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Abstract
In a recent paper (JFA 278:108342, 2020), R. E. Curto, S. H. Lee and J. Yoon asked the 
following question: Let T be a subnormal operator, and assume that T2 is quasinormal. 
Does it follow that T is quasinormal? In (JFA 280:109001, 2021) we answered this ques-
tion in the affirmative. In the present paper, we will extend this result in two directions. 
Namely, we prove that hyponormal (or even much beyond this class) nth roots of bounded 
quasinormal operators are quasinormal. On the other hand, we show that subnormal nth 
roots of unbounded quasinormal operators are quasinormal. We also prove that a non-nor-
mal quasinormal operator having a quasinormal nth root has a non-quasinormal nth root.

Keywords  Quasinormal operator · Subnormal operator · Class A operator · Intertwining 
theorem · Stieltjes moment problem

Mathematics Subject Classification  Primary 47B20 · 47B15 · Secondary 47A63 · 44A60

1  Introduction

The importance of the spectral theorem in mathematics and its applications was a motiva-
tion for the search for wider classes of operators inheriting some properties of the ances-
tors. Consequently, there have been many generalizations obtained by weakening the con-
ditions defining normal operators. Let us recall some of them that are the subject of our 
research in this article.

Denote by B(H ) the C∗-algebra of all bounded linear operators on a complex Hilbert 
space H  and by I = IH  the identity operator on H  . We write B+(H ) for the convex cone 
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of all positive selfadjoint elements of B(H ) . Given another complex Hilbert spaces K  , 
we denote by B(H,K ) the Banach space of all bounded linear operators from H  to K  . 
The kernel and the range of T ∈ B(H,K ) are denoted by N(T) and R(T) , respectively.

An operator T ∈ B(H ) is said to be:

•	 normal if T∗T = TT∗,
•	 quasinormal if T(T∗T) = (T∗T)T ,
•	 subnormal if T is (unitarily equivalent to) the restriction of a normal operator to its 

closed invariant subspace,
•	 hyponormal if TT∗ ⩽ T∗T ,
•	 p-hyponormal if (TT∗)p ⩽ (T∗T)p , where p is a positive real number,
•	 log-hyponormal if T is invertible in B(H ) and logTT∗ ⩽ log T∗T ,
•	 of class A if T∗T ⩽ (T∗2T2)

1

2,
•	 paranormal if ‖Th‖2 ⩽ ‖T2 h‖‖h‖ for all h ∈ H .

The structure of the inclusion relations between the classes of operators defined above 
is illustrated in Fig. 1 (for more information, see Sect. 2). The classes of subnormal and 
hyponormal operators were introduced by P. R. Halmos in [17]. The study of quasinormal 
operators was initiated by A. Brown in [6]. In turn, the notions of a paranormal operator 
and an operator of class A were introduced by V. Istrăţescu in [23] and by T. Furuta, M. Ito 
and T. Yamazaki in [15], respectively. We refer the reader to Theorem 2.2 for an explana-
tion of why operators of class A appear naturally.

The present work is a continuation of the article [38], in which the authors solved affirm-
atively the problem posed by R. E. Curto, S. H. Lee and J. Yoon (see [9, Problem 1.1]). In 
fact, the following more general result has been proven.

Theorem 1.1  [ [38, Theorem 1.2]] If T ∈ B(H ) is a subnormal operator such that Tn is 
quasinormal, where n is a positive integer, then T is quasinormal.

In [38, Section 3] we gave two proofs of this theorem using quite different techniques. 
The first technique appeals to the theory of operator monotone functions with emphases on 
Hansen’s inequality. The second relies on the theory of (scalar and operator) moment prob-
lems. The origins of the second technique go back to the celebrated Embry’s characteriza-
tion of subnormal operators expressed in terms of the Stieltjes operator moment problem 
(see [13]; see also [2, 33]).

Problem 1.1 in [9] can be naturally generalized in two directions: by enlarging the class 
of nth roots, and by allowing the operators in question to be closed and unbounded.

Fig. 1   Inclusion relations between the classes of operators under consideration
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Problem  1.2  [see [38, Problem  5.1]] Let T be a subnormal (hyponormal, etc.) operator 
which is bounded, or unbounded and closed. Assume that for some integer n ⩾ 2 , Tn is 
quasinormal. Does it follow that T is quasinormal?

It turns out that the first technique of proving Theorem 1.1 which appeals to operator 
monotone functions is more suitable for bounded operators. Namely, we will prove the fol-
lowing theorem, which is the first of the three main results of this paper.

Theorem 1.3  Let T ∈ B(H ) be of class A (in particular, p-hyponormal or log-hyponor-
mal) and n be an integer greater than 1 such that Tn is quasinormal. Then T is quasinormal.

Theorem 1.3 follows from the second statement of Theorem 4.1 in Sect. 4. The first 
statement of Theorem  4.1 relates Embry’s description of quasinormal operators (see 
Theorem 2.1) to a certain chain of inequalities characterizing operators of class A (see 
Theorem 2.2).

Results similar to those in Theorems 1.1 and 1.3 for nth roots of normal operators 
have been known for a long time. Namely, J. G. Stampfli proved that a hyponormal nth 
root of a normal operator is normal (see [45, Theorem 5]). T. Ando improved this result 
showing that a paranormal nth root of a normal operator is normal (see [1, Theorem 6]). 
However, a hyponormal nth root of a subnormal operator need not be subnormal (see 
[47, pp. 378/379]). It turns out that normal operators and non-normal quasinormal oper-
ators can have non-normal and non-quasinormal nth roots, respectively. A more detailed 
discussion on this topic can be found in Sect. 6. Other questions concerning square roots 
(or more generally nth roots) in selected classes of operators have been studied at least 
since the early 1950’s (see e.g., [8, 11, 12, 16, 20, 21, 29–32, 35, 41, 46, 60]).

To prove Theorem 1.3, we will need the following theorem, which is the second of 
the three main results of this paper. It generalizes [37, Lemma 3.7] in two directions. 
First, it removes the injectivity assumption, and second, it replaces commutativity by a 
more general intertwining relation. We give the proof of Theorem 1.4 in Sect. 3. This 
theorem is no longer true if the operators A and B do not satisfy the condition A∗A ⩽ B , 
even if K = H  and C = B (see [37, Example 3.10]).

