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Abstract
We prove that the first eigenvalue of the fractional Dirichlet–Laplacian of order s on a sim-
ply connected set of the plane can be bounded from below in terms of its inradius only. 
This is valid for 1∕2 < s < 1 and we show that this condition is sharp, i.e., for 0 < s ≤ 1∕2 
such a lower bound is not possible. The constant appearing in the estimate has the correct 
asymptotic behavior with respect to s, as it permits to recover a classical result by Makai 
and Hayman in the limit s ↗ 1 . The paper is as self-contained as possible.

Keywords  Poincaré inequality · Fractional Laplacian · Inradius · Simply connected sets · 
Cheeger inequality
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1  Introduction

1.1 � Background

For an open set Ω ⊂ ℝ
N , we indicate by W1,2

0
(Ω) the closure of C∞

0
(Ω) in the Sobolev space 

W1,2(Ω) . We then consider the following quantity

which coincides with the bottom of the spectrum of the Dirichlet–Laplacian on Ω . Observe 
that for a general open set, such a spectrum may not be discrete and the infimum value 

�1(Ω) ∶= inf
u∈W1,2

0
(Ω)⧵{0}

∫Ω

|∇u|2 dx

∫Ω

|u|2 dx
,

 *	 Lorenzo Brasco 
	 lorenzo.brasco@unife.it

	 Francesca Bianchi 
	 francesca.bianchi@unipr.it

1	 Dipartimento di Scienze Matematiche, Fisiche e Informatiche Università di Parma, Parco Area 
delle Scienze 53/a, Campus, 43124 Parma, Italy

2	 Dipartimento di Matematica e Informatica, Università degli Studi di Ferrara, Via Machiavelli 35, 
44121 Ferrara, Italy

http://orcid.org/0000-0001-5694-7306
http://crossmark.crossref.org/dialog/?doi=10.1007/s10231-022-01206-w&domain=pdf


2472	 F. Bianchi, L. Brasco 

1 3

�1(Ω) may not be attained. Whenever a minimizer u1 ∈ W
1,2

0
(Ω) of the problem above 

exists, we call �1(Ω) the first eigenvalue of the Dirichlet–Laplacian on Ω.
By definition, such a quantity is different from zero if and only if Ω supports the 

Poincaré inequality

It is well-known that this happens for example if Ω is bounded or with finite measure or 
even bounded in one direction only. However, in general it is quite complicated to give 
more general geometric conditions, assuring positivity of �1 . In this paper, we will deal 
with the two-dimensional case N = 2.

In this case, there is a by now classical result which asserts that

for every simply connected set Ω ⊂ ℝ
2 . Here C > 0 is a universal constant and the geomet-

ric quantity rΩ is the inradius of Ω , i.e., the radius of a largest disk contained in Ω . More 
precisely, this is given by

Inequality (1.1) is in scale invariant form, by recalling that �1 scales like a length to the 
power −2 , under dilations.

Such a result is originally due to Makai (see [25, equation (5)]). It permits in particu-
lar to prove that for a simply connected set in the plane, we have the following remark-
able equivalence

Indeed, if the inradius is finite, we immediately get from (1.1) that �1(Ω) must be positive. 
The converse implication is simpler and just based on the easy (though sharp) inequality

Here B1 ⊂ ℝ
2 is any disk with radius 1 and the estimate simply follows from the monoto-

nicity with respect to set inclusion of �1 , together with its scaling properties.
The proof in [25] runs very similarly to that of the Faber–Krahn inequality, based on 

symmetrization techniques (see [20, Chapter 3]). It starts by rewriting the Dirichlet inte-
gral and the L2 norm by using the Coarea Formula; then the key ingredient is a clever 
use of a particular quantitative isoperimetric inequality in ℝ2 (a Bonnesen-type inequal-
ity), which permits to obtain a lower bound in terms of rΩ only.

It should be noticed that Makai’s result has been overlooked or neglected for some 
years and then rediscovered independently by Hayman, by means of a completely dif-
ferent proof, see [19, Theorem 1]. For this reason, we will call (1.1) the Makai–Hayman 
inequality.

It is interesting to remark that the result by Makai is quantitatively better than the one 
by Hayman: indeed, the former obtains (1.1) with C = 1∕4 , while the latter is only able 
to get the poorer constant C = 1∕900 by his method of proof.

c
�Ω

|u|2 dx ≤
�Ω

|∇u|2 dx, for every u ∈ C∞
0
(Ω).

(1.1)�1(Ω) ≥
C

r2
Ω

,

rΩ ∶= sup
{
𝜌 > 0 ∶ ∃ x ∈ Ω such that B𝜌(x) ⊂ Ω

}
.

(1.2)𝜆1(Ω) > 0 ⟺ rΩ < +∞.

�1(Ω) ≤
�1(B1)

r2
Ω

.
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This could suggest that the attribution of this result to both authors is maybe too 
generous. On the contrary, we will show in this paper that, in despite providing a poorer 
constant, the method of proof by Hayman is elementary, flexible and robust enough 
to be generalized to other situations, where Makai’s and other approaches become too 
complicate or do not seem feasible.

In any case, we point out that the exact determination of the sharp constant in (1.1), 
i.e.,

is still a challenging open problem. The best result at present is that

obtained by Bañuelos and Carroll (see [2, Corollary 1] for the lower bound and [2, Theo-
rem 2] for the upper bound). The upper bound has then been slightly improved by Brown in 
[14], by using a refinement of the method by Bañuelos and Carroll.

Inequality (1.1) has also been obtained by Ancona in [1], by using yet another proof. 
His result comes with the constant C = 1∕16 , much better than Hayman’s one, but still 
worse than that obtained by Makai. The proof by Ancona is quite elegant: it is based on the 
use of conformal mappings and the so-called Koebe’s one quarter Theorem (see [22, Chap-
ter 12]), which permits to obtain the following Hardy inequality for a simply connected set 
in the plane

From this, inequality (1.1) is easily obtained (with C = 1∕16 ), by observing that

and then using the definition of �1(Ω) . The conformality of the Dirichlet integral plays a 
central role in this proof. The result by Ancona is quite remarkable, as the Hardy inequality 
is proved without any regularity assumption on �Ω . A generalization of this result can be 
found in [23].

1.2 � Goal of the paper and main results

Our work is aimed at investigating the validity of a result analogous to (1.1) for fractional 
Sobolev spaces. In order to be more precise, we need some definitions at first. Let 0 < s < 1 
and let us recall the definition of Gagliardo–Slobodeckiĭ seminorm

Accordingly, we consider the fractional Sobolev space

endowed with the norm

CMH ∶= inf
{
𝜆1(Ω) r

2
Ω

∶ Ω ⊂ ℝ
2 simply connected with rΩ < +∞

}
,

0.6197 < CMH < 2.13,

1

16 �Ω

|�|2
dist(x, �Ω)2

dx ≤
�Ω

|∇�|2 dx, for every � ∈ C∞
0
(Ω).

rΩ = sup
x∈Ω

dist(x, �Ω),

[u]Ws,2(ℝN ) =

(
∬

ℝN×ℝN

|u(x) − u(y)|2
|x − y|N+2 s dx dy

) 1

2

.

Ws,2(ℝN) =
{
u ∈ L2(ℝN) ∶ [u]Ws,2(ℝN ) < +∞

}
,
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Finally, we consider the space W̃s,2

0
(Ω) , defined as the closure of C∞

0
(Ω) in Ws,2(ℝN) . 

Observe that by definition the elements of W̃s,2

0
(Ω) have to be considered on the whole ℝN 

and they come with a natural nonlocal homogeneous Dirichlet condition “at infinity,” i.e., 
they identically vanish on the complement ℝN ⧵Ω.

We then consider the quantity

Again by definition, this quantity is nonzero if and only if the open set Ω supports the frac-
tional Poincaré inequality

This happens, for example, if Ω is an open bounded set (see [9, Lemma 2.4]). As in the 
local case, whenever the infimum in (1.3) is attained, this quantity will be called first eigen-
value of the fractional Dirichlet–Laplacian of order s. We recall that the latter is the linear 
operator denoted by the symbol (−Δ)s and defined in weak form by

In this paper, we want to inquire to which extent the Makai–Hayman inequality (1.1) still 
holds for �s

1
 defined above, still in the case of simply connected sets in the plane. Our main 

results assert that such an inequality is possible, provided s is “large enough.” More pre-
cisely, we have the following

Theorem 1.1  (Fractional Makai–Hayman inequality) Let 1∕2 < s < 1 and let Ω ⊂ ℝ
2 be 

an open simply connected set, with finite inradius rΩ . There exists an explicit universal con-
stant Cs > 0 such that

Moreover, Cs has the following asymptotic behaviors1

‖u‖Ws,2(ℝN ) = ‖u‖L2(ℝN ) + [u]Ws,2(ℝN ).

