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Abstract
We consider integral functionals F ( j)

ε , doubly indexed by ε > 0 and j ∈ N∪{∞}, satisfying
a standard linear growth condition. We investigate the question of �-closure, i.e., when the
�-convergence of all families {F ( j)

ε }ε with finite j implies �-convergence of {F (∞)
ε }ε . This

has already been explored for p-growth with p > 1. We show by an explicit counterexample
that due to the differences between the spaces W 1,1 and W 1,p with p > 1, an analog cannot
hold. Moreover, we find a sufficient condition for a positive answer.
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1 Introduction

A possibility to formulate a mathematical problem is by means of calculus of variations. The
solution has to minimize a given functional. Often, functionals are of the form

F(u) :=
{∫

�
f (x,∇u(x)) dx, u ∈ W 1,p(�;Rm),

∞, u ∈ L p(�;Rm) \ W 1,p(�;Rm).
(1)

with � being an open bounded subset of Rn and 1 ≤ p ≤ ∞. The choice of the ambient
space L p(�) instead of the domain W 1,p(�) is motivated by the direct method and good
properties of the weak topology of W 1,p(�).

Depending on the model, the density f of a functional may be quite complicated. It
is desirable, if possible, to find a good efficient model, i.e., a functional that is simpler
but, however, whose minimizers are good approximations of the solutions of the original
functional.

In order for an efficient model to have the desired properties, the right notion of conver-
gence is �-convergence. We state some fundamental definitions and results regarding this
concept in Appendix. There is an extensive literature, let us mention only the works [9, 12].

A typical example of such efficient model is homogenization. Having a heterogeneous
material with regular structure (e.g., periodic) on a small scale, it is to be expected that this
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material behaves on the macroscopic level as some theoretical homogeneous material. A
homogenization procedure for a periodic stored energy function of the material dates back
to the works [6, 17].

Suppose two models are in some sense close to each other. If one of them can be homog-
enized, then one would expect the same for the other one. This was addressed and covered,
e.g., in [7, Section 3] and [8, Section 4] as ‘homogenization closure’. An example can be
found in [18] where the model for finite elasticity is approximated by a linearized one.

In [16], instead of specializing to homogenization, an arbitrary �-converging family was
taken. The setting can be summarized with the following diagram:

F ( j)
ε F (∞)

ε

F ( j)
0

....................................................................................................... ............
?

..............................................................................................................
...
.........
...

�

For each j ∈ N the family {F ( j)
ε }ε>0 is supposed to �-converge as ε → 0. These families

converge in some sense to a family {F (∞)
ε }ε>0 as j → ∞. The authors investigate when

this family �-converges as well and what is the relation between the �-limits. Let us below
briefly present their assumptions and results.

Assumption Throughout the whole work, we assume:

• � ⊂ R
n is a bounded Lipschitz open set.

• Each function f : � × R
m×n → R is a Carathéodory function.

Regarding the densities of functionals, the following property is assumed.

Definition 1.1 Function f : � × R
m×n → R fulfills a standard p-growth condition if there

are α, β > 0 such that

α|X |p − β ≤ f (x, X) ≤ β(|X |p + 1)

for almost every x ∈ � and all X ∈ R
m×n . (For p = 1, we also say a standard linear growth

condition.) For a family of functions, we say that they fulfill the standard p-growth condition
uniformly if the double inequality above holds for all members of the family with the same
α and β.

For the proximity of families, it turns out that the following generalization of equivalence
introduced in [7] is the right one.

Definition 1.2 Let us have functions f ( j)
ε : � ×R

m×n → R for all j ∈ N∪ {∞} and ε > 0.
We say that the a doubly indexed family { f ( j)

ε } j∈Nε>0 is equivalent to a family { f (∞)
ε }ε>0 if

lim
j→∞ lim sup

ε→0

∫
�

sup
|X |≤R

| f ( j)
ε (x, X) − f (∞)

ε (x, X)| dx = 0

for every R ≥ 0.

