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Abstract
A Nijenhuis operator on a manifold is a (1, 1) tensor whose Nijenhuis torsion vanishes. A
Nijenhuis operatorN determines aLie algebroid that knows everything aboutN . In this sense,
aNijenhuis operator is an infinitesimal object. In this paper,we identify itsglobal counterpart.
Namely, we characterize Lie groupoids integrating the Lie algebroid of a Nijenhuis operator.
We illustrate our integration result in various examples, including that of a linear Nijenhuis
operator on a vector space or, which is equivalent, a pre-Lie algebra structure.
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1908 F. Pugliese et al.

1 Introduction

There is a natural integrability condition that one can impose on a (1, 1) tensor N on a
manifold M . Namely, N defines a skew-symmetric (2, 1) tensor TN , its Nijenhuis torsion,
which is given by

TN (X , Y ) = [N X ,NY ] + N 2[X , Y ] − N [N X , Y ] − N [X ,NY ], X , Y ∈ X(M).

Equivalently TN = 1
2 [N ,N ]fn, where [−,−]fn is the Frölicher–Nijenhuis bracket of vector

valued forms. We say that N is integrable when TN = 0 identically, in this case we call N
a Nijenhuis operator. Nijenhuis operators naturally appear in relation to other geometries:
for instance in complex geometry as integrable almost complex structures, and in integrable
systems as recursion operators for bi-Hamiltonian systems (see, e.g., the review [23] and
references therein). But they also appear elsewhere (see, e.g., references in [1] for a partial
list). Recently, Bolsinov, Konyaev and Matveev, in a series of papers [1, 3–5, 21] initiated a
project consisting in systematically studying Nijenhuis operators in their own. For instance,
in the first paper of the series [1], they discuss local normal forms, in the same spirit as
Weinstein splitting theorem for Poisson structures [34], while in the second paper of the
series [21], Konyaev discusses the linearization problem.

In fact every Nijenhuis operator defines a Lie algebroid structure (T M)N on the tangent
bundle T M → M . The anchor of (T M)N is N itself, while the Lie bracket on sections is
given by

[X , Y ]N = [N X , Y ] + [X ,NY ] − N [X , Y ], X , Y ∈ X(M).

Recall that a Lie algebroid is the infinitesimal counterpart of a global object: a Lie
groupoid. When the Lie algebroid (T M)N integrates to a Lie groupoid G ⇒ M , it is natu-
ral to wonder what kind of structure on G is responsible for the Nijenhuis operator defining
(T M)N . Similar questions were already posed and answered in various analogous situations.
For instance, a Poisson tensor π on a manifold M defines a Lie algebroid structure (T ∗M)π
on the cotangent bundle. When the Lie algebroid (T ∗M)π integrates to a Lie groupoid, there
is a multiplicative symplectic structure on the source simply connected integration which is
responsible for π . In this sense, a symplectic groupoid, i.e., a Lie groupoid equipped with a
multiplicative symplectic structure, is the global counterpart of a Poisson manifold [19, 35].
Similarly, a holomorphic groupoid is the global counterpart of a holomorphic Lie algebroid
[24], a contact groupoid is the global counterpart of a Jacobi manifold [14, 20, 25], etc. (see
the review [22] for more examples).

In this paper, we characterize Lie groupoidsG ⇒ M integrating a Nijenhuis operator, i.e.,
Lie groupoids whose Lie algebroid is isomorphic to (T M)N for some Nijenhuis operator
N on M . In particular, we identify what precise structure on G is responsible for N . In
order to guess the final answer, we begin with a closer look at the infinitesimal picture.
Recall that the datum of a Lie algebroid can be encoded in that of a differential graded
(DG) manifold concentrated in degrees 0, 1. The DG manifold encoding the Lie algebroid
A ⇒ M is (A[1], dA) where A[1] is obtained from A by shifting by one the degree of the
fiber coordinates and dA is the Lie algebroid De Rham differential. Our first result is

Theorem 1.1 The datum of a Lie algebroid of the type (T M)N for some Nijenhuis operator
N on M is equivalent to that of a DG manifold (A[1], dA) concentrated in degrees 0, 1
equipped with an integrable almost tangent structure V of internal degree −1 such that
[[dA, V ]fn, V ]fn = 0.

Our main result is the following global version of Theorem1.1.
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Integrating Nijenhuis structures 1909

Theorem 1.2 A Lie groupoid G ⇒ M with source s : G → M, target t : G → M and Lie
algebroid A ⇒ M integrates a Nijenhuis operatorN on M if and only if it is equipped with

a vector bundle map U : T M → A such that 1) ker
−→
U = ker dt, 2) im

−→
U = ker ds, and 3)

[−→U ,
−→
U ]fn = 0, i.e.,

−→
U is a Nijenhuis operator.

In the previous statement,
−→
U is a (1, 1) tensor on G defined as an appropriate right

invariant lift ofU . There is an analogy between Theorems1.1 and 1.2 which we now explain.
First of all, an almost tangent structure of degree −1 on A[1] as in Theorem1.1 is equivalent
to a vector bundle isomorphismU : T M → A. Similarly, conditions 1) and 2) in Theorem1.2
together are equivalent toU being bijective. Secondly, condition 3) in Theorem1.2 is actually

equivalent to [δU ,
−→
U ]fn where δ is a certain global analogue of the Lie derivative [dA,−]fn

of a (1, 1) tensor on A[1] along the homological vector field.

We interpret the (1, 1) tensor
−→
U on G of Theorem1.2 as the structure responsible for the

Nijenhuis operator defining the Lie algebroid ofG. In this spirit, Theorem1.2 is an integration
result for Nijenhuis operators. However, we stress that such result is slightly different in
nature from the integration theorem of, e.g., a Poisson structure π . While, in general, we
can guarantee the existence of a multiplicative symplectic form only on a source-simply

connected integration of the Lie algebroid (T ∗M)π , a (1, 1) tensor
−→
U as in Theorem1.2

exists on every Lie groupoid integrating (T M)N .
The paper is organized as follows. In Sect. 2, we recollect the necessary material about

(1, 1) tensors on Lie groupoids, Lie algebroids and graded manifolds. This material is not
novel except for the second part of Lemma2.3 that will play an important role in the rest of
the paper. A version of the cochain complex (C•

def (G, T 1,0), δ) of Sect. 2 appeared already
in [29]. In Sect. 3, we state and prove Theorem1.1 (see Theorem3.2). In Sect. 4, we prove
our main result Theorem1.2 (see Theorem4.1) and illustrate it with a few trivial examples.
In Sect. 5, we provide more illustrative examples, including a curious Lie groupoid structure
on the double tangent bundle T T B of a manifold B which, to the best of our knowledge, is
new (see Sect. 5.1). We also discuss linear Nijenhuis operators on a vector space.

Finally, we want to mention the recent work of Bursztyn, Drummond, Netto [9, 16] on
Nijenhuis operators in connections to Lie groupoids, Lie algebroids and related structure (see
also [10, 15]). The present paper goes in a complementary direction. While those authors
consider Nijenhuis operators on Lie groupoids (resp. Lie algebroids) integrating (resp. encod-
ing) other geometric structures, we consider Lie groupoids integrating Nijenhuis operators
themselves.

Notation. We denote by G ⇒ M a Lie groupoid with G its space of arrows, and M its
space of objects. We denote by A ⇒ M a Lie algebroid with A → M its underlying vector
bundle. We denote by [−,−]A the Lie bracket on sections of A and by ρA : A → T M
the anchor. Given a surjective submersion π : M → B, we denote by T π M := ker dπ the
vertical tangent bundle with respect to π .

Weassume the reader is familiarwithLie groupoids andLie algebroids.Ourmain reference
for thismaterial is the lecture notes ofCrainic andFernandes [11] (see also [26]).Additionally,
we assume some familiarity with graded geometry, including DG manifolds, for which the
reader might consult [27].

2 A review of multiplicative and IM (1, 1) tensors

In the rest of the paper, we will extensively work with (1, 1) tensors on Lie groupoids,
Lie algebroids and graded manifolds (of a certain type). In this section, we summarize the
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1910 F. Pugliese et al.

necessary material. Our main references here are [7, 8, 24]. We will often interpret (1, 1)
tensors as vector valued 1-forms.