(1.3)�s
1
(Ω) ∶= inf

u∈W̃s,2

0
(Ω)⧵{0}

[u]2
Ws,2(ℝN )

‖u‖2
L2(Ω)

.

c
�Ω

|u|2 dx ≤
�

ℝN×ℝN

|u(x) − u(y)|2
|x − y|N+2 s dx dy, for every u ∈ C∞

0
(Ω).

⟨(−Δ)su,�⟩ =
∬

ℝN×ℝN

(u(x) − u(y)) (�(x) − �(y))

�x − y�N+2 s dx dy, for every � ∈ C∞
0
(Ω).

(1.4)�s
1
(Ω) ≥

Cs

r2 s
Ω

.

Cs ∼
(
s −

1

2

)
, for s ↘

1

2
and Cs ∼

1

1 − s
, for s ↗ 1.

1  Throughout the paper, the writing

has to be intended in the following sense: there exists C ∈ ℝ ⧵ {0} such that
f (s) ∼ g(s), for s → s0,

lim
s→s0

f (s)

g(s)
= C.
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Remark 1.2  We point out that the constant Cs appearing in the above estimate exhibits the 
sharp asymptotic dependence on s, as s ↗ 1 . Indeed, by recalling that for every open set 
Ω ⊂ ℝ

N we have (see [8, Lemma A.1])

from Theorem 1.1 we can obtain the usual Makai–Hayman inequality for the Dirichlet–
Laplacian, possibly with a worse constant. We recall that (1.5) is based on the fundamental 
asymptotic result by Bourgain, Brezis and Mironescu for the Gagliardo–Slobodeckiĭ semi-
norm, see [6]. We refer to [13] for some interesting refinements of such a result.

The previous result is complemented by the next one, asserting that for 0 < s ≤ 1∕2 
a fractional Makai–Hayman inequality is not possible. In this way, we see that even for 
s ↘ 1∕2 the asymptotic behavior of Cs is optimal, in a sense.

Theorem 1.3  (Counter-example for 0 < s ≤ 1∕2 ) There exists a sequence {�Qn}n∈ℕ ⊂ ℝ
2 

of open bounded simply connected sets such that

and

Remark 1.4  In [16, Theorem  1.1], a different counter-example for 0 < s < 1∕2 is given. 
Apart from the fact that in [16] the borderline case s = 1∕2 is not considered, one could 
observe that strictly speaking the counter-example in [16] is not a simply connected set, 
since it is made of countably many connected components.

As it will be apparent to the experienced reader, our example will clearly display the 
role of fractional s−capacity in the failure of the Makai–Hayman inequality for 0 < s ≤ 1∕2 
(see for example [26, Chapter 10, Section 4] for fractional capacities). Indeed, the range 
0 < s ≤ 1∕2 is precisely the one for which lines have zero fractional s− capacity. This 
implies that, by removing a finite number of segments from an open set, the first eigenvalue 
�s
1
 remains unchanged, while this operation heavily affects the inradius. However, even if 

this is the ultimate reason for such a failure, our proof will be elementary and will not 
explicitly appeal to the properties of capacities.

We point out that, for practical reasons, our sequence {Q̃n}n∈ℕ is given by a square with 
side length 2 n , from which a periodical array of segments is removed. If we scale this 
sequence by a factor 1/n, we could produce another sequence contradicting the fractional 
Makai–Hayman, with the additional property of being equi-bounded.

Remark 1.5  Geometric estimates for eigenvalues of (−Δ)s aroused great interest in the last 
years, also in the field of stochastic processes. Indeed, it is well-known that this operator is 
the infinitesimal generator of a symmetric (2 s)-stable Lévy process. We recall that the non-
local homogeneous Dirichlet boundary condition considered above (i.e., u ≡ 0 on ℝN ⧵Ω ) 
corresponds to a process where particles are “killed” upon reaching the complement of the 
set Ω . The Gagliardo–Slobodeckiĭ seminorm corresponds to the so-called Dirichlet form 
associated with this process. For more details, we refer for example to [5, Section 2] and 
the references therein.

(1.5)lim sup
s↗1

(1 − s) �s
1
(Ω) ≤ CN �1(Ω),

0 < r�Qn
≤ C, for every n ∈ ℕ,

lim
n→∞

𝜆s
1
(�Qn) = 0, for every 0 < s ≤

1

2
.
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In this context, we wish to mention the papers [3, 4, 28], where some geometric esti-
mates for �s

1
 are obtained, by exploiting this probabilistic approach. In particular, the paper 

[4] is very much related to ours, since in [4, Corollary 1] it is proved the lower bound

in the restricted class of open convex subsets of the plane, with the sharp constant C. This 
result can be seen as the fractional counterpart of a well-known result for the Laplacian, 
which goes under the name of Hersch–Protter inequality, see [21, 30].

1.3 � Method of proof

As already announced at the beginning, we will achieve the result of Theorem  1.1 by 
adapting to our setting Hayman’s proof. It is then useful to recall the key ingredients of 
such a proof. These are essentially two: 

1.	 A covering lemma, asserting that it is possible to cover an open subset Ω ⊂ ℝ
2 with 

rΩ < +∞ by means of boundary disks, whose radius is universally comparable to rΩ and 
which do not overlap “too much” with each other. Here by boundary disk we simply 
mean a disk centered at the boundary �Ω;

2.	 A Poincaré inequality for boundary disks in a simply connected set.

Point 1. is purely geometrical and thus it can still be used in the fractional setting.
On the contrary, the proof of point 2. is very much local. Indeed, an essential feature of 

the proof in [19] is the fact that

where (�, �) denote the usual polar coordinates. Then one observes that a boundary cir-
cle always meets the complement of Ω , when the latter is simply connected. Thus, taken 
a function u ∈ C∞

0
(Ω) , the periodic function � ↦ u(�, �) vanishes somewhere in [0, 2�] . 

Consequently, it satisfies the following one-dimensional Poincaré inequality on the interval

In a nutshell, this permits to prove point 2. by “foliating” the boundary disk with concen-
tric boundary circles, using (1.7) on each of these circles, then integrating with respect to 
the radius of the circle and finally appealing to (1.6).

In the fractional case, property (1.6) has no counterpart, because of the nonlocality of 
the Gagliardo–Slobodeckiĭ seminorm. Consequently, adapting this method to prove a frac-
tional Poincaré inequality for boundary disks is a bit involved. We will achieve this through 
a lengthy though elementary method, which we believe to be of independent interest.

Remark 1.6  (Other proofs?) We conclude the introduction, by observing that it does not 
seem easy to prove (1.4) by adapting Makai’s proof, because of the lack of a genuine 

�s
1
(Ω) ≥

C

r2 s
Ω

,

(1.6)|∇u|2 ≥ 1

�2
|��u|2,

(1.7)
�

2�

0

|u(�, �)|2 d� ≤ C
�

2�

0

|��u(�, �)|2 d�.
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Coarea Formula for Gagliardo–Slobodeckiĭ seminorms. The proof by Ancona seems to be 
even more prohibitive to be adapted, because of the rigid machinery of conformal map-
pings on which is based. In passing, we mention that it would be interesting to know 
whether his Hardy inequality for simply connected sets in the plane could be extended to 
fractional Sobolev spaces. For completeness, we refer to [17] for some fractional Hardy 
inequalities under minimal regularity assumptions.

1.4 � Plan of the paper

In Sect. 2, we set the main notations and present some technical tools, needed throughout 
the paper. In particular, we recall Hayman’s covering lemma from [19] and present a cou-
ple of technical results on fractional Sobolev spaces.

In Sect. 3, we prove a Poincaré inequality for boundary disks. This is the main ingredi-
ent for the proof of the fractional Makai–Hayman inequality.

Section 4 is then devoted to the proof of Theorem 1.1, while the construction of the 
counter-example of Theorem 1.3 is contained in Sect. 5.

Finally, in Sect. 6 we highlight some consequences of our main result. Among these, we 
record a Cheeger-type inequality, a comparison result for �s

1
 and �1 and the fractional ana-

logue of characterization (1.2).
The paper concludes with “Appendix A,” containing a one-dimensional fractional Poin-

caré inequality for periodic functions vanishing at one point (see Proposition A.2). This is 
the cornerstone on which the result in Sect. 3 is built.

2 � Preliminaries

2.1 � Notations

Given x0 ∈ ℝ
N and R > 0 , we will denote by BR(x0) the N−dimensional open ball with 

radius R and center x0 . When the center coincides with the origin, we will simply write BR . 
We indicate by �N the N−dimensional Lebesgue measure of B1 , so that by scaling

If E ⊂ ℝ
N is a measurable set with positive measure and u ∈ L1(E) , we will use the 

notation

For 0 < s < 1 and for a measurable set E ⊂ ℝ
N , we will indicate by

where

|BR(x0)| = �N RN .