We are not in the position to state [16, Theorem 2.2]:
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Theorem 1.3 Let 1 < p < ∞, and let us have functions f ( j)
ε : �×R

m×n → R, j ∈ N∪{∞},
ε > 0, that uniformly fulfill a standard p-growth condition. We define the corresponding
functionals F ( j)

ε on L p(�;Rm) as in (1) and assume that

(a) For each j ∈ N the �-limit �(L p)- limε→0 F ( j)
ε =: F ( j)

0 exists and that

(b) The families { f ( j)
ε } j∈Nε>0 and { f (∞)

ε }ε>0 are equivalent on �.

Then also �(L p)- limε→0 F (∞)
ε =: F (∞)

0 exists. It is the pointwise and the �-limit of F ( j)
0

as j → ∞:

F (∞)
0 = lim

j→∞F ( j)
0 = �(L p)- lim

j→∞F ( j)
0 .

Schematically,

F ( j)
ε F (∞)

ε

F ( j)
0 F (∞)

0

............................................................................................................................................................................................................................................................................................................................................
≈

.............

.............

.............

.............

.............

.............

.............

.........
...
.........
...

�

.........................................................................................................................................................................................
...
.........
...

�

............. ............. ............. ............. ............. ............. ......................... ............

�
............. ............. ............. ............. ............. ............. ......................... ............

pointwise

In [16] this result is called ‘�-closure on a single domain’ since also the complementing
result for variable domains, i.e., for functionals that depend also on the domain, is proved.
Moreover, more general growth conditions, the Gårding growth conditions, are explored, and
the question about simultaneous limits is addressed. Great emphasis is then laid on applying
this results to homogenization, also in the stochastic setting. We mention below only one
special case, which will be important for a current work, namely the perturbation result [16,
Theorem3.1].

Let us have a situation as in Theorem 1.3 but suppose, however, that the family { f ( j)
ε } j∈Nε>0

is actually constant in j . In other words, let us have families { fε}ε>0 and {gε}ε>0 that are
equivalent. This condition now reads

lim sup
ε→0

∫
�

sup
|X |≤R

| fε(x, X) − gε(x, X)| dx = 0

for every R > 0. If the family {Fε}ε>0 with densities fε �(L p)-converges to a functional F0

as ε → 0, then so does the analogously defined family {Gε}ε>0:

�(L p)- lim
ε→0

Fε = F0 = �(L p)- lim
ε→0

Gε.

The results in [16] for p > 1 lead to a natural question if the same holds for p = 1. The
answer is negative, as we will show with an explicit counterexample, the problem being that
in W 1,1 boundedness of gradients does not imply their equiintegrability. As already known
from the literature, in this case the behavior at ∞, described by the recession function, also
must be taken into account. Therefore, for analogous commutability results an additional
assumption is needed.

Our aim is not to find a counterpart to all results in [16]. We will only look at the basic
deterministic setting from Theorem 1.3 since the proof already contains the most important
ideas.
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2 Counterexample

For p = 1, integral functionals with convex densities defined as in (1) are not lower semi-
continuous as is the case for p > 1. More precisely, for a convex function f : Rm×n → R

with a standard linear growth, the lower semicontinuous envelope of the functional

F(u) =
{∫

�
f (∇u(x)) dx, u ∈ W 1,1(�;Rm),

∞, u ∈ L1(�;Rm) \ W 1,1(�;Rm),

is

F(u) =
{∫

� f (∇u(x)) dx + ∫
� f ∞ (

d(Dsu)
d|Dsu| (x)

)
d|Dsu|(x), u ∈ BV (�;Rm),

∞, u ∈ L1(�;Rm) \ BV (�;Rm).

(2)
This was first proved in [15, Theorem 5]. It actually holds in this form for quasiconvex
f , see [1, Theorem 4.1] and [14, Theorem 2.16]. Here, BV (�) is the space of functions
with bounded variation (see, e.g., [2]), and Du is the distributional derivative of u having
decomposition with respect to the Lebesgue measure Du = ∇uLn + Dsu. Moreover, f ∞
is the recession function f :

f ∞(ξ) = lim
t→∞

f (tξ)

t
.

For the counterexample we employ [4, Example 6.4]. We consider the scalar case m = 1
with � = J := (−1, 1) and show that even the analog to the perturbation result described
above ([16, Theorem 3.1]) does not hold.

