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Abstract
This work discusses the limit as p goes to 1 of solutions to problem 

where � is a bounded smooth domain of ℝN , 𝜆 > 0 is a parameter and the exponents p, q sat-
isfy 1 < p < q . Our interest is focused on the radially symmetric case. We prove in this radial 
setting that solutions up to (P) converge to a limit u as p → 1+ . Moreover, the limit function 
u defines a solution to the natural ‘limit problem’ which involves the 1–Laplacian operator. In 
addition, a precise description of the structure of the set of all possible solutions to such a prob-
lem is achieved. This is accomplished by means of the introduction of a suitable energy condi-
tion. Furthermore, a detailed analysis of the profiles of all these solutions is also performed.

Keywords Logistic equation · p–Laplacian · 1–Laplacian · Radial solutions · Bifurcation · 
Asymptotic behavior

Mathematics Subject Classification 35J92 · 35B40 · 35P30 · 35B32 · 35Q92

1 Introduction

Since the late seventies, reaction–diffusion systems have been one of the more active areas 
in nonlinear analysis [17, 7, 12, 36, 42]. The so-called logistic problem is a reference model 
in the field where a wide variety of techniques have been tested (sub- and super-solutions, 

(P)
{

−�pu = �|u|p−2u − |u|q−2u, x ∈ �,

u = 0 x ∈ ��,
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degree and bifurcation theory, critical point theory). Under such a term it is understood the 
nonlinear eigenvalue problem,

where 𝛺 ⊂ ℝ
N is a bounded smooth domain and the diffusion is governed by the p–Laplace 

operator �pu = div (|∇u|p−2∇u) . Exponents p, q are assumed to satisfy

The number 𝜆 > 0 plays the rôle of a bifurcation parameter. In fact, a well-extended insight 
in the theory from the very beginning is just observing (1.1) as a crude perturbation of the 
“pure” eigenvalue problem,

The main objective of the present work is to analyze the fine aspects of the asymptotic 
behavior of problem (1.1) as p → 1+ . In the first place, this involves discussing the exist-
ence of the limit u = limp→1+ up of a given family up of solutions to (1.1). In the second 
place, it should be decided whether such possible limits u solve in some weak sense the 
natural “limit problem.” In other words, that one obtained by directly inserting p = 1 in 
(1.1),

where �1 = div

(
∇u

|∇u|

)
 is the one–Laplacian operator. To complete the analysis, a third 

task to be faced is that of describing all of the possible nontrivial solutions to (1.3).
Previous experiences on the “natural” associated eigenvalue problem,

strongly suggests that characterizing the solutions to (1.3) requires imposing certain 
restrictions. As a matter of fact, the higher eigenvalues to (1.4) have not been studied until 
few years ago [8, 31, 33, 41]. It was just discovered in [8] that infinitely many anoma-
lous eigenpairs to (1.4) arise if the corresponding Euler–Lagrange inclusion is not suitably 
constrained. The very same phenomenon occurs in the 1D–version of our problems (1.1), 
(1.3) as recently remarked in [40]. On the other hand, our analysis in the present work is an 
extended nontrivial continuation of [41]. The radial spectrum of (1.4) is analyzed for the 
first time in this work.

As for applications, the linear diffusion case p = 2 of (1.1) arises in population dynam-
ics, where it describes the equilibrium regime of a species subject to logistic self-regula-
tion and spatial migration [7, 34, 35]. In reaction dynamics, a solution to (1.1) furnishes 
the stationary concentration u of a chemical substance, which diffuses throughout a reactor 
𝛺 ⊂ ℝ

N and is subject to parallel competing reactions [18]. That is why major emphasis 
has been put on studying its positive solutions (see [7, 32] for a comprehensive overview 

(1.1)
{

−�pu = �|u|p−2u − |u|q−2u x ∈ �,

u = 0 x ∈ ��,

1 < p < q.

(1.2)
{

−�pu = �|u|p−2u x ∈ �,

u = 0 x ∈ ��.

(1.3)

{
−�1u = �

u

|u|
− |u|q−2u x ∈ �,

u = 0 x ∈ ��,

(1.4)

{
−�1u = �

u

|u|
x ∈ �,

u = 0 x ∈ ��,
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in population dynamics). The nonlinear diffusion case p ≠ 2 is comparatively less under-
stood. Most of the results have to do with positive solutions to (1.1) which has been ana-
lyzed in a series of works [13, 25, 22, 23, 26].

On the other hand, problems involving the 1–Laplacian are deserving a growing inter-
est in the literature. This is mainly due to the pioneering works [3, 4, 10]. The issue of 
formulating a proper notion of solution to problems as (1.3) counts among the challenges 
achieved in these references (see Sect. 2.3). From the very beginning, the applications of �1 
range from image processing [5, 38] to elasticity [27].

However, the structure of the whole set of nontrivial solutions to (1.1) still remains 
unknown in many concerns, with the exception of the case N = 1 [25, 40]. The problem in 
a general N-dimensional domain � is plagued of obstacles. To quote only a few, there are 
not any kind of bifurcation results available from the higher eigenvalues �n,p of −�p (bifur-
cation at the first eigenvalue �1,p has been studied in [9, 15]). The only exception is the 
radially symmetric case where � is a ball [24, 39]. What is worse, the complete spectrum 
of −�p remains nowadays undetermined [16, 30]. That is why there hardly exist results pro-
viding the existence of two signed solutions to (1.1) when � grows (see [20] where such a 
kind of existence issues are addressed in a problem with the same structure).

After these considerations, it seems reasonable that an analysis of problems (1.1) and 
(1.3) can only be undertaken in the radially symmetric case. In a first step, a detailed 
account of the set of all possible nontrivial radial solutions to (1.1) is presented in this 
work. Solutions to this problem in a ball BR ⊂ ℝ

N are shown to be organized in continuous 
curves emanating from the radial eigenvalues �̃�n,p to (2.17). More importantly, it is shown 
that the interval 𝜆 > �̃�n,p is the precise existence domain for each of these curves. In this 
regard, global existence results in [24] (valid in the case p > 2 ) are substantially sharpened 
for the particular case of (1.1).

Once the nontrivial solutions to (1.1) are known, two main objectives are pursued in this 
work. First, to analyze the limit of these solutions as p → 1+ . Second, to characterize such 
limits as properly defined solutions to (1.3). It turns out that both problems are deeply con-
nected. On one hand, a compactness type result permits us extracting limits u of families of 
solutions up to (1.1) as p → 1+ . Moreover, every such a limit u defines a solution to (1.3) and 
so this statement actually constitutes a true existence tool. In fact, the result is also valid in 
a general smooth domain 𝛺 ⊂ ℝ

N . On the other hand, an uniqueness result allows us con-
cluding the validity of the full limit u = limp→1 up . In addition, it furnishes a quite detailed 
description of the profile of the limit u. This stage of the analysis heavily rests upon the radial 
requirement. It is worth to point out that solutions comprised under the uniqueness result 
must satisfy suitable symmetry and energy conditions which are revealed in this work. In 
fact, without restrictions, problem (1.3) could exhibit an uncontrolled number of solutions 
(Sect. 5.4).

As a final conclusion, we are able to furnish a rather complete picture of the nontrivial 
solutions to (1.3) in a ball BR . It is shown that its radial solutions satisfying an energy 
condition are organized in continuous curves. Every such a curve emanates from a radial 
eigenvalue �̄�n to −�1 . Moreover, the structure of solutions lying in the same curve is explic-
itly described. In particular, solutions belonging to the same curve undergo the same num-
ber of jumps. Of course, this feature is reminiscent of the nodal properties exhibited by the 
solutions to (1.1) lying in a fixed branch.

This work is organized as follows. Next section deals with the preliminaries. Sect. 2.2 
discusses the basic properties of problem (1.1), while the concept of solution to (1.3) 
together with the compactness principle satisfied for this problem (Theorem 3) is presented 
in Sect.  2.3. It is remarked that the material in these subsections is valid on a general 
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domain 𝛺 ⊂ ℝ
N . The main features reported here were firstly tested in the one-dimensional 

case ( [40]). Due to its intrinsic interest for our purposes in the present work, a partial over-
view of the later paper is contained in Subsection 2.4. Theorem 4 describing the nontrivial 
radial solutions to (1.1) is shown in Sect. 3. It includes important Lemma 1 which intro-
duces and studies the zeros �n of the solutions to the initial value problem associated to 
(1.1). The analysis of the asymptotic behavior of problem (1.1) as p → 1 is launched in 
Sect.  4. Two preliminary results stating the finiteness of the limits lim

p→1
�n , limp→1 �n 

(Theorem 6) and proving the validity of the strict inequality limp→1 𝜃n < lim
p→1

𝜃n+1 (The-
orem 7) are introduced in this section. Proving the main result of this work, Theorem 8, is 
the objective of Sect. 5. This task is performed in two steps. The first one discusses the 
existence of solutions to the initial value problem connected to (1.3) (Theorem 9). Relevant 
Theorem 10 is the keystone on which the uniqueness feature is built. This second step per-
mits us obtaining the proof of our main statement.

2  Preliminary facts

2.1  Notation

In what follows, we assume N ≥ 2 and denote HN−1 the (N − 1)-dimensional Hausdorff 
measure in ℝN . Bounded domains 𝛺 ⊂ ℝ

N are supposed to be of class C1,� . Thus, an out-
ward unit normal �(x) is defined for all x ∈ ��.

Lebesgue and Sobolev spaces are denoted by Lq(�) and W1,p

0
(�) , respectively. The 

space of functions of bounded variation is denoted by BV(�) . It consists of those L1–func-
tions whose distributional gradient is a Radon measure with finite total variation. Even 
though derivatives of members in BV(�) are not functions, they exhibit traces in L1(��) , 
while this space enjoys the same ranges of continuous and compact embeddings than 
W1,1

(�) . We regard BV(�) endowed with the norm

and refer to [1] for a comprehensive account on the theory of functions of bounded 
variation.

A substantial part of this work is focused on radial solutions. So we deal with a ball in 
ℝ

N centered at the origin and of radius R > 0 , it will be denoted by BR . Observe that a 
radial function u ∈ W

1,p

0
(BR) can be represented as u(x) = v(|x|) where 

v, v� ∈ Lp((0,R), rN−1dr) , v′ being the weak derivative of v, while ∇u(x) = v�(|x|) x

|x|
 (see 

further details in Sect.  3). In the same vein, a radial function u ∈ BV(BR) satisfies 
u(x) = v(|x|) where v ∈ L1((0,R), rN−1dr) . However, v′ is now a Radon measure in (0, R) 
with total variation |v′| so that the measure rN−1|v�| is finite. Moreover, the identity

where N�N = H
N−1

(�B(0, 1)) , holds true for all radial test functions �(|x|) in C∞

0
(BR) (pre-

cise details are omitted for brevity).

‖u‖ = ∫
�

�Du� + ∫
��

�u� dHN−1 ,

(2.1)∫BR

�(|x|)|Du| = N�N ∫
R

0

�(r)rN−1|v�| ,
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The space of continuous functions C(J) on an interval J is regarded with the uniform 
convergence on compacta (a similar remark applies to C1

(J)).
Finally, for a given measurable function u in � , the notation

will be used to mean that v ∈ L∞(�) satisfies ‖v‖
∞
≤ 1 and v(x)u(x) = |u(x)| a. e. in � . 

Accordingly, infinitely many v’s can be found whenever u vanishes in a positive measure 
set.

2.2  Logistic p–Laplacian problems

Although we are mainly interested in the radial case, the introduction of some general 
properties of the nonlinear problem

is quite convenient for later reference. Henceforth, exponents p, q fall in the range,

For its use in this section, we introduce the notion of weak solution to (2.2).

Definition 1 A weak solution to (2.2) is defined as a function u ∈ W
1,p

0
(�) ∩ Lq(�) such 

that equality

is satisfied for all functions v ∈ C1
0
(�).

The requirement u ∈ Lq(�) is natural if one thinks of the variational formulation of 
(2.2). In addition, since elements v ∈ W

1,p

0
(�) ∩ Lq(�) can be approximated in this space 

by functions of C1
0
(�) then test functions in W1,p

0
(�) ∩ Lq(�) can be also inserted in (2.4). 

Finally, we are next showing that weak solutions lie on L∞(�) and so we can test in (2.2) 
with arbitrary v ∈ W

1,p

0
(�).

Some important features of (2.2) are the goal of the following result.

Theorem 1 Problem (2.2) exhibits the next features. 

 (i) All possible solutions u belong to L∞(�) and satisfy the estimate 

 (ii) Nontrivial solutions are only possible for 𝜆 > 𝜆1,p , �1,p being the first Dirichlet eigen-
value of −�p.