Ws,2(E) =
{
u ∈ L2(E) ∶ [u]Ws,2(E) < +∞

}
,

[u]Ws,2(E) =

(
∬E×E

|u(x) − u(y)|2
|x − y|N+2 s dx dy

) 1

2

.
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This space will be endowed with the norm

We observe that the following Leibniz-type rule holds

This will be useful somewhere in the paper.
Finally, by Ws,2

loc
(ℝN) we mean the collection of functions which are in Ws,2(BR) , for 

every R > 0.

2.2 � Technical tools

In order to prove Theorem 1.1, we will need the following covering Lemma, whose proof 
can be found in [19, Lemma 2]. The result in [19] is stated for bounded sets and, accord-
ingly, the relevant covering is made of a finite number of balls. However, a closer inspec-
tion of the proof in [19] easily shows that the same result still holds by removing the 
boundedness assumption. In this case, the covering could be made of countably infinitely 
many balls: this is still enough for our purposes. We omit the proof, since it is exactly the 
same as in [19].

Lemma 2.1  Let Ω ⊂ ℝ
2 be an open set, with finite inradius rΩ . Then there exist at most 

countably many distinct points {zn}n∈ℕ ⊂ 𝜕Ω such that the family of disks

is a covering of Ω . Moreover, � can be split in at most 36 subfamilies �1,… ,�36 such that

for every k = 1,… , 36.

In the following technical result, we explicitly construct a continuous extension operator 
for fractional Sobolev spaces defined on a ball. The result is certainly well-known (see for 
example [18, Theorem 5.4]), but here we pay particular attention to the constant appearing 
in the continuity estimate (2.2): indeed, this can be taken to be independent of the differen-
tiability index s.

Lemma 2.2  Let 0 < s < 1 , there exists a linear extension operator

such that for every u ∈ Ws,2(B1(x0)) and every R > 1 we have

‖u‖Ws,2(E) = ‖u‖L2(E) + [u]Ws,2(E).

(2.1)
[u v]Ws,2(E) ≤ [u]Ws,2(E) ‖v‖L∞(E) + [v]Ws,2(E) ‖u‖L∞(E), for every u, v ∈ Ws,2(E) ∩ L∞(E).

� =
�
Br(zn)

�
n∈ℕ

, with r = rΩ

�
1 +

√
2
�
,

Br(zn) ∩ Br(zm) = � if Br(zn),Br(zm) ∈ �k, with m ≠ n,

E ∶ Ws,2(B1(x0)) → W
s,2

loc
(ℝN),

(2.2)
�
E[u]

�
Ws,2(BR(x0))

≤ 4R4N [u]Ws,2(B1(x0))
, ‖E[u]‖L2(BR(x0))

≤ 2R2N ‖u‖L2(B1(x0))
.
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Proof  Without loss of generality, we can suppose that x0 coincides with the origin. 
Then, let us recall the definition of inversion with respect to �N−1 : this is the bijection 
K ∶ ℝ

N ⧵ {0} → ℝ
N ⧵ {0} , given by

It is easily seen that if x ∈ BR ⧵ B1 , then K(x) ∈ B1 ⧵ B1∕R . Moreover, we have

For every u ∈ Ws,2(B1) , we define the extended function E[u] given by

It is easily seen that the operator u ↦ E[u] is linear. In order to prove that E[u] ∈ W
s,2

loc
(ℝN) , 

together with the claimed estimate (2.2), we take R > 1 and we split the seminorm of E[u] 
as follows

By performing the change of variable z = K(x) in the second term on the right-hand side 
and the change of variable w = K(y) in the second and third terms, we get

By using the expression for the Jacobian determinant, we then obtain

K(x) =
x

|x|2 , for every x ∈ ℝ
N ⧵ {0}.

K
−1(x) = K(x) and |det(DK(x))| = 1

|x|2N , for every x ∈ ℝ
N ⧵ {0}.

(2.3)E[u](x) =

{
u(x), if x ∈ B1,

u(K(x)) if x ∈ ℝ
N ⧵ B1.

[
E[u]

]2
Ws,2(BR)

= [u]2
Ws,2(B1)

+
∬(BR⧵B1)×(BR⧵B1)

|u(K(x)) − u(K(y))|2
|x − y|N+2 s dx dy

+ 2
∬B1×(BR⧵B1)

|u(x) − u(K(y))|2
|x − y|N+2 s dx dy.

[
E[u]

]2
Ws,2(BR)

= [u]2
Ws,2(B1)

+
∬(B1⧵B 1

R

)×(B1⧵B 1
R

)

|u(z) − u(w)|2
|K−1(z) −K

−1(w)|N+2 s | detDK
−1(z)| | detDK−1(w)| dz dw

+ 2
∫B1×(B1⧵B 1

R

)

|u(x) − u(w)|2
|x −K

−1(w)|N+2 s | detDK
−1(w)| dx dw.

(2.4)

[
E[u]

]2
Ws,2(BR)

≤ [u]2
Ws,2(B1)

+ R4N

�(B1⧵B 1
R

)×(B1⧵B 1
R

)

|u(z) − u(w)|2
|K−1(z) −K

−1(w)|N+2 s dz dw

+ 2R2N

�B1×(B1⧵B 1
R

)

|u(x) − u(w)|2
|x −K

−1(w)|N+2 s dx dw.
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In order to estimate the last two integrals, it is sufficient to use that

and

Indeed, by taking the square, we see that (2.5) is equivalent to

This in turn follows from Young’s inequality

once we multiply both sides by the positive quantity

As for inequality (2.6), by taking again the square we see that the latter is equivalent to

This in turn follows again from Young’s inequality: more precisely, by using that |x| < 1 , 
we have

and if we now multiply both sides by the positive quantity (here we use that |w| < 1)

we get (2.7), with some simple algebraic manipulations.
By applying estimates (2.5) and (2.6) in (2.4), we finally get

which proves the first estimate in (2.2).

(2.5)

|K−1(z) −K
−1(w)| = ||||

1

|z|2 z −
1

|w|2 w
|||| ≥ |z − w|, for every z,w ∈ B1 ⧵ {0},

(2.6)|x −K
−1(w)| = ||||x −

1

|w|2 w
|||| ≥ |x − w|, for every x,w ∈ B1 ⧵ {0}.

�
1

�z�2 − �z�2
�
+

�
1

�w�2 − �w�2
�

≥ 2

�
1

�z�2 �w�2 − 1

�
⟨z,w⟩.

2 ⟨z,w⟩ ≤ �z�2 + �w�2,

(
1

|z|2 |w|2 − 1

)
.

(2.7)
1

�w�2 − �w�2 ≥ 2

�
1

�w�2 − 1

�
⟨x,w⟩.

2 ⟨x,w⟩ ≤ �x�2 + �w�2 ≤ 1 + �w�2,

(
1

|w|2 − 1

)
,

[
E[u]

]2
Ws,2(BR)

≤ [u]2
Ws,2(B1)

+ R4N

�(B1⧵B 1
R

)×(B1⧵B 1
R

)

|u(z) − u(w)|2
|z − w|N+2 s dz dw

+ 2R2N

�B1×(B1⧵B 1
R

)

|u(x) − u(w)|2
|x − w|N+2 s dx dw

≤
(
1 + R4N + 2R2N

)
[u]2

Ws,2(B1)
,
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We are left with estimating the L2 norm of E[u] . This is simpler and can be done as 
follows

This concludes the proof. 	�  ◻

Remark 2.3  Another important feature of the previous result is that, rather than the usual 
continuity estimate

for the extension operator, we obtained the more precise estimate (2.2). This will be useful 
in the next result.

Proposition 2.4  Let 0 < s < 1 and let E ⊆ BR(x0) ⊂ ℝ
N be a measurable set, with posi-

tive measure. There exists a constant M = M(N) > 0 such that for every u ∈ Ws,2(BR(x0)) 
we have

Proof  By a standard scaling argument, it is sufficient to prove the result for R = 1 and 
x0 = 0 . For every t > 0 , we denote by Qt = (−t∕2, t∕2)N the N−dimensional open cube 
centered at the origin, with side length t.

We consider the extension E[u] of u to the whole ℝN , as in (2.3). For ease of notation, 
we will simply write ũ ∶= E[u] . By using the triangle inequality and the fact that B1 ⊂ Q2 , 
we have

By using Jensen’s inequality and the fact that |Q2| = 2N , we can estimate the second term 
as follows

Thus from (2.8) we get

�BR

|E[u](x)|2 dx =
�B1

|u(x)|2 dx +
�BR⧵B1

|u(K(x))|2 dx

≤
�B1

|u(x)|2 dx + R2N

�B1⧵B 1
R

|u(z)|2 dz ≤ (
1 + R2N

)
�B1

|u(x)|2 dx.

��E[u]��Ws,2(BR)
≤ C ‖u‖Ws,2(B1)

,

‖u − uE‖2L2(BR(x0))
≤ M (1 − s)

RN

�E� R
2 s [u]2

Ws,2(BR(x0))
.

