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Abstract
In this paper, we are interested in the asymptotic enumeration of Cayley graphs. It has 
previously been shown that almost every Cayley digraph has the smallest possible auto-
morphism group: that is, it is a digraphical regular representation (DRR). In this paper, we 
approach the corresponding question for undirected Cayley graphs. The situation is com-
plicated by the fact that there are two infinite families of groups that do not admit any 
graphical regular representation (GRR). The strategy for digraphs involved analysing sepa-
rately the cases where the regular group R has a nontrivial proper normal subgroup N with 
the property that the automorphism group of the digraph fixes each N-coset setwise, and 
the cases where it does not. In this paper, we deal with undirected graphs in the case where 
the regular group has such a nontrivial proper normal subgroup.
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1  Introduction

We consider only finite groups and finite (di)graphs in this paper. A digraph Γ is an ordered 
pair (V, E) with V a finite non-empty set of vertices and with E a subset of the Cartesian 
product V × V  . In particular, Γ is a binary relation on V. We say that Γ = (V ,E) is a graph if 
E = {(w, v) ∣ (v,w) ∈ E} , that is, if Γ is a symmetric binary relation. An automorphism of a 
digraph or of a graph is a permutation on V that preserves the set E.

Definition 1.1  Let R be a group and let S be a subset of R. The Cayley digraph Γ(R, S) is 
the graph with V = R and with (r, t) ∈ E if and only if tr−1 ∈ S.

When the set S is inverse-closed (that is, S = S−1 ∶= {s−1 ∣ s ∈ S} ), the digraph Γ(R, S) 
is actually a graph, which we refer to as the Cayley graph on R with connection set S.

The problem of finding digraphical and graphical regular representations (DRRs and 
GRRs) for groups has a long history. Mathematicians have studied graphs with speci-
fied automorphism groups at least as far back as the 1930s, and in the 1970s, there were 
many papers devoted to the topic of finding GRRs (see for example [2, 10–13, 19–21, 24]), 
although the “DRR” and “GRR” terminology was coined somewhat later.

Definition 1.2  A digraphical regular representation (DRR) for a group R is a digraph 
whose automorphism group is the group R acting regularly on the vertices of the graph.

A graphical regular representation (GRR) for a group R is a digraphical regular repre-
sentation which is a graph.

It is an easy observation that when Γ(R, S) is a Cayley (di)graph, the group R acts reg-
ularly on the vertices as a group of graph automorphisms. A DRR (respectively, GRR) 
for R is therefore a Cayley digraph (respectively, Cayley graph) on R that admits no other 
automorphisms.

The main thrust of much of the work through the 1970s was to determine which groups 
admit GRRs. This question was ultimately answered by Godsil in [8].

Theorem 1.3  (Godsil, [8]) A group has a graphical regular representation if and only if it 
is not one of:

•	 a generalised dicyclic group (see Definition 1.9);
•	 an abelian group of exponent greater than 2; or
•	 one of 13 small groups (of order at most 32).

A corresponding result for DRRs by Babai [2] was much simpler, requiring no excluded 
families and finding only 5 exceptional small groups.

Babai and Godsil made the following conjecture.

Conjecture 1.4  ( [3]; Conjecture 3.13, [9]) If R is not generalised dicyclic or abelian of 
exponent greater than 2, then for almost all inverse-closed subsets S of R, Γ(R, S) is a GRR.

The details of this conjecture are somewhat imprecise; we are interested in the following 
more specific formulation:



1419On the asymptotic enumeration of Cayley graphs﻿	

1 3

Given a finite group R, we let 2�(R) denote the number of inverse-closed subsets of R, see 
also Definition 1.8. From Godsil’s theorem, as r → ∞ , the condition “R admits a GRR” is 
equivalent to “R is neither a generalised dicyclic group, nor abelian of exponent greater 
than 2.”

The corresponding result for Cayley digraphs (which does not require any families of 
groups to be excluded) was proved by the first and third authors in [17].