Let G ⇒ M be a Lie groupoid with Lie algebroid A ⇒ M . The structure maps of G will
be denoted s, t : G → M (source and target), m : G(2) → M (multiplication), u : M → G
(unit), and i : G → G (inversion).We denote byG(k) themanifold of k composable arrows in
G. Let T ∈ �1(G, TG). There are several equivalent ways of stating the compatibility of T
and the groupoid structure. The easiest one is the following: we say that T is a multiplicative
(1, 1) tensor if T : TG → TG is a groupoid map with respect to the tangent groupoid
structure TG ⇒ T M , in particular, there exists a (1, 1) tensor T M on M such that T and
T M are both s-related and t-related.

Multiplicative (1, 1) tensors onG can also be seen as 0-cocycles in an appropriate cochain
complex C•

def (G, T 1,0) that we now describe:
First of all, C•

def (G, T 1,0) will be concentrated in degrees k ≥ −1. Degree −1 cochains
are vector bundle maps

U : T M → A.

For k ≥ 0, degree k cochains are vector bundle maps

U : TG(k+1) → TG,

covering the projection pr1 : G(k+1) → G, (g1, . . . , gk+1) �→ g1 onto the first factor, for
which there exists another vector bundle map

UM : TG(k) → T M,

covering the projection t ◦ pr1 : G(k) → M , such that the following diagram commutes:

where pri : G(k+1) → G is the projection onto the i-th factor. For instance, a (1, 1) tensor
T on G belongs to C0

def (G, T 1,0) if and only if it is s-projectable, i.e., it is s-related to some
(1, 1) tensor on M .

Next, we describe the differential δ : C•
def (G, T 1,0) → C•+1

def (G, T 1,0). We begin with

its action on a degree −1 cochain U : T M → A. First define two (1, 1) tensors
−→
U and

←−
U

on G, by putting

−→
U g = dRg ◦Ut(g) ◦ dt and

←−
U g = dLg ◦ di ◦Us(g) ◦ ds, (2.1)

for every g ∈ G, where Rg (resp. Lg) denotes right (resp. left) translation by g. Now, let

δU := −→
U + ←−

U

which is a well-defined 0-cochain whose M-projection (δU )M is given by

(δU )M = ρA ◦U : T M → T M,

where ρA : A → T M is the anchor map.
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Integrating Nijenhuis structures 1911

Remark 2.1 The three assignments U �→ −→
U ,

←−
U , δU where already considered in [8] in the

muchmore general settingwhenU is a (p, q) tensor with p, q arbitrary. The notation adopted

in [8] is the following:
−→
U = T (U ) and

←−
U = S(U ) (see Formula (3.6) and Proposition 3.10

loc. cit.).

Finally, let U ∈ Ck
def (G, T 1,0), with k ≥ 0. For all (v1, . . . , vk+2) ∈ TG(k+2), we put

δU (v1, . . . , vk+2) = −U (v1v2, v3, . . . , vk+2)U (v2, . . . , vk+2)
−1

+
k+1∑

i=2

(−)iU (v1, . . . , vivi+1, . . . , vk+2) + (−)kU (v1, . . . , vk+1),

(2.2)

where we used the multiplication and inversion in the tangent Lie groupoid TG ⇒ T M .
Then, δU is a well-defined (k + 1)-cochain whose M-projection (δU )M is given by

(δU )M (v2, . . . , vk+2) = −dt (U (v2, . . . , vk+2))

+
k+1∑

i=2

(−)i+1UM (v2, . . . , vivi+1, . . . , vk+2)

+ (−)kUM (v2, . . . , vk+1).

The operator δ is indeed a differential. The definition of C•
def (G, T 1,0) is very similar to

that of Crainic-Mestre-Struchiner deformation complex of a Lie groupoid G ⇒ M [13], and
the definition of the differential δ is formally identical up to replacing points in G(k+2) with
points in TG(k+2). This is the main reason why we adopt a similar notation C•

def (G, T 1,0)

for our complex. Notice that there are versions of this complex for higher-order tensors (see,
e.g., [29]). We speculate that cohomology classes of C•

def (G, T 1,0) should be seen as shifted
(1, 1) tensors on the differentiable stack [G/M] represented by G, but we will not explore
this point of view here.

Next, we discuss infinitesimal multiplicative (IM) (1, 1) tensors on Lie algebroids. We
begin with linear (1, 1) tensors on vector bundles. Let A → M be a vector bundle, and let T :
T A → T A be a (1, 1) tensor on the total space A.We say that T is linear if it is multiplicative
with respect to the Lie groupoid structure on A given by fiber-wise addition, equivalently T is
a vector bundle map with respect to the vector bundle structure T A → T M . This definition
emphasizes the fiber-wise addition in A. There is an equivalent definition emphasizing the
fiber-wise scalar multiplication which is often useful in practice. Namely, a (1, 1) tensor on
A is linear if and only if it is of degree 0 with respect to the action h : R × A → A of the
multiplicative monoid R on A given by fiber-wise scalar multiplication, i.e., h∗

r T = T for all
r ∈ R � 0. In the following, we will also need (1, 1)-tensors S ∈ �1(A, T A) of degree −1
with respect to h, i.e., h∗

r S = r−1S for all r ∈ R � 0. We call such tensors core (1, 1) tensors
adopting a terminology that we already used in [29]. Both core and linear (1, 1) tensors can
be encoded into certain sections of appropriate vector bundles over M . To see this, first recall
that a section a of A defines a vector field a↑ on A, its vertical lift, via

a↑
z := d

dε
|ε=0(z + εax ) ∈ Tz A,

where x ∈ M is the image of z ∈ A under the projection A → M . The assignment a �→ a↑
is a bijection between sections of A and degree −1 vector fields on A (also called core
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1912 F. Pugliese et al.

vector fields in [29, 30]). Next, recall also that the gauge algebroid of A is the Lie agebroid
DA ⇒ M whose sections are derivations of A, i.e., R-linear maps

D : �(A) → �(A)

such that

D( f a) = σD( f )a + f Da, f ∈ C∞(M), a ∈ �(A),

for some, necessarily unique, vector field σD ∈ X(M) called the symbol of D. A derivation
D of A defines a vector field XD on A: the unique vector field such that

[XD, a↑] = (Da)↑, for all a ∈ �(A).

The assignment D �→ XD is a bijection between sections of the gauge algebroid DA and
degree 0 vector fields on A.

Similarly, core (1, 1) tensors on A identify with vector bundle maps U : T M → A via
the mapU �→ U↑, whereU↑ ∈ �1(A, T A) is the core (1, 1) tensor uniquely determined by
U↑(XD) = U (σD)↑, and σD is the symbol of D. Finally, linear (1, 1) tensors on A identify
with triples (D, 	, T M ) where 	 : A → A is a vector bundle map, T M ∈ �1(M, T M) is a
(1, 1)-tensor on M , and D : �(A) → �1(M, A) is a differential operator such that

D( f a) = fD(a) + d f ⊗ 	(a) − 〈d f , T M 〉 ⊗ a, a ∈ �(A), f ∈ C∞(M),

via the map (D, 	, T M ) �→ T where T ∈ �1(A, T A) is the linear (1, 1) tensor uniquely
determined by its M-projection being T M and, additionally,

La↑T = D(a)↑, Ta↑ = 	(a)↑.

When A ⇒ M is a Lie algebroid with Lie bracket [−,−]A and anchor map ρA, then a
(1, 1) tensor T ∈ �1(A, T A) is IM if T : T A → T A is a Lie algebroid map with respect
to the tangent algebroid structure T A ⇒ T M . In particular T is a linear (1, 1) tensor and T
being IM is equivalent to the associated triple (D, 	, T M ) satisfying the following identities
[8, 17]:

D ([a, b]A) = LaD(b) − LbD(a)

	 ([a, b]A) = [a, 	(b)]A − ιρA(b)D(a),

LρA(a)T
M = ρA ◦ D(a),

T M ◦ ρA = ρA ◦ 	, (2.3)

for all a, b ∈ �(A).
If T : TG → TG is a multiplicative (1, 1) tensor on the Lie groupoid G ⇒ M , then, by

differentiation, we get an IM (1, 1) tensor Ṫ : T A → T A on the Lie algebroid A ⇒ M of
G. The triple (D, 	, T M ) corresponding to Ṫ is given by

D(a) = L−→a T |T M , 	(a) = T−→a |M ,

for all a ∈ �(A), while T M is the M-projection of T (here −→a ∈ X(G) is the right invariant
vector field corresponding to a).