(2.8)
‖u − uE‖2L2(B1)

≤ ‖ũ − uE‖2L2(Q2)

≤ 2 ‖ũ − ũQ2
‖2
L2(Q2)

+ 2 ‖ũQ2
− uE‖2L2(Q2)

.
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We can now apply the following fractional Poincaré inequality2 proved by Maz’ya and 
Shaposnikova (see [27, p. 300])

Here CN is an explicit dimensional constant. This yields

where we used that Q2 ⊂ B√
2
 . It is now sufficient to apply Lemma 2.2 with R =

√
2 , to get 

the claimed conclusion. 	�  ◻

3 � An expedient Poincaré inequality

The following result is a nonlocal counterpart of [19, Lemma 1] in Hayman’s paper. In the 
proof we pay due attention to the dependence of the constant on the fractional parameter s, 
as always.

Proposition 3.1  (Poincaré for boundary disks) Let 1∕2 < s < 1 and let Ω ⊂ ℝ
2 be an 

open simply connected set, with �Ω ≠ � . There exists a constant Ts > 0 depending on s 
only, such that for every r > 0 and every x0 ∈ �Ω , we have

Moreover, Ts has the following asymptotic behaviors

Proof  Up to scaling and translating, we can assume without loss of generality that r = 1 
and that x0 coincides with the origin. We split the proof in three main steps: we first show 
that it is sufficient to prove the claimed estimate for the boundary ring B1 ⧵ B1∕2 . Then 
we prove such an estimate and at last we discuss the asymptotic behavior of the constant 
obtained.

‖u − uE‖2L2(B1)
≤ 2

�
1 +

2N

�E�
�
‖ũ − ũQ2

‖2
L2(Q2)

.

(2.9)‖� − �Q2
‖2
L2(Q2)

≤ CN (1 − s) [�]2
Ws,2(Q2)

, for every � ∈ Ws,2(Q2).

‖u − uE‖2L2(B1)
≤ 2

�
1 +

2N

�E�
�
CN (1 − s) [ũ]2

Ws,2(Q2)

≤ 2
�N + 2N

�E� CN (1 − s) [ũ]2
Ws,2(B√

2
)
,

Ts

r2 s �Br(x0)

|u(x)|2 dx ≤
�Br(x0)×ℝ

2

|u(x) − u(y)|2
|x − y|2+2 s dx dy, for every u ∈ C∞

0
(Ω).

Ts ∼
(
s −

1

2

)
, for s ↘

1

2
and Ts ∼

1

1 − s
, for s ↗ 1.

2  We remark that the presence of the factor (1 − s) is important for our scopes. If one is not interested in 
keeping track of this factor, actually the proof of (2.9) would be much simpler, see for example [29, p. 297].
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Step 1  Reduction to a ring. Let u ∈ C∞
0
(Ω) , we then estimate the L2 norm on B1 as 

follows

where we used the elementary inequality (a + b)2 ≤ 2 a2 + 2 b2 and Jensen’s inequality. If 
we now apply Proposition 2.4 with R = 1 and E = B1 ⧵ B1∕2 , we get

Thus, in order to conclude, it is sufficient to prove that there exists a constant C = C(s) > 0 
such that

Step 2 Estimate on the ring. We start with a topological observation. Since we are 
assuming that 0 ∈ �Ω and that Ω is simply connected, we have the following crucial 
property

Indeed, if this were not true, we would have existence of a circle entirely contained in Ω 
and centered on the boundary of �Ω . Such a circle could not be null-homotopic in Ω , thus 
contradicting our topological assumption.

In the rest of the proof, we will use polar coordinates (�, �) and we will make the slight 
abuse of notation of writing u(�, �) . Then, in light of property (3.2), for each � ∈ (1∕2, 1) 
there exists �� ∈ [0, 2�) such that � ↦ u(�, �) must vanish at �� . Hence, for every 
1∕2 < 𝜚 < 1 we can apply Proposition A.2 to the function � ↦ u(�, �) and get

The constant �s is the same as in Proposition A.2 and

If we now multiply both sides by � , integrate over the interval (1/2, 1) and write the L2 
norm in polar coordinates, we get

�B1

|u(x)|2 dx =
�B1⧵B1∕2

|u(x)|2 dx +
�B1∕2

|u(x)|2 dx

≤
�B1⧵B1∕2

|u(x)|2 dx + 2
�B1∕2

|u(x) − uB1⧵B1∕2
|2 dx + 2

�B1∕2

|uB1⧵B1∕2
|2 dx

≤
�B1⧵B1∕2

|u(x)|2 dx + 2
�B1

|u(x) − uB1⧵B1∕2
|2 dx + 2

�B1∕2

|uB1⧵B1∕2
|2 dx

≤
�B1⧵B1∕2

|u(x)|2 dx + 2
�B1

|u(x) − uB1⧵B1∕2
|2 dx + 2

3 �B1⧵B1∕2

|u(x)|2 dx,

�B1

|u(x)|2 dx ≤ 5

3 �B1⧵B1∕2

|u(x)|2 dx + 8

3�
M (1 − s) [u]2

Ws,2(B1)
.

(3.1)
�B1⧵B1∕2

|u(x)|2 dx ≤ C
�B1×ℝ

2

|u(x) − u(y)|2
|x − y|2+2 s dx dy, for every u ∈ C∞

0
(Ω).

(3.2)𝜕B𝜚 ∩ (ℝ2 ⧵Ω) ≠ �, for every 𝜚 > 0.

�

2�

0

|u(�, �)|2 d� ≤
1

�s
�

2�

0 �

2�

0

|u(�, �) − u(�,�)|2
|� − �|1+2 s

�1

d� d�.

|� − �|
𝕊1 ∶= min

k∈ℤ
|� − � + 2 k �|, for every �,� ∈ ℝ.
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Observe that we further used the fact that � ≤ 1 , to let the term �−1−2 s appear. In order to 
achieve (3.1), we need to show that the term on the right-hand side can be estimated by a 
two-dimensional Gagliardo–Slobodeckiĭ seminorm. To this aim, we follow an argument 
similar to that of [7, Lemma B.2]. At first, it is easily seen that

By inserting this in (3.3), we end up with

where we have used that 1∕2 ≤ � + t . We now split the set [0, 2�] × [0, 2�] = J−1 ∪ J0 ∪ J1 , 
where

and

see Fig. 1.
Then, we define the midpoint function by

(3.3)
�B1⧵B1∕2

|u(x)|2 dx ≤ 1

�s
�

1

1

2

�

2�

0 �

2�

0

|u(�, �) − u(�,�)|2
�1+2 s |� − �|1+2 s

�1

� d� d� d�.

(
� |� − �|

�1

)−1−2 s
= (1 + 2 s)

∫

+∞

0

(
t + � |� − �|

�1

)−2−2 s
dt.

(3.4)

�B1⧵B1∕2

|u(x)|2 dx

≤
1 + 2 s

�s
�

2�

0 �

2�

0 �

1

1

2

�

+∞

0

|u(�, �) − u(�,�)|2
(t + � |� − �|

�1 )2+2 s
� d� d� d� dt

≤
2 (1 + 2 s)

�s
�

2�

0 �

2�

0 �

1

1

2

�

+∞

0

|u(�, �) − u(�,�)|2
(t + � |� − �|

�1 )2+2 s
� (� + t) d� d� d� dt,

J−1 = {(𝜃,𝜑) ∶ 𝜃 ∈ [0,𝜋], 𝜃 + 𝜋 < 𝜑 ≤ 2𝜋}, J1 = {(𝜃,𝜑) ∶ 𝜃 ∈ [𝜋, 2𝜋], 0 ≤ 𝜑 < 𝜃 − 𝜋},

J0 = {(�,�) ∶ � ∈ [0, 2�], max{0, � − �} ≤ � ≤ min{2�, � + �}},

(3.5)� � =
� + �

2
+ � �, if (�,�) ∈ J

�
, with � = −1, 0, 1.

Fig. 1   The partition of 
[0, 2�] × [0, 2�] needed to define 
the midpoint function
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Thanks to the triangle inequality, we estimate the numerator in the right-hand side of (3.4) 
as follows

As for the denominator, we observe that |� − � �|
�1 = |� − � �|

�1 , thus we get

where the inequalities come from Lemma A.1. By using this fact, the identity |ei� �| = 1 
and the triangle inequality again, we can estimate the denominator as

and similarly

These allow us to estimate the right-hand side in (3.4) in the following way:

In the last identity we used that both multiple integrals coincide, by symmetry of the 
integrands. If we now make the change of variable � = � + t and use the decomposition 
[0, 2�] × [0, 2�] = J−1 ∪ J0 ∪ J1 , we obtain

If we now denote

|u(�, �) − u(�,�)|2 ≤ 2
||||u(�, �) − u

(
� + t, � �

)||||
2

+ 2
||||u(�,�) − u

(
� + t, � �

)||||
2

.

|� − �|
�1 = 2 |� − � �|

�1 ≥ 2 |ei � − ei � �| and |� − �|
�1 = 2 |� − � �|

�1 ≥ 2 |ei� − ei � �|,

t + � |� − �|
�1 ≥ t + � |ei� − ei � �|

≥
|||� (e

i � − ei � �) − t ei � �
||| =

|||� e
i � − (� + t) ei � �

|||,

t + � |� − �|
�1 ≥

|||� e
i� − (� + t) ei � �

|||.

