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Abstract
This article determines the fluid motion underlying coupled linear internal and surface 
waves in a deep-water two-fluid-layer model (with the lower layer being of infinite depth). 
A detailed Eulerian description of the wave-field kinematics for coupled linear travelling 
waves is achieved using phase-plane analysis. The qualitative motion of individual fluid 
particles is elucidated through analysis of the relevant nonlinear dynamical systems from 
the Lagrangian viewpoint.

Keywords  Internal waves · Surface waves · Linear regime · Deep-water · Particle 
trajectories · Phase portraits
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1  Introduction

Determining the underlying fluid motion generated by a wave propagating on an interface 
is an intriguing area of mathematical research which has important practical implications 
in the broad field of fluid mechanics. For surface water waves, it has been established in 
the past decade or so that fluid particle paths are uniformly nonclosed throughout the fluid 
domain, both in the (approximate) linearised setting [6, 11, 16, 20, 21, 26, 32], and for 
exact solutions of the fully nonlinear governing equations [2, 4, 7, 19, 22, 23, 31, 35]. 
These results relate to periodic travelling surface waves which, from a theoretical perspec-
tive, already present substantial theoretical challenges (cf. the discussions and references in 
[3, 5, 30]).

The scale of these theoretical challenges is greatly increased when one also considers 
an additional (unknown) free interface. Internal water waves, which arise where there is 
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a jump in density between fluid layers, are particularly interesting from both the mathe-
matical and physical viewpoints. Internal waves occur in an oceanographical context when 
variations in density occur due to variations in temperature, salinity, or other fluctuations in 
the equations of state. Given their intractability to mathematical analysis, it is not surpris-
ing that the literature detailing the underlying wave-field kinematics for coupled surface 
and internal wave motion is sparse, to the point of nonexistence. We note that there have 
been numerous significant developments in the mathematical analysis of other aspects of 
internal wave motion, particularly in relation to nonlinear waves, cf. [1, 8–10, 12–14], and 
the references therein. Furthermore, surveys and overviews outlining recent research relat-
ing to internal wave motion (ranging from applied to purely theoretical considerations) can 
be found in [9, 12, 17, 18, 29, 36].

Recently, in [25], the authors comprehensively detailed the fluid motion induced by lin-
ear internal water waves, coupled with surface waves, propagating on the interfaces of two 
immiscible fluid layers lying upon a flat bed. In this article, we extend these investigations 
to the deep-water setting whereby the lower (denser) fluid layer is taken to be infinitely 
deep. The setting in which one fluid layer is infinitely deep is known as the Benjamin–Ono 
regime and is the focus of much analysis in its own right (particularly with regard to deriv-
ing approximate model equations, cf. [12]). Although the linearised governing equations 
are studied, the resulting dynamical systems which prescribe the fluid motion are them-
selves nonlinear. In the deep-water regime, the wave-field kinematics in the lower-fluid 
layer are necessarily quite different to that of the finite depth case featured in [25]. How-
ever, a benefit of the deep-water setting is that we can particularise results from [25] con-
cerning the dynamics of the upper-fluid layer. Phase-plane analysis is used to achieve a 
detailed qualitative description of the underlying wave-field kinematics in both fluid layers 
from an Eulerian viewpoint. A Lagrangian description of fluid particle trajectories in both 
fluid layers is also obtained.

2 � Linear wave solutions

2.1 � Governing equations for coupled wave motion

We consider the two-dimensional motion of a stratified fluid, denoting horizontal and verti-
cal coordinates by x and y, respectively. The fluid is assumed inviscid and incompressible, 
with an external restoration force due to gravity.

The physical regime consists of two vertically stratified fluid layers of differing (but con-
stant) densities separated by a sharp internal interface denoted by y = �(x, t) , which fluctu-
ates about the mean water level y = 0 ; hence, ∫

ℝ
�(x, t)dx = 0 . The lower-fluid layer (denoted 

Ωl ) is of infinite extent, comprising the region −∞ < y < 𝜂(x, t) , and the velocity field in the 
lower-fluid layer is expressed as (u, v). The upper-fluid layer (denoted by Ωu ) lies in the region 
�(x, t) ≤ y ≤ h1 + �1(x, t) , where the a priori unknown free-surface boundary �1 represents 
fluctuations around the undisturbed surface water level y = h1 , that is ∫

ℝ
�1(x, t)dx = 0 . The 

velocity field in the upper layer Ωu is denoted (u1, v1) . Here, h1 > 0 is a physical constant, 
which determines the mean depth of the upper-fluid layer. We assume that the wave profiles � 
and �1 are such that and max |𝜂(x, t)| +max |𝜂1(x, t)| < h1 , which precludes any intersection 
of the surface and internal wave interfaces. We assume stable stratification, with the upper 
layer being less dense than the lower layer, in which case we denote the density of the upper 
layer by � and the lower layer by (1 + r)� , where r > 0 is constant. In practice, r ≪ 1 ; for 
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instance, in an oceanographical context, the value r = O(10−3) may be taken as reasonable [9, 
27].

The equations of motion for an inviscid and incompressible fluid are the Euler equation, 
which is expressed in the lower layer Ωl by 

together with the equation of continuity

 The scalar function P(x, y, t) represents the internal fluid pressure, and g denotes the gravi-
tational acceleration constant. In the upper-fluid layer Ωu , 

 The kinematic boundary condition in the lower layer Ωl expresses the fact that the fluid is 
motionless at large depths: 

The dynamic and kinematic boundary conditions at the internal interface take the form

The dynamic boundary condition (3b) ensures that the pressure is always continuous 
throughout a fluid. The kinematic boundary conditions (3c) and (3d) ensure that the normal 
components of the respective velocity fields match, and are continuous, at the interface. For 
inviscid fluid motion, this need not be true for the tangential velocity components. Finally, 
at the free surface, the governing equations (2) in the upper layer Ωu have the associated 
dynamic and kinematic boundary conditions

 The fluid is assumed to be irrotational in each fluid layer separately which, in two dimen-
sions, corresponds to

(1a)
ut + uux + vuy = −

Px

�(1 + r)
,

vt + uvx + vvy = −
Py

�(1 + r)
− g,

(1b)ux + vy = 0.

(2a)
u1,t + u1u1,x + v1u1,y = −

P1,x

�
,

v1,t + u1v1,x + v1v1,y = −
P1,y

�
− g,

(2b)u1,x + v1,y = 0.

(3a)(u, v) → 0 as y → −∞.

(3b)P = P1 at y = �(x, t).

(3c)v1 = �t + u1�x on y = �(x, t),

(3d)v = �t + u�x on y = �(x, t).

(3e)P1 = Patm on y = h1 + �1(x, t),

(3f)v1 = �1,t + u1�1,x on y = h1 + �1(x, t).
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This implies the existence of velocity potentials �(x, y, t) and �1(x, y, t) for which

The governing equations (1) and (2) and boundary conditions (3) can be reformulated in 
terms of the velocity potentials as follows. It follows from definition (5), coupled with 
the incompressibility equations (1b) and (2b), that the velocity potentials are harmonic 
functions: 

Furthermore, formulating the kinematic boundary conditions (3a), (3c), (3d) and (3f) in 
terms of the velocity potentials leads to

where n = (−��(x), 1)) is the normal vector to the interface exterior to the lower domain, 
and n

1
= (−��

1
(x), 1)) is the exterior normal vector to the free surface. The pressure-match-

ing dynamic boundary condition (3b) formulated in terms of velocity potentials becomes

while the dynamic surface condition (3e) becomes the Bernoulli condition

2.2 � Linearised equations

The governing equations and boundary conditions can be linearised by invoking nondi-
mensionalisation and scaling procedures (cf. [25] for full details in the setting where the 
lower-fluid layer has finite depth). Let � denote a characteristic wavelength for the water 
waves being considered, and let � be a characteristic depth scale (the choice � = h1 is natu-
ral in the present context). Let a be a characteristic amplitude of the internal wave, with 
a1 a characteristic amplitude for the surface wave. Then, the nondimensional parameters 
� = a∕� , �1 = a1∕� (which measure the magnitude of the wave amplitudes relative to the 
characteristic vertical depth scale) and � = �∕� (a ‘shallowness’ parameter which measures 
the magnitude of the characteristic vertical depth scale relative to the wavelength) are natu-
rally introduced into the governing equations and boundary conditions. Furthermore, lin-
earisation requires that the wave-steepness parameters � = ak = 2�(a∕�) (for the internal 

(4)uy = vx, u1,y = v1,x.

(5)∇� = (u, v), ∇�1 = (u1, v1).

(6a)Δ� = 0 in Ωl, Δ�1 = 0 in Ωu.

