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Abstract
This paper studies the geometry of Cartan–Hartogs domains from the symplectic point of 
view. Inspired by duality between compact and noncompact Hermitian symmetric spaces, 
we construct a dual counterpart of Cartan–Hartogs domains and give explicit expression of 
global Darboux coordinates for both Cartan–Hartogs domains and their dual. Further, we 
compute their symplectic capacity and show that a Cartan–Hartogs domain admits a sym-
plectic duality if and only if it reduces to be a complex hyperbolic space.

Keywords Cartan–Hartogs domains · Darboux coordinates · Symplectic duality · 
Symplectic capacity
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1  Introduction and statement of the results

Studying the symplectic geometry of a domain X ⊂ ℂk equipped with a real analytic 
Kähler metric � =

i

2
��� , the following questions naturally arise:

Q 1 There exist global symplectic coordinates for X?

Q 2 Is the dual domain X∗ of X a well-defined Kähler manifold?

When Q 2 has a positive answer we also have:
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Q 3 What can we say about the symplectic capacity of X and X∗?

Q 4 Is there a symplectic duality between X and X∗?

Recall that the existence of local symplectic coordinates is guaranteed by the cel-
ebrated Darboux Theorem, but in general the answer to Q 1 is negative, as shown by 
Gromov’s exotic symplectic structures on ℝ2k [1] (see also [2] for an explicit example of 
a symplectic manifold diffeomorphic but not symplectomorphic to ℝ4).

The concept of duality in Q  2 and Q  4 is inspired by the natural duality between 
compact and noncompact Hermitian symmetric spaces and can be expressed as follows. 
The potential � can be expanded as a power series of the variables z =

(
z1,… , zk

)
 and 

z̄ =
(
z̄1,… , z̄k

)
, denoted by 𝜙(z, z̄) , where z is the restriction to X of the Euclidean coor-

dinates of ℂk . By the change of variables z̄ ↦ −z̄ in this power series, one gets a new 
power series denoted by 𝜙(z,−z̄). We say (according to [3]) that a symplectic manifold 
(X∗,�∗) is the symplectic dual of (X,�) if �∗ has a Kähler potential �∗ such that the 
power series 𝜙∗(z, z̄) associated with �∗ formally satisfies

We say that a smooth map � ∶ X → X∗ is a symplectic duality if it satisfies

where we denote by 𝜔0 =
i

2

k∑
j=1

dzj ∧ dz̄j the restriction of the flat form of ℂk to X and X∗.

Symplectic capacities are a class of symplectic invariants, which generalize the con-
cept of Gromov width, defined by Ekeland and Hofer [4, 5] for domains in ℝ2n and 
generalized by Hofer and Zehnder to symplectic manifolds [6] (we refer the reader to 
Sect. 4 for definitions and to [7] and references therein for further details). Symplectic 
capacities naturally represent an obstruction for the existence of a symplectic embed-
ding, as they generalize the concept of Gromov width introduced in [8], which gives 
a measure of the largest ball that can be symplectically embedded inside a symplectic 
manifold. Their importance arises in the celebrated Gromov’s nonsqueezing Theorem, 
according to which a symplectic embedding of a ball into a cylinder is possible if only if 
the ray of the ball is less or equal the cylinder’s one. Computations and estimates of the 
Gromov width and the Hofer–Zehnder capacity can be found, e.g., in [8–18].

All the four questions find a positive answer when X is a Hermitian symmetric space 
of noncompact type Ω . In particular in [19], global symplectic coordinates that realize 
a symplectic duality are given, while in [20] is computed the symplectic capacity of 
Ω , the Gromov width of the dual Ω∗ and also sharp estimations of the Hofer-Zehnder 
capacity of Ω∗ , extending G. Lu’s results in [15] valid for Grassmannians. It is then 
natural to investigate if these results can be extended to a class of bounded domains on 
ℂn+1 called Cartan–Hartogs domains, which are Hartogs domains based on Hermitian 
symmetric spaces of noncompact type. The geometry of these domains turned out to be 
interesting from several points of view, see, e.g., [21–24] and references therein (see 
also [25] for Hartogs domains constructed over bounded homogeneous domains). More 
precisely, Cartan–Hartogs domains are a 1-parameter family of noncompact nonhomo-
geneous domains of ℂn+1 , given by:

𝜙∗(z, z̄) = −𝜙(z,−z̄).

�∗�0 = � and �∗�∗ = �0,
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where Ω ⊂ ℂn is a bounded symmetric domain, NΩ(z, z) is its generic norm and 𝜇 > 0 is a 
positive real parameter. We endow MΩ,� with its Kobayashi Kähler form �Ω,� whose global 
Kähler potential reads

Our first result answer positively to Q 1 when X is a Cartan–Hartogs domain:

Theorem 1 Let MΩ,� be an (n + 1)-dimensional Cartan–Hartogs domain. Then, there exists 
a global symplectomorphism ΨΩ,� ∶ MΩ,� → ℂn+1.

The global coordinates we exhibit generalize those of the Hermitian symmetric space of 
noncompact type Ω the Cartan–Hartogs domain is based on. Indeed, if we restrict the map 
ΨΩ,� to the base Ω , we obtain the symplectic coordinates for Ω constructed by A. Di Scala 
and A. Loi in [19] (see also [26]). Further, we prove that as well as Di Scala and Loi’s map, 
ΨΩ,� well-behaves with respect to the action of the automorphism group of Ω and enjoys a 
nice hereditary property (see Remarks 1 and 2 ).

We construct (see Lemma  4 below) a symplectic dual of Cartan–Hartogs domains, 
that is, M∗

Ω,�
= ℂn+1 equipped with the dual Kähler form �∗

Ω,�
 , that we show to be strictly 

plurisubharmonic on ℂn+1 . In a natural way, the dual counterpart of ΨΩ,� defines global 
Darboux coordinates for M∗

Ω,�
 , and we have the following:

Theorem 2 The dual Cartan–Hartogs domain (M∗
Ω,�

,�∗
Ω,�

) is a well-defined Kähler mani-

fold which admits global Darboux coordinates ΦΩ,� ∶ M∗
Ω,�

→ ℂn+1.

We prove also that ΦΩ,� is compatible with the action of the automorphism group of Ω 
and enjoys an hereditary property analogously to ΨΩ,� (see Remark 5).

As third result, we compute the symplectic capacity of 
(
MΩ,�,�0

)
 and 

(
M∗

Ω,�
,�∗

Ω,�

)
 , 

answering for these domains to Q 3:

Theorem  3 Let c be a symplectic capacity. Then, for a Cartan–Hartogs domain MΩ,� 
equipped with the flat form �0 , and for its dual M∗

Ω,�
 endowed with the dual form �∗

Ω,�
 , one 

has:

The proof of the first part of Theorem 3 is based on the results in [20], on the symplectic 
capacity of Hermitian symmetric spaces of noncompact type. To prove the second part, we 
apply Theorem 2.

Unfortunately, it can be proven that ΨΩ,� of Theorem 1 is not a symplectic duality unless 
the Cartan–Hartogs reduces to be a complex hyperbolic space, i.e., when Ω = ℂHn and 
� = 1 . With Theorem 4 below, we show that this is not a peculiarity of our map, giving 

(1.1)MΩ,𝜇 ∶= {(z,w) ∈ Ω × ℂ ∣ |w|2 < N
𝜇

Ω
(z, z)},

(1.2)𝜑Ω,𝜇(z,w;z̄, w̄) = − log(N
𝜇

Ω
(z, z) − |w|2).

c
(
MΩ,𝜇,𝜔0

)
= 𝜋, if 𝜇 ≤ 1;

c
(
M∗

Ω,𝜇
,𝜔∗

Ω,𝜇

)
=

{
𝜇2𝜋 if 𝜇 < 1,

𝜋 if 𝜇 ≥ 1.
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a negative answer to Q  4 that characterizes the complex hyperbolic space among Car-
tan–Hartogs domains:

Theorem  4 There exists a symplectic duality between a Cartan–Hartogs domain (
MΩ,�,�Ω,�

)
 and its dual 

(
ℂn+1,�∗

Ω,�

)
 if and only if 

(
MΩ,�,�Ω,�

)
=
(
ℂHn+1,�hyp

)
 . This is 

equivalent to ΨΩ,� = Φ−1
Ω,�

 , and in this case ΨΩ,� realizes a symplectic duality.