�B1⧵B1∕2

|u(x)|2 dx

≤
4 (1 + 2 s)

�s
�

2�

0 �

2�

0 �

1

1

2

�

+∞

0

||||u(�, �) − u
(
� + t, � �

)||||
2

|||� ei � − (� + t) ei � �
|||
2+2 s

� (� + t) d� d� d� dt

+
4 (1 + 2 s)

�s
�

2�

0 �

2�

0 �

1

1

2

�

+∞

0

||||u(�,�) − u
(
� + t, � �

)||||
2

|||� ei� − (� + t) ei � �
|||
2+2 s

� (� + t) d� d� d� dt

=
8 (1 + 2 s)

�s
�

2�

0 �

2�

0 �

1

1

2

�

+∞

0

||||u(�, �) − u
(
� + t, � �

)||||
2

|||� ei � − (� + t) ei � �
|||
2+2 s

� (� + t) d� d� d� dt.

(3.6)

�B1⧵B1∕2

|u(x)|2 dx

≤
8 (1 + 2 s)

�s

1∑
�=−1

�J
�

�

1

1

2

�

+∞

�

|||u(�, �) − u(�, � �)
|||
2

|||� ei � − � ei � �
|||
2+2 s

� � d� d� d� d�.
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use the definition of midpoint function (3.5) and make the change of variables

we obtain from (3.6)

For every � ∈ [0, 2�] , we now make the change of variable � = (� + �)∕2 , thus the above 
estimate becomes

where

and

If we now exploit the 2�−periodicity of the integrand, we have

where we set � = � + 2� and

Similarly, we can obtain

�J−1 ={(𝜃,𝜑) ∶ 𝜃 ∈ [0,𝜋], 𝜃 − 𝜋 < 𝜑 ≤ 0} and

�J1 ={(𝜃,𝜑) ∶ 𝜃 ∈ [𝜋, 2𝜋], 2𝜋 ≤ 𝜑 < 𝜃 + 𝜋},

J−1 → J̃−1
(�,�) ↦ (�,� − 2�)

and
J1 → J̃1

(�,�) ↦ (�,� + 2�),

�B1⧵B1∕2

|u(x)|2 dx ≤ 8 (1 + 2 s)

�s
�J̃−1∪J0∪J̃1

�

1

1

2

�

+∞

�

||||u(�, �) − u
(
�,

�+�

2

)||||
2

|||� ei � − � ei
�+�

2
|||
2+2s

� � d� d� d� d�.

(3.7)

�B1⧵B1∕2

|u(x)|2 dx ≤ 16 (1 + 2 s)

�s

1∑
�=−1

�Ĵ
�

�

1

1

2

�

+∞

�

|u(�, �) − u(�, �)|2
||� ei � − � ei � ||2+2s

� � d� d� d� d�,

�J−1 =
{
(𝜃, 𝛾) ∶ 𝜃 ∈

[
0,

𝜋

2

]
, 𝜃 −

𝜋

2
< 𝛾 ≤ 0

}
,

�J1 =
{
(𝜃, 𝛾) ∶ 𝜃 ∈

[
3

2
𝜋, 2𝜋

]
, 2𝜋 ≤ 𝛾 < 𝜃 +

𝜋

2

}
,

Ĵ0 =
{
(�, �) ∶ � ∈ [0, 2�], max

{
0, � −

�

2

}
≤ � ≤ min

{
2�, � +

�

2

}}
.

(3.8)

∬Ĵ−1
∫

1

1

2

∫

+∞

�

|u(�, �) − u(�, �)|2
||� ei � − � ei � ||2+2s

� � d� d� d� d�

=
∬Ĵ−1

∫

1

1

2

∫

+∞

�

|u(�, �) − u(�, � + 2�)|2
||� ei � − � ei (�+2�)||2+2s

� � d� d� d� d�

=
∬I−1

∫

1

1

2

∫

+∞

�

|u(�, �) − u(�,�)|2
||� ei � − � ei�||2+2s

� � d� d� d� d�,

I−1 =
{
(𝜃,𝜑) ∶ 𝜃 ∈

[
0,

𝜋

2

]
, 𝜃 +

3

2
𝜋 < 𝜑 ≤ 2𝜋

}
.
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with the change of variable � = � − 2� and

By observing that I−1 ∪ �J0 ∪ I1 ⊂ [0, 2𝜋] × [0, 2𝜋] and that the three sets I−1, Ĵ0 and I1 are 
pairwise disjoint, from (3.7), (3.8) and (3.9) we finally obtain

This concludes the proof of (3.1).
Step 3: asymptotics for the constant. From Step 1 and Step 2, we obtained the Poincaré 

inequality claimed in the statement, with constant

By using the asymptotics for the constant �s (see Proposition A.2), we get the desired con-
clusion. 	�  ◻

Remark 3.2  The previous result cannot hold for 0 < s ≤ 1∕2 . Indeed, if the result were true 
for 0 < s ≤ 1∕2 , this would permit to extend the fractional Makai–Hayman inequality to 
this range, as well (see the next section). However, this would contradict Theorem 1.3.

4 � Proof of Theorem 1.1

Without loss of generality, we can consider rΩ = 1 . We take � and �1,… ,�36 to be, 
respectively, the covering of Ω and the subclasses given by Lemma 2.1, made of ball with 
radius r = 1 +

√
2.

We take an index k ∈ {1,… , 36} , then we know that �k is composed of (possibly) 
countably many disjoint balls with radius r, centered on �Ω . We indicate by Bj,k each of 
these balls.

Then, for every u ∈ C∞
0
(Ω) ⧵ {0} we have

For each ball Bj,k , we can apply Proposition 3.1 so to obtain that

(3.9)
∬Ĵ1

∫

1

1

2

∫

+∞

�

|u(�, �) − u(�, �)|2
||� ei � − � ei � ||2+2 s

� � d� d� d� d�

=
∬I1

∫

1

1

2

∫

+∞

�

|u(�, �) − u(�,�)|2
||� ei � − � ei�||2+2s

� � d� d� d� d�,

I1 =
{
(𝜃,𝜑) ∶ 𝜃 ∈

[
3

2
𝜋, 2𝜋

]
, 0 ≤ 𝜑 < 𝜃 −

3

2
𝜋
}
.

�B1⧵B1∕2

|u(x)|2 dx ≤ 16 (1 + 2 s)

�s
�[0,2�]×[0,2�] �

1

1

2

�

+∞

�

|u(�, �) − u(�,�)|2
||� ei � − � ei�||2+2 s

� � d� d� d� d�

≤
16 (1 + 2 s)

�s
�B1×ℝ

2

|u(x) − u(y)|2
|x − y|2+2 s dx dy.

Ts =

(
80 (1 + 2 s)

3�s

+
8

3�
M (1 − s)

)−1

.

(4.1)�
ℝ2×ℝ2

|u(x) − u(y)|2
|x − y|2+2 s dx dy ≥

∑
Bj,k∈�k

�Bj,k×ℝ2

|u(x) − u(y)|2
|x − y|2+2 s dx dy.
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We insert this estimate in (4.1) and then sum over k = 1,… , 36 . We get

In the last inequality we used that � is a covering of Ω . By recalling the definition of 
�s
1
(Ω) , from the previous chain of inequalities we thus get the claimed estimate (1.1), with 

constant

The asymptotic behavior of Cs can now be inferred from that of Ts , which in turn is con-
tained in Proposition 3.1.

Remark 4.1  For suitable classes of open sets in ℝN and every 0 < s < 1 , it is possible to 
give a Makai–Hayman-type lower bound on �s

1
 , by taking advantage of the nonlocality of 

the Gagliardo–Slobodeckiĭ seminorm. More precisely, this is possible provided Ω satisfies 
the following mild regularity assumption: there exist3 𝜎 > 1 and 𝛼 > 0 such that

Indeed, in this case for every u ∈ C∞
0
(Ω) we can simply estimate

�
Bj,k∈�k

�Bj,k×ℝ2

�u(x) − u(y)�2
�x − y�2+2 s dx dy ≥

Ts

(1 +
√
2)2 s

�
Bj,k∈�k

�Bj,k

�u(x)�2 dx.