 (iii) For fixed 𝜆 > 𝜆1,p there exists 0 < 𝛽 < 1 not depending on � varying in bounded 
intervals such that the whole set of nontrivial solutions to (2.2) constitutes a compact 
set in C1,�

(�).

v ∈ sign (u)

(2.2)
{

−�pu = �|u|p−2u − |u|q−2u x ∈ �

u = 0 x ∈ ��,

(2.3)1 < p < q.

(2.4)∫
�

|∇u|p−2∇u ⋅ ∇v = �∫
�

|u|p−2uv − ∫
�

|u|q−2uv,

(2.5)‖u‖
∞
≤ �

1

q−p .
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 (iv) For every 𝜆 > 𝜆1,p there exists a unique positive solution u
�
 to (2.2). Family u

�
 is 

smooth and increasing in � while 

 uniformly on compact sets of �.

Proof We first observe that v = (|u| − �

1

q−p )
+
sign u ∈ W

1,p

0
(�) ∩ Lq(�) . Then, it can be 

inserted in (2.4) as a test function leading to:

Thus, (|u| − �

1

q−p )
+
= 0 which amounts to |u| ≤ �

1

q−p.
By choosing v = u in (2.4) we obtain:

and so we deduce

Hence, 𝜆 > 𝜆1,p.
The assertion of the C1,� smoothness of solutions follows from the estimate (2.5) and the 

classical results in [14, 43].
The existence of a positive solution when 𝜆 > 𝜆1,p is obtained by using, say the method 

of sub- and super-solutions. See for instance [11] and [23] (see also [12] provided that 
p ≥ 2 ). It is sufficient to choose u− = ��1(⋅) , 𝜀 > 0 small enough, �1 a first positive eigen-
function, as a sub-solution and u+ = �

1

q−p as a super-solution.
Uniqueness of a positive solution is a consequence of [13]. The family u

�
 is increasing 

in � . Indeed, it is implicit in the fact that u
�0

 becomes a sub-solution of (2.2) for 𝜆 > 𝜆0 . 
Finally, asymptotic estimate (2.6) and further features on (2.2) are addressed in [22].   ◻

Remark 1 Only the regime 1 < p ≤ 2 is our main concern in this work. However, the com-
plementary range p > 2 enjoys especial phenomena, the most relevant being that the flat 
core O

�
= {u

�
(x) = �

1

q−p } becomes nonempty and converges to � as � → ∞ [22, 26].

Remark 2 By means of variational methods, one can show the existence of further non-
trivial (two–signed) solutions to (2.2), for � as large as desired. In fact, the number of 
these solutions grows beyond any bound as � → ∞ . See for instance [20] for this kind of 
results.

(2.6)lim
�→�1,p

‖u
�
‖
∞
= 0, �

−
1

q−p u
�
→ 1 � → ∞,

�
Ω

|∇(|u| − �

1

q−p )
+|p = �

Ω

(
�|u|p−1 − |u|q−1

)
(|u| − �

1

q−p )
+

= �
{|u|≥� 1

q−p }

|u|p−1(� − |u|q−p)
(
|u| − �

1

q−p

)+ ≤ 0.

∫
𝛺

|∇u|p − 𝜆∫
𝛺

|u|p = −∫
𝛺

|u|q < 0,

𝜆1,p ∫
𝛺

|u|p < 𝜆∫
𝛺

|u|p.
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2.3  The 1–Laplacian limit problem

The main objective of this work is to let p go to 1 in problem (2.2) and obtaining limits of 
solutions. Accordingly, an important part of our endeavor will be to analyze the resulting 
Dirichlet problem deduced from (2.2) as p → 1 . Namely:

The concept of solution to this problem relies on Anzellotti’s theory (see [6]), which 
we next recall. Given � ∈ L∞(�,ℝN

) and u ∈ BV(�) , it was introduced a distribution 
in [6] which resembles the dot product � ⋅ Du for pairs (�, u) satisfying certain compat-
ibility conditions. For instance, div � ∈ LN(�) and u ∈ BV(�) or div � ∈ Lr(�) and 
u ∈ BV(�) ∩ Lr

�

(�) . The distribution (�,Du) ∶ C∞

0
(�) → ℝ is defined by

When � and u are compatible, every integral in (2.8) is well defined. It is proved in [6] that 
(�,Du) is a Radon measure with finite total variation. More precisely, it is shown that for 
every Borel B set with B ⊆ U ⊆ 𝛺 (U open), it holds

A further feature of the theory in [6] is the notion of weak trace on �� of the normal com-
ponent, denoted [�, �] , of a field � ∈ L∞(�,ℝN

) . In fact, under the assumption that div � 
is a finite Radon measure, the trace is appropriately defined, satisfies [�, �] ∈ L∞(��) and 
‖[�, �]‖L∞(��)

≤ ‖�‖L∞(�,ℝN )
 . Most importantly, a Green formula connecting the measure 

(�,Du) and the weak trace [�, �] is established in [6]. Namely:

for those pairs (�, u) satisfying the conditions already mentioned (see [6]).
We are now ready to introduce the notion of solution to (2.7) which is based on that 

introduced in [4].

Definition 2 A function u ∈ BV(�) ∩ Lq(�) is said to be a solution to problem (2.7) if 
there exist � ∈ L∞(�,ℝN

) and � ∈ L∞(�) satisfying: 

(1) ‖�‖
∞
≤ 1 and ‖�‖

∞
≤ 1,

(2) −div � = �� − |u|q−2u in D�
(�),

(3) (�,Du) = |Du| as measures and �u = |u| a.e. in �,
(4) [�, �] ∈ sign (−u) HN−1–a.e. on ��.

Remark 3 Conditions � ∈ L∞(�,ℝN
) , with ‖�‖

∞
≤ 1 , and (�,Du) = |Du| indicate that the 

vector field � plays the rôle of Du
|Du|

 . In fact, they are equal when u ∈ W1,1
(�) and {∇u = 0} 

(2.7)

⎧
⎪
⎨
⎪
⎩

−div

�
Du

�Du�

�
= �

u

�u�
− �u�q−2u in �,

u = 0 on �� .

(2.8)⟨(�,Du),�⟩ = −∫
�

u� div � − ∫
�

u � ⋅ ∇�, ∀� ∈ C∞

0
(�) .

(2.9)
�����B

(�,Du)
����
≤ �B

�(�,Du)� ≤ ‖�‖L∞(U) �B

�Du� .

(2.10)∫
�

(�,Du) + ∫
�

u div � = ∫
��

u[�, �]dHN−1,
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is a set of measure zero since then ‖�‖
∞
≤ 1 and � ⋅ ∇u = |∇u| implies � = ∇u

|∇u|
 . For a 

general u ∈ BV(�) , Du
|Du|

 cannot belong to L∞(�,ℝN
) . A similar observation applies to � 

which plays the rôle of u
|u|

 and they have the same value when {u = 0} is a null set.

Remark 4 We point out that the Radon measure (�,Du) is well defined since div � ∈ Lq
�

(�) 
and u ∈ BV(�) ∩ Lq(�) . Moreover, (�,Dv) is defined too whenever v ∈ BV(�) ∩ Lq(�) 
and so equation in 2) together with (2.10) implies that the equality

holds for all these test functions v in BV(�) ∩ Lq(�) . For the moment, we are not allowed 
to consider (�,Dv) for an arbitrary v ∈ BV(�) . Nevertheless, the next result implies that 
actually div � ∈ L∞(�) , so that (�,Dv) has always a meaning for every v ∈ BV(�).

In the next statement, �1 denotes the first Dirichlet eigenvalue of −�1 in � [8, 28, 
41]. As shown in [28], �1 coincides with the Cheeger constant of � and is variationally 
expressed by

Theorem 2 Let q > 1 . Then problem (2.7) exhibits the following features. 

 (i) All possible solutions u belong to L∞(�) and satisfy the estimate 

 (ii) Nontrivial solutions are only possible for 𝜆 > 𝜆1.

Proof 

(i) Set Gk(t) = (|t| − k)+sign (t) , k > 0 , and choose v = Gk(u) ∈ BV(�) ∩ Lq(�) as a test 
function in (2.11). Then,

 

Now, it follows as a consequence of [29, Proposition 2.7] (see also [6, Proposition 2.8]) 
that equality (�,Du) = |Du| as measures implies that (�,DGk(u)) = |DGk(u)| and so,

(2.11)∫
�

(�,Dv) − ∫
��

v[�, �]dHN−1
= ∫

�

(�� − |u|q−2u)v,

�1 = min
v∈BV(�)�{0}

∫
�
|Dv| + ∫

��
|v| dHN−1

∫
�
|v| dx

.

(2.12)‖u‖
∞
≤ �

1

q−1 .

∫
�

(�,DGk(u)) − ∫
��

Gk(u)[�, �] dH
N−1

= ∫
�

(�� − |u|q−2u)Gk(u).
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Observe that |u| ≥ �

1

q−1 implies 1 − |u|q−1
�

≤ 0 ; in this case, the right hand side becomes 
nonpositive, while the left hand side is always nonnegative. So it is enough with choosing 
k = �

1

q−1 to conclude that ‖Gk(u)‖BV(�)
= 0 what entails the desired estimate.

 (ii) Let u be a nontrivial solution to (2.7). By using u as a test function in Green’s formula 
(2.11), it yields

 

Resorting to conditions 3) and 4) of Definition 2, we get

Thus, we infer from (2.13) that

and the result follows.   ◻

We are next stating that solutions (�p, up) to (2.2) converge as p → 1 and up to subse-
quences, to a solution (�, u) to (2.7), provided that �p → �.

Theorem 3 Let {(𝜆p, up)}p>1 be a family of nontrivial solutions to (2.2) with 𝜆p > 𝜆1,p , the 
first Dirichlet eigenvalue of −�p , such that limp→1+ �p = � . Then, up to a subsequence, 
there exist u ∈ BV(�) , � ∈ L∞(�,ℝN

) and � ∈ L∞(�) with ‖�‖
∞
≤ 1 , ‖�‖

∞
≤ 1 such that 

the following properties hold. 

(1) up → u strongly in Ls(�) for all 1 ≤ s < ∞.
(2) |up|p−2up ⇀ � weakly in Ls(�) for all 1 ≤ s < ∞ . Moreover �u = |u| a. e. in �.
(3) |∇up|p−2∇up ⇀ � weakly in Ls(�,ℝN

) for all 1 ≤ s < ∞.
(4) limp→1+ ∫� �|∇up|p = ∫

�
�|Du| for every nonnegative � ∈ C∞

0
(�).

Furthermore, u defines a solution to problem (2.7) by choosing � and � as the functions 
referred to in Definition 2.
Remark 5 It is worth remarking that the above theorem could yield the trivial solution. 
This occurs, for instance, when limp→1 �p = �1 . Notice that limp→1 �1,p = �1 ( [28, Corol-
lary 6]). Accordingly, obtaining a nontrivial solution u requires some extra computations. 
Indeed, it can be shown that for every 𝜆 > 𝜆1, the limit as p → 1 of the family of positive 
solutions u

�
 to (2.2) defines a nonnegative and nontrivial solution u to (2.7). Details are 

omitted for brevity.

∫
𝛺

|DGk(u)| + ∫
𝜕𝛺

|Gk(u)| dHN−1
= 𝜆∫

{|u|>k}

(
1 −

|u|q−1
𝜆

)
(|u| − k).

∫
𝛺

(�,Du) − ∫
𝜕𝛺

u[�, 𝜈] dHN−1
= 𝜆∫

𝛺

|u| dx − ∫
𝛺

|u|q dx < 𝜆∫
𝛺

|u| dx.

(2.13)∫
𝛺

|Du| + ∫
𝜕𝛺

|u| dHN−1
< 𝜆∫

𝛺

|u| dx .

𝜆1 ∫
𝛺

|u| dx < 𝜆∫
𝛺

|u| dx ,
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Proof By setting v = up in (2.4) and taking into account (2.5), we achieve a uniform esti-
mate of the form

for a no depending on p positive constant M. This implies that up is bounded in BV(�) and 
modulus a subsequence we find u ∈ BV(�) such that up → u both a. e. and in Lr(�) as 
p → 1 , provided that r < N

N−1
 . However, since up is uniformly bounded in L∞(�), such a 

convergence is upgraded to Ls(�) for all s ≥ 1.
The remaining assertions of the theorem are shown by employing similar arguments as 

in [4] (see also [41, Theorem 6]). Accordingly, their proof is omitted.   ◻

2.4  Review of the one‑dimensional case

For future reference as auxiliary tools, some features of the one-dimensional version of 
problem (2.2),

are next reported (see [40] for a detailed account and [21] for related one-dimensional 
problems).

To begin with the one-dimensional version, the eigenvalue problem is

Its full set of eigenvalues consists in the sequence {�̂�n,p}:

Notice that limp→1 t1(p) = 2 , hence limp→1 �̂�n,p = 2n for every n ∈ ℕ.