(6b)∇� → 0 as y → −∞,

(6c)�t =
��

�n
and �t =

��1

�n
on y = �(x, t),

(6d)�1,t =
��1

�n
1

on y = h1 + �1(x, t),

(6e)(1 + r)

(
�t +

|∇�|2
2

+ gy

)
= �1,t +

|∇�1|2

2
+ gy on y = �(x, t),

(6f)�1,t +
|∇�1|2

2
+ g�1 = 0 on y = h1 + �1(x, t).
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wave) and �1 = a1k = 2�(a1∕�) (for the surface wave) are small. The linear wave approxi-
mation is valid under the assumption that these nondimensional parameters satisfy

The linearisation process eliminates all product terms in the governing equations (1) and 
(2) and boundary conditions (3). Additionally, an important consequence of linearisation 
is that the boundary conditions (3) are now evaluated at the constant mean levels y = 0, h1 , 
as opposed to on the unknown interfaces y = �, h1 + �1 , respectively. The linearisation of 
(6) results in the following Neumann boundary value problem for the velocity potential � 
in Ωl , 

while in the upper-fluid layer Ωu the velocity potential �1 must solve the Neumann bound-
ary value problem

The linearised dynamic boundary conditions (6f) and (6e) take the form

and

2.3 � Linear wave solutions

Seeking periodic travelling wave solutions of (8) which have a functional x, t dependence 
of the form kx − �t , where � is the wave frequency, k = 2�∕� is the wavenumber, and 
c = �∕k is the wave phase speed, suggests the Ansatz: 

 Here, a1 and a are the amplitudes of the free surface and interface, respectively. Unless 
otherwise stated, in the following we assume that a, a1 ≠ 0 , thereby implying a nontrivial 
coupling of wave motions at the free surface and the interface. The physical set-up illus-
trated in Fig. 1 represents waves where the crests (and the troughs) of the surface and inter-
nal interfaces coincide, which corresponds to the ratio a∕a1 > 0 in (9). Ansatz (9) permits 

(7)𝜖, 𝜖1, �, �1 ≪ 1.

(8a)Δ𝜑 = 0 for − h < y < 0,

(8b)�y = �t on y = 0,

(8c)∇� → 0 as y → −∞,

(8d)Δ𝜑1 = 0 for 0 < y < h1,

(8e)�1,y = �1,t on y = h1,

(8f)�1,y = �t on y = 0.

(8g)�1,t + g�1 = 0 on y = h1

(8h)(1 + r)
(
�t + g�

)
= �1,t + g� on y = 0.

(9a)�(x, t) = a cos(kx − �t),

(9b)�1(x, t) = a1 cos(kx − �t).
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an alternative configuration, whereby the crests (respectively, the troughs) of the surface 
wave coincide with the troughs (respectively, the crests) of the internal wave. This scenario 
arises when a∕a1 < 0 and is represented schematically in Fig. 2.

The coupled waves represented in Fig. 1, with a∕a1 > 0 , will be referred to as being 
‘in-phase’, whereas the coupled waves represented in Fig.  2, with a∕a1 < 0 , will be 
referred to as being ‘out-of-phase’. We note that |a| + |a1| < h1 must hold for out-of-
phase waves. It will be established in relation (22) that there exists precisely one set of 
coupled wave solutions which are in-phase, and one set which are out-of-phase, for a 
given fixed wavelength (or, alternatively, fixed frequency). Implementing Ansatz (9b) in 
(8b), system (8a)–(8c) has the solution

Fig. 1   Schematic of the coupled surface–internal water wave problem

Fig. 2   Coupled surface–internal water waves for a∕a1 < 0
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Invoking Ansatz (9b) in (8e) and (9a) in (8f), system (8d)–(8f) can be solved for

where the nondimensional ‘wave amplitude ratio’ parameter A is given by

It is convenient to re-express (12) in terms of the amplitude ratio

The value of A is determined by two nondimensional parameters, namely the ratio of wave 
amplitudes a∕a1 and the shallowness parameter kh1 = 2� ⋅ h1∕�.

Remark  Note that the limiting case a1 → 0 (no surface wave) in the upper-fluid layer corre-
sponds to the classical ‘rigid-lid’ model of internal wave motion, with the associated veloc-
ity potential

The boundary conditions (8b) and (8f) ensure that the velocity potentials � and �1 
prescribe matching linearised normal velocities at the internal interface. Evaluating 
(8g) for the wave surface profile (9b) and velocity potential �1 (11) leads to a disper-
sion relation at the free surface

Note that this is not a dispersion relation for the surface wave alone: there is an intrinsic 
coupling between the surface and internal waves induced by the wave amplitude ratio a∕a1 . 
An immediate consequence of (15) is that the parameter A must be positive, which confers 
a bound on the internal wave amplitude for in-phase waves, namely:

Evaluating (8h) for the velocity potentials (10) and (11) leads to the following dispersion 
relation at the interface:

As remarked above, this is not a dispersion relation for the interface alone: this relation 
prescribes coupling between surface and internal waves through terms involving the ratio 
of wave amplitudes.

(10)𝜑(x, y, t) = aceky sin(kx − 𝜔t) in − h < y < 0.

(11)
𝜑1(x, y, t) = a1c sin(kx − 𝜔t)

{
sinh k(y − h1) + A cosh k(y − h1)

}

in 0 < y < h1,

(12)A =

(
1 −

a

a1
sech (kh1)

)
coth(kh1).

(13)
a

a1
= cosh kh1 − A sinh kh1.

(14)𝜑1(x, y, t) = −ac
cosh k(y − h1)

sinh(kh1)
sin(kx − 𝜔t) in 0 < y < h1.

(15)c2 =
g

k

1

A
=

g

k
tanh(kh1)

(
1 −

a

a1
sech (kh1)

)−1

.

a < a1 cosh(kh1), when a∕a1 > 0.

(16)akc2(1 + r) − gar = a1kc
2
[
A cosh kh1 − sinh kh1

]
.
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2.4 � Dispersion relations for the coupled waves

Dispersion relations are formulae which specify the linear wavespeed c in terms of various 
physical parameters. They are so-called since, if the wavespeed c varies with respect to 
some parameter, then the waves are dispersive: waves corresponding to different param-
eter values will travel at different speeds. Assuming we know (either by measurement, or 
prescription) the mean depth h1 of the upper-fluid layer, Eqs. (15) and (16) feature three 
unknown parameters, namely the wavenumber k = 2�∕� , the wavespeed c = �∕k (or, 
alternatively, the frequency � ) and the ratio of wave amplitudes a∕a1 . Using (13), we can 
re-express (15) as

and (16) as another quadratic for c of the form:

The evident coupling between relations (17) and (18) illustrates that the wavespeed c 
depends on the ratio of wave amplitudes, a∕a1 , and vice versa. Together, Eqs. (17) and (18) 
constitute a system of dispersion relations prescribing the wavespeed c of coupled internal 
and surface waves, and the ratio a∕a1 of associated wave amplitudes, in terms of the wave-
number k. To obtain a single dispersion relation involving the wavespeed c, we substitute 
(17) into (18) to obtain the classical dispersion relation [28, 36]:

The nondimensional wave amplitude ratio parameter A plays a key role in subsequent anal-
ysis of the underlying fluid motion induced by coupled waves. Hence, it is beneficial for 
our purposes to reformulate relation (19) as a dispersion relation in terms of A by substitut-
ing kc2∕g = 1∕A:

This constitutes a dispersion relation for the ratio of wave amplitudes since, given solutions 
of (20), the ratio of the corresponding wave amplitudes a∕a1 can be established directly 
from (13) (in terms of k). Denoting the polynomial (20) as P(A) = 0 , one root is A1 = 1 
(since P(1) = 0 ) and the other is

Typically r ≪ 1 , with r = O(10−3) constituting a reasonable value in the ocean [9, 27], in 
which case A2 ≫ 1 by (21). Relation (13) implies

from which we conclude that

(17)
a1

a1
= cosh kh1 −

g

kc2
sinh kh1,

(18)
[
sech kh1 −

a

a1

{
1 + (1 + r) tanh kh1

}]kc2
g

+ r
a

a1
tanh kh1 = 0.

(19)
{
1 +

1 + r

tanh kh1

}
k2c4

g2
− (1 + r)

{
1

tanh kh1
+ 1

}
kc2

g
+ r = 0.

(20)rA2 − (1 + r)

{
1

tanh kh1
+ 1

}
A +

{
1 +

(1 + r)

tanh kh1

}
= 0.

(21)A2 =
1

tanh kh1
+

1

r

[
1

tanh kh1
+ 1

]
.

a

a1
< 0 ⟺ A >

1

tanh kh1
,
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Coupled wave motions at the interface and free surface are in-phase for solutions corre-
sponding to the root A = A1 = 1 , and out-of-phase for A = A2.

Remark  Tangential fluid velocities at the internal interface are continuous for the cou-
pled wave solutions corresponding to A = A1 = 1 , and discontinuous for A = A2 . 
This can be seen by comparing �x and �1,x (corresponding to linearised tangen-
tial velocities in the respective layers) at y = 0 . By (10) and (11), these match only if 
a = a1

{
− sinh kh1 + A cosh kh1

}
 which, by (16), holds only if A = 1 . For coupled wave 

solutions corresponding to A = A2 , although the fluid is irrotational in each fluid layer sep-
arately, there must be a vortex sheet located at the internal interface. In practice, viscosity 
(neglected in this model) acts to blur the sheet into a vortex film.

