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Abstract
In this paper, we consider the following coupled gradient-type quasilinear elliptic system 

where Ω is an open bounded domain in ℝN , N ≥ 2 . We suppose that some C1–Car-
athéodory functions A,B ∶ Ω ×ℝ ×ℝ

N
→ ℝ exist such that a(x, t, �) = ∇�A(x, t, �) , 

At(x, t, �) =
�A

�t
(x, t, �) , b(x, t, �) = ∇�B(x, t, �) , Bt(x, t, �) =

�B

�t
(x, t, �) , and that 

Gu(x, u, v) , Gv(x, u, v) are the partial derivatives of a C
1–Carathéodory nonlinear-

ity G ∶ Ω ×ℝ ×ℝ → ℝ . Roughly speaking, we assume that A(x, t, �) grows at least as 
(1 + |t|s1p1 )|�|p1 , p1 > 1 , s1 ≥ 0 , while B(x, t, �) grows as (1 + |t|s2p2 )|�|p2 , p2 > 1 , s2 ≥ 0 , 
and that G(x, u, v) can also have a supercritical growth related to s1 and s2 . Since the coef-
ficients depend on the solution and its gradient themselves, the study of the interaction of 
two different norms in a suitable Banach space is needed. In spite of these difficulties, a 
variational approach is used to show that the system admits a nontrivial weak bounded 
solution and, under hypotheses of symmetry, infinitely many ones.

Keywords  Coupled gradient-type quasilinear elliptic system · p-Laplacian-type operator · 
Supercritical growth · Weak Cerami–Palais–Smale condition · Ambrosetti–Rabinowitz 
condition · Mountain Pass theorem · Critical Sobolev exponent · Nontrivial weak bounded 
solution · Pseudo-eigenvalue

⎧
⎪
⎨
⎪
⎩

−div(a(x, u,∇u)) + At(x, u,∇u) = Gu(x, u, v) in Ω,

−div(b(x, v,∇v)) + Bt(x, v,∇v) = Gv(x, u, v) in Ω,

u = v = 0 on �Ω,
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1  Introduction

The study of partial differential equations involving nonlinearities with critical or super-
critical growths is a very complex matter, and for many critical and supercritical prob-
lems, some basic issues are mostly unknown or undiscovered. For example, let us con-
sider the quasilinear elliptic problem

where Ω is an open bounded domain in ℝN ,N ≥ 2 , and 1 < p < N . In spite of the simple 
looking structure of the problem, if we ask q to be critical or supercritical from the view-
point of the Sobolev embedding theorem, namely q ≥ p∗ =

Np

N−p
 , some significant difficul-

ties arise. Among other problems, in general, the lack of compactness which occurs does 
not guarantee even the existence of solutions, which has been derived only in few cases and 
frequently under assumptions on the shape of the domain Ω (for the classical nonexistence 
result due to the Pohožaev’s identity see [36], or also [37, Theorem III.1.3]).

The existence of positive solutions of (1.1) has been successfully addressed either 
by adding some lower-order term to the critical nonlinearity (see [9]) or by considering 
domains which are not starshaped (see, e.g., [6, 22]) if p = 2 , q = 2∗ and � = 0 , while 
the existence of sign-changing solutions of (1.1) has been obtained if p = 2 , q = 2∗ but 
� ≠ 0 (see, e.g., [3, 20]). To our knowledge, all the results carried over so far are built 
on the key assertion that the functional associated with the critical problem (1.1) satis-
fies the Palais–Smale condition even if only in certain ranges of energy.

On the other hand, taking p ≠ 2 , due to the hardship in handling a quasilinear opera-
tor, very few results of existence have been derived so far, not even under assumptions 
of symmetry on the domain (we refer to [31] for a wider discussion). We limit ourselves 
to point out that as derived in [34], a Pohožaev-type nonexistence result is not yet avail-
able for sign-changing solutions of (1.1), as the unique continuation principle for the 
p-Laplacian is not known, while it has been proved for nonnegative solutions (see [23]). 
However, the existence of a positive solution in a domain with a sufficiently small hole 
has been shown for 2N

N+2
≤ p ≤ 2 , as well as an existence and multiplicity result have 

been proved under further assumptions of symmetry (see [21, 31, 32, 34, 35] and refer-
ences therein).

In spite of the mentioned difficulties, in recent years, there has been a marked increase 
in research in critical and supercritical problems. The interest in these problems is related 
to their similarity to some variational problems which arise in Geometry and Physics where 
the lack of compactness also occurs. In this sense, one of the best known challenges is 
the so-called Yamabe’s problem, but also some examples related to the existence of extre-
mal functions for isoperimetric inequalities, Hardy–Littlewood–Sobolev inequalities and 
trace inequalities can be addressed (see, e.g., [25, 27, 29]). However, in general, also in the 
“simplest” cases, some problems are still open, and some classical variational tools, largely 
used in the subcritical case, do not work in the critical and supercritical ones.

Anyway, recently, quasilinear problems which generalize

(1.1)
{

−Δpu = �|u|p−2u + |u|q−2u in Ω,

u = 0 on �Ω,
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have been studied and, by means of a suitable variational setting, the existence of infi-
nitely many weak bounded solutions is proved also if the nonlinear term has a supercriti-
cal growth such as 2 < 1 + p < p(s + 1) < 𝜇 < p∗(s + 1) , when A ∈ L∞(Ω) is such that 
A(x) ≥ 𝛼0 > 0 for a.e. x ∈ Ω (see [14] and also, for other approaches, [4, 30]). One of the 
most remarkable feature of this work is that unlike the results mentioned above, both an 
existence and a multiplicity result have been provided in the supercritical case for a more 
general problem without taking any symmetry assumption on the domain Ω.

Here, following the ideas introduced in [14], we look for solutions of the family of cou-
pled gradient-type quasilinear elliptic systems

where Ω is an open bounded domain in ℝN , N ≥ 2 , and A,B ∶ Ω ×ℝ ×ℝ
N
→ ℝ are given 

functions with partial derivatives

for a.e. x ∈ Ω , for all (t, �) ∈ ℝ ×ℝ
N . Moreover, a nonlinear function G ∶ Ω ×ℝ ×ℝ → ℝ 

exists so that

Roughly speaking, here we assume that A(x, u,∇u) grows at least as (1 + |u|s1p1 )|∇u|p1 , 
p1 > 1 , s1 ≥ 0 , while B(x, v,∇v) grows at least as (1 + |v|s2p2 )|∇v|p2 , p2 > 1 , s2 ≥ 0 (see 
Remark 3.2 and assumption (h7) ), and that G(x, u, v) can also have a supercritical growth 
depending on s1 and s2 (see hypothesis (g2)).

While subcritical quasilinear systems have been handled through several techniques 
(see, e.g., [5, 8, 10, 16, 18]), as far as we know very few existence results have been deter-
mined for supercritical quasilinear elliptic systems (see, for example, [19, 24] and refer-
ences therein), even though no result occurs for supercritical systems with coefficients 
depending on the solution and its gradient themselves, as that one in (1.2). Moreover, as in 
[14], even if a supercritical growth occurs, the domain Ω is only open and bounded as we 
consider homogeneous Dirichlet boundary condition, and the solutions we are looking for 
are weak.

Thus, following the same approach used in [16] and [18], but carefully adapting the 
ideas in [14] to our supercritical setting, we give some sufficient conditions for recognizing 
the variational structure of problem (1.2), so that investigating solutions of (1.2) reduces to 
find critical points of functional

{
−div((1 + A(x)|u|sp)|∇u|p−2∇u) + sA(x)|u|sp−2u|∇u|p = |u|�−2u in Ω,

u = 0 on �Ω,

(1.2)

⎧
⎪
⎨
⎪
⎩

−div(a(x, u,∇u)) + At(x, u,∇u) = Gu(x, u, v) in Ω,

−div(b(x, v,∇v)) + Bt(x, v,∇v) = Gv(x, u, v) in Ω,

u = v = 0 on �Ω,

(1.3)At(x, t, �) =
�A

�t
(x, t, �), a(x, t, �) =

(
�A

��1
(x, t, �),… ,

�A

��N
(x, t, �)

)
,

(1.4)Bt(x, t, �) =
�B

�t
(x, t, �), b(x, t, �) =

(
�B

��1
(x, t, �),… ,

�B

��N
(x, t, �)

)
,

(1.5)G
u
(x, u, v) =

�G

�u
(x, u, v), G

v
(x, u, v) =

�G

�v
(x, u, v) for a.e. x ∈ Ω, all (u, v) ∈ ℝ

2.
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in the product Banach space X = X1 × X2 , with Xi = W
1,pi
0

(Ω) ∩ L∞(Ω) if i ∈ {1, 2}.
Moreover, since in the Banach space X our functional J  does not satisfy the 

Palais–Smale condition, or one of its standard variants, we are not allowed to use directly 
existence and multiplicity results as the classical Ambrosetti–Rabinowitz theorems stated 
in [2] or in [7]. Hence, we have to submit a weaker definition of the Cerami’s variant of 
Palais–Smale condition, the so-called weak Cerami–Palais–Smale condition (see Defini-
tion 2.1). We believe that the use of this definition, introduced in the pioneering paper [11] 
and employed in the framework of a quasilinear supercritical system, represents another 
major improvement of the work in this field. In fact, here Definition 2.1 is used for stat-
ing an extended Mountain Pass theorem and also its symmetric version of which we avail 
to gain our existence and multiplicity results (see Theorems 2.2 and 2.3), but we do not 
exclude the chance that this feature may be also employed to recover other kind of prob-
lems (see, e.g., [33]). In fact, we highlight that this technique has been adapted to address 
problems placed over unbounded domains both in radial and in non-radial setting (see [15], 
respectively [17]) but so far only in subcritical growth assumptions (in [1], the existence of 
solutions for some critical and supercritical problems has been proved by using a different 
(radial) approach, which is not applicable for non-autonomous equations).