The proof is obtained when 𝜇 < 1 as direct consequence of Theorem  3 while for 
� ≥ 1 it is a consequence of a volume comparison.

The paper is organized as follows. In the next section, we describe the geometry of 
Cartan–Hartogs domains, proving Theorem 1. Section 3 is devoted to the construction 
of dual Cartan–Hartogs and the proof of Theorem 2. Finally in Sect. 4, we prove Theo-
rems 3 and 4.

The authors are grateful to Prof. Andrea Loi for his interest in their work and for the 
useful comments. The authors would also like to thank the anonymous referee for all the 
suggestions that improve the exposition and the consistency of the paper.

2  Cartan–Hartogs domains and the proof of Theorem 1

Throughout this section, we use the Jordan triple system theory, referring the reader to 
[19, 20, 26–31] for details and further applications.

2.1  Definition and geometric properties

Consider a Hermitian symmetric space of noncompact type (from now on HSSNT) 
Ω and the associated Hermitian positive Jordan triple system (from now on HPJTS) 
(V , {, , }) (see, e.g., [19, Section  2.2]). Recall that there is a natural identification 
between V equipped with the flat form 𝜔0 ∶=

i

2
𝜕�̄�m1(x, x) , where m1 is the generic trace 

of V, and ℂn equipped with the standard flat form �0 =
∑n

j=1
dzj ∧ dzj . By mean of this 

identification, from now on we will always consider Ω as a bounded symmetric domain 
of ℂn in its (unique up to linear isomorphism) circled realization, which is usually called 
a Cartan domain when Ω is irreducible. Analogously, we will consider the Bergman 
operator BΩ as operator on ℂn , and its generic norm NΩ(z, z) as a polynomial of ℂn (see, 
e.g., [19, Section 2.1]).

To any HSSNT Ω , we can associate the Cartan–Hartogs domain MΩ,� , defined in 
(1.1), equipped with its Kobayashi metric

where �Ω,� is the Kähler potential defined in (1.2). Notice that if we restrict the Kobayashi 
metric �Ω,� to 

{
(z, 0) ∈ MΩ

}
≅ Ω we get a multiple of the hyperbolic form

(2.1)𝜔Ω,𝜇 =
i

2
𝜕�̄�𝜑Ω,𝜇,
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of Ω (see also [19, (11)]), i.e., �Ω,�∣Ω

= � �hyp.
Define:

for a, b the numerical invariants of Ω , r its rank and s ∈ ℝ+ . In [32, Prop. 2.1], W. Yin, K. 
Lu and G. Roos prove that

where Θ is the induced volume form on Fürstenberg–Satake boundary F  of Ω (see, e.g., 
[33, (1.28)] for its definition). Thus,

, i.e., the volume of MΩ,� with respect to the flat form induced by ℂn+1 is given by:

The following is a key example for our analysis:

Example 1 (Hartogs–polydisc) Let Δn be the n-dimensional polydisc

the generic norm is given by (Hua [34])

It follows that its hyperbolic metric reads

and that the associated Cartan–Hartogs domain, which we call Hartogs–polydisc, is given 
by

(2.2)𝜔hyp ∶= −
i

2
𝜕�̄� logNΩ(z, z̄),

(2.3)F(s) =
1

2rr!

r∏
j=1

Γ
(
b + 1 + (j − 1)

a

2

)
Γ
(
s + 1 + (j − 1)

a

2

)
Γ
(
j
a

2
+ 1

)

Γ
(
s + b + 2 + (r + j − 2)

a

2

)
Γ
(

a

2
+ 1

) ,

∫Ω

N(z, z)s�n
0
= �nF(s)∫

F

Θ,

Vol(MΩ,�,�0) = ∫MΩ,�

�n+1
0

(n + 1)!
= � ∫Ω ∫

N�

0

drw ∧
�n
0

n!
=

�

n! ∫Ω

N��n
0
=

�n+1

n!
F(�)∫

F

Θ,

(2.4)Vol(MΩ,�,�0) =
�n+1

n!
F(�)∫

F

Θ.

Δn =
{
z =

(
z1,… , zn

)
∈ ℂ

n ∣ |zj|2 < 1, j = 1,… , n
}
,

NΔn (z, z) =

n∏
j=1

(1 − |zj|2).

�hyp = −
i

2
�� log

(
n∏
j=1

(1 − |zj|2)
)
,

MΔn,𝜇 =

{
(z,w) ∣ z ∈ Δn, |w|2 <

n∏
j=1

(1 − |zj|2)𝜇
}

,
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whose Kobayashi metric is �Δn,� =
i

2
���Δn,�

 , with

2.2  Holomorphic isometries between Cartan–Hartogs domains

A totally geodesic complex immersion f ∶
(
Ω�,��

hyp

)
→

(
Ω,�hyp

)
 between two HSSNT 

equipped with their hyperbolic metrics preserves the triple products {, , }� and {, , } of the asso-
ciated HPJTS V ′ and V (see, e.g., [19, Proposition 2.1]), i.e.,

Hence, also the generic norm is preserved, that is, N�

Ω
(f (z), f (z)) = N

�

Ω� (z, z) . Thus, the nat-
ural lift

is a holomorphic isometric embedding with respect to the Kobayashi metrics defined by 
(2.1), i.e.:

Thus, we get:

Proposition 1 Let Ω , Ω� be HSSNT. Then, any totally geodesic complex immersion 
f ∶ Ω�

→ Ω extends to a Kähler embedding f̃ ∶ MΩ�,� → MΩ,� to the corresponding Car-
tan–Hartogs domains, defined by (2.7).

Consider now the isotropy group K ⊂ Aut(Ω) of the automorphism’s group of Ω and 
recall that K = Aut(V , {, , }) . In fact, by [35, Prop. III.2.7], the action of K preserves the triple 
product {, , } of the associated HPJTS, that is K ⊆ Aut(V , {, , }) , where Aut(V , {, , }) is the 
group of complex linear transformations of V preserving {, , } . Vice versa, as a transforma-
tion f ∈ Aut(V , {, , }) preserves the triple product, it preserves also the generic norm N(x, y) . 
Hence,

that is K ⊇ Aut(V , {, , }) . Then, by the argument above, the holomorphic isometric action 
of K on Ω induces in a natural way a holomorphic isometric action of K on MΩ , by

(2.5)�Δn,�(z,w) = − log

(
n∏
j=1

(1 − |zj|2)� − |w|2
)
.

(2.6)f {u, v,w}� = {fu, fv, fw}.

(2.7)f̃ ∶ MΩ� ,� → MΩ,�, f̃ (z,w) = (f (z),w),

f̃ ∗�Ω,� = −
i

2
�� log

(
N

�

Ω
(f (z), f (z)) − |w|2

)

= −
i

2
�� log

(
N

�

Ω� (z, z) − |w|2) = �Ω� ,�.

f ∗�hyp = −
i

2
�� log

(
N(f (z), f (z))

)
= −

i

2
�� log

(
N(z, z)

)
= �hyp,

(2.8)� ⋅ (z,w) = (�(z),w), � ∈ Aut(Ω).
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Moreover, as a consequence of Proposition  1 and of the Polydisc Theorem for HSSNT 
(see [36]), a Cartan–Hartogs domain can be realized as a union of Kähler embedded Har-
togs–Polydiscs MΔr ,�:

where r is the rank of Ω and Δr ⊂ Ω is a r-dimensional complex polydisc totally geodesi-
cally embedded in Ω.

2.3  Proof of Theorem 1

Let MΩ,� be an (n + 1)-dimensional Cartan–Hartogs domain and 
(
ℂn, {, , }Ω

)
 the HJPTS 

associated with Ω . Define the map ΨΩ,� ∶ MΩ,� → ℂn+1 by

where BΩ and NΩ are, respectively, the Bergman operator and the generic norm associated 
with {, , }Ω.

In order to prove Theorem 1, we will show that ΨΩ,� satisfies the following properties: 

(A) Ψ∗
Ω,�

�0 = �Ω,�, where �0 =
i

2

∑n+1

j=1
dzj ∧ dzj;

(B) ΨΩ,� is a diffeomorphism.

Let us start with the following two lemmata.