The roots of (19), the dispersion relation for the wavespeeds, can be determined from 
c2 = g∕kA to get

Each root c2
i
 in (23) represents a given wavespeed, with the choice of sign +ci (or −ci ) 

corresponding to right-moving (or left-moving) coupled waves, respectively. It follows 
from (23) that c1 > c2 > 0 ; indeed, c2 ≪ c1 for r ≪ 1 . Solutions corresponding to the 
wavespeeds c1 and c2 are referred to as barotropic and baroclinic, respectively, cf. [36]. In 
the ocean, it is observed that internal waves are typically much slower than surface waves, 
with significantly greater amplitudes. This is due to the restoring force at the internal inter-
face being substantially less than at the free surface. Internal waves in the ocean can have 
periods ranging from tens of minutes to several hours, with wavelengths ranging from hun-
dreds of metres to tens of kilometres, and their height can often exceed 50 m (cf. [17, 18, 
29, 36]). In contrast, for ocean surface gravity waves the period ranges from 1 to 25 s, with 
ocean swell having a typical wavelength that is greater than 260 m (up to a maximum of 
approximately 900 m) with a period larger than 13 s (up to a maximum of 24 s) (cf. [37]). 
We expect these characteristic properties of surface and internal waves to be reflected in 
the solutions of the linear dispersion relations above. Since A1 = 1 for the larger wavespeed 
c1 , from (13) we have

and so a1 > a : the surface wave is more prominent than the internal wave for the coupled 
solution corresponding to the faster wavespeed c1 . This distinction is more pronounced for 
shorter wavelengths (larger k) and greater upper-layer depths h1 . Taking indicative values 
h1 = 120 m for the equatorial Pacific thermocline depth (cf. [9]), and k = 2�∕300m−1 , rela-
tion (24) gives a ≈ 0.08 a1 . For coupled waves propagating with the slower wavespeed c2,

Hence, the internal wave is (much) more prominent than the surface wave for the cou-
pled wave solution corresponding to the slower wavespeed c2 . Taking the indicative values 

(22)
a

a1
> 0 for A = A1 = 1,

a

a1
< 0 for A = A2.

(23)c2
1
=

g

k
, c2

2
=

g

k

r tanh kh1

1 + r + tanh kh1
.

(24)
a

a1
= cosh kh1 − sinh kh1 = e−kh1 < 1,

(25)
a

a1
= cosh kh1

[
1 − A2 tanh kh1

]
= −

1

r

[
cosh kh1 + sinh kh1

]
= −

1

r
ekh1 .
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h1 = 120 m, k = 2�∕5km−1 and r = 2 × 10−3 , relation (25) gives |a| ≈ 508 |a1| . Of course, 
relations (24) and (25) come with the caveat that they relate only to linear coupled waves 
satisfying conditions (7).

Remark  Letting r → 0 simplifies the physical model, which now consists of one homoge-
neous fluid layer of infinite depth. Taking r → 0 gives c2 = 0 and c2

1
= g∕k : this is the clas-

sical dispersion relation for a surface wave over a fluid of infinite depth.

Remark  The ‘rigid-lid’ model describes wave motion at the interface separating two fluid 
layers which are bounded above a by rigid horizontal wall. If the mean thickness of the 
upper layer is h1 , and the lower layer is infinitely deep, the dispersion relation for the rigid-
lid model takes the form

Relation (26) can be formally derived from (18) by letting a1 → 0 (with a ≠ 0 ). Alterna-
tively, it arises from ensuring continuity at the internal interface of normal velocities pre-
scribed by velocity potentials (10) and (14).

Remark  When the depth of the upper-fluid layers becomes very large ( h1 → ∞ ), the influ-
ence of the upper boundary diminishes, and the dispersion relation (26) for the interface 
becomes:

This matches the wavespeed c2 obtained in (23) in the limit kh1 → ∞.

3 � Dynamical systems formulation

If (x(t), y(t)) is the path of a particle in the lower-fluid layer Ωl , then the motion of the parti-
cle is described by the nonlinear dynamical system

for −h < y < 0 , with initial data (x0, y0) . In the upper-fluid layer Ωu , particle trajectories 
(x(t), y(t)) are determined by the nonlinear dynamical system

for 0 < y < h1 , with initial data (x0, y0) . The mean level of the oscillating internal wave 
interface y = � is located at y = 0 , whereas the free surface y = h1 + �1 oscillates about 
the mean level located at y = h1 . The right-hand sides of the differential systems (27) and 
(28) are smooth; therefore, the existence of unique local smooth solutions for both (27) and 

(26)c2 =
g

k

�lower − �upper

�lower + �upper coth(kh1)
.

c2 =
g

k

�lower − �upper

�lower + �upper
.

(27)

{
dx

dt
= u = a� cos(kx − �t)eky

dy

dt
= v = a� sin(kx − �t)eky,

(28)

{
dx

dt
= u1 = a1� cos(kx − �t)

{
sinh k(y − h1) + A cosh k(y − h1)

}

dy

dt
= v1 = a1� sin(kx − �t)

{
cosh k(y − h1) + A sinh k(y − h1)

}
,
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(28) is ensured by the Picard–Lindelöf theorem [33]. Furthermore, since the right-hand 
sides of (27) and (28) are bounded in the respective fluid layers, these unique solutions are 
defined globally [33]. The right-hand sides of both (27) and (28) are nonlinear, and thus, 
such systems cannot be solved explicitly. The fluid layers are separated by an impermeable 
interface y = �(x, t) ; therefore, we perform a phase-plane analysis of system (27) in the 
lower-fluid layer Ωl and system (28) in the upper-fluid layer Ωu , separately, and then piece 
together the information to obtain the motion of the entire two-layer body.

As we are dealing with travelling waves it is possible to transform to moving frames where 
the motion is steady by the changes of variables

The mapping (29) transforms system (27) to the autonomous system 

with initial data (X(0),Y(0)) = (kx0, ky0) . We denote M ∶= ak𝜔 = �𝜔 ≪ 𝜔 , where 
� = ak ≪ 1 is the wave-steepness parameter for the internal wave (cf. Sect. 2.2). Note that 
(31) can be expressed as a Hamiltonian system

for the Hamiltonian function

If (X(t), Y(t)) is a solution of (31), then dt
dt
H(X(t),Y(t)) = HXẊ + HYẎ = 0 , and so, H is con-

stant along the phase curves. The mapping (30) transforms (28) to the autonomous system

with initial data (X(0),Y(0)) = (kx0, k(h1 − y0)) . The right-hand side is 
denoted by F(X, Y1) ∶= M1A cosX cosh Y1 −M1 cosX sinhY1 − � , and 
G(X, Y1) ∶= M1A sinX sinhY1 −M1 sinX cosh Y1 , where A is defined by (12) and the 
parameter M1 ∶= a1k𝜔 = �1𝜔 ≪ 𝜔 (since the wave-steepness parameter for the surface 
wave satisfies �1 ≪ 1 : cf. Sect. 2.2). System (33) also has a Hamiltonian structure for the 
Hamiltonian function

Since (31) and (33) are periodic with respect to X, we focus on the strip 
{X ∶ −� ≤ X ≤ �} . The change of variables (29) transforms the lower-fluid layer to the 
region {Y ∶ −∞ ≤ Y ≤ � cosX} , while (30) transforms the upper-fluid layer to the region 
{Y1 ∶ −�1 cosX ≤ Y1 ≤ kh1 − � cosX} . It is important to note that the change of variables 

(29)(X(t),Y(t)) = (kx(t) − �t, ky(t)) for (x(t), y(t)) ∈ Ωl,

(30)
(
X(t),Y1(t)

)
=
(
kx(t) − �t, k

[
h1 − y(t)

])
for (x(t), y(t)) ∈ Ωu.

{
Ẋ = HY ,

Ẏ = −HX ,

(32)H(X, Y) ≡ MeY cosX − �Y .

(33)

{
dX

dt
= F(X, Y1),

dY1

dt
= G(X, Y1),

(34)H1(X, Y1) = M1A cosX sinh Y1 − �Y1 −M1 cosX coshY1.
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(30) reflects vertical coordinates through the line y = h1 with the effect that, when con-
structing phase-plane diagrams in terms of the transformed (X, Y1) variables, wave crests 
in the physical system (28) correspond to troughs in the transformed system (33), with 
a similar correspondence between troughs for (28) and crests for (33). Additionally, the 
streamline denoting the surface wave lies beneath that representing the internal wave in the 
resulting phase portraits.

In subsequent phase portrait analysis of the dynamical systems (27) and (28), the param-
eters k and � will be regarded as fixed constants, with the nondimensional wave amplitude 
ratio parameter A taking the values A1 = 1 and A2 > 1 for the upper-fluid layer system (28). 
While these parameters are fixed for a given coupled wave motion, in general they are not 
free-parameters; rather, they are determined by the dispersion relations (15) and (16).