On the other hand, this enhancement imposes to pay the price that some technical 
assumptions on the involved functions are needed. Namely, if we just assume the Car-
athéodory functions A(x, t, �) , B(x, t, �) , G(x,  u,  v) and their partial derivatives fit some 
proper polynomial growths to show the C1 regularity of the functional J  in (1.6), on the 
other hand, the proof of the weak Cerami–Palais–Smale condition passes through some 
fine requirements on the involved functions (see Sect. 3) and a very remarkable result (see 
Lemma 3.7) which has interest own self and can be employed regardless of this scenario to 
fix a problem of common trouble in this field.

Now, in order to draw the attention to the enhancement of our main results, we state 
them here in a “streamlined” version but we refer the reader to Sect. 4 for all the needed 
hypotheses on the involved functions and the precise statement of the results (see Theo-
rems 4.1 and 4.2).

Theorem 1.1  Suppose that A(x, t, �) grows at least as (1 + |t|s1p1 )|�|p1 , with p1 > 1 , s1 ≥ 0 , 
while B(x, t, �) grows at least as (1 + |t|s2p2 )|�|p2 , with p2 > 1 , s2 ≥ 0 . Moreover, assume 
that the C1–Carathéodory function A(x, t, �) , respectively B(x, t, �) , and its partial deriva-
tives fits some suitable interaction properties among themselves, while the C1–Carathéo-
dory nonlinear term G(x, u, v) satisfies the Ambrosetti–Rabinowitz condition for systems 
with coefficients �1 , 𝜃2 > 0 such that 𝜃i <

1

pi
 , i ∈ {1, 2} , and has a proper polynomial 

growth which can also be supercritical depending on s1 and s2 . If

with �i,1 first eigenvalue of −Δpi
 in Wpi

0
(Ω) , i ∈ {1, 2} , then problem (1.2) admits a non-

trivial weak bounded solution.

Theorem 1.2  In the same hypotheses of Theorem 1.1, assume that A(x, ⋅, ⋅) and B(x, ⋅, ⋅) are 
even in ℝ ×ℝ

N while G(x, ⋅, ⋅) is even in ℝ2 for a.e. x ∈ Ω . Then, if

(1.6)J(u, v) =
∫
Ω

A(x, u,∇u) dx +
∫
Ω

B(x, v,∇v) dx −
∫
Ω

G(x, u, v) dx

lim sup
(u,v)→(0,0)

G(x, u, v)

|u|p1 + |v|p2
< 𝛼2 min{𝜆1,1, 𝜆2,1} uniformly a.e. in Ω,
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problem (1.2) admits infinitely many distinct weak bounded solutions.

Finally, in order to better explain the required hypotheses, we consider the particular 
setting

and

with c∗ ≥ 0 and some positive exponents pi , si , qi , �i for each i ∈ {1, 2} . So, J  in (1.6) 
reduces to the functional J0 ∶ X → ℝ such that

and, in a suitable set of assumptions, system (1.2) turns into the model problem

Hence, the previous results can be reworded in this way.

Theorem  1.3  Let A(x, t, �) , B(x, t, �) and G(x,  u,  v) be as in (1.7) and (1.8) with pi > 1 , 
i ∈ {1, 2} , c∗ ≥ 0 and either p1 < N or p2 < N . Assume that �1, �2 exist such that

where p∗
1
 , p∗

2
 are the critical Sobolev exponents, and also

Then, if

problem (1.9) admits infinitely many weak bounded distinct solutions.

lim inf
|(u,v)|→+∞

G(x, u, v)

|u|
1

𝜃1 + |v|
1

𝜃2

> 0 uniformly a.e. in Ω,

(1.7)A(x, t, �) =
1

p1
(1 + |t|s1p1 )|�|p1 , B(x, t, �) =

1

p2
(1 + |t|s2p2 )|�|p2 ,

(1.8)G(x, u, v) =
1

q1
|u|q1 + 1

q2
|v|q2 + c∗|u|

�1 |v|�2 ,

J0(u, v) =
1

p1 ∫
Ω

(1 + |u|s1p1 )|∇u|p1dx + 1

p2 ∫
Ω

(1 + |v|s2p2 )|∇v|p2dx

−
∫
Ω

(
1

q1
|u|q1 + 1

q2
|v|q2 + c∗|u|

�1 |v|�2
)
dx,

(1.9)

⎧
⎪
⎪
⎨
⎪
⎪
⎩

−div((1 + �u�s1p1 )�∇u�p1−2∇u) + s1�u�s1p1−2u �∇u�p1
= �u�q1−2u + �1c∗�u��1−2u�v��2 in Ω,

−div((1 + �v�s2p2 )�∇v�p2−2∇v) + s2�v�s2p2−2v �∇v�p2
= �2c∗�u��1 �v��2−2v + �v�q2−2v in Ω,

u = v = 0 on �Ω.

(1.10)2 < 1 + pi < pi(si + 1) <
1

𝜃i
≤ qi < p∗

i
(si + 1) for i ∈ {1, 2},

(1.11)1 < 𝛾1 < q1, 1 < 𝛾2 < q2 are such that 𝛾1𝜃1 + 𝛾2𝜃2 ≥ 1.

(1.12)𝛾j
qi − 1

qi − 𝛾i
<

pi

N

(
1 −

1

p∗
i
(si + 1)

)
p∗
j
(sj + 1) for i, j ∈ {1, 2}, i ≠ j,
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Our paper is organized as follows. In Sect. 2, we introduce the abstract setting needed to 
recognize the variational structure of our problem (1.2), as well as some extended versions 
of the Mountain Pass theorems are shown up. Furthermore, a regularity result for the func-
tional J  in (1.6) is provided, too. Then, in Sect. 3, some further assumptions on A(x, t, �) , 
B(x, t, �) and G(x, u, v) are addressed in order to show that the functional J  verifies the 
weak Cerami–Palais–Smale condition. Lastly, in Sect. 4, our main results are stated and 
proved.

2 � Abstract tools and variational setting

We denote ℕ = {1, 2,…} and, as long as we introduce our abstract setting, we employ the 
following notations:

•	 (X, ‖ ⋅ ‖X) is a Banach space with dual (X�, ‖ ⋅ ‖X� ),
•	 (W, ‖ ⋅ ‖W ) is a Banach space such that X ↪ W continuously, i.e., X ⊂ W and a con-

stant 𝜎0 > 0 exists such that 

•	 J ∶ D ⊂ W → ℝ and J ∈ C
1(X,ℝ) with X ⊂ D.

In order to avoid any ambiguity and simplify, when possible, the notation, from now on 
by X we denote the space equipped with its given norm ‖ ⋅ ‖X while if the norm ‖ ⋅ ‖W is 
involved, we write it explicitly.

Now, taking � ∈ ℝ , we say that a sequence (yn)n ⊂ X is a Cerami–Palais–Smale 
sequence at level � , briefly (CPS)�-sequence, if

As pointed out in [13, Example 4.3], a (CPS)� sequence can be constructed so that it is 
unbounded in ‖ ⋅ ‖X but converges with respect to ‖ ⋅ ‖W . Thus, as in [14], we introduce the 
following definition.

Definition 2.1  The functional J satisfies the weak Cerami-Palais-Smale condition at level 
� ( � ∈ ℝ ), briefly (wCPS)� condition, if for every (CPS)�-sequence (yn)n , a point y ∈ X 
exists, such that 

(i)	�  lim
n→+∞

‖yn − y‖W = 0 (up to subsequences),
(ii)	� J(y) = � , dJ(y) = 0.

We say that J satisfies the (wCPS) condition in I, I real interval, if J satisfies the (wCPS)� 
condition in X at each level � ∈ I.

Anyway, even if we deal with a weaker version of the Cerami’s variant of the 
Palais–Smale condition, some classical abstract results can be extended so to fit to our 
purposes. Actually, as in [14, Lemma 2.2] (see also [12, Lemma 2.3]), a Deformation 
Lemma can be stated which provides the following extended version of the Mountain 
Pass theorem given in [2] (see [14, Theorem 2.3] for a detailed proof).

‖y‖W ≤ �0 ‖y‖X for all y ∈ X,

lim
n→+∞

J(yn) = � and lim
n→+∞

‖dJ
�
yn
�
‖X� (1 + ‖yn‖X) = 0.
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Theorem 2.2  Let J ∈ C
1(X,ℝ) be such that J(0) = 0 and the (wCPS) condition holds in ℝ+ . 

Moreover, assume that there exist a continuous map � ∶ X → ℝ , some constants r0 , 𝜚0 > 0 , 
and e ∈ X such that 

(i)	� �(0) = 0 and �(y) ≥ ‖y‖W for all y ∈ X;
(ii)	� y ∈ X, �(y) = r0 ⟹ J(y) ≥ �0;
(iii)	� ‖e‖W > r0 and J(e) < 𝜚0.

Then, J has a Mountain Pass critical point y∗ ∈ X such that J(y∗) ≥ �0.

If, in addition, we require that J is symmetric, then a more general version of the 
Symmetric Mountain Pass Theorem in [2] can be stated, too (for the proof, see [14, 
Theorem 2.4]).

Theorem 2.3  Let J ∈ C
1(X,ℝ) be an even functional such that J(0) = 0 and the (wCPS) 

condition holds in ℝ+ . Moreover, assume that 𝜚 > 0 exists so that:

(H�) three closed subsets V� , Z� and M� of X and a constant R𝜚 > 0 exist which sat-
isfy the following conditions:

(i) V� and Z� are subspaces of X such that 

(ii) M� = �N , where N ⊂ X is a neighborhood of the origin which is symmetric and 
bounded with respect to ‖ ⋅ ‖W;
(iii) y ∈ M� ∩ Z� ⟹ J(y) ≥ �;
(iv) y ∈ V�, ‖y‖X ≥ R� ⟹ J(y) ≤ 0.

Then, if we put

with

the functional J possesses at least a pair of symmetric critical points in X with correspond-
ing critical level �� which belongs to [�, �1] , where 𝜚1 ≥ sup

y∈V𝜚

J(y) > 𝜚.

Remark 2.4  Since the vector space V� in Theorem 2.3 has finite dimension, then condition 
(H�)(iv) implies that sup

y∈V𝜚

J(y) < +∞ . Moreover, such hypothesis still holds if we replace 

‖ ⋅ ‖X with ‖ ⋅ ‖W.

