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Abstract
It is well known from the work of Bandle et al. (J Differ Equ 251:2143–2163, 2011) that 
the Fujita phenomenon for reaction–diffusion evolution equations with power nonlineari-
ties does not occur on the hyperbolic space ℍN , thus marking a striking difference with the 
Euclidean situation. We show that, on classes of manifolds in which the bottom Λ of the L2 
spectrum of −Δ is strictly positive (the hyperbolic space being thus included), a different 
version of the Fujita phenomenon occurs for other kinds of nonlinearities, in which the role 
of the critical Fujita exponent in the Euclidean case is taken by Λ . Such nonlinearities are 
time-independent, in contrast to the ones studied in Bandle et al. (2011). As a consequence 
of our results we show that, on a class of manifolds much larger than the case M = ℍ

N con-
sidered in Bandle et al. (2011), solutions to (1.1) with power nonlinearity f (u) = up , p > 1 , 
and corresponding to sufficiently small data, are global in time. Though qualitative simi-
larities with similar problems in bounded, Euclidean domains can be seen in the results, 
the methods are significantly different because of noncompact setting dealt with.
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1  Introduction

We investigate existence of global in time solutions, versus blow-up in finite time, to non-
linear reaction–diffusion problems of the following type:

where Δ is the Laplace–Beltrami operator on a Riemannian manifold M, T ∈ (0,∞] and 
f ∶ [0,+∞) → [0,+∞) is e.g., a locally Lipschitz, increasing function. Further specifica-
tion of the assumptions on the manifold M and on the nonlinearity f will be made later 
on. A crucial parameter, according to whose value the behaviour of solutions will change, 
will be the value of f �(0) when f is differentiable in x = 0 . It will be usually required that 
u0 ∈ C(M) ∩ L∞(M) to ensure the existence of classical solutions at least up to a certain 
time.

The analogue of (1.1) in the Euclidean setting has a long history especially in the par-
ticularly important case of power nonlinearities, i.e., for the problem

where it is assumed that u0 ∈ L∞(ℝn) . It has been shown by Fujita in [5], and in [12] and 
[14] for the critical case, that for problem (1.2) the following facts hold: 

a)	 If 1 < p ≤ p∗ ∶=
N+2

N
 , (1.2) does not possess nontrivial global solutions.

b)	 If p > p∗ solutions corresponding to data that are sufficiently small in a suitable sense 
are global in time.

It should be noticed that, by a generalization of a result of Kaplan [13], solutions corre-
sponding to sufficiently large data blow up for any p > 1 . A complete account of results 
concerning blow-up and global existence of solutions to semilinear parabolic equations 
posed in ℝn can be found, e.g., in [1, 4, 16, 23] and in references therein.

In the case of evolution equation posed on Riemannian manifolds the situation may 
change completely. In fact, an analogue of (1.2) has been studied in [2] in the important 
context of the hyperbolic space ℍn , namely on the simply connected manifold of constant 
sectional curvature equal to −1 . It is shown there that for all p > 1 sufficiently small initial 
data give rise to global in time solutions. A kind of Fujita phenomenon nontheless takes 
place but when a time dependent modification of (1.2) is taken into account. Namely, if the 
reaction term up (considering nonnegative data, hence nonnegative solutions) is replaced 
by e�tup , 𝛼 > 0 being a fixed parameter, then a Fujita-type phenomenon then takes place, 
the threshold value being p♯ ∶= 1 +

𝛼

Λ
 where Λ ∶= (N − 1)2∕4 is the bottom of the L2 spec-

trum of −Δ on ℍn . Informally, one might say that for this to hold the nonlinearity must be 
amplified exponentially as time grows, in fact it is also shown in [2] that if the exponential 
factor in time is replaced by a power of time the Fujita phenomenon still does not occur. 
See also [24] for a careful analysis of the critical case p = p♯ , in which the authors show, 
combining their results with the ones of [2], that in such case global in time solutions exist 
for all values of � , thus marking a further difference with the Euclidean case. Further pre-
cise results on the lifespan of solutions that are not global are given in [25].

(1.1)
{

ut = Δu + f (u) in M × (0,T)

u = u0 ≥ 0 in M × {0},

(1.2)
{

ut = Δu + |u|p−1u in ℝ
n × (0, T)

u = u0 in ℝ
n × {0},
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Recently, a number of results concerning blow-up and global existence for solutions of 
nonlinear parabolic equations with power-like reaction term and nonlinear, slow diffusion 
of porous medium type has also been obtained, on some classes of Riemannian manifolds, 
in [9–11, 17, 26]. The results for this class of equations show usually several differences 
with the case involving a linear diffusion, already in the Euclidean case, see [22].