3.1 � Phase portrait analysis: lower‑fluid layer

The velocity field for the lower-fluid layer is qualitatively identical to one which describes 
fluid motion in a single homogenous (uniform density) fluid layer whose upper interface 
separates the fluid from a source of constant pressure (such as the atmosphere), cf. [6]. 
Indeed, we note phase-plane approaches have previously proven successful in revealing 
the underlying flow-structure of a variety of surface water waves (cf. [6, 11, 15, 16, 20, 
21]. The physical influence of the upper-fluid layer is conveyed implicitly by way of the 
dispersion relations (17) and (18). The autonomous system (31) meets standard regularity 
assumptions for the uniqueness of the Cauchy problem [33]; therefore, its trajectories do 
not intersect. We note that the right-hand side of (31a) is an even function in X, while the 
right-hand side of (31b) is an odd function in X; therefore, the trajectories of (31) have a 
mirror symmetry with respect to the X−axis. Without loss of generality, we choose a > 0 
(hence M > 0 ) throughout this subsection.

The 0-isocline is defined to be the set where dY∕dt = 0 , and the ∞-isocline is the set 
where dX∕dt = 0 . Therefore, the 0-isocline is given by the lines X = 0,±� . The ∞-isocline 
is given in the region X ∈

(
−

�

2
,
�

2

)
 by the curve (X, �(X)) , where � is defined by 

�(X) = ln (�∕M cosX) : �(X) ∈ [Y∗,∞) for Y∗ = ln (�∕M) = ln (1∕�) , where � = ak is the 
wave-steepness parameter. The even function � is smooth, it takes on its infimum Y∗ at 
X = 0 , and it satisfies the limiting condition limX→±�∕2 �(X) = ∞ . The only singular point 
of system (31) is Q = (0, Y∗) , which is consequently a critical point of the Hamiltonian 
H(X, Y) defined by (32). The Hessian of H at Q is

It follows that Q is a nondegenerate singular point. By Morse’s lemma [34] in a neigh-
bourhood of Q, there exists a diffeomorphic change of coordinates which sends the level 
lines of H to hyperbolas. Thus, Q is a saddle point for H. Away from the critical point Q, 
the separatrix H−1{H(Q)} = {(X, Y) ∶ H(X, Y) = H(Q)} is a smooth curve, by the implicit 
function theorem, and it intersects the vertical line X = � at the point (�, �) , where � is 
implicitly defined by the equation H(�, �) = −�

(
�e� + �

)
= H(Q) = �(1 − ln (1∕�)) . Note 

a unique positive solution 𝛽 > 0 exists since � ≪ 1 . This implies that the streamline that 
represents the internal wave lies beneath the separatrix, as required, since the wave trough 
is located at X = � and Y = −� < 𝛽.

(
−� 0

0 �

)
.
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For X ∈ (
�

2
,�) , we have dX∕dt < 0, dY∕dt > 0 . If X ∈ (0,

�

2
) , then dX∕dt < 0 below the 

curve of �(X) and is positive above it, while dY∕dt remains positive in this region. The cor-
responding signs for X ∈ (−�, 0) are obtained using symmetry with respect to the Y-axis. A 
phase portrait for the lower-fluid layer is given in Fig. 3.

3.2 � Phase portrait analysis: upper‑fluid layer

Phase-plane analysis for the upper-fluid layer proceeds along the lines of that for coupled 
waves propagating on a finite fluid domain over a flat bed [25], with simplifications result-
ing in the present setting due to the explicit form of the wave solution parameters A = A1,A2 
(given by (21)). For completeness, we present the salient aspects of the phase-plane analysis 
which are germane to the present context, referring to [25] for full details.

The autonomous system (33) meets the standard regularity assumptions for the unique-
ness of the Cauchy problem [33]; therefore, its trajectories do not intersect. Moreover, since 
F(X, Y1) is an even function and G(X, Y1) an odd function, with respect to X, any trajectory of 
system (33) is symmetric with respect to the Y1-axis when viewed as a curve in the (X, Y1)−
phase plane. Re-express the right-hand sides of (33) as 

for the functions

 Without loss of generality, we fix M1 > 0 ( a1 > 0 ) throughout subsequent considera-
tions, with the sign of a matching that of the ratio a∕a1 as prescribed by A in (22), namely: 
a∕a1 > 0 for A = 1 and a∕a1 < 0 for A = A2.

(35a)F(X, Y1) = M1 cos(X)f (Y1) − �, G(X, Y1) = M1 sin(X)g(Y1),

(35b)f (Y1) ∶= A cosh(Y1) − sinh(Y1), g(Y1) ∶= A sinh(Y1) − cosh(Y1).

Fig. 3   Phase portrait for the lower-fluid layer. The dotted grey line represents the ∞-isocline, with the dot-
ted-dashed lines representing the 0-isoclines. The internal wave profile (blue dashed lines) with mean water 
level Y = 0 (corresponding to y = 0 ) is also illustrated (colour figure online)
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Note that f �(Y1) = g(Y1) and g�(Y1) = f (Y1) , where (⋅)� denotes differentiation with 
respect to Y1 . In order to investigate the phase portrait of system (33), we must begin by 
investigating the 0-isocline (defined as the set of points where the vector field is horizontal, 
Ẏ1 = 0 , and so G(X, Y1) = 0 in (35a)) and the ∞-isocline (defined as the set of points where 
the vector field is vertical, Ẋ = 0 , and so F(X, Y1) = 0 in (35a)).

3.2.1 � System (33) with A = A
1
= 1

For A = 1 , relations (35b) reduce to f (Y1) = e−Y1 = −g(Y1) . Accordingly, the phase por-
trait for positive values of Y1 rapidly converges to a series of flat, horizontal lines as Y1 
increases, since the velocity field converges exponentially fast to the uniform system 
Ẋ ≡ −𝜔 and Ẏ1 ≡ 0 . We have G(X, Y1) < 0 for 0 < X < 𝜋 and vanishes at X = 0 and 
X = � ; hence, these vertical lines comprise the 0-isocline for system (33) in [0,�] . The ∞
-isocline consists of points Y1 where cos(X)e−Y1 = 1∕�1 , and for X ∈

[
�

2
,�

]
 , there is no 

such solution. For each X ∈
[
0,

�

2

)
 , there is a solution, and for X = 0 , we have e−Y∗

1 = 1∕�1 
for Y∗

1
= − ln

(
1∕�1

)
 . The point Q1 = (0, Y∗

1
) is a singular point, and since the Hessian of 

the Hamiltonian (34) is

it follows immediately that Q1 is a saddle point which lies at the confluence of four separa-
trices. The maximum value of the ∞-isocline is located at Q1 , and it decreases monotoni-
cally to −∞ as X →

�

2
 . The phase portrait for system (33) when A = 1 is given in Fig. 4.

Note the magnitude of the amplitude of the surface wave is greater than that of the inter-
nal wave, in accordance with (24). The surface wave streamline must be located above the 
separatrix for physically relevant solutions of (33), and this is the case if −�1 > Y∗

1
 , that is, 

�1e
�1 < 1 : this holds since �1 ≪ 1.

M1

(
eY

∗
1 0

0 − eY
∗
1

)
,
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3.2.2 � System (33) with A = A
2
> 1

To ascertain the 0-isocline, we must determine when G(X, Y1) = 0 in (35a). Firstly, it is 
obvious from (35a) that this occurs when X = 0 and X = � . From direct computation in 
(35b), we have g(0) = −1 , while g�(Y1) > 0 and limY1→+∞ g(Y1) = +∞ whenever A > 1 . 
Hence, there exists a unique Ȳ1 such that g(Ȳ1) = 0 , and we can calculate it directly to get

Hence, the 0-isocline is composed of the vertical half-lines X = 0 , X = � and the horizon-
tal line-segment Y1 = Ȳ1 . The value for Ȳ1 as determined by (36), which is well defined for 
A > 1 , corresponds to A = coth(Ȳ1) : it follows from (21) that kh1 > Ȳ1 for A = A2.

The study of the ∞-isocline, where F(X, Y1) = 0 in (35a), can be achieved through 
examining f (Y1) in (35b). The function f has a minimum at Y1 = Ȳ1 , which can be calcu-
lated to get f (Ȳ1) = 1∕ sinh(Ȳ1) < A . If Ŷ1 > Ȳ1 is the unique value such that f (Ŷ1) = A , 
then the function f (Y1) is invertible on the set Y1 ∈ (Ŷ1,∞) ; a schematic for f (Y1) is given 
in Fig. 5.