Lemma 1 Let fΩ ∶ MΩ,� → ℂn+1 be a smooth map of the form:

where h ∶= (h1,… , hn) satisfies:

Then,

Proof Observe first that:

MΩ,� = ∪�∈K �
(
MΔr ,�

)
,

(2.9)ΨΩ,�(z,w) =
1√

N
�

Ω
(z, z) − |w|2

(√
�N

�

Ω
(z, z)BΩ(z, z)

−
1

4 z,w

)
,

fΩ(z1,… , zn,w) ∶=
1√

N
�

Ω

(
z, z

)
− |w|2

(h1(z),… , hn(z),w)

(2.10)− 𝜕�̄�N
𝜇

Ω
=

n∑
j=1

dhj ∧ dh̄j,

(2.11)
n∑
j=1

(hjdh̄j − h̄jdhj) = (𝜕 − �̄�)N𝜇.

(2.12)𝜔Ω,𝜇 =
i

2
f ∗
Ω

(
n∑
j=1

dz ∧ dz̄ + dw ∧ d̄w

)
.
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Now, let us compute i
2
f ∗
Ω

�∑n

j=1
dz ∧ dz̄ + dw ∧ dw̄

�
 . To simplify the indices notation, let us 

write h0 = z0 = w . We have:

Assume that (2.10) and thus (2.11) hold. Then, from (2.13) and (2.14) we get:

and we are done.   ◻

Lemma 2 Let F∶ (Ω,�hyp) → (ℂn,w0) be a holomorphic map satisfying F∗�0 = �hyp , and:

Then:

(2.13)

𝜔Ω,𝜇 = −
i

2
𝜕�̄� log

(
N𝜇 − |w|2)

= −
i

2
𝜕
�̄�(N𝜇 − |w|2)
N𝜇 − |w|2

=
i

2

[
−
𝜕�̄�(N𝜇 − |w|2)
N𝜇 − |w|2 +

𝜕(N𝜇 − |w|2) ∧ �̄�(N𝜇 − |w|2)
(N𝜇 − |w|2)2

]
,

=
i

2

[
dw ∧ dw̄

N𝜇 − |w|2 −
𝜕�̄�N𝜇

N𝜇 − |w|2 +
(𝜕N𝜇 − w̄dw) ∧ �̄�(N𝜇 − |w|2)

2(N𝜇 − |w|2)2

+
𝜕(N𝜇 − |w|2) ∧ (�̄�N𝜇 − wdw̄)

2(N𝜇 − |w|2)2
]

(2.14)

i

2

n�
j=0

d(fΩ)j ∧ d(fΩ)j =
i

2

n�
j=0

d

�
hj√

N𝜇 − �w�2

�
∧ d

�
h̄j√

N𝜇 − �w�2

�

=
i

2

n�
j=0

�
dhj ∧ dh̄j

N𝜇 − �w�2 +
hjdh̄j − h̄jdhj

2(N𝜇 − �w�2)2 ∧ d(N𝜇 − �w�2)
�

=
i

2

�
dw ∧ dw̄

N𝜇 − �w�2 +

∑n

j=1
dhj ∧ dh̄j

N𝜇 − �w�2 +

+
wdw̄ − w̄dw

2(N𝜇 − �w�2)2 ∧ d(N𝜇 − �w�2) +
∑n

j=1

�
hjdh̄j − h̄jdhj

�

2(N𝜇 − �w�2)2 ∧ d(N𝜇 − �w�2)
�
.

(2.15)

f ∗
Ω
𝜔0 − 𝜔𝜇 =

i

4(N𝜇 − |w|2)2
[
(wdw̄ − w̄dw) ∧ d(N𝜇 − |w|2) + (𝜕 − �̄�)N𝜇 ∧ d(N𝜇 − |w|2)

−(𝜕N𝜇 − w̄dw) ∧ �̄�(N𝜇 − |w|2) − 𝜕(N𝜇 − |w|2) ∧ (�̄�N𝜇 − wdw̄)
]

=
i

4(N𝜇 − |w|2)2
[
−�̄�(N𝜇 − |w|2) ∧ �̄�(N𝜇 − |w|2) + 𝜕(N𝜇 − |w|2) ∧ 𝜕(N𝜇 − |w|2)]

= 0,

(2.16)
n∑
j=1

(
FjdF̄j − F̄jdFj

)
= 𝜕 logN − �̄� logN.

(2.17)−𝜕�̄�N𝜇 = 𝜇

n∑
j=1

d(N𝜇∕2Fj) ∧ d(N𝜇∕2F̄j),
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and

Proof We start by proving (2.17). Observe first that from F∗𝜔0 = −
i

2
𝜕�̄� logN one gets that √

�F satisfies 
√
𝜇F∗𝜔0 = −

i

2
𝜕�̄� logN𝜇 , as it follows by

Then, expanding the right hand side of (2.17) we get:

At this point, (2.17) is satisfied if and only if

where we used that �N� = 2N�∕2�N�∕2 . This last equivalence can be rewritten as

that is,

which holds true once (2.16) does.
Finally, the following computation proves (2.18)

(2.18)𝜇N𝜇∕2

n∑
j=1

(
Fjd(N

𝜇∕2F̄j) − F̄jd(N
𝜇∕2Fj)

)
= (𝜕 − �̄�)N𝜇.

𝜇

n∑
j=1

dFj ∧ dF̄j = −𝜕�̄� logN𝜇.

𝜇

n∑
j=1

d(N𝜇∕2Fj) ∧ d(N𝜇∕2F̄j) =𝜇

n∑
j=1

(FjdN
𝜇∕2 + N𝜇∕2dFj) ∧ (F̄jdN

𝜇∕2 + N𝜇∕2dF̄j)

=𝜇

n∑
j=1

[
FjN

𝜇∕2dN𝜇∕2 ∧ dF̄j + F̄jN
𝜇∕2dFj ∧ dN𝜇∕2 + N𝜇dFj ∧ dF̄j

]

=𝜇N𝜇∕2

n∑
j=1

[
dN𝜇∕2 ∧ FjdF̄j + F̄jdFj ∧ dN𝜇∕2

]
− N𝜇𝜕�̄� logN𝜇

=𝜇N𝜇∕2

n∑
j=1

[
dN𝜇∕2 ∧ FjdF̄j + F̄jdFj ∧ dN𝜇∕2

]

−
N𝜇𝜕�̄�N𝜇 − 𝜕N𝜇 ∧ �̄�N𝜇

N𝜇
.

𝜇N𝜇∕2

n∑
j=1

[
dN𝜇∕2 ∧ FjdF̄j + F̄jdFj ∧ dN𝜇∕2

]
= − 4𝜕N𝜇∕2 ∧ �̄�N𝜇∕2

= − 2dN𝜇∕2 ∧ �̄�N𝜇∕2 − 2𝜕N𝜇∕2 ∧ dN𝜇∕2,

n∑
j=1

[
dN𝜇∕2 ∧ FjdF̄j + F̄jdFj ∧ dN𝜇∕2

]
= −dN𝜇∕2 ∧ �̄� logN − 𝜕 logN ∧ dN𝜇∕2,

dN𝜇∕2 ∧

n∑
j=1

[
FjdF̄j − F̄jdFj

]
= −dN𝜇∕2 ∧

[
�̄� logN − 𝜕 logN

]
,



2324 R. Mossa, M. Zedda 

1 3

  ◻

Now, we can proceed with the proof of (A). In [19, Theorem 1.1], A. Loi and A. Di 
Scala show that the map F∶ (Ω,�hyp) → (ℂn,w0) defined by

is a global symplectomorphism, thus Lemma   2 applies once checked that F satisfies 
(2.16), and (A) will follow by Lemma 1.

Denote by D(x, y) the operator on (V , {, , }) defined by D(x, y)z = {x, y, z} and denote 
by z =

∑
j �jcj the spectral decomposition of z. We have (see [19, (28)]) that

where we use the operator z◻z ∶= 1

2
D(z, z) . Therefore,

where we used the identity

and the fact that z◻z is self-adjoint with respect to the Hermitian metric m1 . Using [19, 
(34)], we get

and thus:

as wished.
In order to prove (B), we need the following lemma:

𝜇N𝜇∕2

n∑
j=1

(
Fjd(N

𝜇∕2F̄j) − F̄jd(N
𝜇∕2Fj)

)
= 𝜇N𝜇∕2

n∑
j=1

(
Fj(N

𝜇∕2dF̄j + F̄jdN
𝜇∕2)+

−F̄j(N
𝜇∕2dFj + FjdN

𝜇∕2)
)

=𝜇N𝜇

n∑
j=1

(
FjdF̄j − F̄jdFj

)
= 𝜇N𝜇

(
𝜕 logN − �̄� logN

)

=𝜇N𝜇−1
(
𝜕N − �̄�N

)
= 𝜕N𝜇 − �̄�N𝜇.