Theorem 1.4  Let H  and K  be complex Hilbert spaces, A ∈ B(H,K ) , B ∈ B+(H ) and 
C ∈ B+(K ) . Suppose that �, � are distinct positive real numbers. Then the following con-
ditions are equivalent:

	 (i)	 A∗A ⩽ B and A∗CsA = Bs+1 for s = �, �,
	 (ii)	 A∗A = B and AB = CA.

The above result covers the case of n-tuples of noncommuting operators. As shown 
below, Theorem  1.4 implies Theorem  1.5. Since the converse implication is obvious, 
both theorems are logically equivalent.

Theorem  1.5  Fix a positive integer n. Let H,Ki  be complex Hilbert spaces, 
Ai ∈ B(H,Ki ) , B ∈ B+(H ) and Ci ∈ B+(Ki) , where i = 1,… , n . Suppose that �, � are 
distinct positive real numbers. Then the following conditions are equivalent:
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	 (i)	 A∗
1
A1 +⋯ + A∗

n
An ⩽ B and A∗

1
Cs
1
A1 +⋯ + A∗

n
Cs
n
An = Bs+1 for s = �, �,

	 (ii)	 A∗
1
A1 +⋯ + A∗

n
An = B and AiB = CiAi for i = 1,… , n.

Proof  Apply Theorem 1.4 to the quadruple (K,A,B,C) defined by K ∶= K1 ⊕⋯⊕Kn , 
C ∶= C1 ⊕⋯⊕ Cn and Ah ∶= A1h⊕⋯⊕ Anh for h ∈ H  . 	�  ◻

It is worth pointing out that Theorem 1.4 allows us to obtain a useful criterion for the 
quasinormality of arbitrary operators (without assuming injectivity).

Theorem 1.6  Let A ∈ B(H ) , B ∈ B+(H ) and �, � be distinct positive real numbers. Then 
the following conditions are equivalent:

	 (i)	 A∗A ⩽ B and A∗BsA = Bs+1 for s = �, �,
	 (ii)	 A is quasinormal and B = |A|2.

Proof  It follows from Theorem 1.4 with K = H  and C = B that the condition (i) is equiva-
lent to the conjunction of two equalities B = |A|2 and A(A∗A) = (A∗A)A . 	�  ◻

As shown in Sect.  5, the second technique used in the proof of Theorem  1.1 which 
is based on the theory of moments is better suited to unbounded (i.e., not necessarily 
bounded) subnormal operators. First, we need to define the unbounded counterparts of the 
concepts of quasinormality and subnormality. Given a linear operator T in H  , we denote 
by D(T) , N(T) , R(T) and T∗ the domain, the kernel, the range and the adjoint of T, respec-
tively. Following [28] (cf. [52]), we say that a closed densely defined operator T in H  is 
quasinormal if T(T∗T) = (T∗T)T  , or equivalently (see [26, Theorem 3.1]) if and only if 
E(𝛥)T ⊆ TE(𝛥) for all Borel subsets � of the nonnegative part of the real line, where E is 
the spectral measure of |T|. A densely defined operator T in H  is said to be subnormal if 
there exists a complex Hilbert space K  and a normal operator N in K  such that H ⊆ K  
(isometric embedding), D(T) ⊆ D(N) and Th = Nh for all h ∈ D(T) . Such N is called a 
normal extension of T. The foundations of the theory of unbounded subnormal operators 
were developed in [51–54].

We are now ready to state the last of the three main results of this paper. Its proof is 
given in Sect. 5.

Theorem 1.7  Let T be a closed densely defined operator in H  and n be an integer greater 
than 1. Suppose that T is subnormal and Tn is quasinormal. Then T is quasinormal.

2 � Preliminaries

In this paper, we use the following notation. The fields of real and complex numbers are 
denoted by ℝ and ℂ , respectively. The symbols ℤ+ , ℕ and ℝ+ stand for the sets of non-
negative integers, positive integers and nonnegative real numbers, respectively. Given a set 
𝛥 ⊆ ℂ , we write 𝛥∗ = {z̄ ∶ z ∈ 𝛥} . Denote by �(�) the �-algebra of all Borel subsets of a 
topological Hausdorff space �.
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A sequence {�n}∞n=0 of real numbers is said to be a Stieltjes moment sequence if there 
exists a positive Borel measure � on ℝ+ such that

A positive Borel measure � on ℝ+ satisfying (2.1) is called a representing measure of 
{�n}

∞
n=0

 . If {�n}∞n=0 is a Stieltjes moment sequence which has a unique representing meas-
ure, then we say that {�n}∞n=0 is determinate. It is well known that if a Stieltjes moment 
sequence has a representing measure with compact support, then it is determinate. The 
reader is referred to [4] for the foundations of the theory of moment problems.

Let A  be a �-algebra of subsets of a set � and let F ∶ A → B(H ) be a positive opera-
tor valued measure (a POV measure for brevity), that is ⟨F(⋅)f , f ⟩ is a positive measure for 
every f ∈ H  . Denote by L1(F) the vector space of all A -measurable functions f ∶ � → ℂ 
such that ∫

𝛺
�f (x)�⟨F(dx)h, h⟩ < ∞ for all h ∈ H  . Then for every f ∈ L1(F) , there exists a 

unique operator ∫
�
fdF ∈ B(H ) such that (see e.g., [48, Appendix])

If a POV measure F is normalized, that is F(�) = I , then F is called a semispectral meas-
ure. Observe that if F is a spectral measure, that is F is a semispectral measure such that F(�) 
is an orthogonal projection for every � ∈ A  , then ∫

�
fdF coincides with the usual spectral 

integral. If F is the spectral measure of a normal operator T, then we write f (T) = ∫
ℂ
fdF for 

a Borel function f ∶ ℂ → ℂ ; the map f ↦ f (T) is called the Stone-von Neumann functional 
calculus. We refer the reader to [5, 43, 44, 59] for the necessary information on spectral inte-
grals, including the spectral theorem for normal operators and the Stone-von Neumann func-
tional calculus, which we will need in this paper.