For �
2
≤ X ≤ � , F(X, Y1) is strictly positive since M1 > 0 ; hence, there are no ∞-isocline 

or singular points in this region. In the region 0 ≤ X <
𝜋

2
 , the ∞-isocline is given by points 

(X, Y1) where cos(X)f (Y1) = �∕M1 = 1∕�1 ; therefore, since the left-hand side is maximised 
at X = 0 , an ∞-isocline exists in this region if f (Y∗

1
) = 1∕�1 for some value of Y∗

1
 . It follows 

from the schematic in Fig. 5 that, if �1 < maxY1
1∕f (Y1) = sinh(Ȳ1) , there exists a pair of 

values, Ỹ∗
1
 , Y∗

1
 with Ỹ∗

1
≤ Y∗

1
 , say, such that f (Y∗

1
) = f (Y∗

1
) = 1∕�1 . We denote these singular 

points of system (33) by Q̃1 = (𝜋, Ỹ∗
1
) , Q1 = (�, Y∗

1
) , and let us first examine the point Q1 . 

By virtue of the properties of f (Y1) , the ∞-isocline is given in the interval X ∈
[
0,

�

2

)
 by 

(36)Ȳ1 =
1

2
ln

(
A + 1

A − 1

)
.

Fig. 4   Phase portrait of the upper-fluid layer when A = 1 . The dotted grey line represents the ∞-isocline, 
while the dotted-dashed lines represent the 0-isoclines. The surface wave profile (thin blue dashed lines) has 
mean water level Y1 = 0 , corresponding to y = h1 . The internal wave profile (thick blue dashed lines) has 
mean water level Y = kh1 , corresponding to y = 0 . Recall that the streamline representing the surface wave 
lies beneath that of the internal wave in this phase portrait (colour figure online)
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the curve (X, �1(X)) , where �1(X) ∶
[
0,

�

2

)
→

[
Y1

∗
,+∞

)
 is the inverse of the function 

f (Y1) restricted to the interval 
[
Y1

∗
,+∞

)
 . We note that �1(0) = Y1

∗
, limX→

�

2

+ �1(X) = +∞ 
and, in the interval 

[
0,

�

2

)
 , �1 is an increasing function. Given the Hamiltonian (34) for sys-

tem (33), the Hessian at Q1 is

and arguments similar to those above involving Morse theory imply that Q1 is a saddle 
point which lies at the intersection of four separatrices: two that reach Q1 in infinite time 
in the future and two that need infinite time backwards to reach the saddle point. Analo-
gous reasoning shows that the singular point Q̃1 is also a saddle point, and the ∞-isocline 
emanating from Q̃1 is qualitatively similar to that described for Q1 , except ‘flipped’ verti-
cally. Having characterised the 0- and ∞-isoclines, we can easily determine the signs of 
the two components F(X, Y1) and G(X, Y1) of the vector field given by system (33), and 
employing symmetry properties of (33), we infer the phase portrait behaviour in the region 
−� ≤ X ≤ 0 . The complete phase portrait of system (33) is given in Fig. 6.

The surface wave profile has a mean water level Y1 = 0 , which corresponds to y = h1 , 
while the internal wave profile has a mean water level Y = kh1 , which corresponds to 
y = 0 . From the phase portrait in Fig. 6, we see that there are qualitatively different fluid 
motions possible in the upper-fluid layer. Streamlines located beneath Y1 = Ȳ1 in Fig. 6 
are in-phase with the surface wave; the horizontal line Y1 = Ȳ1 is itself a (flat) stream-
line; streamlines located above Ȳ1 in Fig. 6 are out-of-phase with the surface wave: the 
internal wave with mean water level Y = kh1 lies in this region. Note that the magnitude 
of the internal wave amplitude is significantly greater than that of the surface wave, as 
prescribed by (25). In order for system (33) to describe physically relevant solutions, 
the singular points Q̃1 and Q1 must lie outside the upper-fluid layer; hence, we must have 
Ỹ∗
1
< −�1 and kh1 + � < Y∗

1
 or, equivalently (cf. Fig. 5), max

{
f (−�1), f (kh1 + �)

}
< 1∕�1 . 

Since �, �1 ≪ 1 in the linear regime, and f (−�1) ≈ A + �1 , for this condition to break-
down requires A to be sufficiently large that �1f (−�1) ≈ �2

1
+ A�1 ≈ A�1 > 1 . Otherwise, 

the singular points lie outside the upper-fluid layer.

(
M1 cosh(Y

∗
1
) −M1A sinh(Y∗

1
) 0

0 − (M1 cosh(Y
∗
1
) −M1A sinh(Y∗

1
))

)
,

Fig. 5   Schematic of f (Y1) for A > 1 , where f (0) = A , with A = cosh(Ȳ1)∕ sinh(Ȳ1) , and the minimum value 
attained is f (Ȳ1) = 1∕ sinh(Ȳ1)

726



Flow dynamics for coupled surface and internal deep‑water waves﻿	

1 3

4 � Particle trajectories

Phase portraits have been constructed for the nonlinear dynamical systems (31) and (33), 
which describe fluid motion in the lower- and upper-fluid layers, respectively. This analysis 
is performed in terms of the (X, Y)− and (X, Y1)-variables, in (moving) reference frames for 
which the flow is steady. For steady fluid motion, the dynamical systems (31) and (33) are 
autonomous and, hence, particle trajectories coincide with the streamlines. Accordingly, a 
complete qualitative picture of fluid motion may be ascertained in terms of the transformed 
coordinates. From the phase portraits in Figs. 3, 4, 6, it is also possible to ascertain which 
streamlines correspond to physically admissible fluid trajectories in each fluid layer. This 
global picture of the qualitative behaviour of the dynamical systems (31) and (33) provides 
an Eulerian description of the fluid motion.

In this section, we pursue a Lagrangian description of fluid motion by ascertaining qual-
itative features of the motion of specific fluid particles described in terms of the physi-
cal variables (x(t), y(t)) . We prove that there does not exist any closed particle trajectory 
in either the lower, or upper, fluid layers, and prove that all particles experience a for-
ward drift. Regarding particle drift, it bears remarking that the Stokes’ drift phenomenon 

Fig. 6   Phase portrait for the upper-fluid layer when A = A2 . The dotted grey lines represent the ∞-isoclines, 
with the dotted-dashed lines representing the 0-isoclines. The surface wave profile (thin blue dashed lines) 
has mean water level Y1 = 0 , corresponding to y = h1 . The internal wave profile (thick blue dashed lines) 
has mean water level Y = kh1 > Ȳ1 , corresponding to y = 0 . Recall that the streamline representing the sur-
face wave lies beneath those of the internal waves in this phase portrait (colour figure online)
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(whereby fluid particles experience a mean net drift velocity in the direction of wave 
motion) is intrinsically nonlinear (cf. [24, 38]): the existence of a forward drift induced 
by linear internal waves for all fluid particles, first established in [25], is apparently new. 
Finally, we establish monotonicity properties for this forward drift.

4.1 � Lower‑fluid layer

The significant difference between systems (27) and (31) arises due to the latter being 
autonomous, while the former is nonautonomous and hence considerably more difficult to 
analyse. Nevertheless, it is possible to use qualitative properties of the fluid motion induced 
by (31), established in the phase portrait analysis of Sect.  3.1, to construct a qualitative 
description of fluid motion in terms of physical variables as prescribed by (27). System 
(27) is qualitatively similar to one which describes the motion of a surface wave propa-
gating on a single homogeneous fluid layer of finite depth, cf. [6]. Physical variables are 
obtained by reversing the coordinate transformations (29) by defining

in the lower-fluid layer. Suppose (X(t), Y(t)) describes a streamline in the lower-fluid layer 
(in the moving reference frame) such that (X(0),Y(0)) = (�, Y0) : in the lower-fluid layer 
focus is restricted to streamlines for which Y0 ∈ (−∞, k(h − a)] . Let tY0 (−�) denote the 
time it takes for the particle to intersect the line X = −� . The next lemma is stated for 
motion in the lower-fluid layer, but applies similarly to fluid motion in the upper layer.

Lemma 4.1  If the particle trajectory prescribed by (x(t), y(t)) is a closed path with period 
� , then, necessarily, we have � =

2�

�
 . Conversely, suppose tY0 (−�) =

2�

�
 , then the particle 

path prescribed by (x(t), y(t)) is closed.

Proof  The proof follows from the periodicity of system (31) with respect to X, together 
with the definition (37). 	�  ◻

The main result concerning motion in the lower-fluid layer is stated in the following.

Theorem  4.2  System (27) has no solutions (x(t),  y(t)) which are periodic. Accordingly, 
there are no closed particle paths in the lower-fluid layer; instead, all fluid particles expe-
rience a positive horizontal drift.

Proof  The proof follows, bearing in mind Lemma 4.1, by proving that tY0 (−𝜋) >
2𝜋

𝜔
 for all 

Y0 ∈ (−∞, kh − �] . For such Y0 , along the streamlines we have dY∕dt > 0 for X ∈ (0,�) , 
and dY∕dt < 0 when X ∈ (−�, 0) . If this streamline intersects the line X =

�

2
 at the value 

Y = Y , then (X(t),  Y(t)) lies below the line Y = Y for X(t) ∈ [−�,−
�

2
) ∪ (

�

2
,�] and lies 

above the line for X(t) ∈ (−
�

2
,
�

2
) . Thus,

Introducing the differential equation

(37)x(t) =
X(t)

k
+ ct, y(t) =

Y(t)

k
− h,

(38)Ẋ = MeY cos(X) − 𝜔 ≥ MeY cos(X) − 𝜔, t ≥ 0.