Let us choose the convex function

f : R → R, f (ξ) := max{|ξ |, 2|ξ | − 1}.
Clearly, f ∞(ξ) = limt→∞ f (tξ)

t = 2|ξ |.
For the first family of functions, we choose the constant family given by f , i.e., for all

ε > 0 let fε(x, _) := f for all x ∈ J . The corresponding constant family of functionals is
thus

Fε(u) := F(u) :=
{∫

�
f (u′(x)) dx, u ∈ W 1,1(J ),

∞, u ∈ L1(J ) \ W 1,1(J ).
(3)

It �(L1)-converges to the relaxed functionalF0 with domain BV (J ). By (2), for u ∈ BV (J )

we have

F0(u) =
∫ 1

−1
f (u′(x)) dx +

∫ 1

−1
f ∞ (

d(Dsu)
d|Dsu| (x)

)
d|Dsu|(x)

=
∫ 1

−1
f (u′(x)) dx + 2|Dsu|(J ).

For the second family let

aε(x) :=
{

1, |x | ≥ ε,
1
2ε , |x | < ε.

We define densities gε : J × R → R by

gε(x, ξ) := f
(

ξ
aε(x)

)
aε(x) =

{
f (ξ), |x | ≥ ε,

1
2ε f (2εξ), |x | < ε.
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Then the families { fε}ε>0 and {gε}ε>0 are equivalent since for any R > 0

lim sup
ε→0

∫ 1

−1
sup

|ξ |≤R
| fε(x, ξ) − gε(x, ξ)| dx = lim sup

ε→0

∫ ε

−ε

sup
|ξ |≤R

| f (ξ) − 1
2ε f (2εξ)| dx

≤ lim sup
ε→0

2ε sup
|ξ |≤R

(|ξ | − 1)

= 0.

Let us denote λε := aεL1 ∈ M(J ). For any u ∈ W 1,1(J ), we may write

Du = u′L1 = u′

aε

λε.

Hence, the corresponding functionals Gε have on W 1,1(J ) the following representation

Gε(u) =
∫ 1

−1
gε(x, u

′(x)) dx =
∫ 1

−1
f
(
dDu
dλε

(x)
)
dλε(x).

Since

λε

∗
⇀ λ := δ0 + L1 in M(J ),

it follows from [11, Theorem 2.2] that Gε �(L1)-converges to G0 where

G0(u) =
∫ 1

−1
f
(
d(Da

λu)

dλ (x)
)
dλ(x) +

∫ 1

−1
f ∞ (

d(Ds
λu)

d|Ds
λu| (x)

)
d|Ds

λu|(x)

if u ∈ BV(J) and ∞ otherwise with Da
λu and Ds

λu being the absolutely continuous resp. sin-
gular part of Du with respect to λ. We compare these two decompositions

Du = u′L1 + Dsu = d(Da
λu)

dλ (L1 + δ0) + Ds
λu

and arrive at
d(Da

λu)

dλ = u′ L1-a.e.,
d(Da

λu)

dλ (0) = Du({0}) and (Dsu)J\{0}= (Ds
λu)J\{0}.

Therefore

G0(u) =
∫ 1

−1
f (u′(x)) dx + f (Du({0})) + 2|Ds

λu|(J ).

Hence,

F0(u) =
∫ 1

−1
f (u′(x)) dx + 2|Dsu|(J ),

G0(u) =
∫ 1

−1
f (u′(x)) dx + f (Du({0})) + 2|Ds

λu|(J ).

If we choose u := 1(0,1), we have Du = δ0 and

u′ = 0 L1-a.e., Dsu = δ0, Da
λu = δ0, Ds

λu = 0.

Hence

F0(1(0,1)) = 2 �= 1 = G0(1(0,1)).
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This example shows also another important issue (which is the reason of the discussion in
[4]). In the case p > 1, the limiting functional even has a density, i.e., it is given by some
Borel function ϕ : � ×R

m×n → R with the same growth properties such that the values on
W 1,p(�;Rm) are given by

∫
�

ϕ(x,∇u(x)) dx (and ∞ elsewhere). For p = 1, it is still true
that there is such a density that determines the values on W 1,1(�;Rm) (see in [10, Theorem
12.5] or [13, Teorema]). However, it is in general wrong that the values on BV (�;Rm) are
given by ∫

�

ϕ(x,∇u(x)) dx +
∫

�

ϕ∞ (
x, d(Dsu)

d|Dsu| (x)
)
d|Dsu|(x).