As for (2.15), the scaling u(x) = �

1

q−p v(t) , t = �

1

p x leads to the equivalent form,

Solutions to (2.15) satisfy the estimate ‖u‖
∞
< 𝜆

1

q−p and hence corresponding solutions to 
(2.18) verify ‖v‖

∞
< 1.

To study (2.18), it is quite convenient to consider the following initial value problem:

where 0 < 𝛼 < 1 plays the rôle of ‖v‖
∞

 and is regarded as a parameter. It can be shown that 
to every � in this range corresponds a unique solution v0(t) . Such a solution is described in 
terms of the function:

(2.14)�
�

|∇up|p ≤ M,

(2.15)
{

−(|ux|p−2ux)x = 𝜆|u|p−2u − |u|q−2u, 0 < x < 1,

u(0) = 0 = u(1),

(2.16)
{

−(|ux|p−2ux)x = �|u|p−2u x ∈ (0, 1)

u(0) = u(1) = 0.

(2.17)�̂�n,p =
(
nt1(p)

)p
, t1(p) =

2(p − 1)
1

p

p

𝜋

sin
𝜋

p

, n = 1, 2,…

(2.18)

{
−(|vt|p−2vt)t = |v|p−2v − |v|q−2v, 0 < t < 𝜆

1

p ,

v(0) = v(𝜆
1

p ) = 0.

(2.19)
{

−(|vt|p−2vt)t = |v|p−2v − |v|q−2v, t > 0,

v(0) = 𝛼, v�(0) = 0,
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where V(v) = 1

p
|v|p − 1

q
|v|q . As key properties, v0(t) decreases from � to −� when 

0 ≤ t ≤ T  , vanishes at t = T

2
 , is symmetric with respect to t = T  and becomes periodic 

with period 2T.
Going back to (2.18), all the relevant information concerning this problem can be 

now expressed in terms of v0(t) . In this regard, notice that

so that v0 vanishes exactly at the points t = −
T(�)

2
+ nT(�) . Hence, solutions to problem 

(2.18) can be viewed as a shift of v0 . It should be remarked that this solution v0 depends on 
� , which plays the rôle of the amplitude of v0 . Taking these facts into account, one deduces 
the following features.

(1) Function

solves (2.18) if and only if there exists n ∈ ℕ such that � solves the equation:

Moreover, (2.21) is the unique solution to (2.18) normalized so as vt(0) > 0 , fulfilling 
max v = � and vanishing n − 1 times in (0, �

1

p ).

(2) Zeros of v are exactly t = kT(�) , 0 ≤ k ≤ n , v attains its maximum � at 
t =

(
1

2
+ 2k

)
T(�) , 0 ≤ k ≤ [

1

2
(n −

1

2
)

]
 and its minimum −� at t =

(
3

2
+ 2k

)
T(�) , 

0 ≤ k ≤ [
1

2
(n −

3

2
)

]
 (here [⋅] denotes the integer part).

(3) Function v is increasing in 
[
0,

T(�)

2

]
 and is expressed in this interval by

 

The left hand side can be alternatively written as �0(v(t)) where �0 ∶ [0, �] →
[
0,

T(�)

2

]
 is 

the inverse of v.
Property 1) asserts that solving (2.18) amounts to discuss the solutions to (2.19). 

Next result is just introduced for this and further purposes of the present paper (see [40, 
Lemma1]).

(2.20)T(�) = 2{p�}
−

1

p ∫
�

0

ds

(V(�) − V(s))
1

p

,

v0

(
−

T(�)

2

)
= v0

(
−

T(�)

2
+ nT(�)

)
= 0 , n ≥ 1 ,

(2.21)v(t) = v0

(
t −

T(�)

2

)
,

(2.22)�

1

p = nT(�) .

(2.23)(p�)
−

1

p ∫
v(t)

0

ds

(V(�) − V(s))
1

p

= t .
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Proposition 1 Assume that 1 < p ≤ 2 . Then, function T ∶ (0, 1) → ℝ is continuous and 
increasing. In addition,

t1(p) being the value in (2.17), while

It should be remarked that eigenvalues �̂�n,p to (2.16) can be expressed as �̂�n,p = (nT(0))p . 
These are just the values referred to in the next statement where the solvability of equiva-
lent problems (2.15) and (2.18) is completely described. Its proof reduces to analyze the 
solutions to (2.19) and is a direct consequence of Proposition 1.

Proposition 2 Problems (2.15) and (2.18) admit a nontrivial solution if and only if,

Moreover, to every

there corresponds exactly n solutions u (respectively, v) to (2.15) (r. (2.18)) satisfying the 
normalizing condition ux(0) > 0 (r. vt(0) > 0).

The following auxiliary result addresses the limit behavior as p goes to 1 (see [40, 
Lemma 2] for a proof). It will be instrumental in the arguments of Sects. 4 and 5.

Proposition 3 Assume that 1 < p ≤ 2 . Then, the following properties hold. 

(a) Function T introduced in (2.20) verifies: 

(b) For 0 < 𝛼 < 1, the function v defined by (2.23), alternatively v = �
−1
0
(t) , satisfies: 

 where the convergence holds in C1
(
0,

1

1−�q−1

)
.

3  Radial solutions

In this section, we study (2.2) in a ball BR = B(0,R) ⊂ ℝ
N:

T(0) ∶= lim
�→0+

T(�) = t1(p),

lim
�→1−

T(�) = ∞.

𝜆 > �̂�1,p.

�̂�n,p < 𝜆 ≤ �̂�n+1,p

(2.24)T(𝛼) ∶= lim
p→1

T(𝛼) =
2

1 − 𝛼q−1
for all 0 < 𝛼 < 1.

lim
p→1

v(t) = �,

(3.1)
{

−�pu = �|u|p−2u − |u|q−2u x ∈ BR,

u = 0 x ∈ �BR.
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As was pointed out in Theorem 1, problem (2.2) exhibits a unique positive solution. Thus, 
it must be radial if � = BR . In fact, uniqueness is in principle necessary since the validity 
of Gidas–Ni–Nirenberg symmetry for equations −�pu = f (u) requires suitable conditions 
on the nonlinear term f ( [19]). Nevertheless, we are further interested in solutions with 
both signs and therefore we focus our attention on radial solutions.

Assume that ũ ∈ W
1,p

0
(B) is a radially symmetric solution to (3.1), then ũ can be a. e. 

identified with a function u(r), r = |x| , such that u, |ur|p−2ur ∈ C1
[0,R] , ur(0) = u(R) = 0 

and pointwise solves,

Moreover, we are only concerned with the parameter range 1 < p ≤ 2 . In this case, 
ur = |w|p�−2w where p� = p

p−1
 and w = |ur|p−2ur . Thus, u ∈ C2

[0,R].
On the other hand, nontrivial solutions u satisfy the estimate ‖u‖

∞
≤ �

1

q−p (Theo-
rem 1). Hence, by introducing the scaling

nontrivial solutions are sought in the range ‖v‖
∞
≤ 1 . In addition, it should be remarked 

that the decreasing character of the energy E(v, vt) below (see (3.10) and (3.9)) implies 
that solutions u to (3.1) satisfying u(0) > 0 achieve their maximum at r = 0 . Accordingly, 
� = v(0) is a natural parameter to describe normalized solutions (3.3). Observe that unlike 
the one-dimensional case (problems (2.18) and (2.19)), a shift is not necessary now.

So, to handle (3.1) and (3.2), we are led to the initial value problem

with 0 < 𝛼 < 1 . Notice that when � = 1, the solution to (3.4) is given by v(t) = 1.
Main features on (3.4) are next depicted. The sequence of radial eigenvalues 𝜆 = �̃�n,p 

to the Dirichlet problem in the ball BR (see [2, 9, 44]),

is involved in the next and forthcoming statements. Observe that �̃�n,p = R−p
�̃�n,p(B1) where 

�̃�n,p(B1) are the Dirichlet eigenvalues of −�p in the unit ball B1.
Due to our purposes here, exponent p is restricted to the range 1 < p ≤ 2.

Lemma 1 Assume that p, q satisfy (2.3) while 1 < p ≤ 2 . Then, for every 0 < 𝛼 < 1, prob-
lem (3.4) satisfies the following properties. 

 (i) It admits a unique solution v = v(⋅, �) which is defined and C2 in [0,∞) . Moreover, 

 (ii) Solution v is oscillatory, i. e., it exhibits a sequence of infinitely many simple zeros, 

(3.2)−(|ur|p−2ur)r −
N − 1

r
|ur|p−2ur = 𝜆|u|p−2u − |u|q−2u, 0 < r < R.

(3.3)u(r) = �

1

q−p v(t), t = �

1

p r,

(3.4)
{

−(|vt|p−2vt)t −
N−1

t
|vt|p−2vt = |v|p−2v − |v|q−2v, t > 0,

v(0) = 𝛼, vt(0) = 0,

(3.5)
{

−�pu = �|u|p−2u x ∈ BR,

u = 0 x ∈ �BR,

(3.6)lim
t→∞

(v(t), vt(t)) = (0, 0).
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 such that �n → ∞.
 (iii) The asymptotic estimate 

 holds true, where ��n = �n − �n−1 and t1(p) is the value introduced in (2.17). In 
particular, 

 (iv) Every �n defines a continuous function of � and, 

 where 𝜔n = �̃�n,p(B1)

1

p and �̃�n,p(B1) is the n–th radial eigenvalue of −�p in B1 . In 
addition, function �1 is increasing in �.

Proof The existence and uniqueness of a local solution v to this problem have been largely 
discussed in [37] and [23]. That such a solution can be extended to all t > 0 is a conse-
quence of the relation,

which express the decaying along solutions of the total energy E defined by

We next describe the oscillatory character of v. From the equation, we get,

Here v� = vt , �r(t) = |t|r−2t and f (v) = |v|p−2v − |v|q−2v.
Observe that f (v(t)) > 0 implies v�(t) < 0 . Hence, it follows from 0 < 𝛼 < 1 that f(v(t)) 

must be positive for t small enough, wherewith v′ < 0 and v decreases in the same interval. 
Next, we are showing that v must vanish at finite time. Otherwise, 0 < l < v(t) < 𝛼 and so 
f (v) ≥ 𝛿 > 0 for all t > 0 . Then, one finds v�(t) ≤ −�p�

(
�

N

)
tp

�
−1 and consequently

which is not possible. Thus, a first zero t =∶ �1 arises. In addition, a first value t =∶ 𝜏1 > 𝜃1 
exists such that v�(�1) = 0 . Otherwise, v′ < 0 for all t ≥ �1 and f (v(t)) ≤ −� for 
t ≥ t1 ∶= �1 + � . Then,

0 < 𝜃1 < 𝜃2 < ⋯ ,

(3.7)lim
n→∞

��n = t1(p)

�n ∼ nt1(p) as n → ∞.

(3.8)lim
�→0+

�n(�) = �n & lim
�→1−

�n(�) = ∞,

(3.9)
dE

dt
= −

N − 1

t
|vt|p,

(3.10)E(v, vt) =
1

p�
|vt|p + V(v), where V(v) =

1

p
|v|p − 1

q
|v|q.

v� = −�p�

(

∫
t

0

(
�

t

)N−1

f (v(�)) d�

)
.

v(t) ≤ 𝛼 −
1

p�
𝜑p�

(
𝛿

N

)
tp

�

, t > 0,

v�(t) ≥ v�(t1) + 𝜑p�

(
𝜂

N

(
1 −

tN
1

tN

))
tp

�

, t > t1.
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This is again not possible. Finally, by doing v → −v , the conditions on −v for t ≥ �1 are just 
the same as those for v at the beginning of the reasoning at t = 0 . This shows that v exhibits 
infinitely many simple positive zeros �n (notice that v�(�n) ≠ 0 ). But v cannot accumulate 
zeros in (0,∞) since the only solution to (3.4) with initial data v(t0) = v�(t0) = 0 is v = 0 . 
Thus, �n → ∞ . Moreover, a careful review of the proof permits us concluding the exist-
ence of a unique critical point �n ∈ (�n, �n+1) of v for every n. Additionally, the continuous 
dependence of v on � ( [23, 37]) entails that every �n depends continuously on �.

To prove (3.6), assume on the contrary that inf
ℝ+ E > 0 . Then,

Moreover, inf
ℝ+ E = V(�) . Define

Sequence {vn} is bounded in C1
[0, b] for all b > 0 . In addition, v = vn(t) solves

Let us point out that Ascoli–Arzelà’s Theorem implies that

in C1
[0, b] , for all b > 0 . On the other hand, inequalities E(�n) ≥ E(�n) ≥ E(�n+1) yield

Hence,

By taking into account both (−1)nvt(�n) → v�
∞

 and �n → ∞ , together with the uniform con-
vergence of functions vn and their derivatives, it follows that v = v

∞
(t) solves the problem,

By choosing b > T(𝛼) , T(⋅) being the function defined in (2.20), we obtain

We next observe that

and, by proceeding as in telescoping series, it leads to

inf
n∈ℕ

(−1)nv(𝜏n) =∶ inf
n∈ℕ

𝛼n = 𝛼 > 0.

vn(t) = (−1)nv(t + �n), t ≥ 0.