Our goal here will be to present some result for different type of time independent 
nonlinearities in which a new kind of Fujita phenomenon takes place, in a wide class of 
manifolds that includes the hyperbolic space. We shall consider noncompact complete 
Riemannian manifold M of infinite volume, with dimension N ≥ 3 , and require that some 
further conditions on M, to be described below, hold. In our first result, Theorem 3.1, we 
require the following additional condition on M:

•	 M is stochastically complete, and 𝜆1(M) ∶= inf spec(−Δ) > 0 , where spec(−Δ) is the 
L2 spectrum of the Laplace–Beltrami operator −Δ.

Under such assumptions, we prove nonexistence of global solutions for problem  (1.1)  e.g., 
if  f is convex and increasing,   f �(0) > 𝜆1(M) , and 1/f is integrable at infinity.

Stochastic completeness is a well-studied property of Riemannian manifolds, and it 
amounts to requiring that Tt1 = 1 for all t > 0 , or equivalently that

where p(x, y, t) is the heat kernel of the manifold M and � the Riemannian measure. See 
e.g., [6, 7] for a number of conditions on M ensuring that stochastic completeness holds. 
For example, it suffices that, for some o ∈ M , the function r ↦ r

logV(o,r)
 is not integrable at 

infinity, where V(o, r) is the volume of the geodesic ball of radius r centered at o. Note that 
this is true in particular if V(o, r) ≤ Cear

2 for suitable C, a > 0 . This allows e.g., sectional 
curvatures to tend to −∞ at the infinity of M (namely when �(o, x) → +∞ , � being the Rie-
mannian distance and o being fixed in M), at most quadratically, in a suitable precise sense, 
see also [8] for relations to nonlinear elliptic and parabolic equations on M. As for the 
assumption 𝜆1(M) > 0 we comment that a well-known sufficient condition for this to hold 
is that sec ≤ c < 0 , sec denoting sectional curvatures. Thus, the class of manifolds on 
which the above result works is large, as it includes e.g., all those manifolds whose sec-
tional curvatures are pinched between two strictly negative constants, and in particular the 
hyperbolic space.

In our second result, Theorem 3.2, the additional assumption we require on M beside the 
previous ones is the following:

•	 the following Faber–Krahn inequality holds: for some c > 0 , for any non-empty rela-
tively compact open subset Ω ⊂ M , 

 where �1(Ω) is the first eingevalue of the Laplace operator on Ω completed with homo-
geneous Dirichlet boundary conditions, and � is the Riemannian measure.

Under such assumptions, we show existence of global solutions for small data e.g., if f is 
differentiable at x = 0 with  f �(0) < 𝜆1(M).

(1.3)∫M

p(x, y, t) d𝜇(y) = 1, for all x ∈ M, t > 0.

(1.4)�1(Ω) ≥ c

[�(Ω)]
2

N

,
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We refer e.g., to [7, Cor. 14.23, Cor. 15.17] for equivalent conditions for the 
Faber–Krahn inequality to hold. In particular, its validity is implied by on-diagonal bounds 
for the heat kernel in the form p(t, x, x) ≤ c t−N∕2 for all x ∈ M , t > 0 , or by the validity of 
the Sobolev (or the Nash) inequality on M, which is in turn satisfied e.g., when sec≤ 0 on 
M, sec denoting sectional curvatures.

Observe that our blow-up result is similar in character to the well-known blow-up result 
for bounded domains of ℝn (see, e.g., [1, Section  3.2]). However, the methods of proof 
exploited for bounded domains do not work on general Riemannian manifolds, thus our 
arguments are completely different. Indeed, in bounded domains the blow-up result is usu-
ally obtained by means of the Kaplan method (see [1, 13]), which makes use of the first 
eigenvalue and of the first eigenfunction of the Laplacian. In order to extend that argument 
to a general Riemannian manifold, it would be necessary to know precisely the behaviour 
at infinity of the positive solution � to