IM (1, 1) tensors can also be seen as 0-cocycles in a cochain complex. The easiest way
to see this is via graded geometry. We assume the reader is familiar with graded manifolds
and homological vector fields. We only recall that an N-manifold of degree k is a graded
manifold whose function algebra is generated in degree 0, 1, . . . , k. An NQ-manifold is an
N-manifold equippedwith a Q-structure, i.e., a (degree 1) homological vector field Q.Wewill
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Integrating Nijenhuis structures 1913

also need to consider vector valued forms on N-manifolds. Our conventions on differential
forms on an N-manifold are as follows. Given an N-manifold M, differential forms on M
are fiber-wise polynomial functions on the shifted tangent bundle T [1]M and are denoted
�•(M). Similarly, vector valued forms onM are fiber-wise polynomial sections of the pull-
back bundle T [1]M×M TM → T [1]M and are denoted �•(M, TM). Both �•(M) and
�•(M, TM) are bi-graded vector spaces, the two gradings being the form degree, and the
internal, i.e., coordinate, degree. The total degree of a form is then the sum of the internal and
the form degrees, and the usual Koszul sign rule holds with respect to the total degree. For
instance, the Frölicher–Nijenhuis bracket on �•(M, TM) is a graded Lie bracket of total
degree 0.

Remember that the datum of a vector bundle A → M is equivalent to the datum of an
N-manifold of degree 1 via A � A[1] (where A[1] is the N-manifold obtained by shifting
by 1 the fiber degree in A), and the datum of a Lie algebroid A ⇒ M is equivalent to the
datum of an NQ-manifold of degree 1 via A � (A[1], dA) where dA is the Lie algebroid
De Rham differential. Exactly as for usual vector bundles, degree −1 vector fields on A[1]
identify with sections of A and degree 0 vector fields identify with sections of DA. Similarly,
(1, 1) tensors on A[1] of internal degree−1 identify with vector bundle mapsU : T M → A,
hence with core (1, 1) tensors on A, and (1, 1) tensors on A[1] of internal degree 0 identify
with triples (D, 	, T M ) as above, hence with linear (1, 1) tensors on A. If T ∈ �1(A, T A) is
a linear (1, 1) tensor, we denote by T [1] ∈ �1(A[1], T A[1]) the corresponding (1, 1) tensor
(of internal degree 0) on A[1]. If A ⇒ M is a Lie algebroid, then T is IM if and only if
LdA T

[1] = 0 [29], where LdA is the Lie derivative (of (1, 1) tensors) along the homological
vector field dA. Hence, the assignment T �→ T [1] identifies IM (1, 1) tensors on A with
0-cocycles in the cochain complex

(
�1(A[1], T A[1]),LdA

)
(whose grading is given by the

internal degree).

Example 2.2 Let T ∈ �1(M, T M) be a (1, 1) tensor on M . Its tangent lift is the linear (1, 1)
tensor T tan ∈ �1(T M, T T M) on T M corresponding to the triple

([−, T ]fn, T , T
)

(see, e.g., [9]) where [−,−]fn is the Frölicher–Nijenhuis bracket of vector-valued forms.

Finally, let A ⇒ M be the Lie algebroid of a Lie groupoidG ⇒ M , and letU : T M → A
be a vector bundle map. Then, U can be seen both as a degree −1 cochain in the cochain
complex

(
C•
def (G, T 1,0), δ

)
and in the cochain complex

(
�1(A[1], T A[1]),LdA

)
(viaU �→

U↑). The next lemma will play an important role in the sequel. The first part of the statement
appeared already in [8, Example 3.15], but without the (easy) proof, in the general setting of
(p, q) tensors. Here, we propose a proof in the case p = q = 1.

Lemma 2.3 The triples (D, 	, T M ) corresponding to ˙δU and LdAU
↑ are both given by

D(a) = LA
a U , 	 = U ◦ ρA, T M = ρA ◦U , (2.4)

for all a ∈ �(A) (where LA is the Lie algebroid Lie derivative, see below), hence

˙(δU )[1] = LdAU
↑.

Proof Begin with ˙δU . Let a ∈ �(A) and notice that the vector field −→a (resp. ←−a ) is both
s-projectable and t-projectable. It s-projects onto the trivial vector field (resp. onto ρA(a))
and t-projects onto ρA(a) (resp. onto the trivial vector field). Similarly, a direct check shows

that
−→
U (resp.

←−
U ) s-projects on the trivial (1, 1) tensor (resp. onto ρA ◦U ), while it t-projects
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1914 F. Pugliese et al.

onto ρA ◦U (resp. onto the trivial (1, 1) tensor). The third one of Formulas (2.4) for ˙δU now
follows. The second one can be proved with a direct computation. For the first one, there is
an easy local proof. Namely, choose a local frame (uα) of �(A). Then, locally

U = Uα ⊗ uα

for some local 1-forms Uα on M . Hence,
−→
U = t∗(Uα) ⊗ −→u α, and

←−
U = s∗(Uα) ⊗ ←−u α. (2.5)

A direct computation exploiting these formulas (and the obvious properties of right/left
invariant vector fields) shows that

L−→a δU = −−→
LA
a U

and the first one of (2.4) follows (here LA is the Lie algebroid Lie derivative: LA
a U (X) =

[a,UX ]A −U [ρA(a), X ], for all a ∈ �(A) and X ∈ X(M)).
As for LdAU

↑, a straightforward computation shows that the triple (D, 	, T M ) corre-
sponding to it is given by the same formulas. We present (part of) it for completeness. Let
a ∈ �(A) and D ∈ �(DA), then

D(a)(σD)↑ = D(a)↑(XD) = (La↑LdAU
↑)XD = (L[a↑,dA]U↑)XD = (LX[a,−]AU

↑)XD

= [
X[a,−],U↑XD

]−U↑ [
X[a,−]A , XD

]=[
X[a,−],U (σD)↑

]−U↑ [
X[[a,−]A,D]]

]

= [a,U (σD)]↑A −U (σ[[a,−],D]])↑ = ([a,U (σD)]A −U [ρA(a), σD])↑
= (LaU )(σD)↑

where we used that there are no nontrivial (1, 1) tensors on A[1] of internal degree −2. The
rest is straightforward. ��
Remark 2.4 As an application of Lemma2.3 we discuss a canonical cohomology class in the
cochain complex C•

def (G, T 1,0). Namely, let G ⇒ M be a Lie groupoid with Lie algebroid
A. The identity endomorphism IG : TG → TG is clearly a multiplicative (1, 1) tensor,
hence a distinguished 0-cocycle in C•

def (G, T 1,0). Its cohomology class [IG ] is therefore a
canonical cohomology class attached to the Lie groupoid G. It is easy to see that [IG ] = 0 if
and only if G integrates the tangent bundle T M ⇒ M . Indeed, let IG = δU for some vector
bundle map U : T M → A. The triple (D, 	, T M ) corresponding to İ is (0, IA, IM ), where
IA : A → A and IM : T M → T M are the identity endomorphisms. It immediately follows
from Lemma2.3 that U is an isomorphism and ρA is its inverse. Hence, ρA : A → T M is a
Lie algebroid isomorphism. Conversely, let A = T M (with the commutator as Lie bracket,
and the identity as anchor). If G = M × M is the pair groupoid, a direct computation shows
that IG = δIM . In all other cases the anchor map (s, t) : G → M × M is a locally invertible
groupoidmap (covering the identitymap). In particular, the pull-back along (s, t) is a cochain
map (s, t)∗ : C•

def (M × M, T 1,0) → C•
def (G, T 1,0). We conclude that

IG = (s, t)∗IM×M = (s, t)∗δIM = δ
(
(s, t)∗IM

) = δIM .

3 Nijenhuis structures, Lie algebroids and gradedmanifolds

In this section we describe Nijenhuis operators in terms of DG manifolds. It is often the
case that an additional structure on a Lie algebroid A ⇒ M is encoded by an appropriate
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structure on the associatedNQ-manifold (A[1], dA). For instance, when A = (T ∗M)π is the
cotangent algebroid of a Poisson manifold (M, π), then (A[1], dA) is additionally equipped
with a symplectic structure ω of internal degree 1 such that LdAω = 0 and every degree 1
symplecticNQ-manifold arises in this way up to isomorphisms, see [31] (similar results hold
for the Lie algebroid of a Jacobi structure [18, 28] and, more generally, for Lie algebroids
equipped with IM vector-valued forms [29, 33]). We want to prove an analogous result for
Lie algebroids defined by Nijenhuis operators. We begin discussing vector bundles A → M
equipped with a vector bundle isomorphism A ∼= T M .