Finally, if we can apply Theorem 2.3 infinitely many times, then the following multi-
plicity abstract result can be stated, too.

V𝜚 + Z𝜚 = X, codim Z𝜚 < dimV𝜚 < +∞;

�� = inf
�∈Γ�

sup
y∈V�

J(�(y)),

Γ� = {� ∶ X → X ∶ � odd homeomorphism, �(y) = y if y ∈ V� with ‖y‖X ≥ R�},
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Corollary 2.5  Let J ∈ C
1(X,ℝ) be an even functional such that J(0) = 0 , the (wCPS) condi-

tion holds in ℝ+ and assumption (H�) holds for all 𝜚 > 0 . Then, the functional J possesses 
a sequence of critical points (yn)n ⊂ X such that J(yn) ↗ +∞ as n ↗ +∞.

Now, we proceed introducing the notations related to our specific setting. If Ω ⊂ ℝ
N 

is an open bounded domain, N ≥ 2 , we denote by:

•	 Lq(Ω) the Lebesgue space with norm |y|q =
(
∫
Ω
|y|qdx

)1∕q if 1 ≤ q < +∞;
•	 L∞(Ω) the space of Lebesgue-measurable and essentially bounded functions y ∶ Ω → ℝ 

with norm |y|∞ = ess sup Ω|y|;
•	 W

1,p

0
(Ω) the Sobolev space equipped with the norm ‖y‖

W
1,p

0

= �∇y�p if 1 ≤ p < +∞;
•	 meas (D) the usual Lebesgue measure of a measurable set D in ℝN;
•	 | ⋅ | the standard norm on any Euclidean space, as the dimension of the vector taken into 

account is clear and no ambiguity occurs.

Moreover, for any m ∈ ℕ , we say that h ∶ Ω ×ℝ
m
→ ℝ is a Ck–Carathéodory function, 

k ∈ ℕ ∪ {0} , if h(⋅, �) is measurable in Ω for all � ∈ ℝ
m while h(x, ⋅) is Ck in ℝm for a.e. 

x ∈ Ω.
Let A, B ∶ Ω ×ℝ ×ℝ

N
→ ℝ be such that the following conditions hold: 

(h0)	� A(x, t, �) and B(x, t, �) are C1–Carathéodory functions with partial derivatives as in 
(1.3), respectively (1.4);

(h1)	� two exponents p1 > 1 , p2 > 1 , and some positive functions Φi,�i,Ψi,�i ∈ C
0(ℝ,ℝ) , 

if i ∈ {0, 1, 2} , exist such that 

 and 

Furthermore, let G ∶ Ω ×ℝ ×ℝ → ℝ be a map which satisfies the following 
hypotheses: 

(g0)	� G(x, u, v) is a C1–Caratheodory function with partial derivatives as in (1.5), such that 

(g1)	� a constant 𝜎 > 0 and some exponents qi ≥ 1 , ti ≥ 0 , if i ∈ {1, 2} , exist such that 

(2.1)|A(x, t, �)| ≤ Φ0(t) + �0(t)|�|
p1 a.e. in Ω, for all (t, �) ∈ ℝ ×ℝ

N ,

(2.2)
|At(x, t, �)| ≤ Φ1(t) + �1(t)|�|

p1 a.e. in Ω, for all (t, �) ∈ ℝ ×ℝ
N ,

|a(x, t, �)| ≤ Φ2(t) + �2(t)|�|
p1−1 a.e. in Ω, for all (t, �) ∈ ℝ ×ℝ

N ,

(2.3)|B(x, t, �)| ≤ Ψ0(t) + �0(t)|�|
p2 a.e. in Ω, for all (t, �) ∈ ℝ ×ℝ

N ,

(2.4)
|Bt(x, t, �)| ≤ Ψ1(t) + �1(t)|�|

p2 a.e. in Ω, for all (t, �) ∈ ℝ ×ℝ
N ,

|b(x, t, �)| ≤ Ψ2(t) + �2(t)|�|
p2−1 a.e. in Ω, for all (t, �) ∈ ℝ ×ℝ

N .

G(⋅, 0, 0) ∈ L∞(Ω) and Gu(x, 0, 0) = Gv(x, 0, 0) = 0 for a.e. x ∈ Ω;
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Remark 2.6  Hypotheses (g0)–(g1) , the mean value theorem and direct computations ensure 
the existence of a positive constant 𝜎1 > 0 such that

Now, taking any couple of real numbers t3 , t5 > 1 , from Young inequality, we obtain

where for simplicity, we set

Thus, from (2.6) and (2.7), we infer that

with

for a suitable constant 𝜎2 > 0.

In order to recall some features shared by the subcritical systems in [16] and [18], if 
needed, here we introduce similar notations.

For each i ∈ {1, 2} let pi > 1 be as in assumption (h1) and let us consider the related 
Sobolev space

From the Sobolev embedding theorem, for any r ∈ [1, p∗
i
] with p∗

i
=

Npi

N−pi
 if N > pi , or any 

r ∈ [1,+∞[ if pi ≥ N , Wi is continuously embedded in Lr(Ω) , i.e., 𝜏i,r > 0 exists such that

Furthermore, if pi ≥ N , we place

Here, the notation (W, ‖ ⋅ ‖W ) , introduced for the abstract setting at the beginning of this 
section, is referred to our problem with

Since (Wi, ‖ ⋅ ‖Wi
) is a reflexive Banach space for both i ∈ {1, 2} , so is 

�
W, ‖ ⋅ ‖W

�
 in (2.12).

Moreover, we consider the Banach space (X, ‖ ⋅ ‖X) defined as

(2.5)
|Gu(x, u, v)| ≤ �(1 + |u|q1−1 + |v|t1 ) for a.e. x ∈ Ω, for all (u, v) ∈ ℝ

2,

|Gv(x, u, v)| ≤ �(1 + |u|t2 + |v|q2−1) for a.e. x ∈ Ω, for all (u, v) ∈ ℝ
2.

(2.6)|G(x, u, v)| ≤ �1
(
1 + |u|q1 + |v|t1 |u| + |u|t2 |v| + |v|q2

)
for a.e. x ∈ Ω, for all (u, v) ∈ ℝ

2.

(2.7)|v|t1 |u| ≤ |u|t3 + |v|t4 , |u|t2 |v| ≤ |u|t6 + |v|t5 for all (u, v) ∈ ℝ
2,

(2.8)t4 ∶=
t1t3

t3 − 1
≥ t1 and t6 ∶=

t2t5

t5 − 1
≥ t2.

(2.9)|G(x, u, v)| ≤ �2(1 + |u|q1 + |v|q2 ) for a.e. x ∈ Ω, for all (u, v) ∈ ℝ
2,

(2.10)q1 ∶= max{q1, t3, t6} and q2 ∶= max{q2, t4, t5},

Wi = W
1,pi
0

(Ω) with norm ‖ ⋅ ‖Wi
= ‖ ⋅ ‖

W
1, pi
0

.

(2.11)�y�r ≤ �i,r‖y‖Wi
for all y ∈ Wi.

p∗
i
= +∞ and

1

p∗
i

= 0.

(2.12)W = W1 ×W2 and ‖(u, v)‖W = ‖u‖W1
+ ‖v‖W2

if (u, v) ∈ W.
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where

are endowed with the norms

Setting

we have that X in (2.13) can also be written as

and its norm is such that

Clearly, from (2.14), for both i ∈ {1, 2} we have that the continuous embeddings Xi ↪ Wi 
and Xi ↪ L∞(Ω) hold.

Remark 2.7  If pi > N for both i ∈ {1, 2} , then the embedding Wi ↪ L∞(Ω) means that 
Xi = Wi . Thus, X = W and the classical Mountain Pass theorems in [2] may be applied.

Firstly, we note that if conditions (h0)–(h1) , (g0)–(g1) hold, then direct computations 
imply that J(u, v) in (1.6) is well-defined for all (u, v) ∈ X . Moreover, taking any (u, v), 
(w, z) ∈ X , the Gâteaux differential of functional J  in (u, v) along the direction (w, z) is 
given by

For simplicity, we set

hence, from (2.16), it follows that

and

(2.13)X = X1 × X2 with ‖(u, v)‖X = ‖u‖X1
+ ‖v‖X2

if (u, v) ∈ X,

(2.14)X1 ∶= W1 ∩ L∞(Ω) and X2 ∶= W2 ∩ L∞(Ω)

‖u‖X1
= ‖u‖W1

+ �u�∞ if u ∈ X1 and ‖v‖X2
= ‖v‖W2

+ �v�∞ if v ∈ X2.

L ∶= L∞(Ω) × L∞(Ω) with ‖(u, v)‖L = �u�∞ + �v�∞,

(2.15)X = W ∩ L

‖(u, v)‖X = ‖(u, v)‖W + ‖(u, v)‖L.

(2.16)

dJ(u, v)[(w, z)] =
∫
Ω

a(x, u,∇u) ⋅ ∇w dx +
∫
Ω

A
u
(x, u,∇u)w dx

+
∫
Ω

b(x, v,∇v) ⋅ ∇z dx +
∫
Ω

B
v
(x, v,∇v)z dx

−
∫
Ω

G
u
(x, u, v)w dx −

∫
Ω

G
v
(x, u, v)z dx.

�J

�u
(u, v) ∶ w ∈ X1 ↦

�J

�u
(u, v)[w] = dJ(u, v)[(w, 0)] ∈ ℝ,

�J

�v
(u, v) ∶ z ∈ X2 ↦

�J

�v
(u, v)[z] = dJ(u, v)[(0, z)] ∈ ℝ;

(2.17)
�J

�u
(u, v)[w] =

∫
Ω

a(x, u,∇u) ⋅ ∇w dx +
∫
Ω

Au(x, u,∇u)w dx −
∫
Ω

Gu(x, u, v)w dx
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Taking (u, v) ∈ X , since dJ(u, v) ∈ X� , then

and

Furthermore, above remarks and direct computations give not only the estimates

but also

At last, from (2.19), we infer that

Finally, we can state the regularity of functional J  defined in (1.6) (for the proof, see [18, 
Proposition 3.5]).