F(z) = BΩ(z, z)
−

1

4 z,

F(z) =
(
id −

1

2
D(z, z)

)−1∕2

z = (id − z◻z)−1∕2 z

n∑
j=1

[
FjdFj − FjdFj

]
= m1(F, dF) − m1(dF,F)

= m1

(
(id − z◻z)−1∕2 z, d

(
(id − z◻z)−1∕2 z

))
− m1

(
d
(
(id − z◻z)−1∕2 z

)
, (id − z◻z)−1∕2 z

)

= m1

(
(id − z◻z)−1∕2 z, (id − z◻z)−1∕2 dz

)
− m1

(
(id − z◻z)−1∕2 dz, (id − z◻z)−1∕2 z

)
,

dF(z) =
(
d(id − z◻z)−1∕2

)
z + (id − z◻z)−1∕2dz,

m1

(
F(z),

(
(id − z◻z)−1∕2

)
dz
)
= −

�N(z, z)

N(z, z)
,

� logN(z, z) − � logN(z, z) =
�N(z, z)

N(z, z)
−

�N(z, z)

N(z, z)

= m1

(
F(z),

(
(id − z◻z)−1∕2

)
dz
)
− m1

((
(id − z◻z)−1∕2

)
dz,F(z)

)
,
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Lemma 3 Property (B) holds for Hartogs–Polydiscs.

Proof Let MΔn,� be an n-dimensional Hartogs–polydisc, as described in Example 1. From 
NΔn (z, z̄) =

∏n

j=1
(1 − �zj�2) and BΔn (z, z) = diag

(
(1 − |z1|2)2,… , (1 − |zn|2)2

)
 (see, e.g., 

[19, Sec. 3]), (2.9) reads:

 Let

and consider the smooth map �̃Δn,� ∶ M̃ → ℝ , defined by:

By [37, Th. 1.1], ΨΔn,�(z,w) is a global symplectomorphism (in particular a diffeomor-

phism) if 𝜕�𝜑Δn ,𝜇

𝜕xk
> 0 , 𝜕�𝜑Δn ,𝜇

𝜕y
> 0 and lim(x,y)→�M

∑n

j=1

��̃Δn ,�

�xj
xj +

��̃Δn ,�

�y
y = +∞ . The first two 

conditions are easily checked:

It remains to verify the third condition:

Observe that �MΔn,� = �Δn ∪ {y =
∏n

k=1
(1 − xk)

�} , thus (2.20) is satisfied since for any 
l = 1,… , n,

and

concluding the proof.   ◻

(2.19)

ΨΔn,�(z,w) =
1�∏n

j=1
(1 − �zj�2)� − �w�2

⎛⎜⎜⎝

�����

n�
j=1

(1 − �zj�2)�
�

z1√
1 − �z1�2

,… ,
zn√

1 − �zn�2

�
,w

⎞⎟⎟⎠
.

M̃ =

{(
x1,… , xn, y

)
∈ ℝ

n+1||xj = |||zj
|||
2

, y = |w|2, z = (
z1,… zn,w

)
∈ MΔn

}
,

�̃�Δn,𝜇(x1,… , xn, y) ∶= 𝜑Δn ,𝜇(|z1|2,… , |zn|2, |w|2) = − log

(
n∏
j=1

(
1 − xj

)𝜇
− y

)
.

𝜕�𝜑Δn ,𝜇

𝜕xj
=

𝜇
∏n

j=1
(1 − xj)

𝜇

(1 − xj)
�∏n

j=1
(1 − xj)

𝜇 − y
� > 0,

𝜕�̃�Δn ,𝜇

𝜕y
=

1∏n

j=1
(1 − xj)

𝜇 − y
> 0.

(2.20)lim
(x,y)→�MΔn ,�

�
�
∏n

k=1
(1 − xk)

�

�∏n

k=1
(1 − xk)

� − y
�

n�
j=1

xj

1 − xj
+

y∏n

j=1
(1 − xj)

� − y

�
= +∞.

lim
xl→1

�
�
∏n

k=1
(1 − xk)

�

�∏n

k=1
(1 − xk)

� − y
�

n�
j=1

xj

1 − xj
+

y∏n

j=1
(1 − xj)

� − y

�
= +∞,

lim
y→

∏n

k=1
(1−xk)

�

�
�
∏n

k=1
(1 − xk)

�

�∏n

k=1
(1 − xk)

� − y
�

n�
j=1

xj

1 − xj
+

y∏n

j=1
(1 − xj)

� − y

�
= +∞,



2326 R. Mossa, M. Zedda 

1 3

We can proceed with the proof of (B). Using the spectral decomposition, it is possi-
ble (see [28, Section 3.18]) to associate with a smooth odd function f ∶ (−1, 1) → ℂ (resp. 
f ∶ ℝ → ℂ ) a smooth map f̃ ∶ Ω → ℂn (resp. f̃ ∶ ℂn

→ ℂn ) in the following way. Let 
(ℂn, {, , }) be the HPJTS associated with Ω and for z ∈ ℂn let:

be its spectral decomposition. Define the map f̃  associated with f by

Thus, recalling that (see [31], and also [19]):

and

we can write ΨΩ,� as follows:

Comparing (2.21) with (2.19) and using Lemma 3, we deduce that ΨΩ,� is a diffeomor-
phism (we apply [33, Section 1.6]).

Remark 1 (Hereditary property)Observe that the map ΨΩ,� given in (2.9) enjoys the follow-
ing hereditary property: for any bounded symmetric domain Ω� ⊂ ℂm complex and totally 
geodesic embedded Ω�

f

↪Ω , such that f (0) = 0 , one has

Indeed, consider a complex and totally geodesic embedded submanifold f ∶ Ω�
↪Ω , sat-

isfying f (0) = 0 . By Prop.  1, f lifts to a Kähler embedding f̃ ∶ MΩ�,𝜇↪MΩ,𝜇 , defined 
by f̃ (z,w) = (f (z),w) . By [19, Prop. 2.2], f preserves the triple products; thus, it fol-
lows that it preserves also the Bergman operator BΩ and the generic norm NΩ . Hence, 
ΨΩ�,�(z,w) = ΨΩ,�(f (z),w).

Remark 2 The map ΨΩ,� commutes with the holomorphic and isometric action (2.8) of the 
isotropy group K ⊂ Aut(Ω) at the origin, i.e., for every � ∈ K , ΨΩ,�◦� = �◦ΨΩ,� . This fol-
lows since K = Aut(ℂn, {, , }Ω) , and therefore,

z = 𝜆1e1 +⋯ + 𝜆kek, 𝜆1 > ⋯ > 𝜆k > 0,

f̃ (z) = f
(
�1
)
e1 +⋯ + f

(
�k
)
ek.

BΩ(z, z)cj =
(
1 − �2

j

)2

cj,

NΩ(z, z) =

r∏
j=1

(1 − �2
j
),

(2.21)

ΨΩ,�(z,w) =
1�∏r

j=1

�
1 − �2

j

��

− �w�2

⎛
⎜⎜⎜⎝

�����

r�
j=1

�
1 − �2

j

��
r�

j=1

�j�
1 − �2

j

�1∕2
cj,w

⎞
⎟⎟⎟⎠
.