Indeed, in the example above the density onW 1,1(J ) is f in both cases. However, the formula
above yields F0. The limiting functional G0 for the family {Gε}ε>0 has a different structure.

3 0-Closure

The counterexample in Sect. 2 indicates that the problem occurs when dealing with families
whose difference grows linearly for large X at least on some set of x . The equivalence
condition from Definition 1.2 does not exclude such behavior, and consequently, we have to
impose an additional condition.

Theorem 3.1 Let functions f ( j)
ε : � × R

m×n → R, j ∈ N ∪ {∞}, ε > 0, uniformly fulfill
the standard linear growth condition, and define

F ( j)
ε (u) :=

{∫
�

f ( j)
ε (x,∇u(x)) dx, u ∈ W 1,1(�;Rm),

∞, u ∈ L1(�;Rm) \ W 1,1(�;Rm).

Assume that

(a) For each j ∈ N the �-limit �(L1)- limε→0 F ( j)
ε =: F ( j)

0 exists,

(b) The families
{{ f ( j)

ε }ε>0
}
j∈N and { f (∞)

ε }ε>0 are equivalent on �,
(c) For

r ( j)
ε (R) := ess sup

x∈�

sup
|X |≥R

| f ( j)
ε (x, X) − f (∞)

ε (x, X)|
|X |

it holds

lim
R→∞ lim sup

j→∞
lim sup

ε→0
r ( j)
ε (R) = 0.

Then also �(L1)- limε→0 F (∞)
ε =: F (∞)

0 exists. It is the pointwise and the �-limit of F ( j)
0

as j → ∞:

F (∞)
0 = lim

j→∞F ( j)
0 = �(L1)- lim

j→∞F ( j)
0 .

Remark 3.2 (a) The equivalence condition is a sort of combination of the local uniform
convergence in X and the L1-convergence in x . We now add a uniform convergence of
the slopes for large X and the L∞-convergence in x .

(b) The assumption (c) is met if for some δ ∈ (0, 1) and γ > 0 it holds for all j ∈ N and
ε > 0

| f ( j)
ε (x, X) − f (∞)

ε (x, X)| ≤ γ |X |1−δ
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for a.e. x ∈ � and X ∈ R
m×n . An analogous condition was already introduced when

dealing with the relaxation for p = 1, see, e.g., [3, Section 3] and [5, Section 4].
(c) Although the recession function plays an important role in the relaxation, it does not

suffice to impose just their convergence in some sense. Bear in mind that in our coun-
terexample they even coincide, but still the statement does not hold.

For the proof ofTheorem (3.1),we use the same strategy as in [16] incorporating the additional
assumption on the behavior for large X .

Proof First we assume that

�(L1)- lim
ε→0

F (∞)
ε =: F (∞)

0

exists. This will be justified in Step 3. From the growth assumption, it follows immediately
that the domain of F (∞)

0 is BV (�;Rm) with

α|Du|(�) − β|�| ≤ G(u) ≤ β(|�| + |Du|(�))

for u ∈ BV (�;Rm).
Step 1: For u ∈ L1(�;Rm), we claim that

lim sup
j→∞

F ( j)
0 (u) ≤ F (∞)

0 (u).

By our assumption, this is obvious if u ∈ L1(�;Rm) \ BV (�;Rm).
Let us take arbitrary u ∈ BV (�;Rm). Fix any η > 0, and choose a sequence {uε}ε ⊂

L1(�;Rm) such that

uε → u in L1(�;Rm) and lim
ε→0

F (∞)
ε (uε) = F (∞)

0 (u).