Proposition 2.8  Assume that conditions (h0)–(h1) , (g0)–(g1) hold. Let ((un, vn))n ⊂ X and 
(u, v) ∈ X be such that

If M > 0 exists such that

then

Hence, J  is a C1 functional on X with Fréchet differential defined as in (2.16).

3 � The set up for the weak Cerami–Palais–Smale condition

In order to prove some more properties of functional J  in (1.6), let p1 > 1 and p2 > 1 as 
in the earlier hypothesis (h1) . Then, assume that R ≥ 1 exists such that the following condi-
tions hold: 

(2.18)
�J

�v
(u, v)[z] =

∫
Ω

b(x, v,∇v) ⋅ ∇z dx +
∫
Ω

Bv(x, v,∇v)z dx −
∫
Ω

Gv(x, u, v)z dx.

�J

�u
(u, v) ∈ X�

1
,

�J

�v
(u, v) ∈ X�

2

(2.19)dJ(u, v)[(w, z)] =
�J

�u
(u, v)[w] +

�J

�v
(u, v)[z] for all (w, z) ∈ X.

(2.20)
����
�J

�u
(u, v)

����X�
1

≤ ‖dJ(u, v)‖X� and
����
�J

�v
(u, v)

����X�
2

≤ ‖dJ(u, v)‖X� ,

‖dJ(u, v)‖X� ≤
����
�J

�u
(u, v)

����X�
1

+
����
�J

�v
(u, v)

����X�
2

.

dJ(u, v) = 0 in X ⟺
�J

�u
(u, v) = 0 in X1 and

�J

�v
(u, v) = 0 in X2.

(un, vn) → (u, v) in W and (un, vn) → (u, v) a.e. in Ω if n → +∞.

|un|∞ ≤ M and |vn|∞ ≤ M for all n ∈ ℕ,

J(un, vn) → J(u, v) and ‖dJ(un, vn) − dJ(u, v)‖X� → 0 as n → +∞.
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(h2)	� some constants 𝜂1, 𝜂2 > 0 exist such that 

 and 

(h3)	� some exponents s1, s2 ≥ 0 and a constant 𝜇0 > 0 exist so that 

(h4)	� a constant 𝜇1 > 0 exists such that 

(h5)	� some constants 𝜃1, 𝜃2,𝜇2 > 0 exist such that 

 and 

(h6)	� for all �, �� ∈ ℝ
N , with � ≠ �′ , it is 

(g2)	� for i ∈ {1, 2} , taking pi as in hypothesis (h1) , qi, ti as in assumption (g1) and si as in 
(h3) , we assume that 

 and 

(g3)	� taking �1, �2 as in (h5) , we assume that 

Remark 3.1  Assumption (3.5) shows up the supercritical nature of our problem which van-
ishes if s1 = s2 = 0 as it reduces exactly to the subcritical condition (g1) in [16, 18].

(3.1)A(x, t, �) ≤ �1a(x, t, �) ⋅ � a.e. in Ω if |(t, �)| ≥ R,

(3.2)B(x, t, �) ≤ �1b(x, t, �) ⋅ � a.e. in Ω if |(t, �)| ≥ R,

(3.3)sup
|(t,�)|≤R

|A(x, t, �)| ≤ �2, sup
|(t,�)|≤R

|B(x, t, �)| ≤ �2 a.e. in Ω;

a(x, t, �) ⋅ � ≥ �0(1 + |t|s1p1 )|�|p1 a.e. in Ω, for all (t, �) ∈ ℝ ×ℝ
N ,

b(x, t, �) ⋅ � ≥ �0(1 + |t|s2p2 )|�|p2 a.e. in Ω, for all (t, �) ∈ ℝ ×ℝ
N ;

a(x, t, �) ⋅ � + At(x, t, �)t ≥ �1a(x, t, �) ⋅ � a.e. in Ω if |(t, �)| ≥ R,

b(x, t, �) ⋅ � + Bt(x, t, �)t ≥ �1b(x, t, �) ⋅ � a.e. in Ω if |(t, �)| ≥ R;

(3.4)𝜃1 <
1

p1
, 𝜃2 <

1

p2
,

A(x, t, �) − �1a(x, t, �) ⋅ � − �1At(x, t, �)t ≥ �2a(x, t, �) ⋅ � a.e. in Ω if |(t, �)| ≥ R,

B(x, t, �) − �2b(x, t, �) ⋅ � − �2Bt(x, t, �)t ≥ �2b(x, t, �) ⋅ � a.e. in Ω if |(t, �)| ≥ R;

[a(x, t, 𝜉) − a(x, t, 𝜉�)] ⋅ [𝜉 − 𝜉�] > 0 a.e. in Ω, for all t ∈ ℝ,

[b(x, t, 𝜉) − b(x, t, 𝜉�)] ⋅ [𝜉 − 𝜉�] > 0 a.e. in Ω, for all t ∈ ℝ;

(3.5)1 ≤ q1 < p∗
1
(s1 + 1), 1 ≤ q2 < p∗

2
(s2 + 1),

(3.6)

0 ≤ t1 <
p1

N

(
1 −

1

p∗
1
(s1 + 1)

)
p∗
2
(s2 + 1), 0 ≤ t2 <

p2

N

(
1 −

1

p∗
2
(s2 + 1)

)
p∗
1
(s1 + 1);

0 < G(x, u, v) ≤ 𝜃1Gu(x, u, v)u + 𝜃2Gv(x, u, v)v a.e. in Ω, if |(u, v)| ≥ R.
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However, in general, if one or both s1 > 0 , s2 > 0 hold, then a supercritical growth on 
the nonlinear term G(x, u, v) is allowed. Moreover, we emphasize that the growth hypoth-
esis (g2) is needed to prove that the functional J  satisfies the (wCPS) condition, but has not 
been required for the variational principle stated in Proposition 2.8.

Remark 3.2  If we consider hypothesis (h4) with t = 0 and |�| ≥ R , then assumption (h3) 
gives �1 ≤ 1 . Moreover, we note that (h4) and (h5) yield

which, together with condition (h3) , imply that

Hence, from (3.3) and (3.9), respectively (3.10), and direct computations, we have that

for a suitable constant 𝜂3 > 0 . On the other hand, from (h2) and (2.2), respectively (2.4), 
direct computations imply that

for a suitable constant 𝜂4 > 0 . Then, if hypotheses (h2)–(h5) hold, the growth conditions 
on A(x, t, �) and B(x, t, �) stated in (2.1) and (2.3) are a direct consequence of (2.2), respec-
tively (2.4), as (2.1) follows from (3.11) and (3.13), while (2.3) follows from (3.12) and 
(3.14). Hence, even if (2.1) and (2.3) are part of assumption (h1) , they can be ruled-out 
from the hypotheses if (h2)–(h5) hold, too.

Remark 3.3  In the set of hypotheses (h2) and (h5) a more precise growth condition on both 
the functions A(x, t, �) and B(x, t, �) can be pointed out. In fact, (3.1), respectively (3.2), (h5) 
and direct calculations imply that

Now, taking t = 0 and |�| ≥ R in both (h2) and (h5) , without loss of generality we can 
choose �2 small enough so that

(3.7)A(x, t, �) ≥ (�1�1 + �2) a(x, t, �) ⋅ � a.e. in Ω if |(t, �)| ≥ R,

(3.8)B(x, t, �) ≥ (�2�1 + �2) b(x, t, �) ⋅ � a.e. in Ω if |(t, �)| ≥ R

(3.9)A(x, t, �) ≥ �0(�1�1 + �2)(1 + |t|s1p1 )|�|p1 ≥ 0 a.e. in Ω if |(t, �)| ≥ R,

(3.10)B(x, t, �) ≥ �0(�2�1 + �2)(1 + |t|s2p2 )|�|p2 ≥ 0 a.e. in Ω if |(t, �)| ≥ R.

(3.11)A(x, t, �) ≥ �0(�1�1 + �2)(1 + |t|s1p1 )|�|p1 − �3 a.e. in Ω for all (t, �) ∈ ℝ ×ℝ
N ,

(3.12)B(x, t, �) ≥ �0(�2�1 + �2)(1 + |t|s2p2 )|�|p2 − �3 a.e. in Ω for all (t, �) ∈ ℝ ×ℝ
N ,

(3.13)A(x, t, �) ≤ �1Φ2(t) + �1(Φ2(t) + �2(t))|�|
p1 + �4 a.e. in Ω for all (t, �) ∈ ℝ ×ℝ

N ,

(3.14)B(x, t, �) ≤ �1Ψ2(t) + �1(Ψ2(t) + �2(t))|�|
p2 + �4 a.e. in Ω for all (t, �) ∈ ℝ ×ℝ

N ,

(3.15)
(
�1 − �1 − �2

�1�1

)
A(x, t, �) ≥ At(x, t, �)t a.e. in Ω if |(t, �)| ≥ R,

(3.16)
(
�1 − �2 − �2

�1�2

)
B(x, t, �) ≥ Bt(x, t, �)t a.e. in Ω if |(t, �)| ≥ R.
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Thus, from (2.1), (3.9), (3.15), respectively (2.3), (3.10), (3.16), and direct computations, 
we obtain that

for a suitable 𝜂5 > 0 , and then from (3.7), respectively (3.8), we have that

Finally, from (3.17), (3.18) and assumption (h3) , we infer that

We note that if

then we can always choose �1 in (h2) large enough so that (3.19) is satisfied.

Remark 3.4  Conditions in (3.20) not only relate the exponents s1, s2 provided in assump-
tion (h3) with the powers p1, p2 > 1 used in the growth conditions (h1) and �1, �2 claimed in 
(3.4), but also they tell us how far we can take it. In particular, it implies that in our set of 
hypotheses, a supercritical growth is allowed as long as s1, s2 cover the whole range stated 
in (3.20).

Remark 3.5  Assumptions (g0)–(g1) , (g3) and direct calculations imply that for each 
i ∈ {1, 2} a function hi ∈ L∞(Ω) , hi(x) > 0 for a.e. x ∈ Ω , exists such that

Thus, from (2.6), we obtain that

for a positive constant 𝜎3 > 0 . Then, (3.20) and (3.21) imply that

𝜂1 − 𝜃1 − 𝜇2 > 0 and 𝜂1 − 𝜃2 − 𝜇2 > 0.