�̇ = MeY cos(�) − 𝜔,

728



Flow dynamics for coupled surface and internal deep‑water waves﻿	

1 3

with �(0) = � , it follows immediately from (38) and the fact that X(0) = �(0) = � that 
X(t) ≥ �(t) for t ≥ 0 . Therefore, tY0 (−𝜋) > t∗ , where t∗

Y0
 is the time it takes for �(t∗) = −� , 

namely

For � < 𝜔 , the integral

gives

Hence, t∗
Y0

> 2𝜋∕𝜔 follows from (39) with � = MeY , with tY0 (−𝜋) >
2𝜋

𝜔
 . 	�  ◻

Proposition 1  The horizontal drift experienced by a fluid particle in the lower fluid layer 
over one wave period decreases strictly with depth, and furthermore, the drift goes to zero 
at great depths.

Proof  The horizontal drift experienced by a fluid particle over one wave period is given by 
D(Y0) = x(tY0 (−𝜋)) − x(𝜋) = (𝜔tY0 (−𝜋) − 2𝜋)∕k > 0 , which can be expressed from (31a) 
as

If Y1 < Y0 , with Ỹ = Ỹ(X) denoting the streamline with Ỹ(𝜋) = Y1 , then

which, in the limit Y1
→ Y0 , has the same sign as

Thus, D(Y0) > D(Y1) , and the particle drift is decreasing with depth. It is clear from (40) 
that particle drift goes to zero at great depths (as Y0

→ −∞ ). 	�  ◻

t∗
Y0 = ∫

�

−�

ds

� −MeY cos s
.

∫
z

0

ds

𝜔 −� cos s
= 2

√
1

𝜔2 −�2
arctan

[√
𝜔 +�

𝜔 −�
tan

(
z

2

)]
, z > 0,

(39)∫
𝜋

−𝜋

ds

𝜔 −� cos s
= 2𝜋

√
1

𝜔2 −�2
>

2𝜋

𝜔
.

(40)D(Y0) = 2∫
�

0

MeY cosXdX

� −MeY cosX
.

D(Y0) − D(Y1) = 2∫
𝜋

0

𝜔M
(
eY − eỸ

)
cosX

(
𝜔 −MeY cosX

)(
𝜔 −MeỸ cosX

)dX,

lim
Ỹ→Y

2∫
𝜋

0

𝜔M
(
eY − eỸ

)
cosX

(
𝜔 −MeY cosX

)(
𝜔 −MeỸ cosX

)
(Y − Ỹ)

dX

= 2∫
𝜋

0

𝜔MeY cosX
(
𝜔 −MeY cosX

)2 dX > 2∫
𝜋

0

𝜔MeY cosX

𝜔2
dX

> 2∫
𝜋

0

M

𝜔
eY cosXdX = 0.
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Combining these results with the phase-plane analysis of system (31) undertaken in 
Sect. 3.1, facilitates a qualitative description of physical particle motion in the lower-fluid layer 
as prescribed by (27). Assume a given fluid particle is initially at its lowest depth y(0) = y0 : 
we label this position A. This corresponds to X(0) = � , and since Ẋ < 0 along streamlines it 
follows that, in the moving frame, the variable X(t) decreases continuously from � to −� , and 
we have: ẋ < 0 , ẏ > 0 for X(t) ∈ (�∕2,�) ; ẋ > 0 , ẏ > 0 for X(t) ∈ (0,�∕2) ; ẋ > 0 , ẏ < 0 for 
X(t) ∈ (−�∕2, 0) ; ẋ < 0 , ẏ < 0 for X(t) ∈ (−�,−�∕2) . The particle returns to its lowest posi-
tion in the fluid layer (with depth y = y0 ) at time t = tY0 (−𝜋) > 2𝜋∕𝜔 , having experienced a 
positive horizontal drift: we label this position B. A representation of this qualitative particle 
motion is illustrated in Fig. 7.

Remark  The primary qualitative difference between fluid particle motion in a lower-fluid 
layer which has infinite depth, rather than finite depth over a flat impermeable bottom, is 
that particle trajectories are (almost) circular in the present setting, as opposed to being 
(almost) elliptical in the finite depth case, when fluid motion is small. To see this, observe 
that making the approximation (x, y) ≈ (x0, y0) on the right-hand side of (27) enables sys-
tem (27) to be integrated, leading to the solution

which implies that

Hence, assuming fluid motion is small, the fluid particles follow approximately circular 
trajectories, with centres located at x∗

0
= x0 + aeky0 sin kx0 and y∗

0
= y0 − aeky0 cos kx0 , and 

radii aeky0 that decrease with increasing depth.

4.2 � Upper‑fluid layer

Physical variables in the upper-fluid layer are obtained by reversing the coordinate transforma-
tions (30) by defining

Note the reflection involved in the vertical coordinate transformation in (42) reverses the 
vertical orientation of fluid motion when expressed in terms of the physical coordinate y, as 
opposed to the Y1 coordinate. If (X(t),Y1(t)) is a solution to (33) in the upper-fluid layer with 

(
x(t) − x0, y(t) − y0

)

≈ aeky0
(
− sin(kx0 − �t) + sin kx0, cos(kx0 − �t) − cos kx0

)
,

(41)
(
x(t) − x∗

0

)2
+
(
y(t) − y∗

0

)2
= a2e2ky0 .

(42)x(t) =
X(t)

k
+ ct, y(t) = h1 −

Y1(t)

k
.

Fig. 7   Schematic of a typi-
cal particle trajectory in the 
lower-fluid layer, representing 
its location at time: t = 0 (A); 
t = tY0 (−�) (B); t = 2tY0 (−�) (C); 
t = 3tY0 (−�) (D)
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(X(0),Y1(0)) = (�,Y0

1
) , then Y0

1
∈ [�1, kh1 + �] if A = A1 = 1 (for which a∕a1 > 0 ), whereas 

Y0

1
∈ [�1, kh1 − �] for A = A2 (for which a∕a1 < 0 ). The analysis of particle motion in the 

upper-fluid layer follows along the lines of [25], although with more specificity due to the 
nature of the solutions A = A1 = 1 and A = A2 given by (21). For the sake of completeness, 
we present the main results and pertinent qualitative features, referring the reader to [25] 
for full details.

4.2.1 � Upper‑fluid layer with A = A
2
(> 1)

Theorem 4.3  Let A = A2 . There are no closed particle paths in the upper-fluid layer whose 
motion is governed by system (28). That is, system (28) has no solutions (x(t), y(t)), which 
are periodic.

Proof  With reference to Fig.  6, streamlines of the upper-fluid layer are restricted to the 
phase portrait region for which Y0

1
∈ [�1, kh1 + �] . Although there is a change in the quali-

tative behaviour of streamlines depending on whether Y0

1
< Ȳ1 or Y0

1
> Ȳ1 , where Ȳ1 is pre-

scribed by (36), it can be shown (cf.[25]) that in either case the inequality holds:

Noting similarities between inequalities (38) and (43), the arguments used in the proof of 
Theorem 4.2 apply here to the differential equation �̇ = M1f (Y1) cos(�) − 𝜔 , and it can be 
deduced that tY0

1

(−𝜋) > t∗ , with

For the case Y1 = Ȳ1 , in which the streamline is the flat 0-isocline, we note that 
f (Y1) ≡ f (Y1) ≡ f (Ȳ1) and relation (43) becomes an equality, giving

	�  ◻

Combining these results with the phase-plane analysis for system (33) presented in 
Sect. 3.2 facilitates a qualitative description of physical particle motion in the upper-fluid 
layer for A = A2 . Note that, along streamlines in the moving frame, Ẋ(t) < 0 for solutions 
of system (33): X(t) decreases continuously from X = � to reach X = −� in time tY0

1

(−�) . 
For streamlines with Y0

1
∈ [�1, Ȳ1) in this region (which corresponds physically to the top 

section of the upper-fluid layer) we have: ẋ < 0 , ẏ > 0 for X(t) ∈ (�∕2,�) ; ẋ > 0 , ẏ > 0 for 
X(t) ∈ (0,�∕2) ; ẋ > 0 , ẏ < 0 for X(t) ∈ (−�∕2, 0) ; ẋ < 0 , ẏ < 0 for X(t) ∈ (−�,−�∕2) . 
Fluid particles in this region return to their lowest position in the fluid layer, with depth 
y = y0 , say, after the time tY0

1

(−�) , having experienced a forward horizontal drift 
x(tY0

1

(−𝜋)) − x(0) =
(
tY0

1

(−𝜋)𝜔 − 2𝜋

)
∕k > 0 . This particle motion is captured in sche-

matic (a) of Fig. 8.