and in particular its integrability properties w.r.t. the Riemannian measure, which are not 
known in general, e.g., on the hyperbolic space ℍn � belongs just to L2+� for all 𝜀 > 0 . The 
Kaplan method yields indeed partial results on the subclass of Cartan–Hadamard mani-
folds, i.e., simply connected Riemannian manifolds with nonpositive sectional curvatures, 
with Ricci curvature bounded from below, see [20] when f (u) = up , but the method can not 
be pushed to get the sharp threshold value �1(M) provided in Theorem 3.1, 3.2, even in the 
special case of Cartan–Hadamard manifolds and, in fact, even on the special case M = ℍ

n.
Let us mention that some blow-up results in bounded domains have also been estab-

lished in [18, 19], for more general operators, by means of the method of sub– and super-
solutions. Those results seem to be quite implicit in character, and they are based on the 
asymptotic behaviour for large times of solutions to the associated linear problem.

As a further comment, we mention that it is easy to show that, on a wide class of mani-
folds, characterized by the validity of the parabolic maximum principle, a sufficient condi-
tion for which is e.g., the very general condition (6.2) below, blow-up of solutions cor-
responding to large data occurs, provided the nonlinearity f is convex and 1/f is integrable 
at infinity. See the end of this section for some more detail and Sect. 6 for a concise proof.

Let us now give briefly some more precise detail on the conditions on the nonlinearities 
to be verified in order to prove our results. In the first one, Theorem 3.1, we shall assume 
that f is continuous. Besides, we assume that f ≥ h where h is increasing and convex in 
[0,+∞) , that it satisfies ∫ +∞ 1

h(s)
ds < +∞ , that h(0) = 0 and finally that the condition 

h�(0) > 𝜆1(M) holds. Of course, a sufficient condition for this to hold is that the conditions 
satisfied by h are satisfied by the nonlinearity f itself, as mentioned above. Then we show 
that all solutions blow up in finite time. In Theorem 3.2 we shall show that, for any locally 
Lipschitz nonlinearity f such that f (x) ≤ �x in a neighbourhood of x = 0 , with � ≤ �1(M) , 
then sufficiently small data give rise to solutions existing for all times. Of course, if f �(0) 
exists, a sufficient condition for the above condition on f to hold for some 𝜆 < 𝜆1(M) is 
f �(0) < 𝜆1(M) , as mentioned above. The combination of the two results thus shows the ver-
sion of the Fujita phenomenon we aim at.

It is important to mention that the above results provide, as immediate consequences, 
new results w.r.t. the ones proved in [2] for (1.1) even in the classical case f (u) = up . In 
fact, Theorem  3.2 shows in particular that solutions corresponding to sufficiently small 
data are global, on a much wider class of manifolds than the hyperbolic space considered 
in one of the main result of [2], see Corollary 3.3 for a precise statement. In particular the 

Δ� + �1(M)� = 0 in M
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results holds e.g., on all those manifolds whose sectional curvatures are pinched between 
two strictly negative constants everywhere.

The paper is organized as follows. In Sect. 2 we collect some preliminary material on 
the class of manifolds considered and on the concept of solution. In Sect. 3 we state all our 
main results. Section 4 contains the proof of Theorem 3.1, whereas Theorem 3.2 is proved 
in Sect. 5. In Sect. 6 we complement our main results by considering a large class of mani-
folds, e.g., those ones in which the radial Ricci curvature does not diverge at infinity faster 
that −cr2 , where r is the Riemannian distance from a given pole o ∈ M . We give a concise 
proof of the fact that on such manifolds, if f is a locally Lipschitz, increasing, convex func-
tion such that 1/f is integrable at infinity, large data give rise to solutions blowing up in 
finite time.

2 � Preliminaries

2.1 � Heat semigroup on M

Let {etΔ}t≥0 be the heat semigroup of M, acting on Lp(M) for all p ∈ [1,+∞] . It admits 
a (minimal) heat kernel, namely a function p ∈ C∞(M ×M × (0,+∞)) , p > 0 in 
M ×M × (0,+∞) such that

for any u0 ∈ Lp(M) . It is well known that

As recalled in the Introduction, we say that a manifold M is stochastically complete if the 
following condition holds:

See the considerations and the references after (1.3) for sufficient conditions for this fact to 
hold.

Furthermore, it is known that if M is a noncompact Riemannian manifold, then (see [3, 
Corollary 1])

where �1(M) is the infimum of the L2 spectrum of −Δ . We also recall that from the 
Faber–Krahn inequality (1.4) it follows that (see [7, Cor. 15.17 (b)]), for some C̄ > 0:

(etΔu0)(x) = ∫M

p(x, y, t) u0(y) d𝜇(y), x ∈ M, t > 0,

(2.1)�M

p(x, y, t) d𝜇(y) ≤ 1, for all x ∈ M, t > 0.