{
−(|vt|p−2vt)t −

N−1

t+𝜃n
|vt|p−2vt = |v|p−2v − |v|q−2v, 0 < t < b,

v(0) = 0, vt(0) = (−1)nvt(𝜃n).

vn(t) → v
∞
(t), t ∈ [0, b],

lim
n→∞

E(�n) = lim
n→∞

E(�n).

lim
n→∞

(−1)nvt(𝜃n) = lim
n→∞

(p�V(𝛼n))
1

p = (p�V(𝛼))
1

p =∶ v�
∞
> 0.

{
−(|vt|p−2vt)t = |v|p−2v − |v|q−2v, 0 < t < b,

v(0) = 0, vt(0) = v�
∞
.

lim
n→∞

��n = lim
n→∞

(�n+1 − �n) = T(�).

∫
�n+1

�n

N − 1

�
|vt(�)|p d� = −∫

�n+1

�n

dE

dt
(�) d� = E(�n) − E(�n+1)

∞∑

n=1
�

𝜃n+1

𝜃n

N − 1

𝜏
|vt(𝜏)|p d𝜏 ≤ E(𝜃1) < ∞.
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Performing a change of variable, we deduce

and ∑∞

n=1
an converges. However,

while by Cesàro’s Theorem

Thus the series 
∑∞

n=1
an diverges. The contradiction has arisen from assuming that 𝛼 > 0 . 

Therefore, inf �n = 0.
To show (3.7) set �n = (−1)nvt(�n) . Then, due to the fact that

together with �n → 0 and V(v) ∼ 1

p
|v|p as v → 0 , we find that the sequence of functions,

is bounded in C1
[0, b] for all b > 0 . On the other hand, v = ṽn(t) solves the problem,

A compactness argument again permits us ensuring that

in C1
[0, b] where v = ṽ(t) is the solution to problem

This implies that

as desired.
The fact �1(�) → ∞ as � → 1− follows from the continuous dependence of v(⋅, �) on the 

parameter � (see [23]). On the other hand, that �1 increases with � is a consequence of the 
uniqueness of a positive solution to the Dirichlet problem,

∞∑

n=1
∫

�n+1

�n

N − 1

�
|vt(�)|p d� =

∞∑

n=1
∫

��n

0

N − 1

s + �n

|vt(s + �n)|p ds =∶
∞∑

n=1

an,

an ∼

{
(N − 1)∫

T(�)

0

|v�
∞
(s)|p ds

}
1

�n

, n → ∞,

lim
n→∞

�n

n
= T(�).

max

{
1

p�
|vt(t)|p,V(v(t))

}
≤ 1

p�
�
p
n
, t ≥ �n,

ṽn(t) =
1

𝛽n

v(t + 𝜃n)

{
−(|vt|p−2vt)t −

N−1

t+𝜃n
|vt|p−2vt = |v|p−2v − 𝛽

q−p
n |v|q−2v, 0 < t < b,

v(0) = 0, vt(0) = 1.

ṽn(t) → ṽ(t),

{
−(|vt|p−2vt)t = |v|p−2v, 0 < t < b,

v(0) = 0, vt(0) = 1.

lim
n→∞

��n = t1(p),

{
−�pu = �|u|p−2u − |u|q−2u x ∈ B,

u = c x ∈ �B,
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where c ≥ 0 is constant and B an arbitrary ball (see [13]).
Finally and arguing as above, v

�
(t) ∶=

1

�
v(t, �) solves,

and in the limit as � → 0+ , v
�
 converges in C1

[0, b] for all b > 0 to the solution �(t) to

It is well known that � exhibits a sequence of positive zeros �n → ∞ and that the sequence 
�̃�n,p = 𝜔

p
n just defines the eigenvalues of −�p in B1 [9, 41]. On the other hand, the con-

vergence v
�
→ � in C1 together with the simplicity of all of the zeros involved entail that 

�n(�) → �n as � → 0+ for all n ∈ ℕ .   ◻

Theorem 4 Assume that 1 < p ≤ 2 . Then, problem (3.1) exhibits the following properties. 

 (i) [Range and amplitude] Nontrivial solutions u are only possible when 𝜆 > �̃�1,p while 
their normalized amplitude, 

 satisfies 0 < 𝛼 < 1.
 (ii) [Positive solutions] There exists a unique positive (radial) solution u1,� for all 

𝜆 > �̃�1,p . Moreover, 

 (iii) [Existence of branches] For every n ≥ 2, two symmetric families ±un,�(r) of nontrivial 
radial solutions exist which are exactly defined for all 𝜆 > �̃�n,p and satisfy, 

 (iv) [Nodal properties] Every solution un,�(r) satisfies un,𝜆(0) > 0 and vanishes exactly 
at n − 1 values rk ∈ (0,R).

 (v) [Continuity] The n–th family un,� can be globally parameterized, in terms of the 
normalized amplitude � ∈ [0, 1) , as a continuous curve 

 in ℝ × C2
[0,R] , that is, un,� = un(⋅, �) when � = �n(�) . Moreover, 

 (vi) [Uniqueness] Let u be a nontrivial solution to (3.1). Then, u belongs to some of the 
families ±un,� , n ∈ ℕ , introduced in ii) and iii).

Proof According to the change (3.3), a nontrivial radial solution u to (3.1) is represented as

{
−(|vt|p−2vt)t −

N−1

t
|vt|p−2vt = |v|p−2v − 𝛼

q−p|v|q−2v, 0 < t < b,

v(0) = 1, vt(0) = 0,

{
−(|vt|p−2vt)t −

N−1

t
|vt|p−2vt = |v|p−2v, 0 < t < b

v(0) = 1, vt(0) = 0.

� ∶= �
−

1

q−p ‖u‖
∞
,

(3.11)‖‖u1,𝜆‖‖∞ → 0 as 𝜆 → �̃�1,p & 𝜆
−

1

q−p ‖‖u1,𝜆‖‖∞ → 1 as 𝜆 → ∞

(3.12)‖‖un,𝜆‖‖∞ → 0 as 𝜆 → �̃�n,p & 𝜆
-

1

q - p ‖‖un,𝜆‖‖∞ → 1 as 𝜆 → ∞.

(�, u) = (�n(�), un(⋅, �))

(3.13)𝜆n(𝛼) > �̃�n,p, for all 0 < 𝛼 < 1.
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where 0 < 𝛼 < 1 and

for some n ∈ ℕ . Eqs. (3.14), (3.15) define a continuous curve of solutions (�n(�), un(⋅, �)) 
parameterized in � ∈ (0, 1) . This proves the first assertion in v), while (3.13) is a conse-
quence of inequality (4.10) to be shown in next section. Notice that this curve can be alter-
natively represented as a (possibly multivalued) family un,� when � is regarded as the gov-
erning parameter.

From (3.15), one finds that un,� is defined for 𝜆
1

p R > 𝜔n while the asymptotic behaviors 
in either (3.11) or (3.12) are a consequence of iv) in Lemma 1. In addition, every solution 
in un,� vanishes at

The uniqueness of a positive solution to (3.1) was already established in Theorem 1.
The characterization of nontrivial solutions asserted in vi) is achieved when such solu-

tions are observed as solving the initial value problem (3.4).   ◻

Remark 6 First limits in (3.11) and (3.12) assert that the n–th family bifurcates from u = 0 
at 𝜆 = �̃�n,p . It was stated in [24] (see also [39]) that such a bifurcation locally occurs in 
the direction 𝜆 > �̃�n,p . However, inequality (3.13) substantially improves this result since it 
implies that un,� is only defined when 𝜆 > �̃�n,p.

Remark 7 In the regime p > 2 , radial solutions u to (3.1) may develop a central core 
{u = ±�

1

q−p } as � is large.

4  Limit as p → 1 : direct approach

It this section, the more subtle question of finding the limit profiles as p → 1+ of the 
branches of solutions un,� of Theorem 4 is addressed. Our first results provide some partial 
answers to this problem.

In the forthcoming statements, a reference to p is incorporated to the notation whenever 
it is necessary. For instance, vp(t, �) stands for the solutions to (3.4), while �n,p(�) desig-
nates its n–th zero. They are just new names for the former v(t, �) and �n(�) , respectively.

Lemma 2 Let vp(t, �) be the solution to (3.4) and let �1,p(�) designate its first zero. Then,

Moreover,

(3.14)u(r) = �

1

q−p v(�
1

p r, �),

(3.15)�

1

p R = �n(�),

rk = R
�k(�)

�n(�)
, 1 ≤ k ≤ n − 1.

(4.1)
1

1 − �q−1
≤ lim

p→1+

�1,p(�) ≤ lim
p→1+

�1,p(�) ≤ N

1 − �q−1
.

(4.2)vp(⋅, �) → � as p → 1 + ,
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the convergence being in the topology of C1
[
0,

T(�)

2

)
 where T(�) is the value introduced in 

(2.24).

Proof The energy E in (3.10) is decreasing along v(t) = vp(t, �) while relation

where f (v) = |v|p−2v − |v|q−2v , reveals that v decreases up to t = �1,p ( � is removed to 
brief). In fact, v decreases until its first critical point t = �1 ∈ (�1,p, �2,p) . Thus,

which implies that,

In particular, by setting t = �1,p we get

Hence, the first inequality in (4.1) follows by taking limits and observing that

Set now,

Function v = �
−1
0
(t) , t ∈

[
0,

T(�)

2

]
 , defines the solution to equation in (2.18) having 

v�(0) > 0 and max v = 𝛼 > 0 (Sect. 2.4). On the other hand, (4.4) implies that

while Proposition 3 asserts �−1
0

→ � as p → 1+.
In addition, Equation (4.3) yields

for 0 < t <
T(𝛼)

2
 . All these facts put together entail (4.2).

The complementary upper estimate in (4.1) is a consequence of Theorem 6 below.  
 ◻

Our next result states the finiteness of the limits,

(4.3)|v�|p−2v� = −∫
t

0

(
�

t

)N−1

f (v(�)) d�,

−
1

(p�)
1

p

(−v�) < (V(𝛼) − V(v))
1

p ,

(4.4)
1

(p�)
1

p
∫

𝛼

v(t)

ds

(V(𝛼) − V(s))
1

p

< t, 0 < t < 𝜏1.

𝜃1,p >
T(𝛼)

2
.

lim
p→1

T(�)

2
=

T(�)

2
=

1

1 − �q−1
.

𝜓0(v) =
1

(p�)
1

p
∫

v

0

ds

(V(𝛼) − V(s))
1

p

, 0 < v < 𝛼.

v(t) > 𝜓
−1
0

(
T(𝛼)

2
− t

)
, 0 < t <

T(𝛼)

2
,

|v�|p−2v� → −(1 − �
q−1

)
t

N
as p → 1+,
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for all n ∈ ℕ . This is a quite delicate question. Its proof relies upon the following result, 
one of the featured achievements in [41]. Notice that relevant quantities, e.g., the radial 
eigenvalues �̃�n,p , are labeled with subindex p to stress its dependence on p.

Theorem 5 Let

be the sequence of Dirichlet radial eigenvalues of the p–Laplacian in the unit ball 
B1 ⊂ ℝ

N . Then, the limits

exist for all n. Moreover, �̄�n is increasing, �̄�n → ∞ and,

where 𝛥�̄�n = �̄�n − �̄�n−1.

We now prove that limits in (4.5) are finite.

Theorem 6 For all n ∈ ℕ and 0 ≤ 𝛼 < 1 , limits �̄�±
n
(𝛼) in (4.5) are finite. Moreover,

In particular �̄�±
n
(𝛼) → ∞ as n → ∞.

Proof Write again �n = �n,p(�) for short. Define,

Then, u solves the eigenvalue problem

where operator Lp is defined by (the radial p–Laplacian):

the weight q is defined by

and � = 0 . Notice now that u vanishes exactly at n − 1 points in the interval (0,  1) and 
that problem (4.8) has a unique eigenvalue exhibiting an eigenfunction with that property 
([44]). Namely, the n–th eigenvalue �n(q) . Therefore,

(4.5)�̄�
−

n
(𝛼) = lim

p→1+

𝜃n,p(𝛼), �̄�
+

n
(𝛼) = lim

p→1+
𝜃n,p(𝛼),

�̃�n,p = (𝜔n,p)
p, n ∈ ℕ,

lim
p→1

𝜔n,p = �̄�n,

(4.6)lim
n→∞

𝛥�̄�n = 2,

(4.7)�̄�n ≤ �̄�
−

n
(𝛼) ≤ �̄�

+

n
(𝛼) ≤ 1

1 − 𝛼q−1
�̄�n.

u(r) = vp(�nr, �) 0 ≤ r ≤ 1.