In the proofs of Theorems 1.3 and 1.7, we use the following characterizations of quasinor-
mal operators (the “moreover” part of Theorem 2.1 follows from the observation that by (2.2), 
E is the spectral measure of T∗T)

Theorem 2.1  ([13, 26]) Let T be a closed densely defined operator in H  . Then the follow-
ing conditions are equivalent:

	 (i)	 T is quasinormal,
	 (ii)	 T∗kTk = (T∗T)k for k ∈ ℤ+,

	 (iii)	 (T∗kTk)
1

k = T∗T  for k ∈ ℕ,
	 (iv)	 there exists a spectral measure E ∶ �(ℝ+) → B(H ) such that 

Moreover, the spectral measure E in (iv) is unique and if T ∈ B(H ) , then

(2.1)�n = ∫
ℝ+

tnd�(t), n ∈ ℤ+.

�
∫�

fdFh, h
�
= ∫�

f (x)⟨F(dx)h, h⟩, h ∈ H.

(2.2)T∗kTk = ∫
ℝ+

xkE(dx), k ∈ ℤ+.

E((‖T‖2,∞)) = 0.
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The above characterizations of quasinormal operators were invented by M. R. Embry for 
bounded operators (see [13, p. 63]) and then extended to unbounded ones by Z. J. Jabłoński, I. 
B. Jung and the second-named author (see [26, Theorem 3.6]; cf. [57]). Although the condi-
tion (ii) looks more elaborate than T(T∗T) = (T∗T)T , it allows us to use the techniques related 
to positive operators including spectral theorem, the Stone-von Neumann functional calculus, 
operator monotone and operator convex functions and operator inequalities.

The condition (ii) of Theorem 2.1 leads to the problem of reduced Embry’s characteri-
zation of quasinormality (see [38, Problem 1.4]). This problem, to some extent related to 
the theory of operator monotone and operator convex functions, has been studied by sev-
eral authors (see e.g., [26, 27, 36, 37, 57, 58]). In particular, it was shown in [26, Exam-
ple 5.5] (see also [36, Theorem 4.3]) that for every integer n ⩾ 2 , there exists an operator 
T ∈ B(H ) such that

The following result, which is closely related to Theorem 2.1(iii), plays a key role in the 
proof of Theorem 1.3 (see Theorem 4.1). In particular, it shows that an operator T ∈ B(H ) 
is of class A if and only if the sequence {(T∗kTk)

1

k }∞
k=1

 is monotonically increasing.

Theorem  2.2  ( [25, Theorem  1]; cf. [24, Theorems  2 & 3] and [61, Theorem  1]) If 
T ∈ B(H ) is of class A (in particular, p-hyponormal or log-hyponormal), then the 

sequence {(T∗kTk)
1

k }∞
k=1

 (resp., {(TkT∗k)
1

k }∞
k=1

 ) is monotonically increasing (resp., mono-
tonically decreasing), that is

and

We conclude this section with a more detailed discussion of Fig. 1. That hyponormal 
operators are of class A, can be justified as follows. If T∗T ⩾ TT∗ , then 
T∗(T∗T)T ⩾ T∗(TT∗)T  and thus by the Löwner-Heinz inequality with exponent 1

2
 (see [22, 

34]), (T∗2T2)
1

2 ⩾ T∗T  . This fact also follows from a more general result due to T. 
Yamazaki, which shows in particular that p-hyponormal operators with p ∈ (0, 1] are of 
class A (see [61, Theorem 1(i)]). In fact, p-hyponormal operators are always of class A 
because p-hyponormal operators are q-hyponormal whenever 0 < q < p < ∞ (apply the 
Löwner-Heinz inequality with exponent q

p
 ). It is well known that invertible p-hyponormal 

operators are log-hyponormal (see [14, Theorem 1 in §3.4.2]). However, one can construct 
a log-hyponormal operator that is not p-hyponormal for any p ∈ (0,∞) (see [56, Exam-
ple 12]). In turn, every log-hyponormal operator is of class A and every class A operator is 
paranormal (see [14, Theorem 1 in §3.5.1]). Note also that strict inclusions appear in Fig. 1 
only if H  is infinite dimensional (see [23, Theorem 2.2]). More information on the classes 
of bounded operators considered in this paper can be found in [7, 14].

(2.3)T∗nTn = (T∗T)n and T∗kTk ≠ (T∗T)k for all k ∈ {2, 3, 4,…} ⧵ {n}.

T∗T ⩽ (T∗2T2)
1

2 ⩽ (T∗3T3)
1

3 ⩽ … ,

TT∗ ⩾ (T2T∗2)
1

2 ⩾ (T3T∗3)
1

3 ⩾ … .
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3 � Proof of the intertwining theorem

In this section, we give a proof of Theorem 1.4 based on a recent result of the authors (see 
[38, Theorem 4.2]). In fact, we need a version of it for positive operator valued measures 
that are not necessarily normalized.

Theorem 3.1  Let T ∈ B(H ) be a positive injective operator and �, � be distinct positive 
real numbers. Assume that F ∶ �(ℝ+) → B(H ) is a POV measure with compact support. 
Then the following conditions are equivalent:

	 (i)	 F is the spectral measure of T,
	 (ii)	 Tp = ∫

ℝ+
xpF(dx) for p = �, � and F(ℝ+) ⩽ I.

Proof  (i)⇒(ii) It is obvious. (ii)⇒(i) Let E ∶ �(ℝ+) → B(H ) be the spectral measure of T. 
Since F(ℝ+) ⩽ I , the map F̃ ∶ �(ℝ+) → B(H ) defined by

is a semispectral measure. It is easily seen that F̃ has compact support and

 
By [38, Theorem 4.2] and [39, Theorem], F̃ is the spectral measure of T, which yields

Since N(T) = {0} , we see that E({0}) = 0 and thus

This implies that F(ℝ+) = I and consequently F̃ = F . Therefore, F is the spectral meas-
ure of T. This completes the proof. 	�  ◻

We also need the following result which gives a necessary and sufficient condition 
for equality to hold in a Kadison-type inequality (cf. [40, Lemma 3.1]).