Recall that an almost tangent structure on amanifold P is a (1, 1)-tensor V ∈ �1(P, T P)

such that ker P = imP (in particular, dim P = even). An almost tangent structure V
is integrable if [V , V ]fn = 0. In other words, an almost tangent structure is integrable if
it is additionally a Nijenhuis operator. Let M be a manifold. The vertical endomorphism
V : T T M → T T M on the tangent bundle is an integrable almost tangent structure, and
every integrable almost tangent structure is locally of this form. We will show in a moment
that degree −1 almost tangent structures on N-manifolds of degree 1 are all globally of this
form in an appropriate sense. To see this, first notice that the vertical endomorphism on T M
is a core (1, 1) tensor (corresponding to the identity map IM : T M → T M), hence it also
corresponds to a (1, 1) tensor of degree −1 on T [1]M . Denote the latter by V [1], and still
call it the vertical endomorphism. If xi are local coordinates on M and ẋ i are the associated
degree 1 fiber coordinates on T [1]M , then locally

V = dxi ⊗ ∂

∂ ẋ i
.

In particular, V is an integrable almost tangent structure. It is easy to see that this almost
tangent structure enjoys the following “universal property.” A vector bundlemapU : T M →
A induces a smooth map T [1]M → A[1] of graded manifolds, also denotedU . The vertical
endomorphism V on A[1] and the (1, 1) tensor U↑ of degree −1 corresponding to U are
then automatically U -related.

Lemma 3.1 Let A → M be a vector bundle. The assignmentU �→ U↑ establishes a bijection
between vector bundle isomorphismsU : T M → A and integrable almost tangent structures
of internal degree −1 on A[1].
Proof Begin with a vector bundle isomorphism U : T M → A. According to the remark
preceding the statement, the (1, 1) tensor U↑ ∈ �1(A[1], T A[1]) corresponding to U is
also the push-forward of the vertical endomorphism V ∈ �1(T [1]M, T T [1]M) along the
diffeomorphism U : T [1]M → A[1], hence it is an integrable almost tangent structure (of
internal degree −1) itself. Conversely, take an integrable almost tangent structure of internal
degree −1 on A[1]. It is of the form U↑ for some vector bundle map U : T M → A, and U
is necessarily an isomorphism. Indeed, U is the composition

T M −→ TM A[1] U↑−→ TM A[1] −→ A[1] −→ A,

where TM A[1] is the restriction of T A[1] to the zero section of A[1] → M , the map
TM A[1] −→ A[1] is the natural projection and the last arrow is the shift. But, for degree
reasons, A[1] ↪→ TM A[1] must be in the kernel of U↑, hence in its image and in the image
of U as well. We conclude that U is surjective. The injectivity now follows by dimension
reasons. ��

In what follows, given an N-manifold M of degree 1 equipped with an almost tangent
structure V of degree −1, we will always identify M with a shifted tangent bundle T [1]M
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and V with the vertical endomorphism, unless otherwise stated. For instance, we will denote
by ddR again the push forward of the usual De Rham differential on T [1]M along the
diffeomorphism T [1]M → M induced by V . We are now ready to state the main result of
this section.

Theorem 3.2 A Lie algebroid A ⇒ M is isomorphic to the Lie algebroid (T M)N induced
by a Nijenhuis operator N ∈ �1(M, T M) on M if and only if there exists a, necessarily
integrable, almost tangent structure V of internal degree −1 on A[1] such that

[[dA, V ]fn, V ]fn = 0. (3.1)

In this case,
[dA, V ]fn = N tan[1] (3.2)

where N ∈ �1(M, T M) is exactly the composition ρA ◦ U : T M → T M, U : T M → A
is the vector bundle isomorphism such that U↑ = V , and we are using the latter to identify
A[1] with T [1]M (in order to take the tangent lift).

Proof We stress that, as the total degree of V ∈ �1(A[1], T A[1]) is 0, the identity (3.1) is
not trivial. Now, let N be a Nijenhuis operator on M , and let (T M)N be the associated Lie
algebroid structure on T M . We denote by dN the corresponding homological vector field on
T [1]M . We first prove (3.2). We have to prove that

LdN V = N tan[1] . (3.3)

As both sides are (1, 1) tensors of internal degree 0 on T [1]M , it is enough to show that
they correspond to the same triple (D, 	, T M ). From Example2.2, we have to show that the
triple (D, 	, T M ) corresponding to the left-hand side is ([−,N ]fn,N ,N ). This easily follows
from Lemma2.3 by using that V = I

↑
M . However, beware that although, in this case, a in

(2.4) is an ordinary vector field, the Lie derivative LA appearing therein is not the ordinary
Lie derivative (but the Lie algebroid one). In this particular case, they agree, indeed for all
Y , X ∈ X(M)

D(Y )(X) =
(
L(T M)N
Y IM

)
X = [Y , IM X ]N − IM [NY , X ]

= [NY , X ] + [Y ,N X ] − N [Y , X ] − [NY , X ]
= (LYN )(X) = [Y ,N ]fn(X). (3.4)

We still need to show that [[dN , V ]fn, V ]fn = 0. This follows from (3.3) and the fact that
the Frölicher–Nijenhuis bracket of the vertical endomorphism V and the tangent lift of a
(1, 1) tensor always vanishes identically (a long but straightforward computation, e.g., in
local coordinates). This concludes the “only if part” of the proof.

Conversely, let A ⇒ M be a Lie algebroid and let V be an almost tangent structure of
internal degree−1 on A[1].We use it to identify Awith the tangent bundle T M and V with the
vertical endomorphism. In this way, the anchor ρA identifies with a (1, 1) tensorN . Now, first
check that (3.1) implies (3.3) (use again local coordinates). Finally, reverse the computations
(3.4), and use Lemma2.3, to see that (3.3) actually implies [−,−]A = [−,−]N . This
concludes the proof. ��
Remark 3.3 Recall from [29, Theorem B.1] that a (1, 1) tensor T ∈ �1(A, T A) on the total
space of a Lie algebroid A ⇒ M is IM if and only if [dA, T[1]]fn = LdA T[1] = 0, i.e.,
if and only if T[1] is a cocycle in the cochain complex

(
�1(A, T A),LdA

)
. Now, let N be
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a Nijenhuis operator on a manifold M . Using Example2.2, it is straightforward to check
that N tan is an IM tensor on the Lie algebroid (T M)N , equivalently N tan[1] is a cocycle in(
�1((T M)N , T (T M)N ),LdN

)
. Formula (3.2) says something more: not only N tan[1] is a

cocycle, but also it is actually a coboundary with the vertical endomorphism V being a
primitive.

There is an elegant alternative way to formulate Theorem3.2. Namely, condition (3.1) is
actually equivalent to the simpler condition

[ddR, dA] = 0.

To see this, remember that vector fields on T [1]M are derivations of the graded algebra
�•(M) of differential forms on M . Derivations commuting with the De Rham differential
are exactly those of the formLK for some vector valued form K ∈ �•(M, T M).We conclude
that a degree 1 derivation Q of�•(M) satisfies [ddR, Q] = 0 if and only if Q = LN for some
(1, 1) tensor N ∈ �1(M, T M). In this case, from the properties of the Frölicher–Nijenhuis
bracket, Q is a homological derivation if and only if N is a Nijenhuis operator, in which
case (T [1]M, Q) is also the NQ-manifold of degree 1 corresponding to the Lie algebroid
(T M)N . This proves the following

Theorem 3.4 A Lie algebroid A ⇒ M is isomorphic to the Lie algebroid (T M)N induced
by a Nijenhuis operator N ∈ �1(M, T M) on M if and only if there exists a, necessarily
integrable, almost tangent structure V of internal degree −1 on A[1] such that

[ddR, dA] = 0.

We conclude this section noticing that there is a characterization of the De Rham differ-
ential on an N-manifold of degree 1 equipped with an almost tangent structure of internal
degree−1. Namely, we have the following proposition that might be of independent interest.

Proposition 3.5 The De Rham differential ddR is the only homological vector field on T [1]M
such that

ιddR V = E (3.5)

whereE ∈ X(T [1]M) is theEuler vector field (i.e., the only degree0derivationE of the graded
algebra C∞(T [1]M) = �•(M) such that E(ω) = kω for all homogeneous differential forms
ω of degree k).