ΨΩ� ,�(z,w) = ΨΩ,�(f (z),w).
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Remark 3 (Alternative proof of Theorem 1 for classical Cartan–Hartogs) It is possible to 
give a more geometric proof of (A) for Cartan–Hartogs domains based on Cartan domains 
of classical type, without using the Jordan triple system theory. A direct computation 
proves (2.16) for the Cartan–Hartogs MDI ,�

 based on the first classical domain DI (see, 
e.g., [34]). It is known that a HSSNT Ω admits a complex and totally geodesic embed-
ding f in DI[m], for m sufficiently large. (This is obviously true for the domains DI ,DII 
and DIII , while for the domain DIV—associated with the so-called Spin-factor—the explicit 
embedding can be found in [38].) By Proposition 1, f lifts to a complex and totally geodesic 
embedding f̃  of MΩ in MDI [m],�

 . We can assume that this embedding takes the origin 0 ∈ M 
to the origin 0 ∈ DI[m] . Hence, property (A) for MΩ,� is a consequence of the Hereditary 
property given in Remark 1 and the fact that (A) holds true for DI[m].

3  Dual Cartan–Hartogs domains

3.1  Definition and geometric properties

We define the dual Cartan–Hartogs domain M∗
Ω,�

 as ℂn+1 , equipped with the dual Kähler 
form (see Lemma 4 below)

where �∗
Ω,�

∶= log(N
�

Ω
(z,−z) + |w|2) is the dual Kähler potential (see the introduction for 

the definition of symplectic dual). If we restrict �∗
Ω,�

 to ℂn =
{
(z, 0) ∈ ℂn+1

}
 , we get a 

multiple of the Kähler form dual to the hyperbolic form (4.6), i.e.:

Example 2 (Dual Hartogs–polydisc) Consider the Hartogs–polydisc MΔn,� of Example  1 
at page 5. Then, by (2.5) and (3.1), the dual form on ℂn+1 is given by �∗

Δn,�
=

i

2
���∗

Δn,�
 , 

where

In general, the dual of a Kähler form is not defined (see [3, Example 1.3]), the following 
lemma assures us that �∗

Ω,�
 is a Kähler metric on ℂn+1.

Lemma 4 The function �∗
Ω,�

∶ ℂn+1
→ ℝ is strictly plurisubharmonic.

ΨΩ,𝜇◦𝜏(z,w) =
1√

N
𝜇

Ω
(𝜏(z), 𝜏(z)) − |w|2

(√
𝜇N

𝜇

Ω
(𝜏(z), 𝜏(z))BΩ(𝜏(z), 𝜏(z))

−
1

4 𝜏(z),w

)

=
1√

N
𝜇

Ω
(z, z̄) − |w|2

(√
𝜇N

𝜇

Ω
(z, z̄)BΩ(z, z)

−
1

4 𝜏(z),w

)

= 𝜏◦ΨΩ,𝜇(z,w).

(3.1)�∗
Ω,�

=
i

2
���∗

Ω,�
,

(3.2)�∗
Ω,�∣ℂn

= � �∗
hyp

.

�∗
Δn ,�

(z,w) = log

(
n∏
j=1

(1 + |zj|2)� + |w|2
)
.
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Proof To shorten the notation, let us write Ñ for NΩ(z,−z) . The hessian of �∗
Ω,�

 is given by

Observe that it is enough to show that H is positive definite when Ω = Δn . Indeed, let 
(ℂr,�∗

Δr ) be the symplectic dual of (Δr,�hyp) , i.e., �∗
Δr =

i

2
�� log

�∏r

j=1

�
1 + �zj�2

��
 , and 

let (z0,w0) ∈ ℂn+1 , (u, �) ∈ T(z0,w0)
ℂn+1 . By the dual Polydisk Theorem, there exists a 

totally geodesic holomorphic immersion f ∶ (ℂr,�∗
Δ
) →

(
ℂn,�∗

hyp

)
 such that f (̃z0) = z0 

and f∗,̃z0 (ũ) = u , for suitable z̃0 ∈ ℂn and ũ ∈ Tz̃0ℂ
r . Then, the map f̃ ∶ ℂr+1

→ ℂn+1 
defined by f̃ (z,w) = (f (z),w) satisfies:

which implies:

where f̃ (z,w) = (f (z),w) . Thus, consider a dual Hartogs–polydisk of dimension n + 1 . 
Then, Ñ𝜇 =

∏n

h=1
(1 + �zh�2)𝜇 and thus, for j, k = 1,… , n:

Thus:

Setting:

and:

H ∶=
1(

Ñ𝜇 + |w|2)2
( (

Ñ𝜇 + |w|2)𝜕j�̄�kÑ𝜇 − 𝜕jÑ
𝜇�̄�kÑ

𝜇 − w𝜕jÑ
𝜇

−w̄�̄�kÑ
𝜇 Ñ𝜇

)
.

f̃ ∗�∗
Ω,�

=
i

2
�� log

(
N

�

Ω
(f (z),−f (z)) + |w|2

)

=
i

2
�� log

(
N

�

Ω� (z,−z) + |w|2) = �∗
Ω� ,�

,

g∗
Δr ,�

((
ũ, �

)
,
(
ũ, �

))
= g∗

Ω,�

(
f̃∗,(z0,w0)

(
ũ, �

)
, f̃∗,(z0,w0)

(
ũ, �

))
= g∗

Ω,�
((u, �), (u, �))

�̄�k

n�
h=1

(1 + �zh�2)𝜇 =
𝜇 zk

∏n

h=1
(1 + �zh�2)𝜇

1 + �zk�2
,

𝜕j�̄�k

n�
h=1

(1 + �zh�2)𝜇 =
𝜇
∏n

h=1
(1 + �zh�2)𝜇

(1 + �zk�2)(1 + �zj�2)
�
𝛿jk + 𝜇 zkz̄j

�
.

�
Ñ𝜇 + �w�2�𝜕j�̄�kÑ𝜇 − 𝜕jÑ

𝜇�̄�kÑ
𝜇 =

�
n�

h=1

(1 + �zh�2)𝜇 + �w�2
�

𝜇
∏n

h=1
(1 + �zh�2)𝜇

(1 + �zk�2)(1 + �zj�2)
𝛿jk

+
𝜇2 zkz̄j �w�2 ∏n

h=1
(1 + �zh�2)𝜇

(1 + �zk�2)(1 + �zj�2)

A ∶=

�
n�

h=1

(1 + �zh�2)� + �w�2
�
�

n�
h=1

(1 + �zh�2)�
⎛⎜⎜⎜⎝

1

(1+�z1�2)2
⋱

1

(1+�zn�2)2

⎞⎟⎟⎟⎠

B ∶= �2

n∏
h=1

(1 + |zh|2)�VV∗,
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where V is the column vector with k-th entry zk

1+|zk|2
 , the Hessian H reads

and since A + B is positive definite (being the sum of a positive definite matrix A and a 
semipositive one B), H is positive definite iff its determinant is. A long but straightforward 
computation gives

and we are done.   ◻

Remark 4 Observe that it turns out (see [19, Sect. 2.4]) that the Hermitian symmetric space 
of compact type 

(
Ω∗,�FS

)
 dual to 

(
Ω,�hyp

)
 is a compactification of 

(
ℂn,�∗

hyp

)
 . Further, {

(z,w) ∈ M∗
Ω,�

∣ z = 0
}

 is totally geodesic in M∗
Ω,�

 and has ℂP1 equipped with the Fubini–
Study metric as compactification; therefore, M∗

Ω,�
 is not complete for any � . The authors 

believe that 
(
ℂn+1,�∗

Ω,�

)
 admits a completion only when MΩ,� is itself a Hermitian sym-

metric space of noncompact type, which actually happens only when it reduces to be the 
(n + 1)-dimensional complex hyperbolic space, i.e., when � = 1 and rank(Ω) = 1.

Let a and b be the two numerical invariants of Ω and denote by r its rank. Using (2.3) 
and the following result by Selberg [39]:

we have the following lemma.

Lemma 5 The volume of a (n + 1)-dimensional dual Cartan–Hartogs domain 
(
ℂn+1,�∗

Ω,�

)
 

is given by

where Θ is the induced volume form on Fürstenberg-Satake boundary F  of Ω.