A(x, t, �) ≤ �5|t|
�1−�1−�2

�1�1 |�|p1 a.e. in Ω if |t| ≥ 1 and |�| ≥ R,

B(x, t, �) ≤ �5|t|
�1−�2−�2

�1�2 |�|p2 a.e. in Ω if |t| ≥ 1 and |�| ≥ R,

(3.17)a(x, t, �) ⋅ � ≤
�5

�1�1 + �2

|t|
�1−�1−�2

�1�1 |�|p1 a.e. in Ω if |t| ≥ 1 and |�| ≥ R,

(3.18)b(x, t, �) ⋅ � ≤
�5

�2�1 + �2

|t|
�1−�2−�2

�1�2 |�|p2 a.e. in Ω if |t| ≥ 1 and |�| ≥ R.

(3.19)0 ≤ p1s1 ≤
1

�1
−

�1 + �2

�1�1
and 0 ≤ p2s2 ≤

1

�2
−

�2 + �2

�1�2
.

(3.20)0 ≤ s1 <
1

𝜃1p1
and 0 ≤ s2 <

1

𝜃2p2
,

G(x, u, 0) ≥ h1(x)|u|
1

�1 for a.e. x ∈ Ω, if |u| ≥ R,

G(x, 0, v) ≥ h2(x)|v|
1

�2 for a.e. x ∈ Ω, if |v| ≥ R.

(3.21)
h1(x)|u|

1

�1 − �3 ≤ G(x, u, 0) ≤ �1(1 + |u|q1 ) for a.e. x ∈ Ω, for all u ∈ ℝ,

h2(x)|v|
1

�2 − �3 ≤ G(x, 0, v) ≤ �1(1 + |v|q2 ) for a.e. x ∈ Ω, for all v ∈ ℝ
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while from (3.4), it is

So, if condition (3.5) holds, without loss of generality, we can take q1 , q2 in (g1) large 
enough so that

 

In order to show that the (wCPS) condition holds also in our supercritical setting, we 
need some preliminary results.

Firstly, we note that taking p > 1 and s ≥ 0 , then straightforward computations give

Such an equality allows us to prove the following Rellich-type embedding theorem (for the 
proof, see [14, Lemma 3.8]).

Lemma 3.6  Taking 1 < p < N and s > 0 , let (yn)n ⊂ W
1,p

0
(Ω) ∩ L∞(Ω) be a sequence such 

that

Then, y ∈ W
1,p

0
(Ω) exists such that |y|sy ∈ W

1,p

0
(Ω) , too, and, up to subsequences, we have 

that

Furthermore, we state the following boundedness result (for the proof, see [26, Theo-
rem II.5.1]).

Lemma 3.7  Let Ω be an open bounded subset of ℝN and consider y ∈ W
1,p

0
(Ω) with p ≤ N . 

Suppose that 𝛾 > 0 and k0 ∈ ℕ exist such that

with Ω+

k
= {x ∈ Ω ∶ y(x) > k} and r, m, �j , �j positive constants such that

p1s1 <
1

𝜃1
≤ q1, p2s2 <

1

𝜃2
≤ q2,

p1 <
1

𝜃1
, p2 <

1

𝜃2
.

(3.22)p1(s1 + 1) < q1 < p∗
1
(s1 + 1) and p2(s2 + 1) < q2 < p∗

2
(s2 + 1).

(3.23)|∇(|y|sy)|p = (s + 1)p|y|sp|∇y|p a.e. in Ω, for all y ∈ W
1,p

0
(Ω).

(

∫
Ω

(1 + |yn|
sp)|∇yn|

pdx

)

n

is bounded.

yn ⇀ y weakly inW
1,p

0
(Ω),

|yn|
syn ⇀ |y|sy weakly in W

1,p

0
(Ω),

yn → y strongly in Lr(Ω) for each r ∈ [1, p∗(s + 1)[,

yn → y a.e. in Ω.

�
Ω+

k

|∇y|pdx ≤ �

(

�
Ω+

k

(y − k)rdx

) p

r

+ �

m∑

j=1

k�j [meas(Ω+

k
)]
1−

p

N
+�j for all k ≥ k0,

1 ≤ r < p∗, 𝜀j > 0, p ≤ 𝛼j < 𝜀jp
∗ + p.
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Then, ess sup Ωy is bounded from above by a positive constant which can be chosen so that 
it depends only on meas(Ω) , N, p, � , k0 , r, m, �j , �j , |y|p∗ (eventually, |y|l for some l > r if 
p∗ = +∞).

As pointed out in Remark 3.1, the upper bounds in (g2) were not required so far, but 
will be essential in the incoming results. Therefore, some consequences of the estimates 
in (3.5) and (3.6) are needed.

Remark 3.8  Suppose 1 < p1 < N , 1 < p2 < N and take t1 , t2 as in (3.6). Following the ideas 
in Remark 2.6, we can choose t3 and t5 in (2.7) so that

as (3.6) implies that

and also

Then, t4 and t6 in (2.8) are such that

Clearly, (3.24) and (3.25) still hold if p1 = N and/or p2 = N.

Remark 3.9  In the set of hypotheses (g0)–(g3) , by reasoning as in Remark  2.6, we can 
consider estimate (2.9) with q1 and q2 as in (2.10) but taking tj , j ∈ {3, 4, 5, 6} , as in 
Remark 3.8. Hence, from (3.5), (3.22), (3.24) and (3.25), we infer that

Finally, we are able to prove that the weak Cerami–Palais–Smale condition holds.

Proposition 3.10  Under assumptions (h0)–(h6) and (g0)–(g3) functional J ∶ X → ℝ , defined 
as in (1.6), satisfies (wCPS) condition in ℝ.

Proof  Taking any � ∈ ℝ , let ((un, vn))n ⊂ X be a sequence such that

We want to prove that a couple (u, v) ∈ X exists such that 

(3.24)

1 <

p
1

p∗
2

(s
2

+ 1)

p
1

p∗
2

(s
2

+ 1) − Nt
1

< t
3

< p∗
1

(s
1

+ 1),

1 <

p
2

p∗
1

(s
1

+ 1)

p
2

p∗
1

(s
1

+ 1) − Nt
2

< t
5

< p∗
2

(s
2

+ 1),

p1p
∗
2
(s2 + 1) − Nt1 > 0 and 1 <

p1p
∗
2
(s2 + 1)

p1p
∗
2
(s2 + 1) − Nt1

< p∗
1
(s1 + 1),

p2p
∗
1
(s1 + 1) − Nt2 > 0 and 1 <

p2p
∗
1
(s1 + 1)

p2p
∗
1
(s1 + 1) − Nt2

< p∗
2
(s2 + 1).

(3.25)t1 ≤ t4 <
p1

N
p∗
2
(s2 + 1) ≤ p∗

2
(s2 + 1), t2 ≤ t6 <

p2

N
p∗
1
(s1 + 1) ≤ p∗

1
(s1 + 1).

(3.26)1 < p1 <
q1

s1 + 1
< p∗

1
and 1 < p2 <

q2

s2 + 1
< p∗

2
.

(3.27)J(un, vn) → � and ‖dJ(un, vn)‖X� (1 + ‖(un, vn)‖X) → 0 as n → +∞.
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(i)	� (un, vn) → (u, v) in W (up to subsequences),
(ii)	� J(u, v) = � , dJ(u, v) = 0.

 To this aim, for simplicity, we organize our proof in the following steps: 

1.	 Both the sequences 

 so, by applying Lemma  3.6, a couple (u, v) ∈ W exists such that also 
(|u|s1u, |v|s2v) ∈ W and, up to subsequences, we have: 

2.	 (u, v) ∈ L∞(Ω) × L∞(Ω);
3.	 for any k > 0 , define Tk ∶ ℝ ⟶ ℝ such that 

 and 

 then, if k ≥ max{‖(u, v)‖L,R} + 1 (with R ≥ 1 as in our set of hypotheses), it is 

4.	 ‖�k(un, vn) − (u, v)‖W → 0 and then (i) holds;
5.	 (ii) is satisfied.

For simplicity, here and in the following, we will use the notation (�n)n for any infinitesimal 
sequence depending only on ((un, vn))n . Moreover, we denote by ci every positive constant 
which arises during our computations.

Step 1. Firstly, we note that (2.20) and (3.27) imply

Thus, if we take �1 , �2 as in (h5) , (g3) , and s1 , s2 as in (h3) , by reasoning as in [18Step 1 in 
Proposition 4.8], from (1.6), (2.17), (2.18), (3.27), (3.33), assumptions (h1) , (h3) , (h5) , (g3) 
together with estimate (2.9), and direct computations it follows that

(3.28)
(

∫
Ω

(1 + |un|
s1p1 )|∇un|

p1dx

)

n

and

(

∫
Ω

(1 + |vn|
s2p2 )|vn|

p2dx

)

n

are bounded,

(3.29)(un, vn) ⇀ (u, v) weakly in W,

(3.30)(|un|
s1un, |vn|

s2vn) ⇀ (|u|s1u, |v|s2v) weakly in W,

(3.31)(un, vn) → (u, v) in Lr1 (Ω) × Lr2 (Ω) if 1 ≤ ri < p∗
i
(si + 1), i ∈ {1, 2},

(3.32)(un, vn) → (u, v) a.e. in Ω;

Tkt ∶=

{
t if |t| ≤ k

k
t

|t|
if |t| > k

𝕋k ∶ (y1, y2) ∈ ℝ
2
↦ 𝕋k(y1, y2) = (Tky1, Tky2) ∈ ℝ

2,

‖dJ(�k(un, vn))‖X� → 0 and J(�k(un, vn)) → �;

(3.33)
�J

�u
(un, vn)[un] = �n and

�J

�v
(un, vn)[vn] = �n.
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which implies that (3.28) is satisfied and, up to subsequences, (u, v) ∈ W exists such that 
(3.29)–(3.32) hold.