∫M

p(x, y, t) d𝜇(y) = 1, for all x ∈ M, t > 0.

(2.2)lim
t→+∞

log p(x, y, t)

t
= −�1(M) locally uniformly in M ×M,

(2.3)p(x, y, t) ≤ C̄ e−𝜆1 t for any x, y ∈ M, t ≥ 1.
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2.2 � On the concept of solution

We shall always deal with bounded initial data. Solutions will be meant in 
the classical sense. More precisely, setting QT = M × (0, T] , we require that 
u ∈ C2,1(QT ) ∩ C(QT ) ∩ L∞(QT ) and that (1.1) holds in the classical sense.

We shall use in the sequel two different concepts of solution. On the one hand a func-
tion u ∈ C(M × (0, �]) ∩ L∞(M × (0, �]) , for every � ∈ (0, T] is called a mild solution of 
problem (1.1) if

for any t ∈ [0, �].
We notice that, by adapting the methods of [2, Prop. 2.1, Lemma 2.1], for bounded ini-

tial data u0 and up to a time T such that u(t) is bounded for all t ∈ [0, T) (blow-up might 
occur at some positive time), the two concepts of solutions coincide provided f is locally 
Lipschitz, as required in our main results. Hence we shall use them indifferently when 
needed.

3 � Statements of main results

In this section, we state our results concerning solutions to problem (1.1). We say that a 
solution blows up in finite time, whenever there exists 𝜏 > 0 such that

Otherwise, if a solution u(t) ∈ L∞(M) for all t > 0 , we say that it is global. Our first results 
involves nonexistence of global solutions. Notice that the assumptions on the auxiliary 
function h below entail that h is differentiable in x = 0.

Theorem  3.1  Let M be a complete, non compact, stochastically complete Riemannian 
manifold with 𝜆1(M) > 0 . Let u0 ∈ C(M) ∩ L∞(M), u0 ≥ 0, u0 ≢ 0 in M . Let f be locally 
Lipschitz in [0,+∞) . Assume that f ≥ h where h is increasing and convex in [0,+∞) and 
h(0) = 0 . Moreover, suppose that

and finally that h�(0) > 𝜆1(M) . Then any solution to problem (1.1) blows up in finite time.

Notice that in the above Theorem the fact that h is assumed to be increasing and convex 
implies the existence of h�(0).

Theorem 3.2  Let M be a complete, non compact, stochastically complete Riemannian man-
ifold with 𝜆1(M) > 0 and such that the Faber–Krahn inequality (1.4) holds. Assume also 
that f is increasing, locally Lipschitz and f (0) = 0 . Moreover, suppose that, for some 𝛿 > 0 
and 0 < 𝛼 ≤ 𝜆1(M),

(2.4)u(x, t) = (etΔu0)(x) + ∫
t

0

(
e(t−s)Δf (u)

)
(x) ds,

lim
t→�−

‖u(t)‖L∞(M) = +∞.

(3.1)∫
+∞

1

h(s)
ds < +∞,
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Furthermore, assume that u0 ∈ C(M) ∩ L∞(M) ∩ L1(M), u0 ≥ 0 inM is small enough. 
Then there exists a global solution to problem (1.1); in addition, u ∈ L∞(M × (0,+∞)).

The smallness condition on u0 in Theorem 3.2 can be precisely formulated. Indeed, our 
hypothesis is that

and

where C2 = C̄ e−(𝜆1−𝛼) , C̄ being defined in (2.3), while � and � are given by (3.2).
As a consequence, we can generalize one of the main results of [2] (see also [21]) to a 

class of manifolds much wider than ℍn.

Corollary 3.3  Let M be a complete, non compact, stochastically complete Riemannian mani-
fold with 𝜆1(M) > 0 and such that the Faber–Krahn inequality (1.4) holds. Assume f (x) = xp 
for all x ≥ 0 with p > 1 . Assume also that u0 ∈ C(M) ∩ L∞(M) ∩ L1(M), u0 ≥ 0 inM 
is small enough. Then there exists a global solution to problem (1.1); in addition, 
u ∈ L∞(M × (0,+∞)).