Proof Observe first that since (see, e.g., [40]) det(��∗
hyp

) = �n(N∗)−� , by (3.2) and after a 
long but straightforward computation we get

H ∶=
1�∏n

h=1
(1 + �zh�2)𝜇 + �w�2�2

⎛
⎜⎜⎝

A + B − w
𝜇 z̄j

∏n

h=1
(1+�zh�2)𝜇

1+�zj�2

−w̄
𝜇 zk

∏n

h=1
(1+�zh�2)𝜇

1+�zk�2
∏n

h=1
(1 + �zh�2)𝜇

⎞
⎟⎟⎠
,

det(H) = �n

∏n

h=1
(1 + �zh�2)�(n+1)−2�∏n

h=1
(1 + �zh�2)� + �w�2�n+2

,

(3.3)

F(s) = � …�
1>𝜆1>⋯>𝜆r>0

r∏
j=1

(
1 − 𝜆2

j

)s
r∏

j=1

𝜆2b+1
j

∏
1≤j<k≤r

(𝜆2
j
− 𝜆2

k
)a d𝜆1 ∧⋯ ∧ d𝜆r

=
1

2r � …�
1>t1>⋯>tr>0

r∏
j=1

(
1 − tj

)s r∏
j=1

tb
j

∏
1≤j<k≤r

(tj − tk)
a dt1 ∧⋯ ∧ dtr.

Vol
(
ℂ

n+1,�∗
Ω,�

)
=

�n+1�n

(n + 1)!
F(0)∫

F

Θ,
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second, using the polar coordinates of HSSNT, we can write (see [41, (5.1.1)] and also 
[29]):

where F  is the so-called Fürstenberg-Satake boundary of Ω . Thus,

where � = b + 2 + (r − 1)a is the genus of Ω , F(s) is given in (2.3), and last equality fol-
lows by:

where we performed in turn the change of variables �2
j
= tj and tj = sj∕(1 − sj) , and the last 

equality follows by (3.3).   ◻

det(�∗
Ω,�

) = �n (N∗)�(n+1)−�(
(N∗)� + |w|2)n+2

;

∫
ℂn

𝜔n
0

n!
= ∫

F

Θ ∫ ⋯∫
+∞>𝜆1>⋯>𝜆r>0

r∏
j=1

𝜆2b+1
j

∏
1⩽j<k⩽r

(
𝜆2
j
− 𝜆2

k

)a

d𝜆1 ∧⋯ ∧ d𝜆r

(3.4)

Vol(ℂn+1,𝜔∗
Ω,𝜇

) = �
ℂn+1

(𝜔∗
Ω,𝜇

)n+1

(n + 1)!
= 𝜇n𝜋 �

ℂn �
+∞

0

(N∗)𝜇(n+1)−𝛾(
(N∗)𝜇 + rw

)n+2 drw ∧
𝜔n
0

n!

=
𝜋𝜇n

(n + 1)! �ℂn

(N∗)𝜇(n+1)−𝛾

(N∗)𝜇(n+1)
𝜔n
0
=

𝜋𝜇n

(n + 1)! �ℂn

(N∗)
−𝛾𝜔n

0

=
𝜋n+1𝜇n

(n + 1)! �F

Θ � ⋯�
+∞>𝜆1>⋯>𝜆r>0

r∏
j=1

(
1 + 𝜆2

j

)−𝛾
r∏

j=1

𝜆2b+1
j

∏
1≤j<k≤r

(𝜆2
j
− 𝜆2

k
)a d𝜆1 ∧⋯ ∧ d𝜆r

=
𝜋n+1𝜇n

(n + 1)!
F(0)�

F

Θ,

� ⋯�
+∞>𝜆1>⋯>𝜆r>0

r∏
j=1

(
1 + 𝜆2

j

)−𝛾
r∏

j=1

𝜆2b+1
j

∏
1≤j<k≤r

(𝜆2
j
− 𝜆2

k
)a d𝜆1 ∧⋯ ∧ d𝜆r

=
1

2r � ⋯�
+∞>t1>⋯>tr>0

r∏
j=1

(
1 + tj

)−𝛾 r∏
j=1

tb
j

∏
1≤j<k≤r

(tj − tk)
a dt1 ∧⋯ ∧ dtr

=
1

2r � ⋯�
1>s1>⋯>sr>0

r∏
j=1

(
1 − sj

)𝛾−2−b r∏
j=1

sb
j

∏
1≤j<k≤r

(
sj

1 − sj
−

sk

1 − sk

)a

ds1 ∧⋯ ∧ dsr

=
1

2r � ⋯�
1>s1>⋯>sr>0

r∏
j=1

(
1 − sj

)𝛾−2−b−(r−1)a r∏
j=1

sb
j

∏
1≤j<k≤r

(sj − sk)
a ds1 ∧⋯ ∧ dsr

=
1

2r � ⋯�
1>s1>⋯>sr>0

r∏
j=1

sb
j

∏
1≤j<k≤r

(sj − sk)
a ds1 ∧⋯ ∧ dsr = F(0),
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3.2  Holomorphic isometries between dual Cartan–Hartogs domains

Consider a totally geodesic complex immersion f ∶ Ω�
→ Ω between HSSNT. Identify 

Ω� with its image f
(
Ω�

)
⊂ Ω and observe that f trivially extends to an injective morphism 

f ∶ V �
→ V of the associated HPJTS V ′ and V (see [19, Prop. 2.1]). Hence, the map:

satisfies:

Let us identify V ≅ ℂn and V � ≅ ℂm , as in the beginning of this section, we just proved the 
following result.

Proposition 2 Let Ω be an HSSNT. Then, any totally geodesic complex immersion 
f ∶ Ω�

→ Ω extends to the Kähler embedding f̃ ∶
(
ℂm+1,�∗

Ω� ,�

)
→

(
ℂn+1,�∗

Ω,�

)
 to the 

corresponding duals Cartan–Hartogs domains, given by (3.5).

As in Sect. 2.2, the isotropy group K = Aut(V ≅ ℂn, {, , }) of Aut(Ω) , by (3.6) induces a 
natural action by isometries of K on 

(
ℂn+1,�∗

Ω,�

)
 , given by

Moreover, as a consequence of Proposition 2 and of the Polydisc Theorem for HSSNT (see 
[36]), we can see a dual Cartan–Hartogs domain 

(
ℂn+1,�∗

Ω,�

)
 as a union of Kähler embed-

ded dual Hartogs–Polydisc M∗
Δr ,�

=
(
ℂr+1,�∗

Δr ,�

)
 (see Example 2)

where r is the rank of Ω and Δr ⊂ Ω is an r-dimensional complex polydisc totally geodesi-
cally embedded in Ω.

3.3  Proof of Theorem 2

Let M∗
Ω,�

=
(
ℂn+1,�∗

Ω,�

)
 be an n-dimensional dual Cartan–Hartogs domain and 

(
ℂn, {, , }Ω

)
 

the HJPTS associated with Ω . By Lemma 4, M∗
Ω,�

 is a well-defined Kähler manifold. In order 
to prove the existence of global Darboux coordinates, consider the map ΦΩ,� ∶ ℂn+1

→ ℂn+1 
given by

where BΩ and NΩ are, respectively, the Bergman operator and the generic norm associated 
with {, , }Ω . We show that ΦΩ,� satisfies: 

(3.5)f̃ ∶ V � × ℂ → V × ℂ, f̃ (z,w) = (f (z),w),

(3.6)
f̃ ∗�∗

Ω,�
=

i

2
�� log

(
N

�

Ω
(f (z),−f (z)) + |w|2

)

=
i

2
�� log

(
N

�

Ω� (z,−z) + |w|2) = �∗
Ω� ,�

.

(3.7)� ⋅ (z,w) = (�(z),w), � ∈ Aut(Ω).

ℂ
n+1 = ∪�∈K �

(
M∗

Δr ,�

)

(3.8)ΦΩ,�(z,w) =
1√

N
�

Ω
(z,−z) + |w|2

(√
�N

�

Ω
(z,−z)BΩ(z,−z)

−
1

4 z,w

)
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 (A′) Φ∗
Ω,�

�0 = �∗
Ω,�

;

 (B′) ΦΩ,� is a diffeomorphism with its image Im
(
ΦΩ,�

)
.

As in the proof of Theorem 1, we start with the following two lemmata, where to shorten 
the notation we set N�

Ω∗(z, z) ∶= N
�

Ω
(z,−z).