(4.8)
{

−Lpu + q(r)|u|p−2u = 𝜆|u|p−2u 0 < r < 1

u�(0) = 0, u(1) = 0,

Lpu = (|u�|p−2u�)� + N − 1

r
|u�|p−2u�,

q = −�
p
n
(1 − |u|q−p),
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Now,

But �n(q) is increasing in the weight q ( [44]). Thus:

The first inequality implies that

Thus,

and so,

The second inequality entails

whence,

To achieve (4.1) in Lemma 2, observe that �̄�1 = N ( [41]).   ◻

We now analyze the gap between the values �̄�n(𝛼)± and its behavior as n becomes large.

Theorem 7 Limits �̄�±
n
(𝛼) in (4.5) satisfy,

for all ∈ ℕ . Moreover, for n fixed

where ��n,p(�) = �n,p(�) − �n−1,p(�) , while

Furthermore,

�n(q) = �n(−�
p
n
(1 − |u|q−p)) = 0.

(4.9)−�
p
n
≤ −�

p
n
(1 − |u|q−p) ≤ −�

p
n
(1 − �

q−p
).

𝜆n(−𝜃
p
n
) < 0 < 𝜆n(−𝜃

p
n
(1 − 𝛼

q−p
)).

(4.10)𝜔
p
n,p

< 𝜃n,p(𝛼).

lim
p→1

�n,p ≤ lim

p→1

�n,p(�),

�̄�n ≤ �̄�
−

n
(𝛼).

𝜃n,p(𝛼)
p
<

1

1 − 𝛼q−p
𝜔n,p,

�̄�
+

n
(𝛼) ≤ 1

1 − 𝛼q−1
�̄�n.

�̄�
+

n−1
(𝛼) < �̄�

−

n
(𝛼),

(4.11)��
n
(�) ∶= lim

p→1

��n,p(�) ≥ 1,

(4.12)𝛥�̄�n(𝛼) ∶= lim
p→1

𝛥𝜃n,p(𝛼) ≤ 2

(1 − 𝛼q−1)N

(
�̄�n

�̄�n−1

)N−1

.

(4.13)lim
n→∞

𝛥�̄�n(𝛼) ≤ 2

(1 − 𝛼q−1)N
.
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Proof A variant of the argument in the proof of Theorem 6 is going to be employed. Define 
�1(m, q) the first eigenvalue of the problem,

where J = (a, b) is a finite interval, m, q ∈ C(J) . It is well known that �1,p(m, q) is increas-
ing in m and q.

Let v(t) be the solution to (3.4) (subscript p will be omitted whenever possible) and 
consider the particular case of problem (4.14) where m = tN−1 , q = −tN−1(1 − |v|q−p) and 
J = Jn ∶= (�n−1, �n) . Then, it holds that its main eigenvalue is

and has u = v|Jn as an associated main eigenfunction. Setting

the estimates

hold true.
The monotonicity of �1 in (m, q) then implies

where �1,p(Jn) = �1,p(m, q) for the choices m = 1 , q = 0 . Thus,

t1(p) being the value provided in (2.17).
The second inequality in (4.16) says that

By taking lim sup as p → 1 we find

which proves (4.12).
Estimate (4.13) follows from (4.12) by noticing (Theorem  5) that �̄�n − �̄�n−1 → 2 as 

n → ∞.
As for (4.11) suppose that v > 0 in Jn (otherwise replace v → −v ), set as above 

�n−1 = maxJn v and �n−1 the critical point in Jn . From the fact that v decreases in [�n−1, �n] 
an that

(4.14)
{

−(m(t)|u�|p−2u�)� + q(t)|u|p−2u = �|u|p−2u t ∈ J

u|�J = 0,

�1,p(m, q) = 0,

�n−1 = max
Jn

|v|,

(4.15)−�
N−1
n

≤ q(t) ≤ −�
N−1
n−1

(1 − �
q−p

n−1
) ≤ −�

N−1
n−1

(1 − �
q−p

),

(4.16)�
N−1
n−1

�1,p(Jn) − �
N−1
n

≤ 0 ≤ �
N−1
n

�1,p(Jn) − �
N−1
n−1

(1 − �
q−p

),

�1,p(Jn) =
t1(p)

p

(��n)
p
,

(��n)
p

t1(p)
p
≤ 1

(1 − �q−p)

(
�n

�n−1

)N−1

.

lim
p→1

𝛥𝜃n ≤ 2

(1 − 𝛼q−1)

(
�̄�
+

n
(𝛼)

�̄�
−

n−1
(𝛼)

)N−1

≤ 2

(1 − 𝛼q−1)N

(
�̄�n

�̄�n−1

)N−1

,
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we obtain that

for 𝜏n−1 < t < 𝜃n . In particular,

whence (4.11) follows by taking limits as p → 1 .   ◻

Remark 8 Upper estimate in (4.7) and the corresponding ones in (4.11) and (4.12) can 
slightly be refined. By observing that the upper estimate in (4.15) may be replaced by

we obtain the sharper one

where �̄�n−1 = limp→1 𝛼n−1 . This in turn implies,

a better alternative than (4.12). Moreover, since limn→∞
�n = 0, it should be expected that 

limn→∞
�̄�n = 0 . This together with (4.13) would lead to

Similarly, it follows from (4.17) that for fixed n,

with �
n−1

= lim
p→1

�n−1.
We stress that in Sect. 5, a sharpened version of all of the previous estimates will be 

stated.

Remark 9 Numerical simulations in Fig. 1 and 2 strongly suggest that all of numbers �n,p(�) 
and �n,p stabilize to single values as p → 1+ . In addition, solution vp(t, �) develops flat pat-
terns between consecutive values of the limits of �n,p . This issue is addressed in detail in 
the next section.

1

p�
(−v)p + V(v) < V(𝛼n−1), t ∈ (𝜏n−1, 𝜃n],

1

(p�)
1

p
∫

𝛼n−1

v(t)

ds

(V(𝛼n−1) − V(s))
1

p

< t − 𝜏n−1,

(4.17)1 =
1

2
T(0) <

1

2
T(𝛼n−1) < 𝜃n − 𝜏n−1,

−�
p
n
(1 − |u|q−p) ≤ −�

p
n
(1 − �

q−p

n−1
),

�̄�
+

n
(𝛼) ≤ 1

1 − �̄�
q−1

n−1

�̄�n,

lim
p→1

𝛥𝜃n,p(𝛼) ≤ 2

(1 − �̄�
q−1

n−1
)N−1

(
�̄�n

�̄�n−1

)N−1

,

lim
n→∞

𝛥�̄�n(𝛼) ≤ 2.

lim

p→1

��n,p(�) ≥ 1

1 − �
q−1

n−1

,
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5  Limit as p → 1 : the BV framework

Two main objectives of this work are now to be accomplished. First, to show the exist-
ence of the limit as p → 1 of the solutions un,� to (3.1) obtained in Theorem 4. Second, 
to prove that these limits define solutions ūn,𝜆 to the limit problem,

0 5 10 15 20
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Fig. 1  Profiles of vp corresponding to N = 2 , q = 2.5 , � = 0.5 and p = 2 , p = 1.5 and p = 1.1

0 5 10 15 20
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Fig. 2  Drawing of vp(t, �) for N = 2 , q = 2.5 , � = 0.5 and p = 1.001 . Profile is dramatically steepened
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Resulting families ūn,𝜆 give rise to continuous curves bifurcating from the eigenvalues to 
−�1 . In fact, radial eigenvalues 𝜆 = �̄�n to

have been recently introduced in the form ( [41]):

�̄�n being the values referred to in Theorem 5.
As it is the case when the operator −�1 is involved in the equations, problem (5.1) has 

a tendency to exhibit an uncontrolled amount of solutions. See for instance [8] dealing 
with eigenvalue problems, [40] on the one-dimensional case (2.15) or Remark 14 below. 
To identify proper solutions, we handle an energy condition (see (5.7) below) similar to 
that introduced in [41].

In order to formulate a uniqueness result, we also require suitable symmetry restrictions 
on the solutions.

Definition 3 A solution u ∈ BV(BR) to (5.1) is said to be radial if aside from u, function � 
and field � referred to in Definition 2 are also radial. In the latter case, this means that,

where w̃ ∈ L∞(0,R).

Remark 10 Condition (5.3) is reminiscent of the fact that for a radial C1 function u(x) = v(r) 
one has ∇u = v�(r)

x

r
 where v�(0) = 0.

In the next statement, solutions to (5.1) are understood to be radial in the sense of Defi-
nition 3. The continuity mentioned in the point iii) below is regarded in the sense of the 
strict topology of the space BV(BR) ( [1]).

Theorem 8 The problem (5.1) exhibits the following properties. 

(i) [Range of existence and amplitude estimate] Nontrivial solutions u ∈ BV(BR) ∩ Lq(BR) 
are only possible if 𝜆 > �̄�1 . Normalized amplitude � = �

−
1

q−1 ‖u‖
∞

 of solutions satisfies 
0 < 𝛼 < 1.

(ii) [Existence] To every eigenvalue �̄�n, there corresponds a symmetric family ±ūn,𝜆 of 
nontrivial solutions bifurcating from u = 0 at �̄�n which is exactly defined for 𝜆 > �̄�n . 
Moreover, the normalized amplitude of ūn,𝜆 satisfies 

(5.1)

⎧
⎪
⎨
⎪
⎩

−div

�
Du

�Du�

�
= �

u

�u�
− �u�q−2u, x ∈ BR,

u = 0, x ∈ �BR.

(5.2)

⎧
⎪
⎨
⎪
⎩

−div

�
Du

�Du�

�
= �

u

�u�
, x ∈ BR,

u = 0, x ∈ �BR,

�̄�n = lim
p→1

�̃�n,p = R−1
�̄�n,

(5.3)� = w̃(r)
x

r
, lim

r→0
w̃(r) = 0,
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(iii) [Continuity of branches] Family ūn,𝜆 can be represented as a continuous curve 

 when parameterized by the normalized amplitude 0 < 𝛼 < 1 . This means that 
ūn,𝜆 = ūn(⋅, 𝛼) when 𝜆 = �̄�n(𝛼) . More precisely, 

�Ik
(t) being the characteristic function of the interval, 

 and where �k , �̄�k are smooth functions of the amplitude �.
(iv) [Convergence of branches and zeros] For every n and 0 < 𝛼 < 1

 while the family un,� converges to the family ūn,𝜆 as p → 1+ in the sense: 

�n , un being the functions introduced in v) of Theorem 4.
(v) [Uniqueness] Every nontrivial solution u fulfilling the ‘energy’ condition, 

 necessarily belongs to some of the previous families ±ūn,𝜆.

The remaining of this section is devoted to the proof of Theorem 8. Section 5.2 states 
a compactness result which entails the existence of solutions. The key uniqueness result 
is presented in Sect. 5.3.

5.1  An initial value problem

We are mimicking the existence analysis in Sect. 3. Our reference initial value problem 
(3.4) there:

is more conveniently written now in the equivalent form

(5.4)lim
𝜆→∞

𝜆
−

1

q−1 ‖ūn,𝜆‖∞ = 1.

(𝜆, u) = (�̄�n(𝛼), ūn(⋅, 𝛼)) ∈ ℝ × BV(BR),

(5.5)�̄�n(𝛼) = R−1
�̄�n(𝛼), ūn(r, 𝛼) = 𝜆

1

q−1

n∑

k=1

(−1)k𝛼k−1𝜒Ik
(𝜆r),

Ik =

(
R
�̄�k−1(𝛼)

�̄�n(𝛼)
,R

�̄�k(𝛼)

�̄�n(𝛼)

)
,

(5.6)lim
p→1

𝜃n(𝛼) = �̄�n(𝛼),

lim
p→1

(𝜆n(𝛼), un(⋅, 𝛼)) = (�̄�n(𝛼), ūn(⋅, 𝛼)),

(5.7)
d

dr

(
�|u| − |u|q

q

)
= −

N − 1

r
|ur| in D�

(0,R),

{
−(|vt|p−2vt)t −

N−1

t
|vt|p−2vt = |v|p−2v − |v|q−2v, t > 0,

v(0) = 𝛼, vt(0) = 0,
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where f (v) = |v|p−2v − |v|q−2v , 0 < 𝛼 < 1 . In addition, notation � = d

dt
 will be often used 

with the meaning v� = vt.
A formal expression for the limit problem of (5.8) as p → 1 reads as follows,

where v, w vary in suitable spaces of functions defined in (0,∞) and equations are under-
stood in distributional sense. Precise details to clarify the meaning of a solution to (5.9) are 
next explained. Of course, we are keeping in mind Definition 2.

