Os
i(s1d_ d
where {y;}jen, is a sequence of positive numbers with {ZJ(AI'F2 P1+T‘)y]~}jeN0 €
Lg (No)\Ly, No). If Q1 C Quy,0, then for fixed j > p, there are at most k;,—; non-zero
elements #; ; , such that Q; ,, C Q. ;. Thus

L P < ), PLAd(j—)TI P
Z |tt,j,m| = V] 2
m:Qj,mCQu,l
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and the last sum is k,,—;y /" if u = vo. Therefore,

— 1 S d_d 21 s
- 144 —L)g)
e b;’l]’ql1 = sup 7|P|Tl Z 2/ 27 Z Z |li,j,m|p1
PeQ; PCQ Jj=max{jp,0} i=1 [ m: QjmCP
ae
00 q1
. d d P
< sup Pl . Z 5/ G135 =50 V;“ 2d(j=jpP)T1q1
peg; pcg PI™ \ _intin. 0l
1
00 B B q1
_ Ji+g =g g
= sup Z 2 Yj

PeQ; PCO \ j=max{jp.0}

j(s1+4— 4 +d
= 127 ET I g g |l < o0 (4.33)

Similarly we obtain

1

P2

2
22 ; 2
E L. P2 )23 N\ @ Ad(j—1)TIp1 >
|tl,j,m| =< ()/J kp,—j) < )/j 2 P2
m: Qj,mCQu,l

and when u = vy

v
P2 9 @
P2 2 42 Ad(j—vo)T1p1 55
> gl = (k) z O ”,
m: Qj,mCQvO,O
for some constant C independent of y. Then,
9?2
Pt P2 pP1T
vod PLEL —jid P
Cyf2"m™® < o lngml™] 27
m: Qj,mCQUU.U
which yields
JE1+§— g Hdn)
{2 o Vitjeng | gl
1
92 a
© d_d piTl 21 n |
j(s2+5—-~ vod ——
<y o/t In gdtye Do tijml”
Jj=0 i=1 \m: QjmCQuyy0
2 a
0 241 n|?
vod 2171 J2+4—Lyg P
SENE D YRR L ol (D SO
Jj=max{0,jp} i=1 m: Qj,mCQvo.O

—_~

52,7 S1,T
<t 1 bl S Nt 1byg, Il < oo,

using (4.33) in the last step and [47, Lemma 3.3] in the second, since 7, < é here. This

i1 d_d
contradicts our assumption on the sequence {2”‘“*2 prtm 7j}jeN,, and completes the
proof in this case. O
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Before we turn our interest to Triebel-Lizorkin-type spaces, we shall discuss some special
case and compare it with the classical result as recalled in Remark 2.15. We concentrate on
the limiting case (4.11) under the assumptions (4.10) again. Let us assume now 1] = 15 =: 7,
ie,0<t< min{ﬁ, é} with g; < oo if T = pi i = 1, 2. In that case we find that (4.11)

reads as s; — s = d max{0, ﬁ — é}. Then Theorem 4.9 implies the following.

Corollary4.11 Let0 < p; <00, 5i e R, 0<qgi <00,0 <71 < min{ﬁ, é}, with g; < 00

ifr— L — ming L L —
ift = = mln{pl — L, i =1, 2. Assume that

51— 82 1 1
=y(t.7, p1, p2) =max {0, — — — .
d Pt p
Then the embedding
idy : B‘;}l”zl (RQ) — B;}QZD () (4.34)

is continuous if, and only if, either p1 < pa, or p1 > p2 with q1 < q».

Proof The sufficiency follows from (4.13) in case of p; < p3, and from (4.15) for p; > ps.
Note that the case (4.14) is not applicable in this situation. The necessity is implied by (4.16)
in case of p; > p», and the last statement in (ii) if p; < p». Again, (4.17) is not possible in
this context. O

Remark 4.12 Let us explicitly comment on the difference between the above result for T > 0
and the classical one for T = 0 as recalled in Remark 2.15. Only in case of embeddings of
spaces with the same smoothness s; = s, (and thus p; > p>) we have an influence of the
fine parameters ¢;, thatis, g1 < g». This is parallel to the classical case T = 0 and could thus
be expected. However, what is far more surprising, is the outcome for s1 > s, and p; < p»:
in contrast to the classical setting for T = 0 we do not have any g-dependence here as long
as T > 0 (and small enough, such that we are still in the new Morrey-type situation, unlike
in Propositions 4.3 and 4.6). Again this explains the special role of the hybrid parameter ©
which influences both smoothness and integrability.