36
�

ℝ2×ℝ2

�u(x) − u(y)�2
�x − y�2+2 s dx dy

≥

36�
k=1

�
Bj,k∈�k

�Bj,k×ℝ2

�u(x) − u(y)�2
�x − y�2+2 s dx dy

≥
Ts

(1 +
√
2)2 s

36�
k=1

�
Bj,k∈�k

�Bj,k

�u(x)�2 dx

≥
Ts

(1 +
√
2)2 s �Ω

�u(x)�2 dx.

Cs ∶=
Ts

36 (1 +
√
2)2 s

.

(4.2)
|B� rΩ

(x) ⧵Ω|
|B� rΩ

(x)| ≥ �, for every x ∈ Ω.

�
ℝN×ℝN

|u(x) − u(y)|2
|x − y|N+2 s dx dy

≥
�Ω

(
�B� rΩ

(x)⧵Ω

|u(x)|2
|x − y|N+2 s dy

)
dx

≥
1

(� rΩ)
N+2 s �Ω

|B� rΩ
(x) ⧵Ω| |u(x)|2 dx

≥
� �N

(� rΩ)
2 s �Ω

|u(x)|2 dx,

3  It is not difficult to see that this property never holds for � = 1.
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where in the last inequality we used the additional condition (4.2). By arbitrariness of u, 
we get

One could observe that the additional condition (4.2) does not always hold for a simply 
connected set in the plane. Moreover, the constant obtained in this way is quite poor: first 
of all, it is not universal. It depends on the parameters � and � and it deteriorates as � ↘ 1 , 
since in this case we must have � ↘ 0 . Secondly, it does not exhibit the correct asymptotic 
behavior as s goes to 1.

5 � Proof of Theorem 1.3

Let 0 < s ≤ 1∕2 and {Qk}k∈ℕ ⊂ ℝ
2 be the sequence of open squares Qk = (−k, k)2 , with 

k ∈ ℕ ⧵ {0, 1} . We introduce the one-dimensional set

and then define, for every fixed k ∈ ℕ ⧵ {0, 1} , the “cracked” square Q̃k = Qk ⧵ Σ (see 
Fig. 2). First of all, we observe that

Thus, if we can show that

we would automatically get the desired counter-example. We will obtain (5.1) by proving 
that

Indeed, if this were true, we would have

�s
1
(Ω) ≥

� �N

�2 s

1

r2 s
Ω

.

Σ =
⋃
i∈ℤ

Σ(i), where Σ(i) ∶=
{
(x1, i) ∈ ℝ

2 ∶ |x1| ≥ 1
}
,

r
Q̃k

=

√
5

2
, for every k ≥ 2.

(5.1)lim
k→∞

�s
1
(Q̃k) = 0,

(5.2)�s
1
(Q̃k) = �s

1
(Qk), for every k ≥ 2.

Fig. 2   The set Q̃
k
 with k = 2 . In 

dashed line, a disk of maximal 
radius
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by the scale properties of �1
s
 . This would prove (5.1), as claimed.

We are thus left with proving (5.2). We already know that

thanks to the fact that �s
1
 is monotone with respect to set inclusion. In the remaining part of 

the proof, we focus our attention in proving the opposite inequality. 
At this aim, for every n ∈ ℕ ⧵ {0} we introduce the neighborhoods (Fig. 3)

and consider a sequence of cut-off functions {𝜑(i)
n
}n∈ℕ⧵{0} ⊂ C∞

0
(Σ

(i)

k,2 n
) such that

for some constant C > 0 , independent of n. Observe that by construction we have

By using an interpolation inequality (see [10, Corollary 2.2]) and the properties of the cut-
off functions, we can estimate the energy of each �(i)

n
 as follows

for a constant C > 0 independent4 of n. In particular, for every i ∈ {−(k − 1),… , k − 1} we 
have

lim
k→∞

�s
1
(Q̃k) = lim

k→∞
�s
1
(Qk) = lim

k→∞
k−2 s �s

1
(Q1) = 0,

�s
1
(Q̃k) ≥ �s

1
(Qk),

Σ
(i)

k,n
=
{
x ∈ ℝ

2 ∶ dist(x,Σ(i) ∩ Qk) ≤
1

n + 1

}
, for i ∈ {−(k − 1),… , k − 1},

0 ≤ �(i)
n
≤ 1, �(i)

n
≡ 1 on Σ

(i)

k,4 n
, |∇�(i)

n
(x)| ≤ C n,

spt(�(i)
n
) ∩ spt(�(j)

n
) = �, for i ≠ j,

[�(i)
n
]2
Ws,2(ℝ2)

≤ C

(
�Σ

(i)

k,2 n

|�(i)
n
|2 dx

)1−s (
�Σ

(i)

k,2 n

|∇�(i)
n
|2 dx

)s

≤ C |Σ(i)

k,2 n
|1−s |Σ(i)

k,2 n
|s n2 s ≤ C n2 s−1,

(5.3)lim
n→+∞

[𝜑(i)
n
]2
Ws,2(ℝ2)

= 0, if 0 < s <
1

2
,

Fig. 3   The dashed line encloses 
one of the sets Σ(i)

k,n

4  Observe that such a constant depends on k, through the length of the set Σ(i) ∩ Qk . However, this is not a 
problem, since in this part k is now fixed.
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while

From now on, for ease of notation, we denote

Due to the different behaviors (5.3) and (5.4), we need to consider the cases 0 < s < 1∕2 
and s = 1∕2 separately.

Case 0 < s < 1∕2 . For every u ∈ C∞
0
(Qk) ⧵ {0} , we simply take

and observe that un ∈ C∞
0
(Q̃k) for every n ∈ ℕ ⧵ {0} . Since each un is admissible for prob-

lem (1.3), we get

where in the last inequality we have used the Leibniz-type rule (2.1) and the fact 
|1 − Φk,n| ≤ 1 . We now observe that

which follows from a standard application of the Lebesgue Dominated Convergence Theo-
rem, together with the properties of Φk,n . Moreover, it holds

This simply follows by using the definition of Φk,n , the triangle inequality and (5.3). By 
using these two limits in (5.5), we get

By arbitrariness of u ∈ C∞
0
(Qk) ⧵ {0} , we get

and thus the desired conclusion (5.2).
Borderline case s = 1∕2 . This is more delicate, we cannot use directly the sequence 

{Φk,n}n∈ℕ⧵{0} to construct an approximation of u ∈ C∞
0
(Qk) . Indeed, by owing to (5.4), we 

can now guarantee that {Φk,n}n∈ℕ⧵{0} only converges weakly to 0 in W1∕2,2(ℝ2) as n goes to 
∞ , up to a subsequence.

In order to “boost” such a sequence, we make a suitable application of Mazur’s 
Lemma (see for example [24, Theorem  2.13]). More precisely, we define the sequence 
{Fk,n}n∈ℕ⧵{0} ⊂ L2(ℝ2 ×ℝ

2) , given by

(5.4)sup
n≥1

[�(i)
n
]2
Ws,2(ℝ2)

≤ C, if s =
1

2
.

Φk,n =

k−1∑
i=−(k−1)

�(i)
n
∈ C∞

0
(Q2 k).

un =
(
1 − Φk,n

)
u,

(5.5)
�

�s
1
(Q̃k) ≤

[un]Ws,2(ℝ2)

‖un‖L2(Q̃k)

≤

[u]Ws,2(ℝ2) + ‖u‖L∞(ℝ2)

�
1 − Φk,n

�
Ws,2(ℝ2)

‖u (1 − Φk,n)‖L2(Q̃k)

,

lim
n→∞

‖u (1 − Φk,n)‖L2(Q̃k)
= ‖u‖L2(Qk)

,

lim
n→∞

[
1 − Φk,n

]
Ws,2(ℝ2)

= 0.

�
�s
1
(Q̃k) ≤ lim

n→∞

[u]Ws,2(ℝ2) + ‖u‖L∞(ℝ2)

�
1 − Φk,n

�
Ws,2(ℝ2)

‖u (1 − Φk,n)‖L2(Q̃k)

=
[u]Ws,2(ℝ2)

‖u‖L2(Qk)

.

�s
1
(Q̃k) ≤ �s

1
(Qk).
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By construction, we have that

and {Fk,n}n∈ℕ⧵{0} converges weakly to 0 in L2(ℝ2 ×ℝ
2) , up to a subsequence. Thanks to 

Mazur’s Lemma, we can enforce this weak convergence to the strong one, by passing to 
a sequence of convex combinations. More precisely, we know that for every n ∈ ℕ ⧵ {0} 
there exists

and such that the new sequence made of convex combinations

strongly converges in L2(ℝ2 ×ℝ
2) to 0, as n goes to ∞ . Observe that by construction we 

have

Thus, if we set

the previous observations give that

Moreover, by using the fractional Poincaré inequality with s = 1∕2 for the open bounded 
set Q2 k , we also have

Fk,n(x, y) =
Φk,n(x) − Φk,n(y)

|x − y|1+ 1

2

.