As it turns out from the results below, a convenient space for the solutions (v, w) to (5.9) 
is

where we denote,

According to Sect. 2.3, a function u belongs to BV(I) with I = (0, b) if u ∈ L1(I) and its dis-
tributional derivative u′ is a Radon measure with finite total variation |u�|(I) . As customary, 
W1,∞

(I) denotes the space of functions w ∈ L∞(I) with a weak derivative w�
∈ L∞(I).

It can be shown that every function u ∈ BV(I) can be identified a. e. with a function ũ 
which is of bounded variation in the classical sense in I (see [1]). The identification of u 
with ũ is henceforth assumed without further comments. In particular BV(I) ⊂ L∞(I).

On the other hand, we point out that the first equation in (5.9) will be satisfied in 
the sense that the total variation |v′| is equal to the product wv′ . When v ∈ BV(I) and 
w ∈ W1,∞

(I) such a product is naturally defined as ⟨wv�,�⟩ = ⟨v�,w�⟩ , � ∈ C∞

0
(I) , since 

w is a Lipschitz function. Moreover, by suitably approximating w, it follows from the defi-
nition of v′ in the sense of distributions that

Hence, wv′ coincides with the definition of the pairing (w, v�) introduced in Sect. 2.3 (see 
(2.8)). It should be also recalled that (w, v�) is a Radon measure in I such that,

for all open interval J ⊂ I , where | ⋅ | means the total variation of the corresponding 
measure.

Equation (3.9) for the dissipation of the energy

(5.8)
{

w = |v�|p−2v� v(0) = 𝛼,

w�
= −f (v) −

N−1

t
w w(0) = 0,

t > 0,

(5.9)

{
w ∈ sign (v�) v(0) = 𝛼,

−

(
w�

+
N−1

t
w − |v|q−2v

)
∈ sign (v) w(0) = 0,

t > 0,

BVloc(0,∞) ×W
1,∞

loc
(0,∞),

BVloc(0,∞) =

⋂

b>0

BV(0, b), W
1,∞

loc
(0,∞) =

⋂

b>0

W1,∞
(0, b).

∫I

�wv� = −∫I

v(w�
� + w��

) for all � ∈ C∞

0
(I) .

�(w, v�)�(J) ≤ ‖w‖
∞,J�v��(J),

Ep(v, v
�
) =

1

p�
|v�|p + 1

p
|v|p − 1

q
|v|q,
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plays a substantial rôle in the forthcoming considerations. More properly the formal limit 
equation of (3.9) as p → 1 will play such a rôle. This formal limit is given by

For a function v ∈ BVloc(0,∞) Eq. (5.10) is understood in distributional sense. Notice that 
the power term is well defined as v ∈ L∞(0, b) for each b > 0.

The next definition is an adaptation of a corresponding one in [41] where it was pro-
posed for the study of the limit of the eigenvalue problem (3.5) as p → 1.

Definition 4 A couple of functions (v,w) ∈ BVloc(0,∞) ×W
1,∞

loc
(0,∞) defines a solution to 

(5.9) provided that the following conditions hold. 

 (i) Function ‖w‖
∞
≤ 1 while, 

 (ii) There exists � ∈ L∞(0,∞) satisfying ‖�‖
∞
≤ 1 , �v = |v| and such that v solves the 

equation 

 (iii) Initial conditions are fulfilled in the following sense, 

Remark 11 We are showing in Sect. 5.4 that any radial solution in the sense of Definition 3 
gives rise, up to scaling, to a solution of problem (5.9).

5.2  Existence results

Our next statement furnishes the existence of a solution to (5.9).

Theorem 9 Fix 0 < 𝛼 < 1 and for 1 < p ≤ 2 let (vp,wp) ∈ C1
([0,∞))

2 be the solution to the 
initial value problem (5.8). Then, up to subsequences,

and (v, w) solves (5.9). More precisely, the following properties hold true. 

(i) For each b > 0 , vp → v in L1((0, b), tN−1 dt) where v ∈ BVloc(0,∞).
(ii) There exists �1 ∈ L∞(0,∞) with ‖�1‖∞ ≤ 1 such that |vp|p−2vp ⇀ �1 weakly in 

Ls((0, b), tN−1 dt) for all 1 ≤ s < ∞ and b > 0 . Moreover, 

(5.10)
d

dt

(
|v| − 1

q
|v|q

)
= −

N − 1

t
|v�|.

(5.11)(w, v�) = |v�| inD�
(0,∞).

(5.12)w�
+

N − 1

t
w − |v|q−2v = −�, in D

�
(0,∞) .

v(0+) = �, w(0) = 0.

(vp,wp) → (v,w) as p → 1,
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(iii) wp ⇀ w weakly in Ls((0, b), tN−1 dt) for all 1 ≤ s < ∞ and all b > 0 , where 
w ∈ L∞(0,∞) ∩W

1,∞

loc
(0,∞) , ‖w‖

∞
≤ 1 and solves the equation, 

(iv) Identity (w, v�) = |v�| is fulfilled in D�
(0,∞).

(v) ‖v‖
∞
= � while the energy equation (5.10) is satisfied in the sense of D�

(0,∞).

Remark 12 Convergence in i) actually holds in Ls((0, b), tN−1 dt) for all 1 ≤ s < ∞.

Proof of Theorem  9 We begin by observing that �̄�+
n
(𝛼) → ∞ as n → ∞ (see Theorem  6). 

Thus, if we prove the desired claims on each interval (0, �̄�+
n
(𝛼)) , then it will hold on every 

(0, b) ( b > 0).
Fix n ∈ ℕ and set:

r = |x| . Then, up defines a solution to (3.1) with � = �p . Take a suitable subsequence as 
p → 1 (denoted with the same index) to get lim

p→1
𝜃n,p(𝛼) = �̄�

+

n
(𝛼) and define � = lim

p→1
�p . Now 

observe that hypotheses of Theorem 3 hold, so that (2.14) implies the estimate

from where, by Young’s inequality, we deduce an estimate of {vp} in BV(�, �n,p) for all 
𝜎 > 0 . On the other hand, applying Theorem  3, we may choose a further subsequence 
and find radial functions u ∈ BV(BR) , � ∈ L∞(BR) and a field � ∈ L∞(BR,ℝ

N
) satisfy-

ing ‖�‖
∞
≤ 1 , ‖�‖

∞
≤ 1 so that assertions 1) to 4) in the theorem are satisfied. Thus, by 

extracting again a subsequence if necessary, we infer that up(x) → u(x) a.e. in BR . Sum-
marizing, a sequence pm , no depending on n, can be found so that all of the previous limits 
hold true as pm → 1+ (subindex m will be omitted).

In the sequel and by abuse of notation, up(r) and u(r) are replacing up(x) and u(x) when 
necessary. The same criterium will be applied to other possible radial functions.

We now set,

Assertions i) to v) are next to be verified. Explicit reference to � will be avoided whenever 
possible.

(i) The L1–convergence up → u implies

 

�1v = |v|.

(5.13)−w�
−

N − 1

t
w + |v|q−2v = �1, inD�

(0,∞).

(5.14)�p =

�n,p(�)
p

Rp
, up(x) = �

1

q−p

p vp

(
�

1

p

p r, �

)
,

(5.15)�
�n,p

0

|v�
p
|ptN−1 dt ≤ M,

v(t, 𝛼) = 𝜆
−

1

q−1 u(𝜆−1t), t ∈ (0, �̄�+
n
(𝛼)) .
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and so,

as p → 1 . Since �p → 1 and v(t) is continuous in (0, �̄�+
n
) up to a numerable set we observe 

that,

From the estimate,

and (5.16) we obtain that,

As 𝜃n,p → �̄�
+

n
 then we find that vp → v in L1((0, �̄�+

n
), tN−1dt) . This L1–convergence jointly 

with our BV–estimate gives v ∈ BV(𝜎, �̄�+
n
) for all 𝜎 > 0 . We recall that Lemma 2 yields 

v(t) = � on 
(
0,

1

1−�q−1

)
 . Therefore, v ∈ BV(0, �̄�+

n
(𝛼)) . Finally, as pm → 1 no depends on n, 

then v is actually defined on the whole interval (0,+∞) and v ∈ BVloc(0,∞).

(ii)  By putting �1(t) = �(�
−1t), one finds that 𝛽1 ∈ L∞(0, �̄�+

n
(𝛼)) , ‖�1‖∞ ≤ 1 , while the iden-

tity �1v = |v| is a straightforward consequence of the identity �u = |u| a.e. in BR.

We also need to connect test functions on (0, �̄�+
n
(𝛼)) and test functions on BR . Given 

𝜓 ∈ C∞

0
(0, �̄�+

n
(𝛼)) , consider �(x) = �(�|x|) . Owing to Theorem 3, Property 2), we obtain

Passing to polar coordinates, we get

and so, by scaling separately each integral we arrive at

lim
p→1∫

R

0

|�
1

q−p

p vp

(
�

1

p

p r

)
− �

1

q−1 v(�r)|rN−1dr = 0,

(5.16)∫
�n,p

0

|�
1

q−p

p vp(t) − �

1

q−1 v(�pt)|tN−1 dt = o(1), �p = ��
−

1

p

p ,

∫
�n,p

0

|v(�pt) − v(t)|tN−1 dt = o(1), as p → 1.

�

1

q−1 |vp(t) − v(t)|

≤ |�
1

q−1 − �

1

q−p

p ||vp(t)| + |�
1

q−p

p vp(t) − �

1

q−1 v(�pt)|

+ �

1

q−1 |v(�pt) − v(t)|,

∫
�n,p

0

|vp(t) − v(t)|tN−1 dt = o(1), as p → 1.

lim
p→1+∫BR

|up(x)|p−2up(x)�(x) dx = ∫BR

�(x)�(x) dx .

lim
p→1+∫

R

0

�

p−1

q−p

p |vp
(
�

1

p

p r

)
|p−2vp

(
�

1

p

p r

)
�(�r)rN−1dr = ∫

R

0

�1(�r)�(�r)rN−1dr
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where �p = ��
−

1

p

p  , Ap = �

p−1

q−p

p �
N
p

 . We next observe that both Ap → 1 and �p → 1 while 
𝜃n,p → �̄�

+

n
 . In addition, �(�pt) → �(t) for each t. Thus,

The desired convergence follows by directly employing 𝜓 ∈ Ls
�

(0, �̄�+
n
) in the previous 

argument.

(iii) First observe that �(x) ⋅ x

|x| is a weak limit of radial functions and so defines a radial 
function w̃(r) . If w(t) = w̃(𝜆−1t), then w ∈ L∞(0, �̄�+

n
) with ‖w‖

∞
≤ 1 . A similar proce-

dure than that developed above gives the weak convergence. To check that equation 
(5.13) holds, take 𝜓 ∈ C∞

0
(0, �̄�+

n
) and consider

As u solves (2.7), we get

Passing to polar coordinates leads to

By setting t = �r, it is found that w solves (5.13). Observe that then

and the right hand side is bounded on any interval (a, �̄�+
n
) with a > 0 . Moreover, we deduce 

from Lemma 2 that

whose solution satisfying w(0) = 0 is given by

Thus, w′ is bounded on (0, �̄�+
n
) and so w ∈ W1,∞

(0, �̄�+
n
) . Actually, w ∈ W1,∞

(0,+∞) since 
bounds do not depend on the interval.

lim
p→1+

Ap ∫
𝜃n,p

0

|vp(t)|p−2vp(t)𝜓(𝜎pt)t
N−1 dt = ∫

�̄�
+

n

0

𝛽1(t)𝜓(t)tN−1 dt,

lim
p→1+∫

�̄�
+

n

0

|vp(t)|p−2vp(t)𝜓(t)tN−1 dt = ∫
�̄�
+

n

0

𝛽1(t)𝜓(t)tN−1 dt .

(5.17)�(x) =
1

|x|N−1
�(�|x|) if x ≠ 0, �(0) = 0.

∫BR

� ⋅ ∇� = �∫BR

(� − |u|q−2u)�.

∫
R

0

��
�
(�r)w(�r) dr − ∫

R

0

N − 1

r
�(�r)w(�r) dr

= �∫
R

0

(�1(�r) − |v(�r)|q−2v(�r))�(�r) dr.

w�
= −

N − 1

t
w − �1 + |v|q−2v

−w�
−

N−1

t
w = 1 − �

q−1, t ∈
(
0,

1

1−�q−1

)
,

w(t) = −
1

N
(1 − �

q−1
)t.
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iv) Choose 𝜓 ∈ C∞

0
(0, �̄�+

n
) and define � ∈ C∞

0
(BR) as in (5.17). It follows from the iden-

tity |Du| = (�,Du) as measures that

Performing the same manipulations as above and employing (2.1), we obtain,

and we are done.
v) For a nonnegative 𝜓 ∈ C∞

0
(0, �̄�+

n
(𝛼)) choose now the variant,

of the test function defined in (5.17). By Theorem 3, Property 4), and taking once again a 
subsequence,

Passing to polar coordinates, performing separate scalings in the integrals and multiplying 
by N − 1, we deduce

where:

Hence,

∫BR

�|Du| = ∫BR

�(�,Du) = −∫BR

u� div � dx − ∫BR

u � ⋅ ∇� dx .