Remark 3.4 

•	 For any p > 1 , let 

 If 𝛼 > 𝜆1(M) , then by Theorem 3.1, the solution to problem (1.1) blows up in finite 
time for any nontrivial u0 . On the other hand, if � ≤ �1(M) , then the solution exists 
globally in time, provided that u0 is sufficiently small.

•	 Let f (u) = e�u − 1 with 𝛽 > 0 . By Theorem 3.1, if 𝛽 > 𝜆1(M) , then the solution to prob-
lem (1.1) blows up in finite time. On the contrary, if 𝛽 < 𝜆1(M) , then condition (3.2) is 
satisfied with 𝛽 < 𝛼 ≤ 𝜆1(M) . Therefore, by Theorem 3.2, the solution exists globally in 
time, whenever u0 is sufficiently small.

By standard methods, on suitable manifolds and for a wide class of nonlinearities f, it is 
possible to show that whenever u0 is large enough, blow-up of solutions occurs. We defer 
the discussion of this fact to Sect. 6.

4 � Finite time blow‑up for any initial datum

4.1 � Two key estimates

Let us first prove a preliminary lemma.

(3.2)f (x) ≤ �x for all x ∈ [0, �].

(3.3)‖u0‖L∞(M) ≤ � e−� ,

(3.4)‖u0‖L1(M) ≤ �

C2

,

f (u) =

{
�u, u ∈ [0, 1],

�up u ∈ (1,+∞).
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Lemma 4.1  Let M be a complete, non-compact Riemannian manifold with 𝜆1(M) > 0 . Let 
u0 ∈ C(M) ∩ L∞(M), u0 ≥ 0, u0 ≢ 0 in M . Let � ∈ (0, �1(M)) . Then there exist Ω ⊂ M , 
t0 > 0 , C1 > 0 such that

Proof  Let Ω ⊂ M be such that 𝜇(Ω) < +∞ , ∫
Ω
u0 d𝜇 > 0 . From (2.2), there exists t0 > 0 

such that, for every x, y ∈ Ω,

Hence

Consequently, we obtain (4.1) with C1 ∶= ∫
Ω
u0(y) d𝜇(y) > 0. 	�  ◻

Let u be a mild solution of equation (1.1), so that it fulfills (2.4). Then, for any x ∈ M 
and for any T > 0 , we define

Observe that

Suppose that u0 ∈ L∞(M) . Choose any

From (4.4) and (2.1) we obtain that, for any x ∈ M,

We now state the following lemma.

Lemma 4.2  Let M, f , h, u0 be as in Theorem 3.1. Let x ∈ M and Φx(t) be as in (4.2). Set 
� ∶= h�(0). Then

for suitable t̄ > 0 and C > 0 , depending on x.

Note that t̄ and C are given by (4.18) and (4.27) below, respectively, with � as in (4.4).

(4.1)(etΔu0)(x) ≥ C1e
−[𝜆1(M)+𝜀]t, for any x ∈ Ω, t > t0.

p(x, y, t) ≥ e−[𝜆1(M)+𝜀]t for every t > t0.

(etΔu0)(x) ≥ �M

p(x, y, t)u0(y) d�(y)

≥ e−[�1(M)+�]t �
Ω

u0(y) d�(y).

(4.2)ΦT
x
(t) ≡ Φx(t) ∶= �M

p(x, z, T − t) u(z, t) d�(z) for any t ∈ [0, T].

(4.3)Φx(0) = ∫M

p(x, z, T) u0(z) d�(z) = (eTΔu0)(x), x ∈ M.

(4.4)𝛿 > ‖u0‖L∞(M).

(4.5)

Φx(0) = �M

p(x, z, T) u0(z) d𝜇(z)

≤ ‖u0‖L∞(M) �M

p(x, z, T) d𝜇(z)

< 𝛿.

(4.6)Φx(0) ≤ C e−𝛼T , for any T ≥ t̄,
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Proof  Let u be a solution to problem (1.1). So (2.4) holds; hence

In the definition of ΦT
x
(t) ≡ Φx(t) (see (4.2)) fix any

We multiply (4.7) by p(x, z,T − t) and integrate over M. Therefore, we get

Now, due to (4.2), for all t ∈ (0, T), equality (4.9) reads

By (4.3), for all t ∈ (0, T),

Since f ≥ h in [0,+∞),

Since h is an increasing convex function, due to (1.3), by using Jensen inequality, we get

Combining together (4.10) and (4.11), we obtain

Fix any x ∈ M . We first observe that (4.12) implies that Φx(t) is an increasing function w.r.t 
the time variable t, since

(4.7)u(z, t) = ∫M

p(z, y, t)u0(y) d�(y) + ∫
t

0 ∫M

p(z, y, t − s)f (u) d�(y) ds.