Lemma 3.2  Let H  and K  be complex Hilbert spaces, V ∈ B(H,K ) and T ∈ B(K ) . Sup-
pose that ‖V‖ ⩽ 1 . Then the following inequality is valid:

Moreover, equality holds in (3.2) if and only if TV = VV∗TV .

Proof  Since ‖V∗‖ ⩽ 1 , we deduce that IK − VV∗ ⩾ 0 , and therefore

F̃(�) = F(�) + �0(�)(I − F(ℝ+)), � ∈ �(ℝ+),

Tp = ∫
ℝ+

xpF̃(dx), p = �, �.

(3.1)E = F̃ = F + �0(I − F(ℝ+)).

0 = E({0})
(3.1)
= F({0}) + (I − F(ℝ+)).

(3.2)(V∗TV)∗(V∗TV) ⩽ V∗T∗TV .
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This yields (3.2).
It remains to prove the “moreover” part. It follows from (3.3) that equality holds in (3.2) 

if and only if

or equivalently if and only if TV = VV∗TV  . 	�  ◻

Proof of Theorem 1.4  (i)⇒(ii) It follows from the inequality A∗A ⩽ B and the Douglas fac-
torization theorem (see [10, Theorem 1]) that there exists an operator Q ∈ B(H,K ) such 
that

Since A∗CsA = Bs+1 for s = �, � , we infer from (3.4) that

Set H0 = R(B) . Define the operator Q0 ∈ B(H0,K ) by Q0h = Qh for h ∈ H0 . Observe 
that Q∗

0
∈ B(K,H0) is given by

where PH0
∈ B(H ) is the orthogonal projection of H  onto H0 . Note that H0 reduces B to 

B|H0
∈ B+(H0) and that the identity (3.5) is equivalent to

Since R(B) = R(B
1

2 ) , (3.7) holds if and only if

Combined with (3.6), this yields

Let E ∶ �(ℝ+) → B(K ) be the spectral measure of C. Then (3.8) implies that

where F ∶ �(ℝ+) → B(H0) is the POV measure with compact support defined by

It follows from (3.4) that ‖Q0‖ ⩽ 1 . Since N(B|H0
) = {0} and

(3.3)V∗T∗TV − (V∗T∗V)(V∗TV) = (TV)∗(IK − VV∗)TV ⩾ 0.

R(TV) ⊆ N

((
IK − VV∗

) 1

2

)
= N (IK − VV∗),

(3.4)‖Q‖ ⩽ 1 and A = QB
1

2 .

(3.5)B
1

2Q∗CsQB
1

2 = B
1

2BsB
1

2 , s = �, �.

(3.6)Q∗

0
= PH0

Q∗,

(3.7)
⟨
Q∗CsQB

1

2 h,B
1

2 h�
⟩
=

⟨
BsB

1

2 h,B
1

2 h�
⟩
, h, h� ∈ H, s = �, �.

⟨Q∗CsQh0, h
�

0
⟩ = ⟨Bsh0, h

�

0
⟩, h0, h

�

0
∈ H0, s = �, �.

(3.8)Q∗

0
CsQ0 = (B|H0

)s, s = �, �.

(B|H0
)s = ∫

ℝ+

xsF(dx), s = �, �,

(3.9)F(�) = Q∗

0
E(�)Q0, � ∈ �(ℝ+).

F(ℝ+) = Q∗

0
E(ℝ+)Q0 = Q∗

0
Q0 ⩽ IH0

,
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we deduce from Theorem 3.1 that F is the spectral measure of B|H0
 . In particular, we 

have

Note now that

By Lemma 3.2, this gives

Using [44, Proposition 5.15], we obtain

Hence, we have

This shows that

However, H⟂
0
= N(B) and thus A|

H
⟂
0
= 0 because

As a consequence, we get

It follows from (3.12) and (3.13) that AB = CA.
It remains to show that A∗A = B . For, note that H0 reduces A∗A and B, and

which implies that A∗A|H0
= B|H0

 . Clearly, A∗A|
H

⟂
0
= 0 = B|

H
⟂
0
 , so A∗A = B.

(3.10)IH0
= F(ℝ+)

(3.9)
= Q∗

0
E(ℝ+)Q0 = Q∗

0
Q0.

Q∗

0
E(�)2Q0

(3.9)
= F(�) = (F(�))2

(3.9)
= (Q∗

0
E(�)Q0)

2, � ∈ �(ℝ+).

E(�)Q0 = Q0Q
∗

0
E(�)Q0

(3.9)
= Q0F(�), � ∈ �(ℝ+).

(3.11)CQ0=Q0B|H0
.

ABh0
(3.4)
= QB

1

2Bh0

= Q0B|H0
(B|H0

)
1

2 h0

(3.11)
= CQ0(B|H0

)
1

2 h0

(3.4)
= CAh0, h0 ∈ H0.

(3.12)AB|H0
= CA|H0

.

‖Ah‖2 = ⟨A∗Ah, h⟩ ⩽ ⟨Bh, h⟩ = 0, h ∈ N(B).

(3.13)AB|
H

⟂
0
= 0 = CA|

H
⟂
0
.

⟨A∗Ah
0
, h�

0
⟩ = ⟨Ah

0
,Ah�

0
⟩

(3.4)
= ⟨QB

1

2 h
0
,QB

1

2 h�
0
⟩

= ⟨Q
0
B

1

2 h
0
,Q

0
B

1

2 h�
0
⟩

= ⟨Q∗

0
Q

0
B

1

2 h
0
,B

1

2 h�
0
⟩

(3.10)
= ⟨B

1

2 h
0
,B

1

2 h�
0
⟩

= ⟨Bh
0
, h�

0
⟩, h

0
, h�

0
∈ H

0
,
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(ii)⇒(i) It suffices to use the fact that AB = CA implies ABs = CsA for all positive real 
number s. This completes the proof. 	�  ◻