Lemma 6 Let fΩ ∶ MΩ,� → ℂn+1 be a smooth map of the form

where h ∶= (h1,… , hn) satisfies

and

Then,

Proof The proof is totally similar to that of Lemma  1, taking into account that 
N

𝜇

Ω∗(z, z̄) = N
𝜇

Ω
(z,−z̄) .   ◻

Lemma 7 If G∶ (Ω,�hyp) → (ℂn,w0) is a holomorphic map satisfying G∗𝜔0 =
i

2
𝜕𝜕 logN

𝜇

Ω∗ , 
and

then

and

Proof The proof is totally similar to that of Lemma 2.   ◻

In [19, Theorem 1.1], A. Loi and A. Di Scala show that G∶
(
ℂn,

i

2
𝜕�̄� logN

𝜇

Ω∗

)
→ (ℂn,w0) 

defined by

fΩ(z1,… , zn,w) ∶=
1√

N
�

Ω∗(z, z) + |w|2
(h1(z),… , hn(z),w)

(3.9)𝜕�̄�N
𝜇

Ω∗(z, z) =

n∑
j=1

dhj(z) ∧ dhj(z),

(3.10)
n∑
j=1

(hjdh̄j − h̄jdhj) = (�̄� − 𝜕)N
𝜇

Ω∗ .

(3.11)𝜔∗
Ω,𝜇

=
i

2
f ∗
Ω

(
n∑
j=1

dz ∧ dz̄ + dw ∧ dw̄

)
.

(3.12)
n∑
j=1

(
GjdḠj − ḠjdGj

)
= �̄� logNΩ∗ − 𝜕 logNΩ∗ ,

(3.13)𝜕�̄�N
𝜇

Ω∗ = 𝜇

n∑
j=1

d(N
𝜇∕2

Ω∗ Gj) ∧ d(N
𝜇∕2

Ω∗ Ḡj),

(3.14)𝜇N
𝜇∕2

Ω∗

n∑
j=1

(
Gjd(N

𝜇∕2

Ω∗ Ḡj) − Ḡjd(N
𝜇∕2

Ω∗ Gj)
)
= (�̄� − 𝜕)N

𝜇

Ω∗ .
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is a global symplectomorphism. Thus, by Lemmas 6 and 7, in order to prove (A′ ) we need 
only to check that such G satisfies (3.12). Also, here the proof is very similar to that of (A), 
once substituting F with G and D(z, z) with −D(z,−z).

Following the same approach as in the proof of (B), we prove first that property (B′ ) 
holds for the Hartogs-polydisc case.

Lemma 8 Property (B′ ) holds for the dual Hartogs–polydisc.

Proof We apply [37, Th. 1.1]. Following the notation of Example  2, we can 
write the Kähler potential �∗

Δn,�
(z,w) for the dual Hartogs-polydisc M∗

Δn,�
 as 

�∗
Δn,�

(z,w) = �̃∗
Δn,�

(|z1|2,… , |zn|2, |w|2) , where �̃∗
Δn,�

∶ ℂn+1
→ ℝ is given by

Then, by [37, Th. 1.1], the map

 is a diffeomorphism with its image if 𝜕�𝜑(Δn )∗ ,𝜇

𝜕xk
> 0 , 𝜕�𝜑(Δn )∗ ,𝜇

𝜕y
> 0 . The two conditions are eas-

ily checked

and property (B′ ) is verified for Ω = Δn .   ◻

Proceeding now as in the proof of (B), the spectral decomposition of ΦΩ,� reads

Comparing (3.17) with (3.16) and using Lemma 8, we deduce that also ΦΩ,� is a diffeo-
morphism (we apply [33, Section 1.6]), concluding the proof.

Remark 5 The map ΦΩ,� enjoys the same properties as ΨΩ,� . In particular, it is hereditary 
in the sense that for any bounded symmetric domain Ω� ⊂ ℂm complex and totally geodesic 
embedded Ω�

f

↪Ω , such that f (0) = 0 , one has

G(z) = BΩ(z,−z)
−

1

4 z,

(3.15)�̃∗
Δn,�

(x1,… , xn, y) ∶= log

(
n∏
j=1

(
1 + xj

)�
+ y

)
.

(3.16)

ΦΔn,�(z,w) =
1�∏n

j=1
(1 + �zj�2)� + �w�2

⎛⎜⎜⎝

�����

n�
j=1

(1 + �zj�2)�
�

z1√
1 + �z1�2

,… ,
zn√

1 + �zn�2

�
,w

⎞⎟⎟⎠
,

𝜕�𝜑(Δn)∗ ,𝜇

𝜕xj
=

𝜇
∏n

j=1
(1 + xj)

𝜇

(1 + xj)
�∏n

j=1
(1 + xj)

𝜇 + y
� > 0,

𝜕�𝜑(Δn)∗,𝜇

𝜕y
=

1∏n

j=1
(1 + xj)

𝜇 + y
> 0,

(3.17)

ΦΩ,�(z,w) =
1�∏r

j=1

�
1 + �2

j

��

+ �w�2

⎛
⎜⎜⎜⎝

�����

r�
j=1

�
1 + �2

j

��
r�

j=1

�j�
1 + �2

j

�1∕2
cj,w

⎞
⎟⎟⎟⎠
.
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where f̃ ∶ M∗
Ω�,𝜇

→ M∗
Ω,𝜇

 is the Kähler embedding given in (3.5). This can be proven as 
in Remark  1, using Prop.  2 instead of Prop.  1. Further, ΦΩ,� commutes with the holo-
morphic isometric action (3.7) of the isotropy group K ⊂ Aut(Ω) at the origin, i.e., 
ΦΩ,�◦� = �◦ΦΩ,� , as it follows by

4  Proof of Theorems 3 and 4

A map c from the class C(2n) of all symplectic manifolds of dimension 2n to [0,+∞] is 
called a symplectic capacity if it satisfies the following conditions (see, e.g., [7]):

– (monotonicity) if there exists a symplectic embedding (M1,�1) → (M2,�2) , then 
c(M1,�1) ≤ c(M2,�2);

– (conformality) c(M, ��) = |�|c(M,�) , for every � ∈ ℝ ⧵ {0};
– (nontriviality) c(B2n(1),�0) = � = c(Z2n(1),�0).

Here, B2n(1) and Z2n(1) are the open unit ball and the open cylinder in the standard 
(ℝ2n,�0) , i.e.:

We begin computing the symplectic capacity for 
(
MΩ,�,�0

)
 . The proof relies on the facts, 

pointed out in [20], that the unitary ball (B2n(1),�0) can be embedded into (Ω,�0) and the 
domain (Ω,�0) can be embedded into (Z2n(1),�0).

Proof of Theorem 3 Let Ω be an HSSNT and let 
(
ℂn, {, , }Ω

)
 be its associated HJPTS. We 

first prove that the unitary ball (B2n+2(1),�0) can be embedded into 
(
MΩ,�,�0

)
 if � ∈ (0, 1] . 

Let z = �1c1 +⋯ + �rcr be the spectral decomposition of a regular point z ∈ Ω ⊂ ℂn , then 
the distance d0(0, v) from the origin 0 ∈ M to z is given by

ΦΩ� ,�(z,w) = ΦΩ,�

(
f̃ (z,w)

)
,

ΦΩ,�◦�(z,w) =
1√

N
�

Ω
(�(z),−�(z)) + |w|2

(√
�N

�

Ω
(�(z),−�(z))BΩ(�(z),−�(z))

−
1

4 �(z),w

)

=
1√

N
�

Ω
(z,−z) + |w|2

(√
�N

�

Ω
(z,−z)BΩ(z,−z)

−
1

4 �(z),w

)

= �◦ΦΩ,�(z,w).

(4.1)
B2n(r) =

{
(x, y) ∈ ℝ

2n
||||

n∑
j=1

x2
j
+ y2

j
< r2

}
,

Z2n(r) ={(x, y) ∈ ℝ
2n | x2

1
+ y2

1
< r2}.

(4.2)d0(0, z) = (z ∣ z)
1

2 =

√√√√ r∑
j=1

�2
j
,
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(see [31, Proposition VI.3.6] for a proof). Since 1 ≤ ∑r

j=1
�2
j
+
∏r

j=1

�
1 − �2

j

�
 , and for 

(z,w) ∈ MΩ,� we have �w�2 < N(z, z)𝜇 =
∏r

j=1

�
1 − 𝜆2

j

�𝜇

 , it follows that

Since the set of regular points ℂn
reg

 of ℂn is dense ( [31, Proposition IV.3.1]) and 
Ω = {z ∣ ‖z‖max < 1} (see [28, Corollary 3.15]), we get:

as wished.
Let now Z2n(1) = {(x, y) | x2

1
+ y2

1
< 1} be the unitary cylinder in ℝ2n . In [20, Section 5], 

it is proved that the domain 
(
Ω,�0

)
 can be embedded into (Z2n(1),�0) . It follows immedi-

ately that 
(
MΩ,�,�0

)
 can be embedded into (Z2n+2(1),�0) for every 𝜇 > 0.