Such sequence surely exists as �- limε→0 F (∞)
ε = F (∞)

0 . Wemay suppose that {F (∞)
ε (uε)}ε

is bounded and consequently {uε}ε ⊂ W 1,1(�;Rm) with supε ‖∇uε‖L1 =: B < ∞. We
choose M > 0 such that

lim sup
j→∞

lim sup
ε→0

r ( j)
ε (M) <

η

B
,

and define the sets Eε := {x ∈ � : |∇uε(x)| ≥ M}. After splitting

F (∞)
ε (uε) =

∫
�\Eε

f (∞)
ε (x,∇uε(x)) dx +

∫
Eε

f (∞)
ε (x,∇uε(x)) dx,

we bound both terms from below by using f ( j)
ε . Obviously

∫
�\Eε

f (∞)
ε (x,∇uε(x)) dx ≥

∫
�\Eε

f ( j)
ε (x,∇uε(x)) dx

−
∫

�

sup
|X |≤M

| f ( j)
ε (x, X) − f (∞)

ε (x, X)| dx,
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and furthermore∫
Eε

f (∞)
ε (x,∇uε(x)) dx

≥
∫
Eε

f ( j)
ε (x,∇uε(x)) dx −

∫
Eε

| f ( j)
ε (x,∇uε(x)) − f (∞)

ε (x,∇uε(x))| dx

≥
∫
Eε

f ( j)
ε (x,∇uε(x)) dx −

∫
Eε

r ( j)
ε (M)|∇uε(x)| dx

≥
∫
Eε

f ( j)
ε (x,∇uε(x)) dx − B r ( j)

ε (M).

Hence,

F (∞)
ε (uε) ≥ F ( j)

ε (uε) −
∫

�

sup
|X |≤M

| f ( j)
ε (x, X) − f (∞)

ε (x, X)| dx − B r ( j)
ε (M).

Taking lim inf as ε → 0 on both sides of the inequality above and employing the lim inf-
inequality for �(L1)- limε→0 F ( j)

ε = F ( j)
0 yields

F (∞)
0 (u) ≥ F ( j)

0 (u) − lim sup
ε→0

∫
�

sup
|X |≤M

| f ( j)
ε (x, X) − f (∞)

ε (x, X)| dx − lim sup
ε→0

B r ( j)
ε (M).

By sending also j → ∞, we arrive at

F (∞)
0 (u) ≥ lim sup

j→∞
F ( j)
0 (u) − lim sup

j→∞
lim sup

ε→0

∫
�

sup
|X |≤M

| f ( j)
ε (x, X) − f (∞)

ε (x, X)| dx − η.

The claim now follows from the equivalence of the families and the arbitrariness of η.
Step 2: Lower bound. We claim that

lim inf
j→∞ F ( j)

0 (u j ) ≥ F (∞)
0 (u)

whenever u j → u in L1(�;Rm).
Suppose

u j → u in L1(�;Rm) and lim inf
j→∞ F ( j)

0 (u j ) < ∞.

From

lim
R→∞ lim sup

j→∞
lim sup

ε→0
r ( j)
ε (R) = 0,

it follows that there is an increasing unbounded sequence {Mk}k∈N such that

lim sup
j→∞

lim sup
ε→0

r ( j)
ε (Mk) ≤ 1

k .

We may find a subsequence { jk}k∈N such that

• all F ( jk )
0 (u jk ) are finite with lim

k→∞F ( jk )
0 (u jk ) = lim inf

j→∞ F ( j)
0 (u j ),

• lim sup
ε→0

∫
�

sup
|X |≤Mk

| f ( jk )
ε (x, X) − f (∞)

ε (x, X)| dx ≤ 1
k ,

• lim sup
ε→0

r ( jk )
ε (Mk) ≤ 1

k + lim sup
j→∞

lim sup
ε→0

r ( j)
ε (Mk) ≤ 2

k .
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From

∞ > sup
k∈N

F ( jk )
0 (u jk ) ≥ α sup

k∈N
|Du jk |(�) − β|�|

it follows that {u jk }k∈N is bounded in BV (�;Rm). Then we choose εk (with εk ↘ 0) so
small that there is a wk ∈ L1(�;Rm) with

• ‖wk − u jk‖L1 ≤ 1
jk
,

• F ( jk )
0 (u jk ) + 1

jk
≥ F ( jk )

εk
(wk),

•
∫

�

sup
|X |≤Mk

| f ( jk )
εk

(x, X) − f (∞)
εk

(x, X)| dx ≤ 2
k ,

• r ( jk )
εk

(Mk) ≤ 3
k .