Proof Formula (3.5) can be proved easily, e.g., in local coordinates. Now, suppose that there
exists another homological vector field Q on T [1]M such that

ιQV = E . (3.6)

Then, Q gives to T M the structure of a Lie algebroid whose anchor ρ : T M → T M is the
identity IM . Indeed, locally

Q = ρi
j ẋ

j ∂

∂xi
− 1

2
cki j ẋ

i ẋ j ∂

∂ ẋ k

and the condition (3.6) reads ρi
j = δij , i.e., ρ = IM . As the anchor is a Lie algebroid map with

values in the standard tangent bundle Lie algebroid, Q must be the De Rham differential. ��
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Remark 3.6 It is not strictly necessary to exploit graded geometry to describe the Lie
algebroid of a Nijenhuis structure nor IM (1,1) tensors. Namely, the cochain complex
(�1(A[1], T A[1]),LdA ) possesses an equivalent description in terms of more classical data
which does not need graded manifolds. However, the latter is much more involved and less
intuitive. More generally, we believe that the graded geometric picture for Lie algebroids is
often more compact and efficient. In this respect, the reader should compare, e.g., Formulas
(2.3) with their equivalent formulation LdA T

[1] = 0. Moreover, a graded geometric formu-
lation does usually pave the way to interesting generalizations/applications. This is the case,
e.g., for the graded geometric description of Poisson manifolds (resp. Courant algebroids) as
degree 1 (resp. degree 2) symplectic NQ-manifolds (see Roytenberg’s paper [31] and all its
citations). For these reasons, we adopted graded geometry as our preferred language for Lie
algebroids in our situation as well.

4 Nijenhuis structures and Lie groupoids

Let G ⇒ M be a Lie groupoid and let A ⇒ M be its Lie algebroid. We say that G integrates
a Nijenhuis operator N on M if there exists a Lie algebroid isomorphism A ∼= (T M)N . In
the next theorem, we characterize Lie groupoids integrating a Nijenhuis operator.

Theorem 4.1 A Lie groupoid G ⇒ M with Lie algebroid A ⇒ M integrates a Nijenhuis
operatorN ∈ �1(M, T M)on M if andonly if there exists a vector bundlemapU : T M → A
such that

(1) ker
−→
U = ker dt and im

−→
U = ker ds,

(2) [−→U ,
−→
U ]fn = 0, i.e.,

−→
U is a Nijenhuis operator on G.

In this case, put N = s∗δU = t∗δU. Then, N is a Nijenhuis operator on M, and U : A →
(T M)N is a Lie algebroid isomorphism. Finally, if we use U to identify A and (T M)N , we
also have

˙δU = N tan. (4.1)

Proof Let us first assume that G integrates a Nijenhuis operator N ∈ �1(M, T M), so that
we can identify A and (T M)N . Let U = IM : T M → T M be the identity. Then, locally

−→
U = t∗(dxi ) ⊗ −→

∂i , (4.2)

for some local coordinates (xi ) on M , where we put ∂i := ∂/∂xi . As dimG = 2 dim M ,
point (1) immediately follows. Next, compute

[−→
U ,

−→
U

]fn = [
t∗(dxi ) ⊗ −→

∂i , t
∗(dx j ) ⊗ −→

∂ j
]fn

= t∗(dxi ∧ dx j ) ⊗ [−→
∂i ,

−→
∂ j

]fn + 2t∗(dxi ) ∧ L−→
∂i
t∗(dxk) ⊗ −→

∂k , (4.3)

where we used standard properties of the Frölicher–Nijenhuis bracket (together with the fact
that the coordinate 1-forms are closed). Now, we have

N ∂i = N k
i ∂k and

[
∂i , ∂ j

]
N = cki j∂k =

(
∂iN k

j − ∂ jN k
i

)
∂k,

for some local functions N k
i , cki j . As

t∗
−→
∂i = N ∂i = N k

i ∂k,
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it follows that
[−→
U ,

−→
U

]fn = t∗
(
cki j dx

i ∧ dx j + 2dxi ∧ dN k
i

)
⊗ −→

∂k =
(
cki j − ∂iN k

j + ∂ jN k
i

)
⊗ −→

∂k = 0,

(4.4)
as claimed. A very similar computation shows that [←−U ,

←−
U ]fn = 0 as well. It is even easier

to check that [−→U ,
←−
U ]fn = 0. It follows that

[
δU , δU

]fn = [−→
U + ←−

U ,
−→
U + ←−

U
]fn = [−→

U ,
−→
U

]fn + 2
[−→
U ,

←−
U

]fn + [←−
U ,

←−
U

]fn = 0.

Formula (4.1) now follows from Lemma2.3 (and Example2.2).
Conversely, let U : T M → A be a vector bundle map satisfying (1) and (2). It follows

from ker
−→
U = ker dt , resp. im

−→
U = ker ds, by restriction to the units, that U is injective,

resp. surjective. Hence,U is a vector bundle isomorphism that we can use to identify A with
T M , as vector bundles. Similarly, we identify the anchor map ρA : A → T M with a (1, 1)

tensorN ∈ �1(M, T M). Additionally, under this identification,
−→
U is locally given by (4.2)

again. Now, the same computations (4.3) and (4.4) as above, together with condition (2) in
the statement, show that A = (T M)N as claimed. ��
Remark 4.2 Let G ⇒ M be a Lie groupoid, let A ⇒ M be its Lie algebroid, and let
U : T M → A be a vector bundle map. Using, e.g., (2.5), we immediately see that condition
(1) in Theorem4.1 is actually equivalent toU being a vector bundle isomorphism. Condition
(2) can also be expressed purely in terms of U (and independently of condition (1)). To do
this, we define the A-torsion of U to be the A-valued 2-form T A

U ∈ �2(M, A) given by

T A
U (X , Y ) := [UX ,UY ]A +UρAU [X , Y ] −U [ρAU X , Y ] −U [X , ρAUY ].

Now, given an A-valued 2-form T ∈ �2(M, A), the obvious adaptation of Formulas (2.1)

defines vector valued 2-forms
−→
T ,

←−
T ∈ �2(G, TG) on G. We also have that

−→
T |T M = T

and
←−
T |T M = di ◦ T . Finally, a long but easy computation exploiting, e.g., (2.5), shows that

T−→
U

= −→
T A
U , and T←−

U
= ←−

T A
U .

We leave the details to the reader.We conclude that condition (2) of Theorem4.1 is equivalent
to

T A
U = 0.

We now explain in which sense Theorem4.1 is an integration result analogous to the
(now classical) “Poisson structures integrate to symplectic groupoids” theorem. First of all,
Theorem3.2 can be rephrased by saying that a Nijenhuis structure N on a manifold M
can be equivalently encoded into a Lie algebroid A ⇒ M equipped with an IM Nijenhuis
structure NA satisfying an additional condition: (not only N [1]

A is a cocycle, but) N [1]
A is a

coboundary in the cochain complex (�1(A[1], T A[1]),LdA ) possessing a primitive V with
two properties, namely 1) V is as much non-degenerate as possible for a (1, 1) tensor of
internal degree −1 on A[1], i.e., V is an almost tangent structure, and 2) V is integrable,
i.e., its Nijenhuis torsion vanishes. Notice that there is a certain degree of redundancy in the
latter formulation. In any case, as IM tensors integrate to multiplicative tensors [8] (see also
[24] for a thorough discussion of the Nijenhuis torsion of an IM (1,1) tensor), an integration
theorem for Nijenhuis structures is expected to be of the form:
Let N be a Nijenhuis structure on a manifold M , and assume that the associated Lie alge-
broid A ⇒ M is integrable, then it integrates to a (source simply connected) Lie groupoid
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equipped with a unique multiplicative Nijenhuis tensor NG satisfying an appropriate addi-
tional condition and such that ṄG = N [1]

A .
Theorem4.1 confirms these expectations and shows that the appropriate additional con-

dition on NG is also what we might expect it to be:
(not onlyNG is a cocycle, but)NG is a coboundary in the cochain complex (C•

def (G, T 1,0), δ)

possessing a primitive U ∈ �1(M, A) with two properties, namely 1) U is as much non-
degenerate as possible, i.e., U : T M → A is a vector bundle isomorphism, and 2) U is
integrable, i.e., its A-torsion vanishes (see Remark 4.2).

As above, there is a certain degree of redundancy in this formulation and, for this reason,
we preferred the alternative compact formulation given in Theorem4.1.