Thus, the first equality of the statement of Theorem 3 follows by the monotonicity and 
by the nontriviality of a symplectic capacity.

Let us now compute the symplectic capacity of 
(
M∗

Ω,�
,�∗

Ω,�

)
 . By Theorem 2, it follows

Therefore, it is enough to show that

Consider the expression of the symplectomorphism ΦΩ,� given in (3.17) in terms of spec-
tral decomposition

for

and

where z =
∑r

j=1
�jcj is the spectral decomposition of z ∈ ℂn . Notice that

Thus:

(B2n+2(1),𝜔0) ∩ ℂ
n
reg

× ℂ ⊂ (MΩ,𝜇,𝜔0) ∩ ℂ
n
reg

× ℂ, 𝜇 ∈ (0, 1].

(4.3)
(
B2n+2(1),𝜔0

)
⊂
(
MΩ,𝜇,𝜔0

)
, 𝜇 ∈ (0, 1],

c
(
ℂ

n+1,�∗
Ω,�

)
= c

(
Im

(
ΦΩ,�

)
,�0

)
.

(4.4)
{

B2n+2(𝜇) ⊂ Im
(
ΦΩ,𝜇

)
⊂ Z2n+2(𝜇) if 𝜇 < 1

B2n+2(1) ⊂ Im
(
ΦΩ,𝜇

)
⊂ Z2n+2(1) if 𝜇 ≥ 1

.

ΦΩ,�(z,w) =

(
r∑

j=1

�jcj, �0w

)
,

�j =

���� �
∏r

k=1

�
1 + �2

k

��
∏r

k=1

�
1 + �2

k

��
+ �w�2

�j�
1 + �2

j

, j = 1,… , r,

�0 =
1�∏r

k=1

�
1 + �2

k

��
+ �w�2

,

𝜉2
j
< 𝜇 j = 1,… , n, 𝜉2

0
|w|2 < 1.
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It remains to show that

Notice that �2
0
|w|2 can assume every value in the interval [0, 1) . Assume that � and c are 

real positive constant such that

In order to prove that the sphere S2n+2(c) of ℂn+1 of radius c is contained in Im
(
ΦΩ,�

)
 , we 

need to show that the following system

has a solution in �1,… , �r, |w| , for any 𝛿2 < c2 and any n-uple x1,… , xn ∈ ℝ such that 
x2
1
+⋯ + x2

n
= c2 − �2 . We have

Substituting the last term of the previous equality in �2
j
= x2

j
 , we get

Notice that the left hand side of the previous equation assume any value in the interval [
0,�(1 − �2)

)
 . Hence, if c2 − 𝛿2 < 𝜇(1 − 𝛿2) , the system (4.5) has a solution. By hypothesis 

c2 < min {1,𝜇} , hence if 𝜇 < 1 we have

while if � ≥ 1

Thus, we get (4.4) and conclusions follow by the monotonicity, conformality and nontrivi-
ality of a symplectic capacity.   ◻

Recall that given a HSSNT Ω , with associated Bergman operator BΩ , the map 
ΞΩ∶ Ω → ℂn,

satisfies the analogous of properties as the map ΨΩ,� of Theorem 1 (see Remarks 1 and 2) 
and in addition it is a symplectic duality between 

(
Ω,�hyp

)
 and its dual 

(
ℂn,�∗

hyp

)
 (see 

{
Im

(
ΦΩ,𝜇

)
⊂ Z2n+2(𝜇) if 𝜇 < 1

Im
(
ΦΩ,𝜇

)
⊂ Z2n+2(1) if 𝜇 ≥ 1

.

{
B2n+2(𝜇) ⊂ Im

(
ΦΩ,𝜇

)
if 𝜇 < 1

B2n+2(1) ⊂ Im
(
ΦΩ,𝜇

)
if 𝜇 ≥ 1

.

𝜉2
0
|w|2 = 𝛿2 ≤ c2 < min {1,𝜇}.

(4.5)
{

�2
0
|w|2 = �2,

�2
j
= x2

j
, for j = 1,… , n,

.

�2
0
|w|2 = �2 ⇔ |w|2 =

r∏
j=1

(
1 + �2

j

)� �2

1 − �2
.

�(1 − �2)
�2
j

1 + �2
j

= x2
j
.

c2 − 𝛿2 ≤ 𝜇 − 𝛿2 < 𝜇(1 − 𝛿2),

c2 − 𝛿2 < 1 − 𝛿2 ≤ 𝜇(1 − 𝛿2).

ΞΩ(z) = BΩ(z, z)
−

1

4 z,
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[19]). Notice that, according with the definition of symplectic dual given in the introduc-
tion and (2.2), we have (see also [19, (13)])

We are now in the position of proving Theorem 4.

Proof of Theorem  4 Assume Ω = ℂHn and � = 1 , it is immediate to check that 
MℂHn,1 = ℂHn+1 . Recall that the generic norm and the Bergmann operator for ℂHn are 
given by

where �z�2 = ∑n

j=1
�zj�2 . Substituting the previous expressions in (3.1), (4.6) and (2.9), we 

see that 
(
ℂn+1,�∗

ℂHn,1

)
=
(
ℂn+1,�∗

hyp

)
 and that

we conclude by [19, Theorem 1.1] that ΨℂHn,1 is a symplectic duality. Moreover, by substi-
tuting the previous expressions in (3.8) and by [19, Theorem 1.1] we see that

Viceversa, when 𝜇 < 1 , a symplectic duality does not exist due to Theorem  3 while, 
for � ≥ 1 , if a symplectic duality between (ℂn+1,�∗

Ω,�
) and (MΩ,�,�0) exists, then 

Vol(ℂn+1,�∗
Ω,�

) = Vol(MΩ,�,�0) . In this case, by Lemma 5 and (2.4) we have

Since

when Ω is the complex hyperbolic space, � = 1 is a solution to (4.7). In fact, in this case 
r = 1 and b = n − 1 , thus

is equal to �n∕(n + 1) if and only if � = 1 . We claim that

and the equality holds if and only if r = 1.

(4.6)𝜔∗
hyp

=
i

2
𝜕𝜕 logNΩ(z,−z̄).

NℂHn (z, z) = 1 − |z|2 and BℂHn (z, z̄)
−

1

4 z =
z√

1 − |z|2
,

ΨℂHn,1 = ΞℂHn+1 ,

ΦℂHn,1(z) = BℂHn+1 (z,−z)
−

1

4 z = Ξ−1
ℂHn+1 (z).

(4.7)
F(�)

F(0)
=

�n

n + 1
.

F(�)

F(0)
=

r∏
j=1

Γ
(
� + 1 + (j − 1)

a

2

)
Γ
(
b + 2 + (r + j − 2)

a

2

)

Γ
(
1 + (j − 1)

a

2

)
Γ
(
� + b + 2 + (r + j − 2)

a

2

) ,

F(�)

F(0)
=

Γ(� + 1)Γ(n + 1)

Γ(� + n + 1)
=

n!

(� + n)⋯ (� + 1)
,

(4.8)
F(1)

F(0)
=

r∏
j=1

(
1 + (j − 1)

a

2

)
(
b + 2 + (r + j − 2)

a

2

) ≤ 1

n + 1
,
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If the claim holds, since the left hand side of (4.7) is strictly decreasing in � while the 
right hand side is strictly increasing, we can see that the only positive solution to (4.7) must 
lie in (0, 1) , concluding the proof.

In order to prove the claim recall that n = r
(
b + 1 +

a

2
(r − 1)

)
 . Thus, substituting r = 1 

in (4.8), which happens iff Ω = ℂHn , one readily gets that the equality is verified. To con-
clude, let us proceed by induction on r. Assume r ≥ 2 , by the inductive hypothesis we have

which proves (4.8) (notice that the last inequality is strict since we assumed r ≥ 2 ).   ◻
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