Remark 3.3  As shown in Sect. 1, Theorem 1.4 implies Theorem 1.6. However, the authors 
see no direct way to deduce Theorem 1.4 from Theorem 1.6 (the famous Berberian matrix 
trick does not give the expected result). On the other hand, from [37, Lemma 3.7] one can 
deduce its version in which the operator B is not assumed to be injective. Indeed, suppose 
that the condition (i) of Theorem 1.6 hold. We show that A∗A = B , A commutes with B, 
N(B) reduces A and A|N(B) = 0 (the converse implication is obvious). First, we claim that 

A|N(B) = 0 . Indeed, if h ∈ N(B) , then

so h ∈ N(A) . Thus the operators A and B have the block matrix representations

with respect to the orthogonal decomposition H = R(B)⊕N(B) , where

and P is the orthogonal projection of H  onto R(B) . This implies that

Hence

which yields Ã∗Ã ⩽ B̃ . Observe that

and

Combined with the equality in Theorem  1.6(i), this shows that Ã∗B̃sÃ = B̃s+1 for 
s = �, � . Clearly N(B̃) = {0} . Therefore, by [37, Lemma  3.7], Ã commutes with B̃ and 
Ã∗Ã = B̃ . This and (3.16) implies that C = 0 . Thus by (3.14), N(B) reduces A. Finally, it 
follows from (3.14) and (3.15) that AB = BA and A∗A = B , which completes the proof.

‖Ah‖2 = ⟨A∗Ah, h⟩ ⩽ ⟨Bh, h⟩ = 0,

(3.14)A =

[
Ã 0

C 0

]
and B =

[
B̃ 0

0 0

]

Ã = PA|
R(B)

, B̃ = B|
R(B)

, C = (I − P)A|
R(B)

,

(3.15)
[
Ã∗Ã + C∗C 0

0 0

]
=

[
Ã∗ C∗

0 0

][
Ã 0

C 0

]
= A∗A ⩽ B =

[
B̃ 0

0 0

]
.

(3.16)Ã∗Ã + C∗C ⩽ B̃,

A∗BsA =

[
Ã∗ C∗

0 0

][
B̃s 0

0 0

][
Ã 0

C 0

]
=

[
Ã∗B̃sÃ 0

0 0

]
, s ∈ (0,∞),

Bs+1 =

[
B̃s+1 0

0 0

]
, s ∈ (0,∞).
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4 � Class A nth roots of bounded quasinormal operators

The main purpose of this section is to prove Theorem  1.3. In view of Embry’s charac-
terization of quasinormal operators (see Theorem  2.1(iii)), Problem  1.2 for operators T 
of class A is closely related to the question when the monotonically increasing sequence {
(T∗kTk)

1

k

}∞

k=1
 appearing in Theorem  2.2 is constant. The answer given in Theorem  4.1 

below shows that this is the case when the distance between equal terms of the sequence is 
at least two (see also Problem 4.2). As a consequence, we obtain an affirmative solution to 
Problem 1.2 for operators of class A (see the second statement of Theorem 4.1).

Theorem 4.1  If T ∈ B(H ) is of class A (in particular, p-hyponormal or log-hyponormal), 
then any of the following statements implies that T is quasinormal:

	 (i)	 (T∗nTn)
1

n = (T∗kTk)
1

k for some positive integers k, n such that k − n ⩾ 2,
	 (ii)	 Tn is quasinormal for some positive integer n.

Proof  Suppose that (i) holds. In view of Theorem  2.2, there is no loss of generality in 
assuming that k = n + 2 . It also follows from Theorem 2.2 that

and

Set D = (T∗nTn)
1

n . By (4.1), we see that T∗T ⩽ D . Note further that

and

Therefore, we have

Applying Theorem 1.6 to (A,B) = (T ,D) , we conclude that T is quasinormal.
Assume now that (ii) holds. Applying Theorem 2.1(iii) to Tn , we deduce that

which implies that T satisfies (i). This completes the proof. 	�  ◻

The statement (i) of Theorem 4.1 suggests the following problem which is of some 
independent interest.

(4.1)T∗T ⩽ … ⩽ (T∗nTn)
1

n

(4.2)(T∗jTj)
1

j = (T∗nTn)
1

n , j = n + 1, n + 2.

(4.3)T∗(T∗nTn)T = T∗(n+1)Tn+1 (4.2)
= (T∗nTn)

n+1

n

T∗(T∗nTn)
n+1

n T
(4.3)
= T∗(n+2)Tn+2 (4.2)

= (T∗nTn)
n+2

n .

T∗DsT = Ds+1, s = n, n + 1.

(T∗nlTnl)
1

nl = (T∗nTn)
1

n , l ∈ ℕ,
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Problem  4.2 (Flatness problem)  Let T ∈ B(H ) be a class A operator. Assume that 

for some integer n ⩾ 2 , (T∗nTn)
1

n = (T∗(n+1)Tn+1)
1

n+1 . Does it follow that the sequence 

{(T∗jTj)
1

j }∞
j=1

 is constant (equivalently, T is quasinormal)?

Note that Problem  4.2 is interesting only for integers n ⩾ 2 because for n = 1 the 
answer is negative (see (2.3)).

It is worth noting that by Theorem 2.1, any quasinormal operator X ∈ B(H ) satisfies 
the single equation

where � is a fixed integer greater than 1, but not conversely (see (2.3)). It turns out that 
the class of operators satisfying (4.4) for a single � can successfully replace quasinormal 
operators in the predecessor of the implication in Theorem 1.3 (cf. [38, Theorem 4.1]).

Theorem 4.3  Let T ∈ B(H ) be a class A operator and n, � be integers greater than 1. If 
X = Tn satisfies the single equation (4.4), then T is quasinormal.

Proof  By assumption, we have (T∗n�Tn�)
1

n� = (T∗nTn)
1

n . Since n, � ⩾ 2 , Theorem  4.1(i) 
implies that T is quasinormal. 	�  ◻

Clearly, Theorem 4.3 implies Theorem 1.3. It is also worth noting that Theorem 4.3 is 
no longer true for n = 1 and � = 2 (see (2.3)). In this particular case, the single equation 
(4.4) automatically implies that T is of class A.