‖Fk,n‖L2(ℝ2×ℝ2) = [Φk,n]W
1
2
,2
(ℝ2)

≤ C,

{
t
�
(n)

}n

�=1
⊂ [0, 1], such that

n∑
�=1

t
�
(n) = 1,

F̃k,n(x, y) =

n∑
�=1

t
�
(n)Fk,�(x, y),

‖F̃k,n‖2L2(ℝ2×ℝ2)

=
�����

n�
�=1

t
�
(n)Fk,�

�����

2

L2(ℝ2×ℝ2)

=
∬

ℝ2×ℝ2

������

n�
�=1

t
�
(n)

Φk,�(x) − Φk,�(y)

�x − y�1+ 1

2

������

2

dx dy

=
∬

ℝ2×ℝ2

���
∑n

�=1
t
�
(n) Φk,�(x) −

∑n

�=1
t
�
(n) Φk,�(y)

���
2

�x − y�3 dx dy.

Φ̃k,n =

n∑
�=1

t
�
(n) Φk,� ∈ C∞

0
(Q2 k),

(5.6)lim
n→∞

[Φ̃k,n]
2

W
1
2
,2
(ℝ2)

= lim
n→∞

‖F̃k,n‖2L2(ℝ2×ℝ2)
= 0.

(5.7)lim
n→∞

‖Φ̃k,n‖2L2(Q2 k)
≤

1

�
1

2

1
(Q2 k)

lim
n→∞

[Φ̃k,n]
2

W
1
2
,2
(ℝ2)

= 0.
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We take as in the previous case u ∈ C∞
0
(Qk) ⧵ {0} . In order to approximate u with func-

tions compactly supported in Q̃k , we now define

We observe that this function belongs to C∞
0
(Q̃k) . Indeed, observe that

thus in particular

thanks to the fact that

Clearly, we still have

The second fact in (5.8) can be proved by observing that

and then using (5.7).
We can now use ũn as a competitor for the variational problem defining �s

1
(Q̃k) and pro-

ceed exactly as in the case 0 < s < 1∕2 , by using (5.6) and (5.8). This finally concludes the 
proof.

Remark 5.1  With the notation above, we obtain in particular that the infinite complement 
comb Θ ∶= ℝ

2 ⧵ Σ is an open simply connected set such that

Indeed, by domain monotonicity and (5.1), we have

ũn = (1 − Φ̃k,n) u.

Φk,�(x) = 1, for every x ∈ Σ
(i)

k,4�
, i ∈ {−(k − 1),… , k − 1} and � ∈ {1,… , n},

Φ̃k,n(x) =

n∑
�=1

t
�
(n) Φk,�(x) =

n∑
�=1

t
�
(n) = 1, for every x ∈ Σ

(i)

k,4 n
, i ∈ {−(k − 1),… , k − 1},

Σ
(i)

k,4 n
⊂ Σ

(i)

k,4�
, for � ∈ {1,… , n}.

(5.8)�1 − Φ̃k,n� ≤ 1 and lim
n→∞

‖ũn‖L2(Q̃k)
= ‖u‖L2(Qk)

.

������Q̃k

�ũn�2 dx −
�Qk

�u�2 dx
�����

=
������Q̃k

�u�2
�
�1 − Φ̃k,n�2 − 1

�
dx
�����

≤
�Q̃k

�u�2
�
1 − �1 − Φ̃k,n�2

�
dx

≤ 2
�Q̃k

�u�2
�
1 − �1 − Φ̃k,n�

�
dx ≤ 2 ‖u‖2

L∞(Qk) �Q̃k

�Φ̃k,n� dx,

rΘ =

√
5

2
and 𝜆s

1
(Θ) = 0, for 0 < s ≤

1

2
.

0 ≤ �s
1
(Θ) ≤ lim

k→∞
�s
1
(Q̃k) = 0.
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6 � Some consequences

We highlight in this section some consequences of our main result, by starting with a frac-
tional analogue of property (1.2) seen in the Introduction.

Corollary 6.1  Let Ω ⊂ ℝ
2 be an open simply connected set. Then we have:

•	 for 1∕2 < s < 1

•	 for 0 < s ≤ 1∕2

but

Proof  Let 0 < s < 1 and assume that 𝜆s
1
(Ω) > 0 . Let r > 0 be such that there exists x0 ∈ Ω 

with Br(x0) ⊂ Ω . By using the monotonicity of �s
1
 with respect to set inclusion, we get

The previous estimate gives

By taking the supremum over admissible r, we get rΩ < +∞ by definition of inradius.
For the converse implication in the case s > 1∕2 , it is sufficient to apply Theorem 1.1. 

Finally, by taking Θ as in Remark 5.1, we get an open set with finite inradius, but vanishing 
�s
1
 for 0 < s ≤ 1∕2 . 	�  ◻

Our main results permit to compare two different Sobolev spaces, built up of func-
tions “vanishing at the boundary.” More precisely, let us denote by Ds,2

0
(Ω) the comple-

tion of C∞
0
(Ω) with respect to the norm

Observe that this is indeed a norm on C∞
0
(Ω) . We refer to [11] for more details on this 

space. We also recall that by W̃s,2

0
(Ω) we denote the closure of C∞

0
(Ω) in Ws,2(ℝN).

We have the following

Corollary 6.2  Let 1∕2 < s < 1 and let Ω ⊂ ℝ
2 be an open simply connected set, with finite 

inradius. Then

𝜆s
1
(Ω) > 0 ⟺ rΩ < +∞;

𝜆s
1
(Ω) > 0 ⟹ rΩ < +∞,

rΩ < +∞ ⇏ 𝜆s
1
(Ω) > 0

�s
1
(Ω) ≤ �s

1
(Br(x0)) =

�s
1
(B1)

r2 s
.

r <

(
𝜆s
1
(B1)

𝜆s
1
(Ω)

) 1

2 s

.

u ↦ [u]Ws,2(ℝN ), for every u ∈ C∞
0
(Ω).

D
s,2

0
(Ω) = W̃

s,2

0
(Ω).
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On the contrary, for 0 < s ≤ 1∕2 and Θ the infinite complement comb of Remark 5.1, the 
two spaces

cannot be identified with each other.

Proof  For 1∕2 < s < 1 and an open simply connected set Ω ⊂ ℝ
2 , by Theorem 1.1 the two 

norms

are equivalent on C∞
0
(Ω) . This proves the first point.

As for the second statement, it is sufficient to observe that W̃s,2

0
(Θ) is always continu-

ously embedded in L2(Θ) , by its very definition. On the other hand, for 0 < s ≤ 1∕2 such 
an embedding does not hold for Ds,2

0
(Θ) , since �s

1
(Θ) = 0 by Remark 5.1. 	�  ◻

We now show how Theorem  1.1 implies some fractional versions of the classical 
Cheeger’s inequality, a fundamental result in Spectral Geometry. At this aim, for an 
open set Ω ⊂ ℝ

N we recall the definition of Cheeger constant

and s−Cheeger constant (for 0 < s < 1)

see [9] for some properties of this constant. Here P stands for the perimeter of a set in the 
sense of De Giorgi, while Ps is the s−perimeter of a set, defined by

for any measurable set E ⊂ ℝ
N . Then we have the following

Corollary 6.3  (Fractional Cheeger inequality) Let 1∕2 < s < 1 and let Ω ⊂ ℝ
2 be an open 

simply connected set, with finite inradius. Then we have

and

where Cs is the same constant as in Theorem 1.1.

D
s,2

0
(Θ) and W̃

s,2

0
(Θ),

[u]Ws,2(ℝ2) and ‖u‖Ws,2(ℝ2),

h1(Ω) = inf

{
P(E)

|E| ∶ E ⊂ Ω bounded and measurable with |E| > 0

}
,

hs(Ω) = inf

{
Ps(E)

|E| ∶ E ⊂ Ω bounded and measurable with |E| > 0

}
,

Ps(E) = [1E]Ws,1(ℝN ) =
∬

ℝN×ℝN

|1E(x) − 1E(y)|
|x − y|N+s dx dy,

�s
1
(Ω) ≥ Cs

(
h1(Ω)

2

)2 s

,

�s
1
(Ω) ≥ Cs

(
�

Ps(B1)
hs(Ω)

)2

.
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Proof  Let r < rΩ , by definition of inradius there exists a disk Br(x0) ⊂ Ω . By using this 
disk as a competitor for the minimization problem defining h1(Ω) , we get

By taking the supremum over admissible r, we get

By raising to the power 2 s and using Theorem 1.1, we get the first inequality. The second 
one can be obtained in exactly the same way. 	�  ◻

Finally, we have the following result, which permits to compare �s
1
(Ω) and �1(Ω) , for 

simply connected sets in the plane. We refer to [12, Theorem 6.1] and [15, Theorem 4.5] 
for a similar result in general dimension N ≥ 2 , under stronger regularity assumptions 
on the sets.