Remark 4.3 In this remark, we compare Theorem4.1 with the existing literature on Nijenhuis
structures, Lie algebroids and Lie groupoids. First of all, in [32], Stiénon and Xu prove an
integration theorem for Poisson–Nijenhuis structures. Namely, they show the following. Let
M be a manifold equipped with a Poisson–Nijenhuis structure (π,N ). If the cotangent Lie
algebroid (T ∗M)π determined by the Poisson structure π is integrable, then it integrates to a
source simply connected Lie groupoid equipped with a multiplicative symplectic Nijenhuis
structure (ω, Ñ ) uniquely determined by (π,N ) in an appropriateway (see [32, Theorem5.2]
for the details). This is mostly independent of Theorem4.1, which discusses the Lie groupoid
integrating the Lie algebroid determined by a Nijenhuis structure, not that integrating the
cotangent algebroid of a Poisson structure.

A closer relationship exists with the recent work [16] of Drummond (see also [15])
where the author introduces Lie–Nijenhuis bialgebroids and prove that they integrate to
Lie groupoids equipped with a multiplicative Poisson–Nijenhuis structure. Lie–Nijenhuis
bialgebroids are bialgebroids (A, A∗) equipped with an appropriate additional structure.
Here, we only stress that the definition is symmetric under swapping A and A∗. A Poisson–
Nijenhuis structure (π,N ) on amanifoldM determines aLie–Nijenhuis bialgebroid structure
on (T ∗M, T M) (actually a very special one). In the latter Lie–Nijenhuis bialgebroid, the Lie
algebroid structure on T ∗M is the cotangent algebroid (T ∗M)π of the Poisson structure π ,
while the Lie algebroid structure on T M is the Lie algebroid (T M)N of the Nijenhuis struc-
ture N . According to Drummond’s theory, when (T ∗M)π , resp. (T M)N , is integrable, it
integrates to a source simply connected Lie groupoid equippedwith amultiplicative Poisson–
Nijenhuis structure (π̃, Ñ ) uniquely determined by (π,N ). The Poisson structure π̃ on the
integration of (T ∗M)π is the inverse of the usual multiplicative symplectic structure (and, in
this case, Drummond’s result recovers that of Stiénon-Xu mentioned above). Finally, it is not
hard to see that the Nijenhuis structure Ñ on the integration of (T M)N is exactly the (1, 1)
tensor δU in the statement of Theorem4.1. Notice, however, that this case is not explicitly
spelled out in [16] (nor in [15]). Concluding, while our setting is less general than that of
[16], our analysis reveals aspects that have not been discussed before.

We stress again that, as already mentioned in the introduction, there is a significant differ-
ence between Theorem4.1 and the integration theorem for Poisson manifolds. While we can
only guarantee the existence of a multiplicative symplectic structure on the source simply
connected integration of an integrable Poisson structure, the tensors U and NG = δU exist
on every Lie groupoid integrating a Nijenhuis structure.

We conclude this section discussing a few elementary examples.

Example 4.4 (Trivial Nijenhuis operators) Let G integrate a Njenhuis operator N ∈
�1(M, T M), and let U be as in the statement of Theorem4.1. Clearly,

−→
U ∈ �1(G, TG)

is not an almost tangent structure, unless ker ds = ker dt which happens exactly when

123



Integrating Nijenhuis structures 1921

s = t , i.e., G is a bundle of Lie groups. But in this case, N = 0 necessarily, so G is
a bundle of Lie groups integrating the trivial Lie algebroid structure (T M)0 on T M . The
source simply connected such G is T M ⇒ M with both source and target being the canon-
ical projection T M → M , and the multiplication being the fiber-wise addition. We denote
this bundle of abelian Lie groups (T M)+. If U : T M → T M is the identity map then−→
U = V ∈ �1(T M, T T M) is the vertical endomorphism (use, e.g., local coordinates) and←−
U = −V , so that δU = −→

U + ←−
U = 0 (also in agreement with (4.1)).

On the other hand, let G be a source connected proper Lie groupoid integrating (T M)0.
In this case, G is a torus bundle and there must be a Lie groupoid map p : (T M)+ → G.
But 1) p is a local diffeomorphism, 2) the vertical endomorphism V on (T M)+ descends to
G and 3) � := ker p is a lattice in T M . So translations along sections of � preserve V . But,
actually, V is preserved by a translation along any section of T M → M . It follows that every
lattice in T M arises in this way. We conclude that the present situation is very different from
that of the integration of the trivial Poisson structure by a proper symplectic groupoid which
gives very special lattices in T ∗M (hence in T M), namely those corresponding to integral
affine structures on M (see [12] for details).

Example 4.5 (Invertible Nijenhuis operators) Let M be a manifold and letN be an invertible
Nijenhuis operator on M (e.g., a complex structure). Then, N itself is an isomorphism
identifying (T M)N and (T M)I where I : T M → T M is the identical (1, 1) tensor. In
the following, we will understand this identification. The Lie algebroid (T M)I is the usual
tangent Lie algebroid which is integrated (among others) by the pair groupoid M×M ⇒ M .
The identity I : T M → T M can also be seen as a (T M)I-valued 1-form on M . If we do so,
then

−→
I ,

←−
I : T (M × M) = T M × T M → T (M × M) = T M × T M

are the projections onto the first and the second factor, respectively, so that δI = −→
I + ←−

I is
the identity of T (M × M) (in agreement with (4.1)).

Example 4.6 (Rank 1 Lie algebroids on a 1 dimensional manifold) Let M be either the line
R or the circle S1 and let θ be the canonical coordinate on M . Any Lie algebroid structure A
on the trivial line bundle RM is of the following type:

[ f , g]A = f X(g) − X( f )g, ρA( f ) = f X , f , g ∈ �(A) = C∞(M),

for some vector field X ∈ X(M). Denote F := X(θ), so that X = F ∂
∂θ
. The vector bundle

isomorphism

RM → T M, f �→ f
∂

∂θ
(4.5)

identifies A with the Lie algebroid (T M)N , where N is the Nijenhuis operator given by

N = dθ ⊗ X = FI.

Now, in order to illustrate Theorem4.1, we take the long route to prove this latter thing.
Recall that A is integrated by the Lie groupoid DX ⇒ M , where DX ⊆ R×M is the domain
of the flow of X :

φX : DX → M, (ε, θ) �→ φX
ε (θ).

The source s : DX → M is the projection onto the second factor, while the target t is φX .
Two arrows (ε̄, θ̄ ), (ε, θ) ∈ DX are composable when θ̄ = φX

ε (θ) and, in this case, their
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product is

(ε̄, θ̄ ) · (ε, θ) = (ε̄ + ε, θ).

The inversion i : DX → DX maps (ε, θ) to (−ε, φX
ε (θ)).

The inverse of the isomorphism (4.5) is

U = dθ ⊗ u : T M → RM

where we denoted by u the constant function 1. A straightforward computation shows that

−→
U = t∗(dθ) ⊗ −→u = dφX ⊗ ∂

∂ε
and

←−
U = s∗(dθ) ⊗ ←−u = dθ ⊗

(
i∗

(
∂φX

∂ε

)
∂

∂θ
− ∂

∂ε

)
.

Finally, using that

∂φX

∂ε
= F ◦ φX ,

we find

δU = −→
U + ←−

U = (F ◦ φX ) dε ⊗ ∂

∂ε
+

(
∂φX

∂θ
− 1

)
dx ⊗ ∂

∂θ
+ Fdθ ⊗ ∂

∂θ

which is readily seen to be a Nijenhuis operator projecting to

N = Fdθ ⊗ ∂

∂θ
= FI

under both s and t . It follows that U : (T M)N → A is a Lie agebroid isomorphism as
already noticed.

5 More examples

In this section, we discuss some slightly less trivial examples of Lie groupoids integrating a
Nijenhuis operator, including their multiplicative Nijenhuis structures.