5 � Subnormal nth roots of unbounded quasinormal operators

In this section, we will give the proof of Theorem 1.7. Comparing this proof with the sec-
ond proof of [38, Theorem 1.2], one can find out that the case of closed, densely defined 
operators is much more elaborate. We will start with two auxiliary lemmas.

Lemma 5.1  Suppose that N is a normal operator in H  and k ∈ ℤ+ . Then (Nk)∗ = N∗k and 
D(Nk) = D(N∗k).

Proof  Let E be the spectral measure of N. It follows from [44, Theorem 5.9] and the meas-
ure transport theorem (see [5, Theorem 5.4.10]) that

and

where Ẽ ∶ �(ℂ) → B(H ) is the spectral measure given by Ẽ(�) = E(�∗) for   � ∈ �(ℂ) . 
Since Nk is normal, we conclude that D(Nk) = D((Nk)∗) = D(N∗k) . 	�  ◻

(4.4)X∗�X� = (X∗X)� ,

(5.1)N∗ = ∫
ℂ

z̄E(dz) = ∫
ℂ

z�E(dz)

(Nk)∗ =

(
∫
ℂ

zkE(dz)
)∗

= ∫
ℂ

z̄kE(dz) = ∫
ℂ

zk�E(dz)
(5.1)
= N∗k,
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The next lemma is due to Szafraniec (see [55, Fact D]). For the reader’s convenience we 
provide its proof.

Lemma 5.2  Let T be a subnormal operator in H  with normal extension N acting in K  
and let k ∈ ℕ . Then

where P is the orthogonal projection of K  onto H  . Moreover, if Tk is densely defined, 
then

Proof  We proceed by induction on k. If k = 1 and g ∈ D(N∗) , then

which implies that Pg ∈ D(T∗) and PN∗g = T∗Pg.
Assume now that for an unspecified fixed k ∈ ℕ,

Let g ∈ D(N∗(k+1)) . Then g ∈ D(N∗k) , so by (5.3), Pg ∈ D(T∗k) and thus

This implies that T∗kPg ∈ D(T∗) , or equivalently that Pg ∈ D(T∗(k+1)) , and 
T∗(k+1)Pg = PN∗(k+1)g . Thus PN∗(k+1) ⊆ T∗(k+1)P . The inclusion (5.2) is well known. 	� ◻

Proof of Theorem 1.7  Let N be a normal extension of T acting in a complex Hilbert space 
K  , G ∶ �(ℂ) → B(K ) be the spectral measure of N and P ∈ B(K ) be the orthogonal 
projection of K  onto H  . Define the semispectral measure � ∶ �(ℂ) → B(H ) by

It follows from [44, Theorem  5.9] and the measure transport theorem (see [3, Theo-
rem 1.6.12]) that

PD(N∗k) ⊆ D(T∗k),

PN∗kh = T∗kPh, h ∈ D(N∗k),

(5.2)D(T∗k) ⊆ D((Tk)∗).

⟨Th,Pg⟩ = ⟨Nh, g⟩=⟨h,N∗g⟩ = ⟨h,PN∗g⟩, h ∈ D(T),

(5.3)PN∗k ⊆ T∗kP.

⟨Th, T∗kPg⟩ (5.3)
= ⟨Th,PN∗kg⟩
= ⟨Th,N∗kg⟩
= ⟨Nh,N∗kg⟩
= ⟨h,N∗(k+1)g⟩
= ⟨h,PN∗(k+1)g⟩, h ∈ D(T).

(5.4)�(�) = PG(�)|H, � ∈ �(ℂ).
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where F ∶ �(ℝ+) → B(H ) is the semispectral measure defined by

with � ∶ ℂ → ℝ+ given by �(z) = |z|2 for z ∈ ℂ . By [50, Proposition 5.3], Tk is closed for 
every k ∈ ℤ+ . Since Tn is quasinormal, it follows from Theorem 2.1(iv) that there exists a 
spectral measure En ∶ �(ℝ+) → B(H ) such that

For k ∈ ℕ , define the homeomorphism �k ∶ ℝ+ → ℝ+ by �k(x) = xk for x ∈ ℝ+ . Set 
B = ∫

ℝ+

√
xEn(dx) . Then B is positive and selfadjoint. According to the measure transport 

theorem, we have

where Ẽn ∶ �(ℝ+) → B(H ) is the spectral measure defined by

Hence, by the spectral theorem, Ẽn is the spectral measure of B. Moreover, by [44, The-
orem 5.9] and the measure transport theorem, we have

Combined with (5.7), this yields

Our goal now will be to show that F is a spectral measure. For, set

Let E ∶=
⋃∞

j=1
Hj  . Since the sequence {En([0, k])}

∞
k=1

 converges to I in the strong opera-
tor topology, the set E  is dense in H  . Using the fact that D(Tj+1) ⊆ D(Tj) for all j ∈ ℤ+ , 
we deduce that

Thus D∞
(T) = H  . It follows from (5.9) and (5.10) that

(5.5)

‖Tkh‖2 = ‖Nkh‖2 = ∫
ℂ

�z�2k⟨G(dz)h, h⟩

= ∫
ℂ

�z�2k⟨�(dz)h, h⟩

= ∫
ℝ+

xk⟨F(dx)h, h⟩, h ∈ D(Tk), k ∈ ℤ+,

(5.6)F(�) = �(�−1(�)), � ∈ �(ℝ+),

(5.7)(Tn)∗k(Tn)k = ∫
ℝ+

xkEn(dx), k ∈ ℤ+.

B = ∫
ℝ+

�−1
2
(x)En(dx) = ∫

ℝ+

xẼn(dx),

Ẽn(�) = En(�2(�)), � ∈ �(ℝ+).

(5.8)B2k = ∫
ℝ+

x2kẼn(dx) = ∫
ℝ+

xkEn(dx), k ∈ ℤ+.

(5.9)(Tn)∗k(Tn)k = B2k, k ∈ ℤ+.

Hj = R(Ẽn([0, j])) = R(En([0, j
2])), j ∈ ℕ.