∫
�̄�
+

n

0

𝜓|v�| = ∫
�̄�
+

n

0

v𝜓(𝛽1 − |v|q−2v) dt

+ ∫
�̄�
+

n

0

(
N − 1

t

)
v𝜓w dt − ∫

�̄�
+

n

0

vw𝜓 � dt

= −∫
�̄�
+

n

0

v𝜓w� dt − ∫
�̄�
+

n

0

vw(t)𝜓 � dt = ∫
�̄�
+

n

0

𝜓(w, v�) ,

�(x) =
1

|x|N
�

(
�|x|

)
if x ≠ 0, �(0) = 0,

∫BR

�|Du| = lim
p→1∫BR

�|∇up|pdx .

∫
�̄�
+

n

0

N − 1

t
𝜓|v�| = lim

p→1∫
𝜃n,p

0

N − 1

t
𝜓p|v�p|

pdt

= lim
p→1∫

𝜃n,p

0

𝜓p

(
−

dEp

dt

)
dt = lim

p→1∫
𝜃n,p

0

𝜓
�

p
Ep dt ,

�p(t) = �

q

q−p

p �
−

q

q−1�(�pt), �p = ��
−

1

p

p .

(5.18)
∫

�̄�
+

n

0

N − 1

t
𝜓|v�| = lim

p→1

1

p� ∫
𝜃n,p

0

𝜓
�

p
|v�

p
|p dt

+ lim
p→1∫

𝜃n,p

0

𝜓
�

p

[
1

p
|vp|p −

1

q
|vp|q

]
dt .
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Now recalling (5.15) and taking into account that �p → � in C∞

0
(0, �̄�+

n
) as p → 1 and in 

particular, that its support is bounded away from zero, we find that the first limit in (5.18) 
vanishes. On the other hand, by Lebesgue’s theorem, we obtain

Thus, we conclude from (5.18) that,

and the energy identity (5.10) is proved.
Finally, the other assertion of v) follows immediately from the fact that ‖vp‖∞ = � for 

all 1 < p ≤ 2 .   ◻

Figure 1 shows the profiles of vp(t, �) corresponding to � = 0.5 , q = 2.5 , N = 2 and 
decreasing values of p ∈ (1, 2] . Flat plateaus arise when p becomes close to one. In 
strong difference with the 1D case (problem (2.19)), a decaying in the amplitude of the 
solutions to (3.4) is observed and this feature is transmitted to the limit as p → 1+.

5.3  A uniqueness result

The next one is a sort of uniqueness statement for the initial value problem (5.13).

Theorem 10 Let 0 < 𝛼 < 1 . Then, the initial value problem (5.9) admits a unique solution 
(v,w) ∈ BVloc(0,∞) ×W

1,∞

loc
(0,∞) satisfying the energy condition (5.10). Moreover, there 

exist positive monotone sequences �n and �n which verify

such that the following properties are satisfied. 

(i) v(t) = (−1)n−1�n−1 on each interval (�n−1, �n) wherein �0 = � and �0 = 0.
(ii) w ∈ W1,∞

(0,∞) , w is strictly monotone on each interval (�n−1, �n) while w(�n) = (−1)n 
for every n ≥ 1.

(iii) Sequences �n and �n satisfy the recurrence relations: 

 where �0 = 0 , �0 = � , h(x) = sign x − |x|q−2x while 

 with g(x) = |x| − 1

q
|x|q.

(iv) �n satisfies the following asymptotic estimate, 

lim
p→1∫

𝜃n,p

0

𝜓
�

p

[
1

p
|vp|p −

1

q
|vp|q

]
dt = ∫

�̄�
+

n

0

𝜓
�

[
|v| − 1

q
|v|q

]
dt .

∫
�̄�
+

n

0

N − 1

t
𝜓(t)|v�| = ∫

�̄�
+

n

0

𝜓
�
(t)

[
|v(t)| − 1

q
|v(t)|q

]
dt .

�n → 0, �n → ∞,

(5.19)
h(�n−1)

N
�
N
n
− �

N−1
n

=

h(�n−1)

N
�
N
n−1

+ �
N−1
n−1

n ≥ 1,

(5.20)g(�n) +
N − 1

�n

�n = g(�n−1) −
N − 1

�n

�n−1 n ≥ 1,
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(v) For every n ≥ 1, both �n and �n are smooth functions of � ∈ [0, 1) . Moreover, 

�̄�n being the reference values introduced in Theorem 5.

Proof of Theorem 10 As a first remark, let (v, w) be any possible solution to (5.9) where 
0 < 𝛼 < 1 . Since v satisfies the energy equation (5.10), it follows that g(v) = |v| − 1

q
|v|q is 

non increasing along the solution. As the function g is increasing in (0, 1), we deduce that 
|v| is nonincreasing; in particular, |v(t)| ≤ � for all t ≥ 0.

We are now following the argument of the proof of [41, Theorem 19].

(1) Function v is constant in every component of the set C ∶= {t ∶ |w(t)| < 1} . In fact, let 
(a, b) be any of such components, J ⊂ (a, b) an arbitrary open interval. Then,

Since ‖w‖
∞,J < 1 then |v�|(J) = 0 . Thus, v is constant in J.

(2) Nature of (v, w) in the initial component of C . Since |w| < 1 near t = 0, there exists a 
first component (0, b) in C . From v(0+) = �, it follows from 1) that v = � in (0, b) while 
direct integration of (5.12) yields

for t ∈ (0, b) , the last equality being implied by the relation w(b) = −1 . Thus, we set �1 = b . 
Notice that b > N since h(𝛼) < 1 . We next use (5.12) to observe that,

for t ≥ �1 . This together with (5.23) implies that,

(3) Let (a, b) be a component of C where v(t) = c , c ≠ 0 , is a constant. Then, we claim the 
validity of the following facts.

(a) (a, b) is finite while b − a ≥ 1.
(b) sign c = sign w(a) , being (sign c)w(t) decreasing in (a, b).
(c) The following relation holds true:

(5.21)lim
n→∞

(�n − �n−1) = 2.

(5.22)lim
𝛼→0+

𝜃n = �̄�n,

�v��(J) = (w, v�)(J) ≤ ‖w‖
∞,J�v��(J).

(5.23)w(t) = −
h(�)

N
t b =

N

h(�)
,

|w�
(t)| ≤ 1

N�
h(�) + 1 + �

q−1
= 1 +

1

N�
+

1

N
�
q−1 ≤ 2,

(5.24)‖w�‖L∞(0,∞)
≤ 2.

(5.25)
h(|c|)
N

bN − bN−1 =
h(|c|)
N

aN + aN−1.
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The finiteness of (a, b) is consequence of the representation

which holds in (a,  b) and the fact that |w| < 1 . Furthermore, (5.24) implies the second 
assertion in a) since

To check b), observe first that sign c = sign h(c) when |c| < 1 . If w(a) = 1 and c < 0 , then

due to a ≥ �1 and |c| ≤ � . This would imply that w > 1 near t = a which is not possible. A 
similar argument allows to deal with the case w(a) = −1 and c > 0 . Thus, w(a) = sign c . 
On the other hand,

which is decreasing. Since (sign c)w(t) = w(a)w(t) , point b) is proven.
Finally, (5.25) follows by direct integration of (5.12).

(4) Solution v can not undergo a discontinuity at � ≥ �1 such that v(�−) = c ≠ 0 and 
v(�+) = 0 . In fact, since v only has jump discontinuities, that fact and (5.10) would 
imply

and so

Hence,

which is not possible. We stress that condition (5.10) is essential in this step (see Remark 
14 below).

(5) If either w(t) = 1 or w(t) = −1 in an whole interval I = (a, b) then v(t) = 0 there. 
Assume that w(t) = 1 . Then, from (w, v�) = |v�|, one learns that v� = |v�| and so v is 
nondecreasing in I. However, (5.12) implies that

(5.26)w(t) =

(
w(a) + a

h(c)

N

)(
a

t

)N−1

−
h(c)

N
t,

2 = |w(b) − w(a)| ≤ 2(b − a) .

w�
(a+) = −

N − 1

a
+ h(|c|) > 0,

w(a)w(t) =

(
1 + a

h(|c|)
N

)(
a

t

)N−1

−
h(|c|)
N

t,

|c| − |c|q
q

=
N − 1

�
|c|,

1 −
|c|q−1
q

≤ 1

N�
(1 − �

q−1
).

1 −
1

N�
≤
(
1

q
−

1

N�

)
𝛼
q−1

<
1

q
−

1

N�
,
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If v(t0) ≠ 0 at some t0 ∈ I , then (near t0 ) |v|q−2v would be strictly decreasing and this is not 
possible. The case w(t) = −1 is similarly handled.

(6) Components of C are contiguous in the sense that the upper end of one component 
coincides with the lower end of another. More precisely, beyond every component 
(a, b) in C where v(t) = c ≠ 0, there exists a further component (b, d) where v(t) = c� 
and cc′ < 0 holds. The assertion is a consequence of 3), 4) and 5) (see [41]).

Proof of i), ii), iii)–(5.19).
Starting at the first interval (0, �1) with �0 = � and by employing step 6), we are attach-

ing successive components, named In ∶= (�n−1, �n) . Function v attains the constant value 
(−1)n�n in In , with 𝛼n > 0 since signs on these intervals are alternated. Energy condition 
(5.10) implies that �n is not increasing. By (5.25), it is found that �n follows the recursive 
law (5.19). Observe that this law gives �1 =

N

h(�)
 as expected.

Proof of iii)–(5.20), dependence �n(�) , �n(�) and v).
We first discuss equation (5.19) to show that every �n can actually be computed. Given 

�n−1 and �n−1 , the new term x = �n must be found by solving

By setting y = h(�n−1)x , 𝜃n−1 = h(𝛼n−1)𝜃n−1 such an equation is transformed into

It is rather clear that this equation possesses a unique root y = �̂�n > N which is a smooth 
function of 𝜃n−1 . This implies that

is the next term in the sequence. Moreover, it also defines a smooth function of both �n−1 , 
�n−1.

We emphasize that it follows from �n ≥ 1 + �n−1 (see 3) a)) that limn→∞
�n = ∞ . Thus, v 

is defined in (0,∞).
Function v exhibits a jump at every �n . Thus, the energy relation (5.10) implies that

which can be written as (5.20):

We now check that this recursive relation certainly produces a decreasing sequence 
0 < 𝛼n < 𝛼 . Proceeding by induction, assume that both 0 < 𝛼n−1 < 𝛼 and 𝜃n > 𝜃1 have 
already been found. Then,

|v|q−2v ∈ sign v +
N − 1

t
, t ∈ I.

h(�n−1)

N
xN − xN−1 =

h(�n−1)

N
�
N
n−1

+ �
N−1
n−1

.

(5.27)
1

N
yN − yN−1 =

1

N
𝜃
N
n−1

+ 𝜃
N−1
n−1

.

𝜃n =
�̂�n

h(𝛼n−1)

g(�n) − g(�n−1) = −
N − 1

�n

(�n−1 + �n),

g(�n) +
N − 1

�n

�n = g(�n−1) −
N − 1

�n

�n−1.
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In fact this inequality amounts to

But 𝜃n >
N

h(𝛼n−1)
 , so that

as q > 1.
Next, it can be checked that the function x ↦ g(x) +

N−1

�n

x is increasing in the interval 

0 ≤ x ≤ (
1 +

N−1

�n

) 1

q−1 . Thus, equation

has a unique solution x in the range 0 < x < 1 , and such a root must be x = �n . Moreover, 
we deduce

This means that �n is a smooth function of both �n, �n−1 . In addition, since �n lies in the 
range where g(⋅) + N−1

�n

⋅ is increasing, it follows from (5.20) that 0 < 𝛼n < 𝛼n−1.
We now proceed recursively and use the dependence of �n on �n−1 and �n−1 shown above, 

to conclude that �n and �n are smooth functions of � . Moreover, in the particular case n = 1, 
both functions are increasing in �.

Estimate (5.22) in assertion v) is shown by direct substitution and the help of [41, 
Theorem 19].

Proof of �n → 0 and estimate (5.21). By setting,

then (5.19) leads to

whence lim an = 1 . On the other hand,

as n → ∞ where �̄� = lim 𝛼n = inf 𝛼n . We are next showing that �̄� = 0 so the proof of esti-
mate (5.21) is attained.

Accordingly, let us verify that �̄� = 0 . For n fixed choose 0 < a < b so that,

g(𝛼n−1) −
N − 1

𝜃n

𝛼n−1 > 0.

1 −
1

q
𝛼
q−1

n−1
−

N − 1

𝜃n

> 0.