Step 2. Due to the Sobolev Embedding Theorem, this step requires a proof only if either 
p1 ≤ N or p2 ≤ N . So, if p1 < N (when p1 = N the arguments can be simplified), we want 
to prove that u ∈ L∞(Ω) . Arguing by contradiction, we assume that u ∉ L∞(Ω) as either

or

If (3.34) holds, then for any k ∈ ℕ , we have that

and for an integer k̃ > 0 , we consider the function R+

k̃
∶ t ∈ ℝ ↦ R+

k̃
t ∈ ℝ defined as

Now, we consider condition (3.36) for a fixed integer k > R (with R ≥ 1 as in our setting of 
hypotheses) and, taking k̃ = ks1+1 , for simplicity, we put

and, as |t|s1 t > k̃ ⟺ t > k , we have that

Thus, from condition (3.30) and the sequentially weakly lower semicontinuity of ‖ ⋅ ‖W1
 , 

we have that

i.e.,

with

On the other hand, by definition (3.37) with k̃ replaced with k, it is ‖R+

k
un‖X1

≤ ‖un‖X1
 , so 

from (2.20), (3.27) and (3.36), an integer nk ∈ ℕ exists such that

� + �n = J(un, vn) − �1
�J

�u
(un, vn)[un] − �2

�J

�v
(un, vn)[vn]

≥ �0�2
�
Ω

(1 + |un|
s1p1 )|∇un|

p1dx + �0�2
�
Ω

(1 + |vn|
s2p2 )|∇vn|

p2dx − c1,

(3.34)ess supΩu = +∞

(3.35)ess sup Ω(−u) = +∞.

(3.36)meas(Ω+

u,k
) > 0 with Ω+

u,k
= {x ∈ Ω ∶ u(x) > k},

(3.37)R+

k̃
t =

{
0 if t ≤ k̃

t − k̃ if t > k̃
.

(3.38)wn = |un|
s1un, w = |u|s1u,

(3.39)Ω+

u,k
= {x ∈ Ω ∶ w(x) > k̃}.

‖R+

k̃
w‖W1

≤ lim inf
n→+∞

‖R+

k̃
wn‖W1

,

(3.40)�
Ω+

u,k

|∇w|p1dx ≤ lim inf
n→+∞ �

Ω+

n,k

|∇wn|
p1dx,

Ω+

n,k
= {x ∈ Ω ∶ un(x) > k} = {x ∈ Ω ∶ wn(x) > k̃}.
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Then, by reasoning as in [18, Step 2 in Proposition 4.8], from (2.17), hypotheses (h3) , (h4) 
with �1 ≤ 1 (see Remark 3.2), equality (3.23) and estimate (3.41) we obtain that

We claim that

In fact, from (3.32) and (g0) , we have that

while thanks to assumption (g2) , formulae (2.5), (2.7), (3.24), (3.25) and (3.31) ensure the 
existence of h ∈ L1(Ω) such that

so the dominated convergence theorem implies (3.43). Thus, summing up, via (3.40), 
(3.42), (3.43) and again (2.5), from definition (3.37) ( ̃k replaced with k), we infer that

or better, from (2.7) but according to the choises in Remark 3.8, by taking q1 > 1 as in 
(2.10) and being u > 1 in Ω+

u,k
 , definition (3.38) implies that

We claim that

In fact, if t4 = 0 then (3.45) reduces to

while if t4 > 0 from Step 1 we have that z = |v|s2v ∈ W2 , so (3.25) gives p
∗
2
(s2+1)

t4
> 1 and the 

Hölder inequality with such an exponent, together with (2.11), implies that

(3.41)
𝜕J

𝜕u
(un, vn)

[
R+

k
un
]
< meas(Ω+

u,k
) for all n ≥ nk.

(3.42)
�
Ω+

n,k

|∇wn|
p1dx ≤

(s1 + 1)p1

�0�1

meas(Ω+

u,k
) +

�
Ω

Gu(x, un, vn)R
+

k
undx for all n ≥ nk.

(3.43)
∫
Ω

Gu(x, un, vn)R
+

k
undx →

∫
Ω

Gu(x, u, v)R
+

k
u dx.

Gu(x, un, vn)R
+

k
un → Gu(x, u, v)R

+

k
u a.e. in Ω,

|Gu(x, un, vn)R
+

k
un| ≤ �(|un| + |un|

q1 + |un|
t3 + |vn|

t4 ) ≤ h(x) for a.e. x ∈ Ω,

�
Ω+

u,k

|∇w|p1dx ≤ c2

(

�
Ω

|R+

k
u|dx +

�
Ω

|u|q1−1|R+

k
u|dx +

�
Ω

|v|t1 |R+

k
u|dx + meas(Ω+

u,k
)

)

≤ c2

(

�
Ω+

u,k

|u|dx +
�
Ω+

u,k

|u|q1dx +
�
Ω+

u,k

|u||v|t1dx + meas(Ω+

u,k
)

)

,

(3.44)
�
Ω+

u,k

|∇w|p1dx ≤ c3

(

�
Ω+

u,k

|w|
q1

s1+1 dx +
�
Ω+

u,k

|v|t4dx + meas(Ω+

u,k
)

)

.

(3.45)�
Ω+

u,k

�v�t4dx ≤ (�2,p∗
2
‖�v�s2v‖W2

)
t4

s2+1 [meas(Ω+

u,k
)]
1−

t4

p∗
2
(s2+1) .

∫
Ω+

u,k

|v|t4dx = meas(Ω+

u,k
),
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On the other hand, if, for simplicity, we put r = q1

s1+1
 , from (3.26), direct computations and, 

again, (2.11) we have that

which, together with (3.45), allows us to reduce (3.44) to the estimate

with c4 = c4(‖w‖W1
, ‖z‖W2

) > 0 . At last, as p1 < N , from (3.25), we have that

so, from (3.26) and (3.39), since (3.46) holds for all k̃ large enough, we have that 
Lemma 3.7 applies and ess sup Ωw < +∞ in contradiction with (3.34). Similar arguments, 
but modified in a suitable way, ensures that even (3.35) cannot occur, then it has to be 
u ∈ L∞(Ω) , and also that it has to be v ∈ L∞(Ω).

Step 3 The proof can be obtained by reasoning as in the proof of [18, Step 3 in Proposi-
tion 4.8] but with m = 2 and by replacing the estimates in [18, Remark 4.5] with those ones 
in Remark 3.8 together with (3.26), and also by using (3.31) at the place of [18, (4.19)].

Steps 4 and 5. The proofs are as in the corresponding steps of [18, Proposition 4.8] (see 
also [11, Proposition 4.6]). 	�  ◻

4 � Existence and multiplicity results

Now, we can state our leading results. To this aim, we refer to the decomposition of X 
already introduced in [16, Section 5]. For the sake of convenience, here we recall the 
main issues. For i ∈ {1, 2} , the first eigenvalue of −Δpi

 in Wi is given by

�
Ω+

u,k

�v�t4dx =
�
Ω+

u,k

�z�
t4

s2+1 dx ≤ �z�
t4

s2+1

p∗
2

[meas(Ω+

u,k
)]
1−

t4

p∗
2
(s2+1)

≤ (�2,p∗
2
‖z‖W2

)
t4

s2+1 [meas(Ω+

u,k
)]
1−

t4

p∗
2
(s2+1) .

�
Ω+

u,k

�w�
q1

s1+1 dx ≤ 2r−1

�

�
Ω+

u,k

�w − k̃�rdx + k̃rmeas(Ω+

u,k
)

�

≤ 2r−1
⎛
⎜
⎜
⎝
(𝜏1,r‖w‖W1

)r−p1

�

�
Ω+

u,k

�w − k̃�rdx

� p1

r

+ k̃rmeas(Ω+

u,k
)

⎞
⎟
⎟
⎠
,

(3.46)
�
Ω+

u,k

�∇w�p1dx ≤ c4

⎛
⎜
⎜
⎝

�

�
Ω+

u,k

�w − k̃�rdx

� p1

r

+ k̃rmeas(Ω+

u,k
) + [meas(Ω+

u,k
)]
1−

t4

p∗
2
(s2+1)

⎞
⎟
⎟
⎠

meas(Ω+

u,k
) = meas(Ω+

u,k
)
1−

p1

N
+𝜀1 , with 𝜀1 =

p1

N
> 0, 𝜀1p

∗
1
+ p1 = p∗

1
,

meas(Ω+

u,k
)
1−

t4

p∗
2
(s2+1) = meas(Ω+

u,k
)
1−

p1

N
+𝜀2 , 𝜀2 =

p1

N
−

t4

p∗
2
(s2 + 1)

> 0,
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Such an eigenvalue is simple, positive, isolated and has a unique eigenfunction �i,1 such 
that

(see, e.g., [28]). Furthermore, a sequence of positive real numbers exists such that

with corresponding pseudo-eigenfunctions (�i,m)m which not only generate the whole space 
Wi , but are in L∞(Ω) , too. Thus, (𝜓i,m)m ⊂ Xi , and, for any fixed m ∈ ℕ , we consider

and denote Yi,m its topological complement in Wi so that Wi = Vi,m ⊕ Yi,m and the inequality

is satisfied (cf. [11, Proposition 5.4]).
Thus, for any m ∈ ℕ definition (2.12) implies that

while from (2.15), it follows that

where, for i ∈ {1, 2} , it is YXi

m = Yi,m ∩ L∞(Ω) ⊂ Xi and Xi = Vi,m ⊕ Y
Xi

m  , with

Now, we are ready to provide our existence and multiplicity results.

Theorem 4.1  Suppose that A(x, t, �) , B(x, t, �) comply with assumptions (h0)–(h6) and that 
a given function G(x, u, v) satisfies hypotheses (g0)–(g3) . Furthermore, assume that a con-
stant 𝛼2 > 0 exists such that the following conditions hold: 

(h7)	� taking p1 , p2 as in hypothesis (h1) and s1 , s2 ≥ 0 as in assumption (h3) , we have that 

(g4)	� taking �1,1 and �2,1 as in (4.1), we have that 

(4.1)�i,1 ∶= inf
y∈Wi⧵{0}

∫
Ω
|∇y|pidx

∫
Ω
|y|pidx

.