(5.10)E ⊆ D
∞
(B)

(5.9)

⊆ D
∞
(T).
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By the measure transport theorem, we get

where F̃ ∶ �(ℝ+) → B(H ) is the semispectral measure defined by

However, for any h ∈ E  there exists j ∈ ℕ such that h ∈ Hj = R(En([0, j
2])) , so

This implies that the Stieltjes moment sequence {∫
ℝ+

xk⟨En(dx)h, h⟩}∞k=0 is determinate 
for every h ∈ E  . Thus, by (5.12), we have

Since E = H  , we see that

Noting that the map �(ℝ+) ∋ � → �−1
n
(�) ∈ �(ℝ+) is surjective, we deduce from 

(5.13) and (5.14) that F is a spectral measure.
We will now show that

where

For, observe that in view of the measure transport theorem we have

Since G is the spectral measure of N, (5.15) follows from (5.17) and the identity 
Nj = ∫

ℂ
zjG(dz) which holds for any j ∈ ℤ+ (see [44, Theorem 5.9]).

(5.11)‖Tnkh‖2 = ⟨B2kh, h⟩ = ‖Bkh‖2, h ∈ E, k ∈ ℤ+.

(5.12)

∫
ℝ+

xk⟨En(dx)h, h⟩
(5.8)
= ⟨B2kh, h⟩

(5.11)
= ‖Tnkh‖2

(5.5)
= ∫

ℝ+

(xn)k⟨F(dx)h, h⟩

= ∫
ℝ+

xk⟨F̃(dx)h, h⟩, h ∈ E, k ∈ ℤ+,

(5.13)F̃(�) = F(�−1
n
(�)), � ∈ �(ℝ+).

∫
ℝ+

xk⟨En(dx)h, h⟩ = ∫
[0,j2]

xk⟨En(dx)h, h⟩, k ∈ ℤ+.

⟨En(�)h, h⟩ = ⟨F̃(�)h, h⟩, � ∈ �(ℝ+), h ∈ E.

(5.14)En(�) = F̃(�), � ∈ �(ℝ+).

(5.15)D(Jk) = D(N2k) ∩H, k ∈ ℤ+,

(5.16)Jk ∶= ∫
ℝ+

xkF(dx), k ∈ ℤ+.

(5.17)
∫
ℝ+

x2k⟨F(dx)h, h⟩ (5.6)
= ∫

ℂ

�z�4k⟨�(dz)h, h⟩

(5.4)
= ∫

ℂ

�z�4k⟨G(dz)h, h⟩, h ∈ H.
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Next, we will prove that

First, we show that

For, note that

Fix k ∈ ℤ+ and take h ∈ D(Jk) . Set hj = F([0, j])h for j ∈ ℕ . Then, by (5.20), 
{hj}

∞
j=1

⊆ E ∩D(Jk) . Since h − hj = F((j,∞))h for j ∈ ℕ and ∫
ℝ+

x2k⟨F(dx)h, h⟩ < ∞ , we 
deduce from Lebesgue’s dominated convergence theorem that

Hence

It follows from (5.10) and (5.20) that {hj}∞j=1 ⊆ E ∩D(Jk) ⊆ D
∞
(T) , so by (5.5) and (5.16) 

we have

Combined with (5.21), this implies that the sequence {Tkhj}
∞
j=1

 is convergent in H  . 
Since Tk is closed (see [50, Proposition 5.3]) and hj → h as j → ∞ , we see that h ∈ D(Tk) 
and Tkhj → Tkh as j → ∞ . Applying (5.5), (5.16) and (5.21) again, we obtain

which completes the proof of (5.19) and shows that

We now turn to the proof of (5.18). Fix k ∈ ℤ+ and take h ∈ D(Jk) . By (5.15) and 
(5.19), h ∈ D(Tk) ∩D(N2k) and consequently by Lemmas 5.1 and 5.2,

(5.18)D(Jk) ⊆ D(T∗kTk), k ∈ ℤ+.

(5.19)D(Jk) ⊆ D(Tk), k ∈ ℤ+.

(5.20)

E =

∞⋃

j=1

R(En([0, j
2])) =

∞⋃

j=1

R(En([0, j
n]))

=

∞⋃

j=1

R(En(�n([0, j])))

(5.14)
=

∞⋃

j=1

R(F([0, j])).

‖Jk(h − hj)‖2 = ‖JkF((j,∞))h‖2 = ∫
(j,∞)

x2k⟨F(dx)h, h⟩ → 0 as j → ∞.

(5.21)hj → h and Jkhj → Jkh as j → ∞.

‖Tk(hj − hl)‖2 = ∫
ℝ+

xk⟨F(dx)(hj − hl), hj − hl⟩

= ⟨Jk(hj − hl), (hj − hl)⟩, j, l ∈ ℕ.

‖Tkh‖2 = lim
j→∞

‖Tkhj‖2 = lim
j→∞

⟨Jkhj, hj⟩ = ⟨Jkh, h⟩,

(5.22)‖Tkh‖2 = ⟨Jkh, h⟩, h ∈ D(Jk), k ∈ ℤ+.
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so h ∈ D(T∗kTk) , which proves (5.18).
It follows from (5.18) and (5.22) that

Since Jk is densely defined, we get

By induction, we have

so T∗kTk is symmetric. Since F is a spectral measure, we infer from (5.16) that Jk is selfad-
joint. By (5.23) and maximality of selfadjoint operators, we obtain

It follows from Theorem 2.1 that T is quasinormal. This completes the proof. 	�  ◻

6 � Non‑quasinormal nth roots of bounded quasinormal operators

In this section, we will discuss the question of the existence of non-quasinormal nth roots 
of (bounded) quasinormal operators. We begin with the case of nth roots of normal opera-
tors. It is a well-known fact that every normal operator T ∈ B(H ) has an nth root for any 
integer n ⩾ 2 . Indeed, if E is the spectral measure of T, then ∫

ℂ
n
√
zE(dz) is the nth root of T, 

where n
√
z is a Borel measurable branch of the nth root on the complex plane (see e.g., [8, 

Proposition 1.13]). It is worth pointing out that every nth root of an invertible normal oper-
ator T is similar to a normal nth root of T (see [32, Theorem 1], see also [46, Theorem 1]).