1 −
1

q
𝛼
q−1

n−1
−

N − 1

𝜃n

> 1 −
1

q
𝛼
q−1

n−1
−

1

N�
(1 − 𝛼

q−1

n−1
) > 0,

g(x) +
N − 1

�n

x = g(�n−1) −
N − 1

�n

�n−1

d

dx

(
g(x) +

N − 1

𝜃n

x

)

x=𝛼n

> 0.

an =
𝜃n

𝜃n−1

> 1,

aN
n

(
1 −

N

h(�n−1)�n

)
= 1 +

N

h(�n−1)�n−1
,

(5.28)𝜃n − 𝜃n−1 =
1

h(𝛼n−1)

N(aN−1
n

+ 1)
∑N−1

k=0
aN−1−k
n

→

2

h(�̄�)
,
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The decaying character of the energy E:

and equation (5.10) imply that,

and so,

Thus, the series

converges. On the other hand, it follows from (5.28) and Cesàro’s Theorem that 
limn→∞

𝜃n

n
=

2

h(�̄�)
 . Hence,

for a certain constant C > 0 . Therefore, �̄� must be zero.
  ◻

Remark 13 For 0 < 𝛼 < 1 the sequence �n of values obtained in Theorem 10 are denoted in 
the sequel as �̄�n(𝛼) . This is done to highlight on the one hand their dependence on � , and on 
the other its rôle as a limit when p → 1 . Next statement clarifies this last remark. Notations 
vp(⋅, �) and �n,p(�) (beginning of Section 4) are going to be employed.

Corollary 1 Fixed 0 < 𝛼 < 1 , let vp(t, �) be the solution (5.8) while v(t, �) designates the 
solution to (5.9) computed in Theorem 10. Then, the whole family vp , not merely a subse-
quence, satisfies

in L1((0, b), tN−1 dt) for every b > 0 . Moreover,

for all n ∈ ℕ , where �n,p(�) denotes the sequence of zeros of vp.

Proof Convergence assertion (5.29) is a consequence of the uniqueness shown in 
Theorem 10.

To prove (5.30), we proceed by induction and firstly check that �̄�±
1
= �̄�1 ( � is omitted 

for simplicity). Thus, choose a subfamily vp′ so that �̄�1,p� → �̄�
+

1
 while vp′ → ṽ a. e. in (0,∞) 

a < 𝜃1 < ⋯ < 𝜃n < b < 𝜃n+1.

E = |v| − |v|q
q

,

�
b

a

N − 1

t
|v�| ≤ E(a) − E(b) < E(0) < 𝛼,

(N − 1)

n∑

k=1

�k + �k−1

�k

= �
b

a

N − 1

t
|v�| ≤ �.

∞∑

n=1

�n + �n−1

�n

𝛼n + 𝛼n−1

𝜃n

∼ C
�̄�

n

(5.29)vp → v as p → 1,

(5.30)lim
p→1

𝜃n,p(𝛼) = �̄�
−

n
(𝛼) = �̄�

+

n
(𝛼) = �̄�n(𝛼),
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(Theorem 9). Thanks to Theorem 6 (finiteness of limits) and Theorem 7 (gaps between the 
limits), ṽ ≥ 0 in an interval (�̄�+

1
− 𝛿, �̄�+

1
) while ṽ ≤ 0 in (�̄�+

1
, �̄�+

1
+ 𝛿) for certain 𝛿 > 0 . But 

uniqueness entails that ṽ = v and so �̄�+
1
 must coincide with �̄�1 . Otherwise a discrepancy in 

signs should arise. By the same token, �̄�−
1
 must be �̄�1.

Assume now that �̄�±
k
= �̄�k for 1 ≤ k ≤ n . We are proving that �̄�+

n+1
= �̄�n+1 . In fact, choose 

again a subfamily vp′′ so that vp′′ → v̂ and satisfying 𝜃n+1,p�� → �̄�
+

n+1
 (Theorem 6). Then, The-

orem 7 provides some 𝜂 > 0 such that (−1)n+1v̂ ≥ 0 in (�̄�+
n+1

, �̄�+
n+1

+ 𝜂) and (−1)n+1v̂ ≤ 0 in 
(�̄�

+

n+1
− 𝜂, �̄�+

n+1
) (in fact this is just the sign in the whole interval (�̄�n, �̄�+n+1) ). But again v̂ = v 

and necessarily �̄�+
n+1

= �̄�n+1 , to avoid inconsistency in the signs. For �̄�−
n+1

= �̄�n+1, the argu-
ment is the same.   ◻

Figs. 2 and 3 show plottings of vp(t, �) and wp(t, �) with the parameters of Figs. 1 but p 
reduced to p = 1.001.

5.4  Proof of Theorem 8

Let (v(t), w(t)) be the solution to (5.9) introduced in Theorem 10. By setting,

we are checking that the assertions in Theorem 8 hold true.
Regarding the property of being a solution to (5.1), we choose

where w̃(r) = w(𝜆r) and �1(t) is just the function,

(5.31)u = ūn,𝜆(r) = 𝜆

1

q−1 v(𝜆r, 𝛼), with 𝜆 = �̄�n(𝛼) = R−1
�̄�n(𝛼),

� = w̃(r)
x

r
, 𝛽(x) = 𝛽1(𝜆r),

0 5 10 15 20
−1.5

−1

−0.5

0

0.5

1

1.5

Fig. 3  Drawing of wp(t, �) for N = 2 , q = 2.5 , � = 0.5 and p = 1.001 . The Lipschitz nature of wp is clearly 
reflected
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It is clear then that �u = |u|.
On the other hand, distributions div � , (�,Du) and |Du| are invariant under rotations in ℝN 

(a detailed checking of this and forthcoming similar assertions is omitted to brief). Accord-
ingly, they are equal provided that take the same values when acting on radial test functions 
� ∈ C∞

0
(BR) , �(x) = �(|x|) . Thus, to check that (5.1) holds, we observe that both v and w are 

smooth enough up to t = 0 and that equality

is satisfied. It is equivalent to

Multiplying by a test function � ∈ C1
[0,R] which vanishes near r = R and integrating by 

parts we obtain

which is the weak version of −div � = �� − |u|q−2u in polar coordinates.
Regarding the identity (�,Du) = |Du|, it suffices with checking it in D(�) ∶= BR ⧵ B�

 
for 0 < 𝜎 < R small since it is clearly true near zero. Thus, define � as in (5.17) where 
𝜓 ∈ C∞

0
(𝜆𝜎, �̄�n(𝛼)) . Then, � ∈ C∞

0
(D(�)), while some computations show that

Taking the same test functions � and � , it can be seen that

Since (v, w) is the solution to (5.9), it follows that (w, vt) = |vt| and so (�,Du) = |Du| as 
measures in D(�) . It yields (�,Du) = |Du| as measures in BR , so that the required coupling 
between � and |Du| is verified.

The validity of the energy relation (5.7) is proven by a direct scaling argument based on 
(5.10).

Regarding the boundary condition, it follows from [1, Theorem 3.87] that the trace of u at 
R is given by

𝛽1 =

∞∑

n=1

(−1)n−1𝜒
(�̄�n−1(𝛼),�̄�n(𝛼))

.

−(tN−1w)� = tN−1(�1 − |v|q−2v),

−(rN−1w̃)� = rN−1(𝜆𝛽 − |u|q−2u).

∫
R

0

w̃𝜓 �rN−1 dr = ∫
R

0

(𝜆𝛽 − |u|q−2u)𝜓rN−1 dr,

⟨(�,Du),�⟩ = −∫D(�)

u(x)�(x)div �(x) dx − ∫D(�)

u(x)�(x) ⋅ ∇�(x) dx

= −N�N�

1

q−1 ∫
�R

��

v(t)�(t)
�
wt(t) +

N − 1

t
w(t)

�
dt

− N�N�

1

q−1 ∫
�R

��

v(t)w(t)
�
�t(t) −

N − 1

t
�(t)

�
dt

= N�N�

1

q−1

�
−∫

�R

��

v(t)�(t)wt(t) dt − ∫
�R

��

v(t)w(t)�t(t) dt

�

= N�N�

1

q−1 ⟨(w, vt),�⟩.

⟨�Du�,�⟩ = N�N�

1

q−1 ⟨�vt�,�⟩ .
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Hence,

since [�, 𝜈] = w̃(R) = w(�̄�n(𝛼)) = (−1)n.
Parametrization (5.5) for ūn,𝜆 together with its continuity in � is provided by the expres-

sion for v(t, �) and the smoothness of �̄�n and �n with respect to � stated in Theorem 10. In 
addition, crucial relation (5.6) was the objective of Corollary 1.

The fact that ūn,𝜆 bifurcates from zero at 𝜆 = �̄�n follows from (5.31) and the convergence 
�̄�n(𝛼) → 0 as � → 0+ . Similarly, that �̄�n(𝛼) → ∞ as � → 1− proves (5.4).

We next address the uniqueness issue in v). So, let u ∈ BV(BR) be a radial solution in 
the sense of Definition 3, with associated function �(r) and field � = w̃(r)

x

r
 . It is also sup-

posed that u satisfies the energy relation (5.7).
We start with the equation,

By testing with radial functions �(|x|) ∈ C∞

0
(BR), we obtain

By using the limit condition in (5.3), we arrive at

Since u ∈ L∞(BR) (Theorem 2), it follows that w̃ ∈ W1,∞
(0,R) . Moreover, equation

is satisfied in weak sense.
Define now,

Such a limit exists because u is chosen to be of bounded variation in classical sense. In 
addition, |𝛼| < 1 due to (2.12) (Theorem  2) and no generality is lost if we assume that 
� ≥ 0 . We now observe that (5.7) implies that the group �|u| − |u|q

q
 is nonincreasing. 

Therefore,

This in particular rules out the option � = 0.
Let us introduce now the scalings,

u|r=R = lim
r→R−

u(r) = 𝜆

1

q−1 lim
t→�̄�n(𝛼)

v(t, 𝛼) = (−1)n−1𝛼n−1𝜆
1

q−1 .

sign u|r=R = (−1)n−1 = −[�, �],

−div � = �� − |u|q−2u.

∫
R

0

w̃(r)𝜓 �
(r)rN−1 dr = ∫

R

0

(𝜆𝛽 − |u|q−2u)𝜓(r)rN−1 dr.

w̃(r) = −∫
r

0

(
s

r

)N−1

(𝜆𝛽 − |u|q−2u) ds.

−w̃r −
N − 1

r
w̃ = 𝜆𝛽 − |u|q−2u, 0 < r < R,

� = lim
r→0+

�
−

1

q−1 u(r).

𝜆
−

1

q−1 |u(r)| ≤ 𝛼, r > 0.

v(t) = 𝜆
−

1

q−1 u(𝜆−1t), w(t) = w̃(𝜆−1t), 𝛽1(t) = 𝛽(𝜆
−1t).
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Then, it is found that the pair (v, w) fulfills the properties i), ii) and iii) in Definition 4, 
where �1 assumes the rôle of � in iii), being (0,R�) the reference interval. In addition, a 
scaling computation ensures us that the energy relation (5.10) holds. Finally, the boundary 
condition:

is satisfied at the endpoint b = R� . We now come back to the proof of Theorem 10 and 
observe that dispose of enough conditions to conclude that v(t) exactly matches, in the 
interval (0,R�) , the solution obtained in this theorem. Since the boundary condition (5.32) 
is only fulfilled at the points �̄�k(𝛼), there must exist some n so that,

Thus, we have shown that solution u = ūn,𝜆 with 𝜆 = R−1
�̄�n(𝛼) . This finishes the proof of 

Theorem 8.

Remark 14 If we drop condition (5.7), then further families of solutions than those in The-
orem 8 can be found. The most simple example is extracted from the solution (v, w) to 
problem (5.9) defined by

together with

Then,

defines a solution to (5.1) in every ball whose radius is greater than R provided that

Observe that a dead core {û
𝜆
= 0} propagates toward x = 0 as � → ∞ . Many other families 

of solutions can be obtained. Of course, none of them satisfying the energy condition (5.7).
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(5.32)−w(b)v(b−) = |v(b−)|,

R𝜆 = �̄�n(𝛼).

v(t) = 𝛼 𝜒
(0,�̄�1(𝛼))

(t), �̄�1(𝛼) =
N

1 − 𝛼q−1
, 𝛼 > 0,

w(t) =

{
−

t

�̄�1(𝛼)
0 ≤ t ≤ �̄�1(𝛼)

−1 t > �̄�1(𝛼),

𝛽(t) =

{
1 0 ≤ t ≤ �̄�1(𝛼)

N − 1

t
t > �̄�1(𝛼).

û
𝜆
(r) = 𝜆

1

q−1 v(𝜆r),

𝜆 ≥ 𝜆c ∶= R−1
�̄�1(𝛼) > �̄�1.
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