Notice that F ( jk )
εk (wk) are finite. Due to our construction, the sequence {wk}k∈N lies in

W 1,1(�;Rm), is there bounded and converges in L1(�;Rm) toward u as well. We proceed
similarly as in Step 1, the only difference being that we now pass in the superscript from j to
∞. Define

Ek := {x ∈ � : |∇wk | ≥ Mk}.
Then

F ( jk )
εk

(wk) =
∫

�\Ek

f ( jk )
εk

(x,∇wk(x)) dx +
∫
Ek

f ( jk )
εk

(x,∇wk(x)) dx

≥
∫

�\Ek

f (∞)
εk

(x,∇wk(x)) dx − 2
k+

+
∫
Ek

f (∞)
εk

(x,∇wk(x)) dx − 3
k

∫
Ek

|∇wk(x)| dx

≥F (∞)
εk

(wk) − 2
k − 3

k ‖∇wk‖L1 .

From the construction, the last inequality and the lim inf-inequality for {F (∞)
ε }ε , it follows

lim inf
j→∞ F ( j)

0 (u j ) = lim
k→∞F ( jk )

0 (u jk ) ≥ lim sup
k→∞

F ( jk )
εk

(wk) ≥ lim sup
k→∞

F (∞)
εk

(wk) ≥ F (∞)
0 (u).

The inequalities from Steps 1 and 2 yield

lim
j→∞F ( j)

0 (u) = F (∞)
0 (u)

for each u ∈ L1(�;Rm).
Step 3: Justification of our assumption.
Let us not assume a priori that {F (∞)

ε }ε>0 �-converges. We know, however, that for every
subsequence {εk}k∈N there exists a further subsequence {εki }i∈N such that

�(L1)- lim
i→∞F (∞)

εki
=: F (∞)

0

exists (see Appendix). From Steps 1 and 2, it follows that F (∞)
0 does not depend on

the particular subsequence {εki }i∈N. By the Urysohn property for �-limits, it follows that

�(L1)− limε→0 F (∞)
ε = F (∞)

0 . ��
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0-Convergence

Here we recall the definition and some important properties of �-convergence that are used
frequently in our proofs. They are taken from [9, Chapter 1].

Definition A.1 Let F j : M → [−∞,∞], be functionals on a metric space (M, d). We say
that the sequence {F j } j∈N �-converges at x ∈ M to some λ ∈ [−∞,∞], and denote this by

λ = �(d)− lim
j→∞F j (x),

if and only if the following conditions are satisfied:

(a) (lim inf-inequality:) If x j → x in M , then lim inf j→∞ F j (x j ) ≥ λ.
(b) (Existence of a recovery sequence:) There exists a sequence x j → x in M such that

lim j→∞ F j (x j ) = λ.

Moreover, if for a functionalF∞ : M → [−∞,∞], it holds�(d)- lim j→∞ F j (x) = F∞(x)
for every x ∈ M , then we say that {F j } j∈N �-converges to F∞.

The following theorem shows the importance of the �-convergence in the calculus of varia-
tions.

Theorem A.2 Let us have functionals F j : M → (−∞,∞], j ∈ N ∪ {∞}. Suppose
(a) There exists a compact set K ⊂ M with inf

x∈K F j (x) = inf
x∈M F j (x) for all j ∈ N,

(b) �(d)- lim
j→∞F j = F∞.

Then

∃min
x∈M F∞(x) = lim

j→∞ inf
x∈M F j (x).

Moreover, if {x j } j∈N is a precompact sequence such that lim
j→∞F j (x j ) = lim

j→∞ inf
x∈M F j (x),

then every limit of a subsequence of {x j } j∈N is a minimum point for F∞.

Below we state some useful properties:

• �-limits are always lower semicontinuous.
• For a given functional F , its lower semicontinuous envelope is called the relaxed func-

tional. It is the �-limit of the corresponding constant family.
• �-convergence possesses the Urysohn property. Namely, λ = �(d)- lim j→∞ F j (x) if

and only if for every subsequence {F jk }k∈N there exists a further subsequence {F jkl
}l∈N

such that λ = �(d)- liml→∞ F jkl
(x).

• On a separable metric space every sequence of functionals always contains at least a
subsequence that �-converges.
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