(43)Ẋ = M1f (Y1) cosX − 𝜔 ≥ M1f (Y1) cosX − 𝜔, t ≥ 0.

t∗ = 2𝜋

√
1

𝜔2 −M2

1
f 2(Y1)

>
2𝜋

𝜔
.

tȲ1 (−𝜋) = t∗ = 2𝜋

√
1

𝜔2 −M2

1
f 2
(
Ȳ1
) >

2𝜋

𝜔
.

731



	 D. Henry, G. Villari 

1 3

At the 0-isocline Y = Ȳ1 , the motion is given by ẋ < 0 for X(t) ∈ (�∕2,�) ; ẋ > 0 
for X(t) ∈ (0,�∕2) ; ẋ > 0 for X(t) ∈ (−�∕2, 0) ; ẋ < 0 for X(t) ∈ (−�,−�∕2) . 
Fluid particles located on the 0-isocline experience a forward horizontal drift 
x(tȲ1 (−𝜋)) − x(0) =

(
tȲ1 (−𝜋)𝜔 − 2𝜋

)
∕k > 0 . This motion is represented by schematic (b) 

of Fig. 8.
For streamlines with Y0

1
∈ (Ȳ1, kh1 + �] (which corresponds physically to the bottom 

region of the upper-fluid layer), we get: ẋ < 0 , ẏ < 0 for X(t) ∈ (�∕2,�) ; ẋ > 0 , ẏ < 0 for 
X(t) ∈ (0,�∕2) ; ẋ > 0 , ẏ > 0 for X(t) ∈ (−�∕2, 0) ; ẋ < 0 , ẏ > 0 for X(t) ∈ (−�,−�∕2) . 
Fluid particles in this region return to their highest position in the fluid layer, with depth 
y = y0 , say, after the time tY0

1

(−�) , having experienced a forward horizontal drift 
x(tY0

1

(−𝜋)) − x(0) =
(
tY0

1

(−𝜋)𝜔 − 2𝜋

)
∕k > 0 . This particle motion is depicted in schematic 

(c) of Fig. 8.
In the upper-fluid layer, the horizontal drift experienced by a fluid particle over one 

wave period is given by D(Y0

1
) = x(tY0

1

(−𝜋)) − x(𝜋) = (𝜔tY0

1

(−𝜋) − 2𝜋)∕k > 0 , which can 
be expressed from (33) as

If Y1

1
< Y0

1
 , where Ỹ1 = Ỹ1(X) denotes the streamline with Ỹ1(𝜋) = Y1

1
 , then

In the limit Y1

1
→ Y0

1
 , the drift D(Y0

1
) − D(Y1

1
) has the same sign as

The following result applies for particle drift in the upper-fluid layer (cf. [25]).

D(Y0

1
) = 2∫

�

0

M1f (Y1) cosXdX

� −M1f (Y1) cosX
.

D(Y0

1
) − D(Y1

1
) = 2∫

𝜋

0

𝜔M1

(
f (Y1) − f (Ỹ)

)
cosX

(
𝜔 −M1f (Y1) cosX

)(
𝜔 −M1f (Ỹ) cosX

)dX.

(44)

lim
Ỹ1→Y1

2∫
𝜋

0

𝜔M1

(
f (Y1) − f (Ỹ1)

)
cosX

(
𝜔 −M1f (Y1) cosX

)(
𝜔 −M1f (Ỹ1) cosX

)
(Y1 − Ỹ1)

dX

= 2∫
𝜋

0

𝜔M1f
�(Y1) cosX

(
𝜔 −M1f (Y1) cosX

)2 dX = 2∫
𝜋

0

𝜔M1g(Y1) cosX
(
𝜔 −M1f (Y1) cosX

)2 dX.

Fig. 8   Schematics of 
typical trajectories for par-
ticles a–c in the upper-fluid 
layer, for A = A2 (> 1) . 
Their locations at times 
t = 0, tY0

1

(−�), 2tY0

1

(−�), 3tY0

1

(−�) 
are denoted by A, B, C, D, 
respectively (b)

(a)

(c)
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Proposition 2  Suppose A = A2 (> 1) . The horizontal drift experienced by a fluid particle 
in the upper-fluid layer over one wave period decreases with depth for fluid motion of the 
type illustrated in schematic (a) of Fig. 8, while it increases with depth for fluid motion of 
the type illustrated in schematic (c) of Fig. 8. Accordingly, the minimum horizontal drift 
experienced by fluid particles occurs at Y = Ȳ1 , as illustrated in schematic (b) of Fig. 8.

Remark  Fluid particle trajectories in the upper-fluid layer are (approximately) elliptical 
when fluid motion is small since making the approximation (x, y) ≈ (x0, y0) on the right-
hand side of (28) enables this system to be integrated. This leads to the solution

for

Hence, for small fluid motion in the upper-fluid layer, particle trajectories approximately 
follow the elliptical orbits prescribed by

where x∗
0
= x0 + a1F(y0) sin kx0 and y∗

0
= y0 − a1G(y0) cos kx0 . The depth-dependent 

parameters F(y0) and G(y0) determine the size of the major and minor axes, respectively. 
Note that F(y0) does not vanish in the upper-fluid layer for A = A2 , while G(y0) vanishes for 
ȳ0 = h1 − Ȳ1∕k : this value corresponds to particle trajectories prescribed by the flat line in 
schematic (b) of Fig. 8. The change in the sign of G(y0) that occurs at ȳ0 corresponds to the 
change in the orientation of particles trajectories, which move clockwise in schematic (a) 
and anticlockwise in schematic (c) of Fig. 8.

4.2.2 � Upper‑fluid layer with A = A
1
(= 1)

Due to the straightforward form that the functions f (Y1), g(Y1) assume in the setting 
A = A1 = 1 , a comprehensive qualitative description of fluid motion can be achieved.

Theorem 4.4  Let A = 1 . There are no closed particle paths in the upper-fluid layer whose 
motion is governed by system (28).

Proof  For A = 1 , we have f (Y1) = e−Y1 = −g(Y1) , and it can easily be shown that the ana-
logue of inequality (43) holds for streamlines in the region Y0

1
∈ [�1, kh1 + �] . Consequently,

	�  ◻

(
x(t) − x0, y(t) − y0

)

≈ a1
(
−F(y0) sin(kx0 − �t) + F(y0) sin kx0,G(y0) cos(kx0 − �t) − G(y0) cos kx0

)
,

(45)
{

F(y0) = sinh k(y0 − h1) + A cosh k(y0 − h1),

G(y0) = cosh k(y0 − h1) + A sinh k(y0 − h1).

(46)

(
x(t) − x∗

0

)2

a2
1
F

2(y0)
+

(
y(t) − y∗

0

)2

a2
1
G
2(y0)

= 1,

tY0

1

(−𝜋) > 2𝜋

√
1

𝜔2 −M2

1
f 2(Y1)

>
2𝜋

𝜔
.
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It follows immediately that: ẋ < 0 , ẏ > 0 for X(t) ∈ (�∕2,�) ; ẋ > 0 , ẏ > 0 for 
X(t) ∈ (0,�∕2) ; ẋ > 0 , ẏ < 0 for X(t) ∈ (−�∕2, 0) ; ẋ < 0 , ẏ < 0 for X(t) ∈ (−�,−�∕2) . 
Furthermore, the following can be proven.

Proposition 3  ([25]) If A = A1 , the horizontal drift experienced by fluid particles in the 
upper-fluid layer over one wave period decreases with depth.

Fluid particle motion matches that illustrated in schematic (a) of Fig. 8, with all fluid 
particles experiencing a forward drift, except now fluid trajectories are approximately 
circular for A = 1 (rather than elliptical) since F(y0) = G(y0) = 2ek(y0−h1) in (45). Hence, 
for A = 1 equation (46) prescribes approximately circular particle trajectories for small 
fluid motion in the upper-fluid layer.

5 � Conclusions

In this article, the fluid motion underlying coupled linear internal and surface waves is 
studied, from both the Eulerian and Lagrangian viewpoints, for a deep-water two-fluid-
layer model (with the lower layer being of infinite depth). Although the linearised gov-
erning equations are studied, the resulting dynamical systems which prescribe the fluid 
motion are themselves nonlinear. In contrast to the setting of two fluid layers of finite 
depth (recently studied in [25]), when the lower layer is of infinite extent the dispersion 
relations simplify, and the nondimensional wave amplitude ratio parameter A for the 
upper-fluid layer system (28) is restricted to either of the values A1 = 1 and A2 > 1.