5.1 The vertical endomorphism of the tangent bundle

Let M be a manifold and let V ∈ �1(M, T M) be an integrable almost tangent structure on
M . In particular, V is a Nijenhuis operator, and we have a Lie algebroid (T M)V ⇒ M . The
local model for an integrable almost tangent structure is the vertical endomorphism of the
tangent bundle. For simplicity, we assume that M = T B globally for some manifold B, and
that V is exactly the vertical endomorphism. In this case, the Lie algebroid (T M)V ⇒ M
is integrated by a Lie groupoid G ⇒ M (depending on B only) that we now describe. As a
manifold,G = T M = T T B (the double tangent bundle of B). To the best of our knowledge,
the following groupoid structure on T T B appears here for the first time. In order to describe
it, we recall a few properties of the double tangent bundle. First of all, it is a double vector
bundle:
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The vertical projection τ : T T B → T B is the usual tangent bundle projection mapping a
tangent vector to its base point. The horizontal projection τ ′ : T T B → T B is the tangent to
the projection T B → B. We denote by (+, ·) the fiber-wise operations (addition and scalar
multiplication) of the vector bundlewith projection τ , and by (+′, ·′) the fiber-wise operations
of the vector bundle with projection τ ′. The latter are the tangent to the fiber-wise operations
of the vector bundle T B → B. Given local coordinates z = (zi ) on B, we denote by (z, ż)
the associated tangent coordinates on T B, and by (z, ż, z′, ż′), the tangent coordinates on
T T B associated with the coordinates (z, ż). In these coordinates, we have

τ(z, ż, z′, ż′) = (z, ż), τ ′(z, ż, z′, ż′) = (z, z′).

Additionally,

(x, ẋ, z′, ż′) + (x, ẋ, w′, ẇ′) = (x, ẋ, z′ + w′, ż′ + ẇ′), a · (x, ẋ, z′, ż′) = (x, ẋ, az′, aż′),

and

(x, ż, x ′, ż′) +′ (x, ẇ, x ′, ẇ′) = (x, ż + ẇ, x ′, ż′ + ẇ′), b ·′ (x, ż, x ′, ż′) = (x, bż, x ′, bż′),

for all a, b ∈ R. Finally, there is a canonical involution κ : T T B → T T B swapping the
two vector bundle structures. In coordinates

κ(z, ż, z′, ż′) = (z, z′, ż, ż′)

(for a coordinate-free definition of κ see, e.g., [26, Section 9.6]).
We are now ready to describe the Lie groupoid structure on T T B integrating the vertical

endomorphism V on T B. Source and target s, t : T T B → T B are given by

s(ξ) = τ(ξ) − τ ′(ξ), t(ξ) = τ(ξ) + τ ′(ξ).

As τ(ξ) and τ ′(ξ) have the same base point for all ξ ∈ T T B, both s and t are well-defined.
In order to define the multiplication

m : T T B s×t T T B → T T B,

take ξ, ζ ∈ T T B such that s(ξ) = t(ζ ), and let η ∈ T T B be any vector such that

τ(η) = τ ′(ξ) and τ ′(η) = τ ′(ζ ).

We put

m(ξ, ζ ) = (
ξ −′

κ(η)
) + (

ζ +′ η
)
.

In coordinates

m
(
(x, ż, z′, ż′), (x, ẇ, w′, ẇ′)

) = (x, ż − w′, z′ + w′, ż′ + ẇ′)

where ż − z′ = ẇ + w′. This shows that m(ξ, ζ ) is independent of the choice of η. The unit
u : T B → T T B is the zero section of the vertical vector bundle τ : T T B → T B. Finally,
the inversion i : T T B → T T B is the fiber-wise multiplication by −1 wrt the vertical vector
bundle structure. A direct computation, e.g., in coordinates, shows that with these structure
maps, T T B is indeed a Lie groupoid over T B. Denote by G ⇒ T B this Lie groupoid. We
want to show that G integrates the vertical endomorphism on T B. To do this, we need to
describe the Lie algebroid A ⇒ T B of G. As τ : G → T B is a vector bundle projection
and u : T B → G is the zero section of this vector bundle, we have a canonical splitting
u∗(TG) ∼= T T B ⊕T B Ṫ T B, where Ṫ T B denotes the copy of T T B corresponding to the
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tangent spaces to the τ -fibers at zeros. Hence, A = u∗(ker ds) ↪→ T T B ⊕T B Ṫ T B. It is
now easy to see that the map

U := 1
2 (V ⊕ I) : T T B → T T B ⊕T B Ṫ T B

is an injective map whose image is exactly A, and so it is a vector bundle isomorphism
T T B ∼= A. In coordinates

U
∂

∂z
|(z,ż) = 1

2

(
∂

∂ ż
+ ∂

∂z′

)
|(z,ż,0,0), and U

∂

∂ ż
|(z,ż) = 1

2

∂

∂ ż′
|(z,ż,0,0),

i.e.,

U = 1

2

(
dz ⊗

(
∂

∂ ż
+ ∂

∂z′

)
|M + dż ⊗ ∂

∂ ż′
|M

)
.

It remains to show that U identifies the Lie algebroid structure (T T B)V with that of A.

Instead of doing this directly, we apply Theorem4.1. First of all, we compute
−→
U . It is easy

to see that −−−−−−−−−−→(
∂

∂ ż
+ ∂

∂z′

)
|M = ∂

∂ ż
+ ∂

∂z′
and

−−−→
∂

∂ ż′
|M = ∂

∂ ż′
. (5.1)

Now, denote by VTT B ∈ �1(T T B, T T T B) the vertical endomorphism on T T B. It follows
from (5.1) and the first one of (2.5) that

−→
U = 1

2

(
d(t∗z) ⊗

(
∂

∂ ż
+ ∂

∂z′

)
+ d(t∗ ż) ⊗ ∂

∂ ż′

)

= 1

2

(
dz ⊗

(
∂

∂ ż
+ ∂

∂z′

)
+ d

(
ż + z′

) ⊗ ∂

∂ ż′

)

= 1

2

(
κ∗(VTT B) + VTT B

)

which clearly fulfills both conditions (1) and (2) in Theorem4.1. Similarly,

←−
U = 1

2

(
κ∗(VTT B) − VTT B

)
.

Hence,

δU = −→
U + ←−

U = κ∗ (VTT B)

which is a Nijenhuis operator projecting on V along both s, t : T T B → T B. Using Theo-
rem4.1, we conclude that U identifies the Lie algebroid structure (T T B)V with that of A,
as claimed.

5.2 Integrable projections

A projection on amanifoldM is a (1, 1) tensor P such that P2 = P . It follows that V := im P
and H := ker P are regular distributions (the vertical and horizontal distributions) such that
T M = V ⊕ H . A projection P is integrable if it is additionally a Nijenhuis operator. In this
case, both V and H are involutive distributions. Let P be an integrable projection on M .
For simplicity, we assume that the foliation integrating the vertical distribution V is simple,
i.e., the leaf space B is a manifold, and the natural projection π : M → B is a surjective
submersion. In this case, V = T π M , theπ -vertical tangent bundle, and H is a flat Ehresmann
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connection on the fibration π : M → B. Locally, we can choose fibered coordinates (xi , uα)

on M such that

P = duα ⊗ ∂

∂uα
.

In the following, we will always use π to identify H with the pull-back vector bundle
π∗T B in the obvious way. This vector bundle carries a natural representation of the Lie
algebroid T π M ⇒ M (where the anchor is the inclusion T π M ↪→ T M and the bracket is
the commutator of vector fields tangent to fibers of π ). This representation is given by the
Bott connection: the unique T π M-connection in H = π∗T B such that all pull-back sections
are parallel. The Lie algebroid (T M)P ⇒ M of the integrable projection P is easily seen to
be isomorphic to the semi-direct product Lie algebroid T π M � H = T π M ×B T B ⇒ M
under

T M → T π M ×B T B, v �→ (Pv, π∗v). (5.2)

In order to illustrate our main result, we now prove the Lie algebroid isomorphism (T M)P ∼=
T π M�H using Theorem4.1. To do this, we need to fix a Lie groupoid integrating T π M�H .
First,we choose an integration of theLie algebroid T π M . The easiest choice is the submersion
groupoid M ×B M whose structure maps are

s(x, y) = x, t(x, y) = y, m((x, y), (z, x)) = (z, y),

u(x) = (x, x), i(x, y) = (y, x).

The vector bundle H = π∗T B carries a canonical representation of the submersion groupoid
integrating the Bott connection given by

(x, y).(x, v) = (y, v), for all (x, y) ∈ M ×B M, and v ∈ Tπ(x)=π(y)B.