Remark 4.13 Note that Proposition 3.9 can be obtained also as an immediate consequence
of Theorem 4.9 and the Propositions 4.6 and 4.3.

We collect now the counterpart of Theorem 4.9 for the Triebel-Lizorkin-type spaces.
When 1; < i, i = 1,2, the result follows immediately from [12, Theorem 5.2] and the

.. 5, T s . _ 1 1 .
coincidence of Fq and &, , , spaces if T = - — ., and it reads as follows.

Corollary4.14 Let 0 < p1,pp <00, 5 e R0 < g <00,0 <1 < % i =1,2. Assume
that
ST — 852
d

(i) The embedding

1 1
=y (11, T2, p1, p2) = mMax {0, — -1 - — +max{1'2, ﬂn” .
pi P2 P2

idy : F;ll”f/ll (RQ) — FI‘Z:Z (Q) (4.35)
is continuous if one of the following conditions holds:
1 1
— — — >T7 -1 (4.36)
P1 P2
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1 1
or — — — <71 —17 and g < min {1, ﬂ}qz. 4.37)
P1 p2 D2

(ii) Ifthereis acontinuous embedding id; in(4.35), then the parameters satisfy the condition
(4.36), or (4.37) holds with q1 < q>.

We return to the situation 71 = 7 > 0 studied in Corollary 4.11, but now in case of
F-spaces.

Corollary 4.15 Let0 < p; <00,5; € R,0<gq; <o0,i =1,2,and0 <71 < min{%, %}_
Assume that

1 — 82 1 1
—— =vy(@. 7, p1, p2) =max {0, — — — .
d Pt p
Then the embedding
fdr = Fpiig () = gy (@) (4.38)

is continuous if, and only if, either p1 < pa, or p1 > p2 with q1 < q».

Proof This is an immediate consequence of Corollary 4.14 when t > 0 and of the classical
situation when t = 0, cf. Remark 4.12. ]

Remark 4.16 In contrast to Remark 4.12 concerning Besov-type spaces, we thus obtain the
natural counterpart of the well-known classical situation (r = 0) to the situation T > 0,
recall Remark 2.15.

We study now some more possible situations regarding Triebel-Lizorkin-type spaces.

Corollary4.17 Let O < p1,pp < 00,5 € R0 < g <00, 0<71 < ﬁ, with q; < o0 if
1

T= i =1, 2. Assume that
51— 82 1 1 P1
=y(t1, 2, p1, p2) =max 0, — — 7 — — 4+ max {2, —Ti(-
d P1 12) 12)
(i) The embedding (4.35) is continuous if one of the following conditions holds:
1 1
T1=—, »=<— and q1 < q, (4.39)
P1 p2
1 1
or T1<— and )= —. (4.40)
P1 p2

(i) If the embedding (4.35) is continuous and t|; = ﬁ and v = p—12, then q1 < q».
Moreover, if 1) = ﬁ and 7 < p—lz, then the continuity of the embedding (4.35) implies
q1 < max{p2, q2}.

1

2

are left with the cases 7] = Ll and 7o < % in (4.39), and 71 < il and 1, = % in (4.40). In

both cases we can use the coincidence (2.17). To prove that the condition (4.40) is sufficient
we first take a sufficiently small number g3 such that 71 < q%. We consider the following
factorisation

Proof The case 1| = % and 1) = can be reduced to Theorem 4.9 due to (2.17). So we

1 1
F3T(Q) = BITL(Q) < Bah(Q) = Fli () (4.41)
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since
51— 82
d

Please note that the continuity of the second embedding follows from Theorem 4.9 since the
condition (4.13) is satisfied. By elementary embeddings the statement holds for any g2 > g3.
Regarding the case 11 = ﬁ and o < i, we have now y (11, 12, p1, p2) = 0,50 51 = s57.