A detailed Eulerian description of the wave-field kinematics for coupled linear 
travelling waves is achieved using phase-plane analysis, a by-product of which is an 
elegant graphical verification that coupled surface and internal waves are in-phase for 
the parameter value A = A1 = 1 , while they are out-of-phase when A = A2 > 1 . Further-
more, a complete qualitative Lagrangian description of the fluid particle trajectories in 
both fluid layers is obtained. In the deep-water regime, the wave-field kinematics in the 
lower-fluid layer are necessarily quite different to that of the finite depth case featured 
in [25]. Particle trajectories in the lower-fluid layer all exhibit a forward drift which 
decreases with increasing depth, and they are approximately circular. In the case of a 
lower-fluid layer of finite depth (as analysed in [25]), the particle motion is approxi-
mately elliptical (with similar forward drift properties).

A significant benefit of the deep-water setting under consideration here is that we can 
particularise results from [25] concerning the dynamics of the upper-fluid layer, giving 
a complete qualitative picture of fluid particle motion in the upper-fluid layer. All parti-
cles exhibit a forward drift: for A = A1 = 1 the particle motion is approximately circular, 
moving clockwise with a drift which decreases with increasing depth. For the parameter 
value A = A2 > 1 , the particle motions are approximately elliptical, with upper parti-
cles moving clockwise and lower particles moving anticlockwise. A reverse in the ori-
entation of particle trajectory motion occurs at the flat streamline located at Y1 = Ȳ1 , 
which is also the location of minimum forward particle drift: particle drift decreases 
with depth for fluid particles located between the surface and this streamline, while it 
increases for fluid particles located between this streamline and the internal wave.

734



Flow dynamics for coupled surface and internal deep‑water waves﻿	

1 3

Acknowledgements  DH and GV gratefully acknowledge the Erwin Schrödinger International Institute for 
Mathematics and Physics, University of Vienna, for their kind support and hospitality during the Research 
in Teams programme Underlying Flow Induced by Internal Water Waves.

Funding  Open Access funding provided by the IReL Consortium.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Bona, J.L., Lannes, D., Saut, J.-C.: Asymptotic models for internal waves. J. Math. Pures Appl. (9) 
89(6), 538–566 (2008)

	 2.	 Constantin, A.: The trajectories of particles in Stokes waves. Invent. Math. 166(3), 523–535 (2006)
	 3.	 Constantin, A.: Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis, 

Volume 81 of CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial 
and Applied Mathematics (SIAM), Philadelphia (2011)

	 4.	 Constantin, A.: Particle trajectories in extreme Stokes waves. IMA J. Appl. Math. 77(3, SI), 293–307 
(2012)

	 5.	 Constantin, A.: The flow beneath a periodic travelling surface water wave. J. Phys. A 48(14), 143001 
(2015)

	 6.	 Constantin, A., Ehrnström, M., Villari, G.: Particle trajectories in linear deep-water waves. Nonlinear 
Anal. Real World Appl. 9(4), 1336–1344 (2008)

	 7.	 Constantin, A., Escher, J.: Particle trajectories in solitary water waves. Bull. Am. Math. Soc. 44(3), 
423–431 (2007)

	 8.	 Constantin, A., Ivanov, R.I.: A Hamiltonian approach to wave-current interactions in two-layer fluids. 
Phys. Fluids 27(8), 086603 (2015)

	 9.	 Constantin, A., Ivanov, R.I.: Equatorial wave–current interactions. Commun. Math. Phys. 370(1), 1–48 
(2019)

	10.	 Constantin, A., Ivanov, R.I., Martin, C.I.: Hamiltonian formulation for wave–current interactions in 
stratified rotational flows. Arch. Ration. Mech. Anal. 221(3), 1417–1447 (2016)

	11.	 Constantin, A., Villari, G.: Particle trajectories in linear water waves. J. Math. Fluid Mech. 10(1), 1–18 
(2008)

	12.	 Craig, W., Guyenne, P., Kalisch, H.: Hamiltonian long-wave expansions for free surfaces and inter-
faces. Commun. Pure Appl. Math. 58(12), 1587–1641 (2005)

	13.	 Craig, W., Guyenne, P., Sulem, C.: Coupling between internal and surface waves. Nat. Hazards 57(3), 
617–642 (2011)

	14.	 Craig, W., Guyenne, P., Sulem, C.: The surface signature of internal waves. J. Fluid Mech. 710, 277–
303 (2012)

	15.	 Ehrnström, M., Escher, J., Villari, G.: Steady water waves with multiple critical layers: interior dynam-
ics. J. Math. Fluid Mech. 14(3), 407–419 (2012)

	16.	 Ehrnström, M., Villari, G.: Linear water waves with vorticity: rotational features and particle paths. J. 
Differ. Equ. 244(8), 1888–1909 (2008)

	17.	 Garrett, C., Munk, W.: Internal waves in the ocean. Ann. Rev. Fluid Mech. 11(1), 339–369 (1979)
	18.	 Helfrich, K.R., Kendall Melville, W.: Long nonlinear internal waves. Ann. Rev. Fluid Mech. 38(1), 

395–425 (2006)
	19.	 Henry, D.: The trajectories of particles in deep-water Stokes waves. Int. Math. Res. Not., pages Art. ID 

23405, 13 (2006)
	20.	 Henry, D.: Particle trajectories in linear periodic capillary and capillary-gravity deep-water waves. J. 

Nonlinear Math. Phys. 14(1), 1–7 (2007)
	21.	 Henry, D.: Particle trajectories in linear periodic capillary and capillary-gravity water waves. Philos. 

Trans. R. Soc. A 365(1858), 2241–2251 (2007)

735

http://creativecommons.org/licenses/by/4.0/


	 D. Henry, G. Villari 

1 3

	22.	 Henry, D.: On the deep-water Stokes wave flow. Int. Math. Res. Not., pages Art. ID rnn 071, 7 (2008)
	23.	 Henry, D.: Steady periodic flow induced by the Korteweg-de Vries equation. Wave Motion 46(6), 403–

411 (2009)
	24.	 Henry, D.: Stokes drift in equatorial water waves, and wave–current interactions. Deep Sea Res. Part 

II(160), 41–47 (2019)
	25.	 Henry, D., Villari, G.: Flow underlying coupled surface and internal waves. J. Differ. Equ. 310, 404–

442 (2022)
	26.	 Ionescu-Kruse, D.: On the particle paths and the stagnation points in small-amplitude deep-water 

waves. J. Math. Fluid Mech. 15(1), 41–54 (2013)
	27.	 Kinsman, B.: Wind Waves: Their Generation and Propagation on the Ocean Surface. Prentice-Hall, 

Englewood Cliffs (1965)
	28.	 Lamb, H.: Hydrodynamics, 6th edn. Cambridge Mathematical Library. Cambridge University Press, 

Cambridge (1993)
	29.	 Lamb, K.G.: Internal wave breaking and dissipation mechanisms on the continental slope/shelf. Ann. 

Rev. Fluid Mech. 46(1), 231–254 (2014)
	30.	 Lannes, D.: The Water Waves Problem, Volume 188 of Mathematical Surveys and Monographs. 

American Mathematical Society, Providence (2013). Mathematical analysis and asymptotics
	31.	 Lyons, T.: Particle trajectories in extreme Stokes waves over infinite depth. Discrete Contin. Dyn. Syst. 

34(8), 3095–3107 (2014)
	32.	 Matioc, A.-V.: On particle trajectories in linear deep-water waves. Commun. Pure Appl. Anal. 11(4), 

1537–1547 (2012)
	33.	 Meiss, James D.: Differential Dynamical Systems, Volume 14 of Mathematical Modeling and Compu-

tation. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2007)
	34.	 Milnor, J.: Morse Theory. Based on Lecture Notes by M. Spivak and R. Wells. Annals of Mathematics 

Studies, No. 51. Princeton University Press, Princeton (1963)
	35.	 Quirchmayr, R.: On irrotational flows beneath periodic traveling equatorial waves. J. Math. Fluid 

Mech. 19(2), 283–304 (2017)
	36.	 Sutherland, B.R.: Internal Gravity Waves. Cambridge University Press, Cambridge (2010)
	37.	 Toffoli, A., Bitner-Gregersen, E.M.: Types of Ocean Surface Waves, Wave Classification, pp. 1–7. 

Wiley, Hoboken (2017)
	38.	 van den Bremer, T.S., Breivik, Ø.: Stokes drift. Philos. Trans. R. Soc. A 376(2111), 20170104 (2018)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

736


	Flow dynamics for coupled surface and internal deep-water waves
	Abstract
	1 Introduction
	2 Linear wave solutions
	2.1 Governing equations for coupled wave motion
	2.2 Linearised equations
	2.3 Linear wave solutions
	2.4 Dispersion relations for the coupled waves

	3 Dynamical systems formulation
	3.1 Phase portrait analysis: lower-fluid layer
	3.2 Phase portrait analysis: upper-fluid layer
	3.2.1 System (33) with 
	3.2.2 System (33) with 


	4 Particle trajectories
	4.1 Lower-fluid layer
	4.2 Upper-fluid layer
	4.2.1 Upper-fluid layer with 
	4.2.2 Upper-fluid layer with 


	5 Conclusions
	Acknowledgements 
	References