(4.8)T >
1

𝛼

[
log 𝛿 − logΦx(0)

]
.

(4.9)

∫M

p(x, z, T − t) u(z, t) d�(z) = ∫M ∫M

p(z, y, t) u0(y) p(x, z, T − t) d�(z) d�(y)

+ ∫
t

0 ∫M ∫M

p(z, y, t − s) f (u) p(x, z, T − t) d�(z)d�(y)ds.

Φx(t) = ∫M ∫M

p(z, y, t) u0(y) p(x, z,T − t) d�(z) d�(y)

+ ∫
t

0 ∫M ∫M

p(z, y, t − s) f (u) p(x, z,T − t) d�(z) d�(y) ds.

Φx(t) = ∫M

p(x, y, T) u0(y) d�(y) + ∫
t

0 ∫M

f (u) p(x, y, T − s) d�(y) ds

= Φx(0) + ∫
t

0 ∫M

f (u) p(x, y, T − s) d�(y) ds.

(4.10)
Φ�

x
(t) = �M

f (u) p(x, y, T − t) d�(y)

≥ �M

h(u) p(x, y, T − t) d�(y).

(4.11)�M

p(x, y, T − t) h(u(y, t)) d�(y) ≥ h

(

�M

p(x, y, T − t) u(y, t) d�(y)

)

= h(Φx(t)).

(4.12)Φ�

x
(t) ≥ h(Φx(t)) for all t ∈ (0, T).
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Moreover, due to (4.4) and (4.5), by continuity of t ↦ Φx(t) , we can infer that there exists 
t1 > 0 such that

Since h is convex, increasing in [0,+∞), h(0) = 0, h�(0) = � , then

Due to (4.15) and to (4.14), we get

Let

We claim that

In order to show (4.16), consider the Cauchy problem

Clearly,

Hence

Furthermore, note that, in view of (4.5) and (4.8),

By comparison,

Thus, we can infer that there exists t̄ ∈ (0, 𝜏 ] such that

In particular, from (4.17) it follows that t̄ < T .

Due to (4.13) and (4.18), we obtain that

By (4.12), in particular we have

(4.13)Φ�

x
(t) > 0 for any t ∈ (0,T).

(4.14)Φx(t) < 𝛿 for all t ∈ (0, t1).

(4.15)h(s) ≥ �s for all s ≥ 0.

{
Φ�

x
(t) ≥ 𝛼Φx(t) for any t ∈ (0, t1),

Φx(0) < 𝛿 .

t̄ ∶= sup{t > 0 ∶ Φx(t) < 𝛿}.

(4.16)0 < t̄ ≤ −
1

𝛼
log(Φx(0)) +

log 𝛿

𝛼
.

{
y�(t) = 𝛼y(t), t > 0

y(0) = Φx(0).

y(t) = Φx(0)e
𝛼t, t > 0.

y(�) = � whenever � =
1

�

[
log(�) − log(Φx(0))

]
.

(4.17)0 < 𝜏 < T .

Φx(t) ≥ y(t) for all t ∈ (0, T).

(4.18)Φx(t̄) = 𝛿.

(4.19)Φx(t) > 𝛿 for any t̄ < t < T .
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Define

Note that G is well-defined thanks to hypothesis (3.1) and to (4.19). Furthermore,

We now define

Then, due to (4.21) and (4.20),

By integrating (4.23) we get:

We substitute (4.22) into (4.24), so we have

Thus, for any t̄ < t < T ,

We now combine (4.25) together with (4.16), hence

Hence

We now take the exponential of both sides of (4.26). Thus we get, for any t̄ < t < T ,

where

(4.20)Φ�

x
(t) ≥ h(Φx(t)) for any t̄ < t < T .

G(t) ∶= ∫
+∞

Φx(t)

1

h(z)
dz for all t̄ < t < T .

(4.21)G�(t) = −
Φ�

x
(t)

h(Φx(t))
for any t̄ < t < T .

(4.22)w(t) ∶= exp{G(t)} for any t̄ < t < T .

(4.23)
w�(t) = −

Φ�
x
(t)

h(Φx(t))
w(t)

≤ − w(t) for any t̄ < t < T .