Then

1 1 1
=y(t1, —, p1, p2) = — — 11 = y(11, —, p1,q3) > 0.
P2 P1 q3

1 1 Yz
Forg” (@) = By, q{‘“(mHquqz Q) = Fp.ip (Q)%sz;g(m, (4.42)

where we made use of Proposition 3.9 in the last embedding. Moreover,

1 1
y|{— — q1.92) =0,
q1 q2

so the statement follows once more from (2.17) and Theorem 4.9.
Now we come to the necessity part of our result. The necessity of the condition ¢; < g3

in the case of 7] = ﬁ and 7, = i follows from the second part of Theorem 4.9. So we are

left with the case 7] = ﬁ and 1) < é. Here we can use the following factorisation

1 1
Bt (@) = Fpig” (@) = FRE@ = Bl @- (443

Now Theorem 4.9 implies g1 < max{py, g2} since
1 1

Y| —wprup2)=v|— 12.4q,p2)=0.
P1 q1

Remark 4.18 We return to the special situation of (4.7), i.e., to bmo(£2) as a source or target

space of id;. In continuation of Remarks 4.5 and 4.8 we now concentrate on the situation

covered by Theorem 4.9 and Corollary 4.17, that is, we assume in this remark that T < 1%

m}

withg < coif 7 = % for the target space Ay, (€2) in (4.44) and the source space Ay (€2)
in (4.45). First we deal with

id; : bmo(2) — A‘};L(Q) (4.44)
such that the limiting situation reads as s = 0 in that case. Then Theorem 4.9 and Corol-
lary 4.17 imply that id, is continuous if
g =z max{p,2}, A =B,

1
s=0, 7<—, and
D q>2, A=F.

Regarding the necessity, when A = B, the condition ¢ > 2 is necessary for the continuity of
id; . In addition, when A = F, then ¢ > 2 is also necessary when 7 = l, while fort < L the
condition max{p, g} > 2 is necessary. Note that one can also use (4.7) and Proposition 3.9
for the sufficiency argument. In the second setting,

id; © A%7 (R) < bmo(R), (4.45)

the limiting case means s = d (; — 7). Then for the continuity of id; it is sufficient that

1 1 < mi 2 A=RB
either < —, or 7=— and g = min{p, 2}, ,
p q=2, A=F,
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where for T = % the condition ¢ < 2 is also necessary for the continuity of id;.

Remark 4.19 Note that one can formulate counterparts of our above embedding results for
spaces of type A, (2) in terms of the hybrid spaces L" A3, ,(2) as introduced in Remark 2.9
using the coincidence (2.19). We define the spaces L" A}, , (€2) by restriction, parallel to the
approach in Definition 2.12. In [8, Remark 3.4] we have explicated the compactness condition
for the embedding

idy : LAY

g (§) = LA (),

P2.92

which in the special case r| = rp = r reads as

0’ r207
ST — 85 >
b rmin{Z — 1,0}, r <0,

where 0 < p; < 00,0 < g; <o00,s5; € R,i =1,2,and —dmin{%, é} <r < ooisalways
assumed. For convenience we only discuss this special setting r; = o = r and A = B here,

but the other cases can be done in a parallel way.
So the limiting case for the continuity of the embedding is just

0 r=0 (4.46)
S] — 8 = .
b rmin{2 — 1,0}, r <0.
Corollary4.20 Let 0 < p; < 00,5 € R, 0 < g; <00,i = 1,2, and —d min % i} <
r < oo. Let
idyp - L’Bf,lw1 (Q) — L’B;}Lq2 (Q). 4.47)
(i) Ifr > O, then idy, is continuous if, and only if, s1 > s.
(ii) Letr =0.
(iiy) If go = oo, then idy, is continuous if, and only if, s1 > s3.
(iip) If g2 < oo and q1 = o0, then idy, is continuous if, and only if, s1 > s».
(i) If qi < oo, i = 1,2, then idy is continuous if sy > sy or 51 = s2 and q1 <
min{1, %}qz. Conversely, if idy is continuous, then either s1 > sp or s = s and

q1 = q>2.
(iii) Letr < O.