To simplify further considerations, we will focus on square roots of normal operators 
(which are complex enough by themselves). If dimH ⩾ 2 , then there always exists a nor-
mal operator T ∈ B(H ) which does have a non-normal square root. Indeed, it is enough 
to consider a normal operator of the form T = A2 ⊕ B2 ⊕ B2 , where A and B are normal 
operators on complex Hilbert spaces M  and K  , respectively, and H = M⊕K⊕K  
(the space M  may be absent). For, fix any nonzero operator C ∈ B(K ) that commutes 
with B. Then the operator S ∈ B(H ) defined by

is a non-normal square root of T. It turns out that if H  is separable and � ∶= dimH ⩾ 2 , 
then there is a normal operator T ∈ B(H ) that has only normal square roots. For example, 
consider a compact normal operator T ∈ B(H ) with eigenvalues of multiplicity 1 (see [59, 

Tkh = Nkh ∈ D(Nk) ∩H = D(N∗k) ∩H ⊆ D(T∗k),

⟨T∗kTkh, h⟩ = ‖Tkh‖2 = ⟨Jkh, h⟩, h ∈ D(Jk), k ∈ ℤ+.

(5.23)Jk ⊆ T∗kTk, k ∈ ℤ+.

⟨T∗kTkf , g⟩ = ⟨f , T∗kTkg⟩, f , g ∈ D(T∗kTk), k ∈ ℤ+,

T∗kTk = Jk = ∫
ℝ+

xkF(dx), k ∈ ℤ+.

(6.1)A⊕

[
B C

0 − B

]
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Theorem 7.1]). That T does not have a non-normal square root can be deduced from [42, 
Theorem 1], which states that any square root of a normal operator is of the form (6.1), 
where A and B are normal operators and C is a nonzero operator that commutes with B 
(one of the summands in (6.1) may be absent).

We now turn to the case of nth roots of quasinormal operators. It is worth pointing 
out that a quasinormal nth root of a normal operator is normal (see [45, Theorem 5]). 
It is also well known that there are isometries that do not have square roots (see [19, 
Problems 145 and 151]; see also [18, p. 894]). In other words, quasinormal operators 
(even completely non-normal) may not have square roots. Our goal here is to show that 
if a non-normal quasinormal operator has a quasinormal nth root, where n is an integer 
greater than 1, then it has many non-quasinormal nth roots (see Theorem 6.3 below). 
Clearly, by Theorem 1.3, such nth roots are never of class A. The proof of Theorem 6.3 
will be preceded by an auxiliary lemma.

For a given bounded sequence � = {�k}
∞
k=0

 of positive real numbers, there exists a 
unique operator W

�
∈ B(�2) such that

where {ek}∞k=0 is the standard orthonormal basis of �2 ; W
�
 is called a unilateral weighted 

shift with weights � . If �k = 1 for all k ∈ ℤ+ , we denote the corresponding unilateral 
weighted shift by U and call it the unilateral shift of multiplicity 1.

The following lemma can be proved by straightforward computations. We leave the 
details to the reader.

Lemma 6.1  Let W
�
 be a unilateral weighted shift with positive weights � = {�k}

∞
k=0

 and let 
n ∈ ℕ . Then the following conditions are equivalent:

	 (i)	 Wn
�
= Un,

	 (ii)	
∏n−1

j=0
�k+j = 1 for every k ∈ ℤ+,

	 (iii)	
∏n−1

j=0
�j = 1 and �kn+r = �r for all k ∈ ℕ and r = 0,… , n − 1.

Corollary 6.2  Let n be an integer greater than 1. Then there exists a non-quasinormal uni-
lateral weighted shift W

�
∈ B(�2) with positive weights � = {�k}

∞
k=0

 such that Wn
�
= Un.

Proof  Fix any sequence {�k}n−1k=0
 of positive real numbers that is not constant and such that ∏n−1

j=0
�j = 1 . Extend it periodically to a sequence � = {�k}

∞
k=0

 by setting �kn+r = �r for 
k ∈ ℕ and r = 0,… , n − 1 . Clearly, the sequence � is bounded. It follows from Lemma 6.1 
that Wn

�
= Un . However, W

�
 is not quasinormal because the only quasinormal unilateral 

weighted shifts with positive weights are operators of the form tU, where t is a positive real 
number. 	� ◻

We now show that if a non-normal quasinormal operator T has a quasinormal nth root 
with n ⩾ 2 , then it has a non-quasinormal nth root. In fact, the proof of Theorem 6.3 below 
gives more information about non-quasinormal nth roots of such T.

W
�
ek = �kek+1, k ∈ ℤ+,
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Theorem 6.3  Let T ∈ B(H ) be a non-normal quasinormal operator and n be an integer 
greater than 1. If T has a quasinormal nth root, then it has a non-quasinormal nth root.

Proof  Let Q ∈ B(H ) be a quasinormal nth root of T. According to [6, Theorem 1] (see 
also [7, Sec. II.§3]), the operator Q takes the following form (up to unitary equivalence)

where N is a normal operator, S is a positive operator such that N(S) = {0} and U is the 
unilateral shift of multiplicity 1. We will consider two cases.

Case 1. U ⊗ S acts on a nonzero complex Hilbert space.
It follows from Corollary  6.2 that there exists a non-quasinormal unilateral weighted 

shift W
�
∈ B(�2) with positive weights � = {�k}

∞
k=0

 such that Wn
�
= Un . Then we have

Therefore R ∶= N ⊕ (W
�
⊗ S) is an nth root of T. We show that R is not quasinormal. 

Indeed, otherwise W
�
⊗ S is quasinormal. Since W

�
 and S are nonzero operators, it follows 

from [49, Theorem 2.4] that W
�
 is quasinormal, which leads to a contradiction.

Case 2. Q = N . Then T = Nn , which implies that T is normal, a contradiction. 	�  ◻

In view of the discussion preceding Lemma 6.1, the natural question arises as to whether 
the converse of Theorem 6.3 holds.

Problem 6.4  Let T ∈ B(H ) be a non-normal quasinormal operator which has a non-qua-
sinormal nth root, where n is an integer greater than 1. Does it follow that T has a quasinor-
mal nth root?
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