Corollary 6.4  (Comparison of eigenvalues) Let 1∕2 < s < 1 and let Ω ⊂ ℝ
2 be an open 

simply connected set, with finite inradius. Then we have

where �s, �s are two positive constants depending on s only, such that

Proof  The upper bound follows directly from the general result of [12, Theorem 6.1], see 
Eq. (6.1) there. From this reference, we can also extract a value for the constant �s , which 
is given by

For the lower bound, the proof is similar to that of Corollary 6.3, it is sufficient to join the 
estimate

with Theorem 1.1. This gives the claimed estimate, with constant

and Cs is the same as in (1.4). 	�  ◻

h1(Ω) ≤
2� r

� r2
=

2

r
.

h1(Ω) ≤
2

rΩ
.

(6.1)�s

(
�1(Ω)

)s

≤ �s
1
(Ω) ≤ �s

(
�1(Ω)

)s

,

�s ∼
(
s −

1

2

)
, for s ↘

1

2
, and �s ∼

1

1 − s
, for s ↗ 1,

�s ∼
1

1 − s
, for s ↗ 1.

�s =
41−s

s (1 − s)
�.

�1(Ω) ≤
�1(B1)

r2
Ω

,

�s =
Cs

(�1(B1))
s
,
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Remark 6.5  The lower bound in estimate (6.1) degenerates as s approaches 1/2. This 
behavior is optimal: indeed, observe that for the set Θ of Remark 5.1 we have

The first fact follows from the classical Makai–Hayman inequality (1.1), for example. Thus 
the lower bound cannot hold for this range of values.

Appendix A: A one‑dimensional Poincaré inequality

In what follows, we recall the definition of the following norm on the one-dimensional torus 
𝕊
1 = ℝ∕(2�ℤ)

We observe that in particular for � ∈ [0, 2�] this quantity is given by

Lemma A.1  We have

Moreover, both inequalities are sharp.

Proof  We first observe that we can write

thanks to standard trigonometric formulas. In order to conclude the proof, it is sufficient to 
prove that

It is easily seen that both functions

are 2�−periodic, thus is it sufficient to prove (A.3) for � ∈ [0, 2�] . We thus seek for the 
maximum and the minimum on [0, 2�] of the function

𝜆1(Θ) > 0 and 𝜆s
1
(Θ) = 0, for 0 < s ≤

1

2
.

|�|
𝕊1 ∶= min

k∈ℤ
|� + 2 k �|, for every � ∈ ℝ.

(A.1)|𝛼|
�1 =

{
𝛼, if 0 ≤ 𝛼 ≤ 𝜋,

2𝜋 − 𝛼, if 𝜋 < 𝛼 ≤ 2𝜋.

2

�
|� − �|

𝕊1 ≤ |ei � − ei�| ≤ |� − �|
𝕊1 , for every �,� ∈ ℝ.

(A.2)

|ei � − ei�| = |ei�| |ei (�−�) − 1|
= |ei (�−�) − 1|

=

√
(1 − cos(� − �))2 + sin2(� − �) = 2

|||||
sin

(
� − �

2

)|||||
,

(A.3)
2

�
|�|

𝕊1 ≤ 2
||||sin

(
�

2

)|||| ≤ |�|
𝕊1 , for every � ∈ ℝ.

� ↦ |�|
�1 and � ↦

||||sin
(
�

2

)||||,
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extended by continuity to the whole interval. By keeping in mind (A.1), on [0, 2�] this 
function can be rewritten as

By recalling that the sinc function t ↦ (sin t)∕t is monotone decreasing on the interval 
[0,�∕2] , in light of the above discussion we now easily obtain

This gives (A.3), thus concluding the proof. 	�  ◻

The main result of this appendix is the following one-dimensional Poincaré inequal-
ity, for periodic functions vanishing at a point. The result is probably well-known, but 
as always we want to pay particular attention to the dependence of the constant on the 
parameter s. For T > 0 , we define the one-dimensional torus 𝕊1

T
= ℝ∕(T ℤ) , endowed 

with the norm

Proposition A.2  Let 1∕2 < s < 1 and T > 0 . Let �0 ∈ [0,T] , there exists a constant 
𝜇s > 0 depending on s only such that for every  Lipschitz function w ∶ ℝ → ℝ which is 
T-periodic and vanishing at �0 , we have

Moreover, the constant �s has the following asymptotic behaviors

Proof  Without loss of generality, we can assume that �0 = 0 and T = 2� . Thus, in this 
case we have | ⋅ |

�
1
2�
= | ⋅ |

�1 , with the notation of Lemma A.1. Thanks to the periodicity of 
w, we can expand it in Fourier series, i.e., we can write

The series is uniformly converging, thanks to the assumption on w. We will achieve the 
claimed result by joining the following two estimates

� ↦ 2
| sin(�∕2)|

|�|
�1

,

� ↦

⎧
⎪⎪⎨⎪⎪⎩

2
sin(�∕2)

�
, if 0 ≤ � ≤ �,

2
sin(�∕2)

2 � − �
, if � ≤ � ≤ 2�,

=

⎧
⎪⎪⎨⎪⎪⎩

sin(�∕2)

�∕2
, if 0 ≤ � ≤ �,

sin(� − �∕2)

� − �∕2
, if � ≤ � ≤ 2�.

2

�
≤ 2

| sin(�∕2)|
|�|

�1

≤ 1.

|� − �|
𝕊
1
T
= min

k∈ℤ
|� − � + k T|, for �,� ∈ ℝ.

(A.4)�s

(
2�

T

)2 s

�

T

0

|w(�)|2 d� ≤
�[0,T]×[0,T]

|w(�) − w(�)|2
|� − �|1+2 s

�
1
T

d� d�,

�s ∼
(
s −

1

2

)
, for s ↘

1

2
and �s ∼

1

1 − s
, for s ↗ 1.

w(�) =
∑
n∈ℤ

ŵ(n) ein� , where ŵ(n) =
1

2� ∫

2�

0

w(�) e−i n � d�.
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and

that we prove separately. This would give (A.4), with constant �s = C1,s∕C2,s . In the last 
part of the proof, we will then prove that such a constant has the claimed asymptotics.

Proof of (A.5). We proceed similarly as in the proof of [18, Proposition 3.4], with suit-
able adaptations. The latter deals with Ws,2 functions on ℝ and their Fourier transform.

First of all, we rewrite the Gagliardo–Slobodeckiĭ seminorm as follows: let us apply the 
change of variable h = � − � , so to get

On the third integral, we can use that the integrand is 2�−periodic, thus we get

This finally permits to infer that

By recalling (A.1), we can conclude that

(A.5)�[0,2�]×[0,2�]

|w(�) − w(�)|2
|� − �|1+2 s

𝕊1

d� d� ≥ C1,s

∑
n∈ℤ

|n|2 s |ŵ(n)|2,

(A.6)
�

2�

0

|w(�)|2 d� ≤ C2,s
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|n|2 s |ŵ(n)|2,

∫
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0 ∫

2�

0
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�1

d� d�

=
∫
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0 ∫
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−�
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|h|1+2 s

�1

d� dh

=
∫
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0 ∫

0

−�
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d� dh

+
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Now, for every h we denote by wh(�) the translation wh(�) = w(� + h) . Thanks to the well-
known properties of the Fourier coefficients, we have

By using Plancherel’s identity in (A.7) and then applying (A.8), we finally obtain

By recalling identities (A.2), we have

and applying the change of variable � = h n with n ∈ ℤ ⧵ {0} , we can rewrite the first inte-
gral on the right-hand side of (A.9) as

For the second integral, it is sufficient to observe that by periodicity

Thus, from (A.9) we get in particular

(A.7)

∫
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�1

d� dh
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�

0

1
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(
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1
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(
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(A.8)ŵh(n) = ei h n ŵ(n), for every n ∈ ℤ.

(A.9)
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This finally proves (A.5), with constant

Proof of (A.6): from Plancherel’s identity, we know that

By using the Fourier expansion for w and the assumption w(0) = w(2�) = 0 , we can infer 
that

This in turn implies that

and so we can obtain

We now estimate the last term in (A.11) by using Hölder’s inequality

with the choices |an| = 1∕|n|s and |bn| = |ŵ(n)| |n|s . This yields

where we set

�

2�
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0
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(A.10)
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2
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Observe that this is a finite quantity, thanks to the crucial assumption s > 1∕2 . By using 
this estimate in (A.10), we then obtain the claimed inequality (A.6), with constant

Asymptotic behavior of the constant. As we said, from the above discussion we get ine-
quality (A.4), with �s = C1,s∕C2,s . It is easily seen that

while

by using the fact that the Riemann zeta function has a simple pole with residue 1 at z = 1 
(see [22, Section 13.2.6]). This proves that �s has the claimed asymptotic behavior, as s 
goes to 1/2.

As for the behavior at s ↗ 1 , we observe that

while

where we used the third order Taylor expansion

for the cosine function. This eventually leads to the conclusion of the proof. 	�  ◻
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