(iii,) Assume that py > py. Then idy, is continuous if, and only if, s| > s> or s| = sp and
q1 = q2.

(iliy) Assume p1 < pr. Thenidy is continuous if s —s3 > r(% —1),0rs;—sy = r(% -1
and q1 < %qz. Conversely, the continuity of idy implies s1 — sy > r(% — 1), or

51— 82 ZV(% — 1) and q1 < q.

Proof In view of Remark 4.19 we only need to consider the limiting case (4.46), the rest is
covered by Theorem 4.1 and the coincidence (2.19), extended to spaces on domains. Then (i)
and (ii, ) are covered by Proposition 4.3 together with r = d(7; — i), i =1, 2. Likewise (iip)
is a consequence of Proposition 4.6 since there is no continuous embedding in the limiting
case 51 = so. Part (ii.) follows from Theorems 4.9 and 4.1, as well as part (iii). ]

We finish our paper by collecting some immediate extensions of Theorems 2.10 and 2.11
regarding the embeddings on R?. The first result improves part (b) of Theorem 2.10 (iii), and
it follows from Theorem 3.6 and Theorem 4.9.
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Corollary4.21 Let O < p1,pp <00, 5 € R, 0 < g <00, 0 =<1 < i, with q; < o0 if
ri:é,izl,z.lf

R Yl T] d 52,72 d
id; Pl ql(R ) — sz,qz(R ) (4.48)
is continuous and 3> = L — Ly Py 50, then
P 2,
q1 = q2.

Proof By Theorem 3.6, we have

R4

id;
BSLT BT d BT d 52,7
B (@) = B RY) —— BR2 RN = BR2(Q),

ie.,id® =reo 1dR oext. Hence, the continuity of 1d]R implies the continuity of id?, which,
in turn, by Theorem 4.9 implies g; < ¢». O

. . Rd .

Next we show that, in case of t; = 1, the embedding 1d]$ in (4.48) holds under weaker
assumptions on the parameters than the ones stated in Theorem 2.10 (iii)-(a). Namely, in this
case, we do not need any condition on the parameters ¢, ¢2.

Corollary 4.22 Let O < p1,pp < 00,5 € R 0 < g <00,0=<1 < ﬁ, with q; < 0 if

1 .
‘[izf_,l=1,2.1f
Di
51 — 82 1 1
- —T1——4+1>0 and 11 = 17,
d p1 P2

then the embedding idITRd in (4.48) is continuous.

Proof Thisresultcan be proved in the same way as its counterpart for embeddings on domains,
cf. Substep 1.2 of the proof of Theorem 4.9. Therefore, we omit the argument here. O

Lastly, we turn to the Triebel-Lizorkin-type spaces and state a result which gives us sufficient
and necessary conditions for the continuity of the embedding on R¢, when 1, is large and
is small. Specifically, we assume that

1 1 1 1
> — with gg =00 if p=— and 1 <— with ¢ <oco if 71 = —,
D2 P2 P1 D1
4.49)

as this case that was not considered in Theorem 2.11 (i).

Corollary4.23 Let 0 < p1,p2 < 00,5 € R0 < g; <00, 1; >0,i = 1,2. Assume that
condition (4.49) holds. Then the embedding

- RY d d
idy : Fppg (RY) — F2 2 (RY) (4.50)
- 1 1
holds if, and only if, L > — -7 — —+ 1.
P1 P2

Proof The sufficiency part follows from the fact that

Sl+d(‘[1 52+d(7«'2

Wty o BT @) = p e,

d
Fprg) R = B P>

p1.q1
due to (2.6) and Proposition 2.3, and the corresponding result for the classical Besov spaces.

For the necessity, we use a similar argument as in the proof of Corollary 4.21, via the
extension operator from Theorem 3.6. In this case, Theorem 4.1 (i) and Proposition 4.3 will
give us the complete result. O
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