(4.24)
w(t) ≤ w(t̄ ) exp

{
−�

t

t̄

ds

}

≤ w(t̄ ) exp {− (t − t̄)} for any t̄ < t < T .

exp{G(t)} ≤ exp {G(t̄) − (t − t̄)} for any t̄ < t < T .

(4.25)G(t) ≤ G(t̄) − (t − t̄ ).

0 ≤ G(t) ≤ G(t̄) −

(
t +

1

𝛼
log(Φx(0)) −

log 𝛿

𝛼

)
for any t̄ < t < T .

(4.26)log(Φx(0)) ≤ 𝛼G(t̄) + log 𝛿 − 𝛼 t for any t̄ < t < T .

Φx(0) ≤ exp {𝛼G(t̄) + log 𝛿 − 𝛼 t}

= C exp{−𝛼 t},

(4.27)C ∶= exp{𝛼G(t̄) + log 𝛿}.
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This is the inequality (4.6). 	� ◻

4.2 � Proof of Theorem 3.1

Proof  Take any 𝛿 > 0 fulfilling (4.4). We suppose, by contradiction, that u is a global solu-
tion of problem (1.1). Since 𝛼 ∶= h�(0) > 𝜆1(M) , there exists � ∈ (0, � − �1(M)) such that

Let Ω ⊂ M be such that

Then

Fix any arbitrary x ∈ M . By Lemmas 4.1 and 4.2,

where t0 > 0 , C1 > 0 are given in Lemma 4.1, while t̄ > 0 , C > 0 in Lemma 4.2. Hence, if 
u exists globally in time, we would have

Nonetheless, due to (4.28), the left hand side of (4.29) tends to +∞ as T → ∞ . Thus, we 
have a contradiction. Hence the thesis follows. 	� ◻

5 � Global existence

Consider the linear Cauchy problem for the heat equation

with u0 as in Theorem 3.2. Observe that problem (5.1) admits the classical solution

Hence, since u0 ∈ L∞(M),

Moreover, since u0 ∈ L1(M) , if the Faber–Krahn inequality holds, then, due to (2.3),

𝛼 > 𝜆1(M) + 𝜀.

𝜇(Ω) < +∞ and ∫
Ω

u0 d𝜇 > 0.

(4.28)lim
T→+∞

e�−(�1(M)+�)]T = +∞.

C1 e
−[𝜆1(M)+𝜀]T ≤ (eTΔu0)(x) ≤ C e−𝛼 T , for any T > max{t0, t̄ },

(4.29)e[𝛼−(𝜆1(M)+𝜀)]T ≤ C

C1

for any T > max{t0, t̄ }.

(5.1)
{

vt = Δv in M × (0,+∞)

v = u0 in M × {0},

(5.2)v(x, t) = �M

p(x, y, t) u0(y) dy, x ∈ M, t ≥ 0.

(5.3)‖v(t)‖L∞(M) ≤ ‖u0‖L∞(M) for any t > 0.
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where C̄ has been defined in (2.3).
Let {Ωj}j∈ℕ ⊂ M be a sequence of domains such that

Furthermore, for every j ∈ ℕ let �j ∈ C∞
c
(Ωj) be such that 0 ≤ �j ≤ 1 , �j ≡ 1 in Ωj∕2.

Proof of Theorem 3.2  We consider initial data u0 satisfying (3.3) and (3.4). Define

with v and � given by (5.2) and (3.2), respectively.
Note that, due to (3.3) and (5.3), for any x ∈ M, t ∈ (0, 1],

Moreover, due to (3.4), (5.4), since � ≤ �1(M) , for any t > 1 we get

Inequalities (5.5) and (5.6) yield

Furthermore, we have

Now, by using the fact that v is a classical solution to problem (5.1), due to (3.2) and (5.7), 
we get

Hence ū is a weak supersolution to problem (1.1) in M × (0,∞).
For any j ∈ ℕ there exists a unique classical solution uj to problem

Clearly, uj ≢ 0 because u0 �j ≢ 0 in Ωj . Moreover, for any j ∈ ℕ , in view of (5.8), since

ū is a bounded weak supersolution of problem (5.9). Obviously, for any j ∈ ℕ , u ≡ 0 is 
a subsolution to problem (5.9). Hence, by the comparison principle, for every j ∈ ℕ we 
obtain

(5.4)v(x, t) ≤ C̄ ‖u0‖L1(M) e
−𝜆1t for any x ∈ M, t > 1,

Ωj ⊂ Ωj+1 for any j ∈ ℕ,
⋃

j∈ℕ

Ωj = M,

𝜕Ωj is smooth for every j ∈ ℕ.