(4.2)𝜑i,1 > 0 a.e. in Ω, 𝜑i,1 ∈ L∞(Ω) and |𝜑i,1|pi = 1

(4.3)0 < 𝜆i,1 < 𝜆i,2 ≤ ⋯ ≤ 𝜆i,m ≤ … , with 𝜆i,m ↗ +∞ as m → +∞,

Vi,m = span{�i,1,… ,�i,m}

(4.4)�i,m+1
�
Ω

|y|pidx ≤
�
Ω

|∇y|pidx for all y ∈ Yi,m

W = (V1,m × V2,m)⊕ (Y1,m × Y2,m),

X = (V1,m × V2,m)⊕ (YX1

m
× YX2

m
)

dim (Vi,m) = m and codim (YXi

m
) = m.

A(x, t, �) ≥ �
2

(1 + |t|s1p1 )|�|p1 a.e. in Ω, for all (t, �) ∈ ℝ ×ℝ
N
,

B(x, t, �) ≥ �
2

(1 + |t|s2p2 )|�|p2 a.e. in Ω, for all (t, �) ∈ ℝ ×ℝ
N
;

lim sup
(u,v)→(0,0)

G(x, u, v)

|u|p1 + |v|p2
< 𝛼2 min{𝜆1,1, 𝜆2,1} uniformly a.e. in Ω.
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 Thus, functional J  in (1.6) possesses at least one nontrivial critical point in X; hence, prob-
lem (1.2) admits a nontrivial weak bounded solution.

Theorem 4.2  Suppose that A(x, t, �) , B(x, t, �) and G(x, u, v) satisfy hypotheses (h0)–(h6) , 
(g0)–(g3) . Moreover, if we assume also that: 

(h8)	 �A(x, ⋅, ⋅) and B(x, ⋅, ⋅) are even in ℝ ×ℝ
N for a.e. x ∈ Ω;

(g5)	 �taking �1 , �2 as in hypotheses (h5) and (g3) , we have that 

(g6)	 �G(x, ⋅, ⋅) is even in ℝ2 for a.e. x ∈ Ω;

 then functional J  in (1.6) possesses an unbounded sequence of critical points 
((um, vm))m ⊂ X such that J(um, vm) ↗ +∞ ; hence, problem (1.2) admits infinitely many 
distinct weak bounded solutions.

Finally, by reasoning as in [16, Corollary 5.4], we can state this further multiplicity 
result since the supercritical growth in (3.26) does not affect its proof.

Corollary 4.3  Let p1, p2 > 1 and suppose that the functions A(x, t, �) , B(x, t, �) and G(x, u, v) 
satisfy assumptions (h0)–(h6) , (h8) , (g0)–(g3) and (g6) . Furthermore, if 

(g7)	� inf{G(x,w, z) ∶ x ∈ Ω, (w, z) ∈ ℝ
2 such that |(w,z)|=R} > 0 , with R as in (g2);

(g8)	� �1 = �2 , with �1 , �2 as in (h5) and (g3);

 are satisfied too, the even functional J  in (1.6) possesses a sequence of critical points 
((um, vm))m in X such that J(um, vm) ↗ +∞ ; hence, problem (1.2) admits infinitely many 
distinct weak bounded solutions.

Before turning to the proof of our main results, we observe that if assumption (h3) , and 
then (h7) , holds with s1 = s2 = 0 , then Theorem 4.1 reduces to [18, Theorem 5.1] while 
Theorem 4.2 reduces to [18, Theorem 5.2] but with m = 2 . Actually, the same holds true if 
both p1 ≥ N and p2 ≥ N . Thus, in order to improve such previous results, here we assume 
that either s1 > 0 or s2 > 0 and we define

and then

From definitions (4.5) and (4.6), we have that

and

lim inf
|(u,v)|→+∞

G(x, u, v)

|u|
1

𝜃1 + |v|
1

𝜃2

> 0 uniformly a.e. in Ω;

(4.5)�i(y) = max{‖y‖Wi
, ‖�y�si y‖Wi

} if y ∈ Xi, with i ∈ {1, 2},

(4.6)�(u, v) = max{‖(u, v)‖W , ‖(�u�
s1u, �v�s2v)‖W} if (u, v) ∈ X.

(4.7)[�i(y)]
pi ≤ ‖y‖pi

Wi
+ ‖�y�si y‖pi

Wi
if y ∈ Xi, with i ∈ {1, 2},

(4.8)max{�1(u),�2(v)} ≤ �(u, v) ≤ �1(u) + �2(v) for all (u, v) ∈ X.
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Moreover, taking p̄ = min{p1, p2} , direct computations imply that

Remark 4.4  For both i ∈ {1, 2} definition (2.14) and identity (3.23) imply that the func-
tion y ↦ ‖�y�si y‖Wi

 is continuous and well-defined in (Xi, ‖ ⋅ ‖Xi
) and so �i ∶ Xi → ℝ is con-

tinuous, too. Thus, from (2.15), we have that (u, v) ↦ ‖(�u�s1u, �v�s2v)‖W is continuous and 
well-defined in (X, ‖ ⋅ ‖X) , then also � ∶ X → ℝ is continuous with respect ‖ ⋅ ‖X and defi-
nition (4.6) implies that �(u, v) ≥ ‖(u, v)‖W for all (u, v) ∈ X with �(0, 0) = 0.

Throughout the remaining part of this section, for simplicity, we assume that

with �N = (0,… , 0) ∈ ℝ
N , and

Differently, one can always replace J(u, v) in (1.6) with the new functional

since they share the same differential on X and so the same critical points.
For simplicity, we denote by ci every positive constant which arises during 

computations.
Now, we can prove our existence result.

Proof of Theorem 4.1  Firstly, hypothesis (g4) allows us to take 𝜆̄ > 0 such that

Thus, from (4.12) and direct computations, estimate (2.9) ensures the existence of a con-
stant 𝜎∗ > 0 such that

with q1, q2 as in (2.10) so that (3.26) holds. Moreover, taking s1 , s2 as in our setting of 
hypotheses and fixing any couple (u, v) ∈ X , from definition (1.6), condition (h7) , estimate 
(4.13) together with (3.23) and (4.1), it follows that

(4.9)[�1(u)]
p1 + [�2(v)]

p2 ≥

[
�(u, v)

2

]p̄
if (u, v) ∈ X is such that �(u, v) ≥ 2.

(4.10)
∫
Ω

A(x, 0, �N) dx = 0,
∫
Ω

B(x, 0, �N) dx = 0,

(4.11)
∫
Ω

G(x, 0, 0) dx = 0.

J
∗(u, v) = J(u, v) −

∫
Ω

A(x, 0, �N) dx −
∫
Ω

B(x, 0, �N) dx +
∫
Ω

G(x, 0, 0) dx,

(4.12)lim sup
(u,v)→(0,0)

G(x, u, v)

|u|p1 + |v|p2
< 𝜆̄ < 𝛼2 min{𝜆1,1, 𝜆2,1} uniformly a.e. in Ω.

(4.13)G(x, u, v) ≤ 𝜆̄(|u|p1 + |v|p2 ) + 𝜎∗(|u|q̄1 + |v|q̄2 ) for a.e. x ∈ Ω, for all (u, v) ∈ ℝ
2,

(4.14)
J(u, v) ≥

�
𝛼2 −

𝜆̄

𝜆1,1

�
‖u‖p1

W1
+

𝛼2

(s1 + 1)p1
‖�u�s1u‖p1

W1
− 𝜎∗�u�q̄1

q̄1

+

�
𝛼2 −

𝜆̄

𝜆2,1

�
‖v‖p2

W2
+

𝛼2

(s2 + 1)p2
‖�v�s2v‖p2

W2
− 𝜎∗�v�q̄2

q̄2
,
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where from (3.26) and the Sobolev inequality (2.11), we have that

for a suitable c1 > 0 independent of i. Then, by using (4.15) in (4.14), from (4.12), a posi-
tive constant c2 > 0 exists such that definition (4.5), estimate (4.7) and direct computations 
imply that

for a suitable c3 > 0 ; hence, from (3.26) and (4.8), we obtain that

We note that again from (3.26), a radius r0 > 0 and a constant �1 can be found so that

thus, from (4.8) and (4.16), we infer that a constant 𝜚0 > 0 exists such that

On the other hand, from (h0)–(h2) and (h5) we have that [11, Proposition 6.5] implies the 
existence of some constants b∗

1
 , b∗

2
> 0 such that

a.e. in Ω and for all (t, �) ∈ ℝ ×ℝ
N , with �1 , �2 as in (h2) , respectively (h5) , and, without 

loss of generality, we can assume 1

𝜃1

(
1 −

𝜇2

𝜂1

)
− p1 > 0 (a priori, we can take either �2 

small enough or �1 large enough). Thus, taking �1,1 ∈ X1 as in (4.2), from (1.6), (3.21), 
(4.10) and direct computations, we obtain that

for a suitable c4 > 0 , which implies, from (3.4) that

as (4.2) and Remark 3.5 ensure that ∫
Ω
h1(x)|𝜑1,1|

1

𝜃1 dx > 0 . Hence, considering r0 , �0 so 
that (4.17) holds, a point e1 ∈ X1 can be found so that

(4.15)
�
Ω

�y�q̄i dx =
�
Ω

��y�si y�
q̄i

si+1 dx ≤ c1‖�y�
si y‖

q̄i

si+1

Wi
for all y ∈ Xi, i ∈ {1, 2},

J(u, v) ≥ c2(‖u‖
p1
W1

+ ‖�u�s1u‖p1
W1
) − c3‖�u�

s1u‖
q̄1

s1+1

W1
+ c2(‖v‖

p2
W2

+ ‖�v�s2v‖p2
W2
) − c3‖�v�

s2v‖
q̄2

s2+1

W2

≥ [�1(u)]
p1

�
c2 − c3[�1(u)]

q̄1

s1+1
−p1

�
+ [�2(v)]

p2

�
c2 − c3[�2(v)]

q̄2

s2+1
−p2

�
,

(4.16)J(u, v) ≥ [�1(u)]
p1

(
c2 − c3[�(u, v)]

q̄1

s1+1
−p1

)
+ [�2(v)]

p2

(
c2 − c3[�(u, v)]

q̄2

s2+1
−p2

)
.