It follows that the semidirect product Lie groupoid (M×B M)�H = M×B M×B T B ⇒ M
integrates the Lie algebroid T π M � H = T π M ×B T B ⇒ M . The structure maps in
M ×B M ×B T B are

s(x, y, v) = x, t(x, y, v) = y, m((x, y, v), (z, x, w)) = (z, y, v + w),

u(x) = (x, x, 0x ), i(x, y, v) = (y, x,−v). (5.3)

Notice that T π M ×B T B ⇒ M identifies with the Lie algebroid

A ⊆ T (M ×B M ×B T B) = T M ×T B T M ×T B T T B

of M ×B M ×B T B under the inclusion

T π M ×B T B ↪→ T M ×T B T M ×T B T T B,
(
ξ, v

) �→ (
0x , ξ, v

↑
0π(x)

)
,

where x = τ(ξ). Under this inclusion, themap (5.2) becomes the vector bundle isomorphism

U : T M → A, ξ �→ (
0x , Pξ, (π∗ξ)

↑
0π(x)

)
.

A straightforward computation using this and the structure maps (5.3) shows that the (1, 1)
tensors

−→
U ,

←−
U : T M ×T B T M ×T B T T B → T M ×T B T M ×T B T T B

are given by

−→
U (ξ, η,W ) =

(
0x , Pη, (π∗ξ)↑w

)
, and

←−
U (ξ, η,W ) =

(
Pξ, 0y,−(π∗ξ)↑w

)
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where (ξ, η,W ) is a tangent vector at the point (x, y, w) ∈ M×B M×B T B. The coordinates
(xi , uα) onM induce coordinates (xi , uα

1 , uα
2 , ẋ i ) onM×B M×T B, where (uα

1 ) (resp. (uα
2 ))

are fiber coordinates on the first (resp. second) factor, and (ẋ i ) are fiber tangent coordinates
on the last factor. In these coordinates

−→
U = duα

2 ⊗ ∂

∂uα
2

+ dxi ⊗ ∂

∂ ẋ i
, and

←−
U = duα

1 ⊗ ∂

∂uα
1

− dxi ⊗ ∂

∂ ẋ i

which obviously satisfy conditions (1) and (2) of Theorem4.1 (alternatively one can check
that the A-torsion of U vanishes identically and then use Remark4.2). Finally,

δU = −→
U + ←−

U : T M ×T B T M ×T B T T B → T M ×T B T M ×T B T T B

is given by

δU (ξ, η,W ) = (Pξ, Pη, 0)

which projects onto P under both the source and the target, as claimed (equivalently ρA◦U =
P).

5.3 Pre-Lie algebras

A pre-Lie algebra (aka left symmetric algebra) is a vector space a equipped with a bilinear
map

� : a × a → a, (a, b) �→ a � b

such that

(a � b) � c − a � (b � c) = (b � a) � c − b � (a � c), for all a, b, c ∈ a.

In other words, the associator of a is symmetric in the first two entries. Associative algebras
are instances of pre-Lie algebras. If (a, �) is a pre-Lie algebra, then the commutator:

[−,−]� : a × a → a, (a, b) �→ [a, b]� := a � b − b � a

is a Lie bracket. We will denote by aLie the Lie algebra (a, [−,−]�). The Lie algebra aLie
comes with a canonical representation L : aLie → gl(a) on a itself given by

L(a)(x) = a � x, for all a, x ∈ a.

Let a be a finite dimensional real pre-Lie algebra. Then, a can be seen as a manifold.
For any a ∈ a, we denote by a↑ ∈ X(a) the constant vector field equal to a and, for
any endomorphism φ : a → a, we denote by Xφ ∈ X(a) the only vector field such that
[Xφ, a↑] = φ(a)↑ for all a ∈ g. (This is consistent with our notation in Sect. 3.) There is a
canonical (1, 1) tensor N on a given by

Na↑ = XL(a), for all a ∈ a.

Equivalently,

Na↑
x = −a � x, for all a, x ∈ a.

The (1, 1) tensorN is always a Nijenhuis operator and every Nijenhuis operator on a vector
space whose components are linear in linear coordinates arises in this way [1, 21].We remark
that our Nijenhuis operatorN differs in sign from that in [1, 21]. Our sign conventions make
it easier the description of the associated Lie algebroid.
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We will describe the source-simply connected Lie groupoid integrating N . We begin
describing (T a)N . For all a, b ∈ a, we have

[a↑, b↑]N = [Na↑, b↑] + [a↑,Nb↑] = [XL(a), b
↑] + [a↑, XL(b)]

= L(a)(b) − L(b)(a) = [a, b]�.
The latter equation, together with the anchor being N , determines the Lie algebroid (T a)N
completely. Namely, it is immediate that (T a)N is isomorphic to the action Lie algebroid
A := aLie � a ⇒ a via

U : T a → a × a, v↑
x → (v, x).

Again, in order to illustrate the main result of the paper, we prove this straightforward
fact taking a longer route. So, let G be the simply connected Lie group integrating aLie.
The pre-Lie algebra structure on a induces a left invariant affine structure on G and every
source-simply connected Lie group with a left invariant affine structure arises in this way
(see, e.g., [6]). We will not really use this affine structure, but we will need the G-action
L : G × a → a on a integrating the Lie algebra action L .

Lemma 5.1 Let (a, �) be a finite dimensional, real pre-Lie algebra and let G be the source
simply-connected Lie group integrating aLie. Then, the action L satisfies

Lg(x � y) = adgx � Lg y, for all x, y ∈ a. (5.4)

Proof By connectedness, it is enough to prove that (5.4) is satisfied at the infinitesimal level.
Differentiating Lg(x � y) − adgx � Lg y, we find

ġ � (x � y) − [ġ, x]� � y − x � (ġ � y)

= ġ � (x � y) − (ġ � x) � y + (x � ġ) � y − x � (ġ � y) = 0,

for all ġ, x, y ∈ a. This concludes the proof. ��
We want to show that the action groupoid G � a ⇒ a corresponding to L integrates N

via Theorem4.1. Recall that the structure maps of G � a are:

s(g, x) = x, t(g, x) = Lgx, m((g,Lhx), (h, x)) = (gh, x),

u(x) = (1G , x), i(g, x) = (g−1,Lgx).

The Lie algebroid ofG×a → a is the action Lie algebroid A that we already considered.We
want to show thatU satisfies both conditions (1) and (2) of Theorem4.1 and that s∗δU = N .
This will confirm that U : (T g)N → A is a Lie algebroid isomorphism.

A straightforward computation that we leave to the reader shows that

−→
U

(−→
ξ g, a

↑
x

)
=

((−−−−−−−−−−→Lga − ξ � Lgx
)
g, 0x

)

and
←−
U

(−→
ξ g, a

↑
x

)
=

(
−(−−→

adga
)
g,−

(
a � x

)↑
x

)
,

hence

δU
(−→

ξ g, a
↑
x

)
=

((−−−−−−−−−−−−−−−→Lga − adga − ξ � Lgx
)
g,−

(
a � x

)↑
x

)

for all (g, x) ∈ G�a, all ξ ∈ aLie and all a ∈ a, where
−→
ξ ∈ X(G) is the right invariant vector

field corresponding to ξ . One can show that
−→
U is actually a Nijenhuis operator by computing
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the A-torsion of U , and then using Remark4.2. This is easy: for every a ∈ a, denote by
ca ∈ �(A) the constant section equal to a. We have [ca, cb]A = c[a,b]� and ρA(ca) = XL(a)

for all a, b ∈ a. Additionally, Ua↑ = ca . Hence

T A
U (a↑, b↑) = [Ua↑,Ub↑]A −U [ρAUa↑, b↑] −U [a↑, ρAUb↑]

= [ca, cb]A −U [ρAca, b
↑] −U [a↑, ρAcb]

= c[a,b]� −U [XL(a), b
↑] −U [a↑, XL(b)]

= c[a,b]� −U (a � b)↑ +U (b � a)↑

= c[a,b]� − ca � b + cb � a = 0,

where we used that any two constant vector fields commute. By linearity, we conclude that
T A
U = 0.
Finally, it is easy to see that

s∗ ◦ δU
(−→

ξ g, a
↑
x

) = −(
a � x

)↑
x = Na↑

x = N ◦ s∗
(−→

ξ g, a
↑
x

)

i.e., N is exactly the s-projection of δU (equivalently ρA ◦ U = N ). As a sanity check, we
also compute

t∗ ◦ δU
(−→

ξ g, a
↑
x

) = (
(ξ � Lgx − Lga + adga) � Lgx − Lg(a � x)

) ↑
Lg x

= (
(ξ � Lgx − Lga) � Lgx

)↑
Lg x

= N
(
Lga − ξ � Lgx

)↑
Lg x

= N ◦ t∗
(−→

ξ g, a
↑
x

)
,

where we also used Lemma5.1. This confirms that N is also the t-projection of δU .
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