ū(x, t) ∶= e𝛼 t v(x, t), x ∈ M, t ≥ 0,

(5.5)0 ≤ ū(x, t) ≤ e𝛼 t‖v(t)‖L∞(M) ≤ e𝛼 t‖u0‖L∞(M) ≤ 𝛿.

(5.6)0 ≤ ū(x, t) ≤ e𝛼 t‖v(t)‖L∞(M) ≤ C̄ ‖u0‖L1(M)e
−(𝜆1−𝛼) t ≤ 𝛿.

(5.7)0 ≤ ū(x, t) ≤ 𝛿 for any x ∈ M, t > 0.

ūt − Δū − f (ū) = 𝛼 e𝛼 t v + e𝛼 t vt − e𝛼 tΔv − f (ū).

(5.8)ūt − Δū − f (ū) ≥ 𝛼ū − f (ū) ≥ 0.

(5.9)

⎧
⎪
⎨
⎪
⎩

�tu = Δu + f (u) in Ωj × (0, T)

u = 0 in �Ωj × (0, T)

u = �j u0 in Ωj × {0}.

v = u0 ≥ �ju0 in M × {0},
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By standard a priori estimates (see, e.g., [15, Chapter 5]), we can infer that there exists 
a subsequence {ujk} of {uj} , which converges in C2,1

x,t (K × [�, T]) as k → +∞ , for each 
compact subset K ⊂ M and for each � ∈ (0,T) , and in Cloc(M × [0, T]) , to some function 
u ∈ C

2,1
x,t (M × (0, T]) ∩ C(M × [0, T]) , which is a classical solution to problem (1.1). More-

over, from (5.10) we get

Hence the thesis follows. 	�  ◻

6 � On blow‑up of solutions for large data

In this section we discuss a blow-up result that can be obtained by standard tools. More 
precisely, we show that the solution to problem (1.1) blows up, provided that u0 is large 
enough, and f ∶ [0,+∞) → [0,+∞) is a locally Lipschitz, increasing, convex function 
fulfilling

We need to introduce some preliminary material. Let o ∈ M be a reference point and r(x) 
be the geodesic distance between x and o. For any x ∈ M⧵{o} , denote by Rico the Ricci 
curvature at x in the radial direction �

�r
 . We assume that

for some � ∈ C∞((0,+∞)) ∩ C1([0,+∞)) such that 𝜓 �(0) = 1,𝜓(0) = 0,𝜓 > 0 in (0,+∞) 
and

In view of such hypothesis, for problem (1.1) comparison principle for bounded sub- and 
supersolutions holds (see, e.g., [7, 21]). Condition (6.1) may be stated informally in a quite 
simpler way: a sufficient condition for this to hold is that

and a suitable c > 0 , as can be seen by choosing � to be ekr2 in a neighborhood of infinity, 
for a suitable k > 0.

Let D be an open precompact subset of M with smooth boundary. By Kaplan’s method 
(see [13]) it can be proved that, for some v0 ∈ C(D̄), v0 ≥ 0 large enough, any solution v to 
problem

(5.10)0 ≤ uj ≤ ū for any (x, t) ∈ Ωj × (0,+∞).

0 ≤ u ≤ ū in M × (0,+∞).

∫
+∞

1

f (s)
ds < +∞.

Rico (x) ≥ −(N − 1)
� ��(r(x))

�(r(x))
for all x ∈ M⧵{o},

(6.1)�
+∞ ∫ r

0
�N−1(�)d�

�N−1(r)
dr = +∞.

(6.2)Rico (x) ≥ −cr(x)2 for all x ∈ M⧵{B1(o)}
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blows up in finite time. Now, consider u0 ∈ C(M), u0 ≥ 0 with compact support. Take any 
D as above containing the support of u0 and set v0 ∶= u0⌊D . By choosing u0 big enough, and 
so v0 , the solution v to (6.3), corresponding to such v0 , blows up in a finite time, say 𝜏 > 0 . 
Let

By the maximum principle,

Hence,

n being the outer unit normal vector to �D . This easily implies that, for any 0 < T < 𝜏 , u is 
a bounded weak subsolution to problem (1.1). So, by comparison principle, for any solu-
tion u to problem (1.1),

Since v blows in finite time, the same holds for ū and so for u.
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