c2 − c3r

q̄i

si+1
−pi

0
≥ 𝜚1 > 0 for both i = 1 and i = 2,

(4.17)�(u, v) = r0 ⟹ J(u, v) ≥ �0.

|A(x, t, �)| ≤ b∗
1

(
1 + |t|

1

�1

(
1−

�2

�1

))
+ b∗

2

(
1 + |t|

1

�1

(
1−

�2

�1

)
−p1

)
|�|p1

J(��1,1, 0) ≤ b∗
1
�

1

�1
(1−

�2

�1
)

�
Ω

|�1,1|
1

�1
(1−

�2

�1
)
dx + b∗

2
�p1

�
Ω

|∇�1,1|
p1dx

+ b∗
2
�

1

�1
(1−

�2

�1
)

�
Ω

|�1,1|
1

�1
(1−

�2

�1
)−p1 |∇�1,1|

p1dx − �
1

�1

�
Ω

h1(x)|�1,1|
1

�1 dx + c4,

J(��1,1, 0) → −∞ as � → +∞

(4.18)‖(e1, 0)‖W > r0 and J(e1, 0) < 𝜚0.
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Finally, from (1.6), (4.10) and (4.11), it is J(0, 0) = 0 , which, together with Remark 4.4, 
(4.17), (4.18) and Propositions 2.8 and 3.10, ensures that Theorem 2.2 applies and a criti-
cal point (u, v) exists in X such that J(u, v) ≥ 𝜚0 > 0 . 	�  ◻

In order to prove our multiplicity theorem, some geometric conditions are needed. In 
particular, if assumptions (h0)–(h6) and (g0)–(g3) hold, we are able to state the following 
results.

Proposition 4.5  For any fixed � ∈ ℝ , an integer m = m(�) ≥ 1 and a radius Rm > 0 exist 
such that

Proof  Firstly, we note that (3.23) and (4.7) imply that

Then, taking (u, v) ∈ X , from (1.6), (3.11), (3.12), (4.19), together with (2.9) where q̄1 , q̄2 
satisfy (3.26), we obtain that

for some c1 > 0 . We note that for each i ∈ {1, 2} condition (3.26) allows us to take ri > 0 
so that

then, reasoning as in [14, Proposition 4.5], from classical interpolation arguments, (2.11) 
and (4.5), we obtain that

for a suitable constant c2 > 0 independent of i.

Thus, fixing any m ∈ ℕ , from (4.4) and, again, (4.5), it follows that

where from (3.26), it is

Hence, taking any couple (u, v) ∈ Y
X1

m × Y
X2

m  , by using estimate (4.21) in (4.20), we obtain 
that

(u, v) ∈ YX1

m
× YX2

m
, �(u, v) = Rm ⟹ J(u, v) ≥ �.

(4.19)
�
Ω

(1 + |y|sipi )|∇y|pidx ≥ 1

(si + 1)pi
[�i(y)]

pi if y ∈ Xi, for each i ∈ {1, 2}.

(4.20)
J (u, v) ≥

𝜇0(𝜇1𝜃1 + 𝜇2)

(s1 + 1)p1
[�1(u)]

p1 +
𝜇0(𝜇1𝜃2 + 𝜇2)

(s2 + 1)p2
[�2(v)]

p2

− 𝜎2
�
Ω

|u|q̄1dx − 𝜎2
�
Ω

|v|q̄2dx − c1,

ri

pi
+

q̄i − ri

p∗
i
(si + 1)

= 1,

�
Ω

|y|q̄i dx ≤ c2[�i(y)]
q̄i−ri

si+1

(

�
Ω

|y|pidx
) ri

pi

for all y ∈ Xi,

(4.21)
�
Ω

|y|q̄i dx ≤ c2𝜆
−

ri

pi

i,m+1
[�i(y)]

risi+q̄i

si+1 for all y ∈ YXi

m
,

(4.22)
risi + q̄i

si + 1
> pi.
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or better, from (4.8) and (4.22), we have that

Now, for each i ∈ {1, 2} , from (4.22), we can define Ri,m > 0 so that

and, since from (4.3), it follows that Ri,m ↗ +∞ as m → +∞ , we have that

which implies Rm ≥ 2 for all m ≥ m0 if m0 ∈ ℕ is large enough. So, for any m ≥ m0 , taking 

(u, v) ∈ Y
X1

m × Y
X2

m  such that �(u, v) = Rm , from (4.9), we have that

while from (4.23), by using (4.22), (4.24) and the definition in (4.25), we obtain

Thus, for any m ≥ m0 estimate (4.26) implies that

Finally, we note that the proof follows from (4.25) and (4.27). 	�  ◻

At last, by reasoning as in the first part of the proof of [18, Theorem 5.2] (we note 
that the computations do not involve the supercritical growth of G(x, u, v) but only its 
lower bound coming from assumption (g5) ), the following result can be stated, too.

Proposition 4.6  If also hypothesis (g5) holds, then for any finite-dimensional subspace V of 
X a suitable radius RV > 0 exists such that

J(u, v) ≥ c3 [�1(u)]
p1 − c4𝜆

−
r1

p1

1,m+1
[�1(u)]

r1s1+q̄1

s1+1 + c3[�2(v)]
p2 − c4𝜆

−
r2

p2

2,m+1
[�2(v)]

r2s2+q̄2

s2+1 − c1

(4.23)
J(u, v) ≥ [�1(u)]

p1

(
c3 − c4𝜆

−
r1

p1

1,m+1
[�(u, v)]

r1s1+q̄1

s1+1
−p1

)

+ [�2(v)]
p2

(
c3 − c4𝜆

−
r2

p2

2,m+1
[�(u, v)]

r2s2+q̄2

s2+1
−p2

)
− c1.

(4.24)c4𝜆
−

ri

pi

i,m+1
R

risi+q̄i

si+1
−pi

i,m
=

c3

2
⟺ Ri,m =

(
c3

2c4
𝜆

ri

pi

i,m+1

) si+1

risi+q̄i−pi (si+1)

(4.25)Rm ∶= min{R1,m,R2,m} → +∞ as m → +∞

(4.26)[�1(u)]
p1 + [�2(v)]

p2 ≥

(
Rm

2

)p̄

,

J(u, v) ≥ [�1(u)]
p1

(
c3 − c4𝜆

−
r1

p1

1,m+1
R

r1s1+q̄1

s1+1
−p1

m

)
+ [�2(v)]

p2

(
c3 − c4𝜆

−
r2

p2

2,m+1
R

r2s2+q̄2

s2+1
−p2

m

)
− c1

≥ [�1(u)]
p1

(
c3 − c4𝜆

−
r1

p1

1,m+1
R

r1s1+q̄1

s1+1
−p1

1,m

)
+ [�2(v)]

p2

(
c3 − c4𝜆

−
r2

p2

2,m+1
R

r2s2+q̄2

s2+1
−p2

2,m

)
− c1

=
c3

2

(
[�1(u)]

p1 + [�2(v)]
p2
)
− c1.

(4.27)J(u, v) ≥
c3

2

(
Rm

2

)p̄

− c1 if (u, v) ∈ YX1

m
× YX2

m
is such that �(u, v) = Rm.

J(u, v) ≤ 0 for all (u, v) ∈ V such that ‖(u, v)‖X ≥ RV .



2367Multiple solutions for coupled gradient‑type quasilinear…

1 3

In particular, the functional J  is bounded form above in V.

Now, we can prove our multiplicity results.

Proof of Theorem  4.2  Firstly, we observe that (1.6), (4.10) and (4.11) give J(0, 0) = 0 , 
while assumptions (h8) and (g6) imply that the functional J  is even in X. Furthermore, tak-
ing any r > 0 , we set

By definition, Mr is the boundary of a symmetric neighborhood of the origin which is 
bounded with respect to ‖ ⋅ ‖W . Now, fixing any 𝜚 > 0 , from Proposition 4.5, it follows that 
an integer m� ≥ 1 and a radius r𝜚 = r𝜚(m𝜚) > 0 exist so that

while, by choosing m > m𝜚 , the m-dimensional space Vm is such that codim Ym𝜚
< dim Vm , 

and from Proposition 4.6 a radius RVm
> 0 exists so that

Hence, assumption (H�) in Theorem 2.3 is verified. Then, the arbitrariness of 𝜚 > 0 so that 
(H�) holds, together with Propositions 2.8 and 3.10, allows us to apply Corollary 2.5 and 
the existence of a sequence of diverging critical levels for the functional J  in X is pro-
vided. 	�  ◻

Proof of Theorem 1.3  Taking A(x, t, �) and B(x, t, �) as in (1.7), from (1.10), it follows that 
conditions (h0)–(h4) and (h6) hold. Moreover, if G(x, u, v) is as in (1.8), assumptions (1.10)–
(1.12) and Young inequality imply that (g0)–(g2) are satisfied with

On the other hand, again from (1.10), direct computations allow us to prove that hypoth-
eses (h5) and (g3) are verified, too. At last, also condition (g5) holds as (1.10) and direct 
computations allow us to prove that for any R ≥ 2 it is

Then, since the symmetric assumptions (h8) and (g6) are trivially satisfied, the thesis fol-
lows from Theorem 4.2. 	�  ◻
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Mr = {(u, v) ∈ X ∶ �(u, v) = r}.

(u, v) ∈ Mr�
∩ (YX1

m�
× YX2

m�
) ⟹ J(u, v) ≥ �,

J(u, v) ≤ 0 for all (u, v) ∈ Vm such that ‖(u, v)‖X ≥ RVm
.

t1 = �2
q1 − 1

q1 − �1
, t2 = �1

q2 − 1

q2 − �2
.

G(x, u, v)

|u|
1

�1 + |v|
1

�2

≥
1

2
min

{
1

q1
,
1

q2

}
if (u, v) ∈ ℝ

2 is such that |(u, v)| ≥ R.
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