The strategy used in [17] (which was based on previous work in [3] by Babai and 
Godsil) to prove that almost every Cayley digraph is a DRR, involved three major 
pieces. One piece was to show that there are not many Cayley digraphs admitting 
digraph automorphisms that are also group automorphisms. A second piece of the proof 
involved considering the possibility that the group R has a proper nontrivial normal sub-
group N, and there is a digraph automorphism that fixes every orbit of N setwise. This 
piece itself naturally divides into two parts. If |N| is relatively small in comparison with 
|R|, then showing that roughly 2|R|∕|N| digraphs do not admit a particular type of auto-
morphism is significant, while if |N| is relatively large (for example if |N| = |R|∕c for 
some constant c) this sort of bound is not useful for our purposes. Conversely, if |N| is 
relatively large then showing that roughly 2|N| digraphs do not admit a particular type of 
automorphism is significant, but such a bound is not useful if |N| is relatively small. So, 
we need to combine bounds of each type to come up with an overall bound. The third 
and final piece of the proof involved considering the possible existence of digraph auto-
morphisms that do not fix all orbits of any normal subgroup N of R.

While the second piece may not seem entirely natural, it is important to consider 
because it covers a possibility that does not readily succumb to induction. If a graph 
only admits automorphisms that fix every orbit of N setwise, then the quotient graph on 
the orbits of N may be in fact a GRR. The induced subgraph on a single orbit may very 
well also be a GRR, so an inductive argument will reduce a non-GRR to two smaller 
GRRs, making induction virtually impossible to use effectively.

Similarly to the results about existence of GRRs and DRRs, the requirement that a 
connection set for a graph must be inverse-closed creates complications that make the 
proof of the Babai-Godsil conjecture more difficult for graphs than for digraphs. Rather 
than trying to accomplish the full result in a single paper, it makes sense to divide the 
work into the main pieces that were used to prove the DRR result and attempt to show 
each of these pieces for GRRs.

The first piece, showing that there are not many Cayley graphs admitting graph auto-
morphisms that are also group automorphisms (unless the group is generalised dicy-
clic or abelian of exponent greater than 2) was accomplished by the third author in 
[22]. Some of the main results from that work are also used in this paper, and we have 
included them as Theorem 1.13 and Proposition 1.14.

The goal of this paper is to complete the second piece of the proof: that is, to show 
that the number of Cayley graphs on R that admit nontrivial graph automorphisms that 
fix the vertex 1 and normalise some proper nontrivial normal subgroup N of R, is van-
ishingly small as a proportion of all Cayley graphs on R.

As in the work on DRRs, this problem naturally divides into the cases where the nor-
mal subgroup N is “large” or “small” relative to |R|. Our main results are Theorem 1.5 
and Theorem 1.6, which we prove in Sects. 3 and 4, respectively. In the case of graphs, 

lim
r→∞

min

{|{S ⊆ R ∶ Aut(Γ(R, S)) = R}|
2�(R)

∶ R admits a GRR and |R| = r

}
= 1.
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it emerges that we also need to consider separately graph automorphisms that fix or 
invert every element of the group. We deal with these in Sect. 2, and this piece of our 
work applies whether or not R admits any proper nontrivial normal subgroup.

Given a finite group R, we let 2�(R) denote the number of inverse-closed subsets of R. 
(The value �(R) is defined explicitly in Definition 1.8.)

Theorem 1.5  Let R be a finite group and let N be a non-identity proper normal subgroup of 
R. Then, the set

has cardinality at most 2�(R)−
|N|
96

+2 log2 |R|+(log2 |R|)2+3 . Moreover, if R is neither abe-
lian of exponent greater than 2 nor generalised dicyclic, we may drop the condition 
“ R = �Aut(Γ(R,S))(R) ” in the definition of the set.

Theorem 1.6  Let R be a finite group and let N be a non-identity proper normal subgroup of 
R. Then, the set

has cardinality at most 2�(R)−
|R|

192|N|+(log2 |R|)2+3 . Moreover, if R is neither abelian of exponent 
greater than 2 nor generalised dicyclic, we may drop the condition “ R = �Aut(Γ(R,S))(R) ” in 
the definition of the set.

By distinguishing the cases that �N� ≥ √�R� and �R ∶ N� ≥ √�R� , we obtain the follow-
ing corollary.

Corollary 1.7  Let R be a finite group and let N be a non-identity proper normal subgroup of 
R. Then, the set

has cardinality at most 2�(R)−
√�R�
192

+2 log2 �R�+(log2 �R�)2+3 . Moreover, if R is neither abe-
lian of exponent greater than 2 nor generalised dicyclic, we may drop the condition 
“ R = �Aut(Γ(R,S))(R) ” in the definition of the set.

Prior to launching into the pieces of the proof mentioned above, we provide some addi-
tional background and introductory material.

1.1 � General notation

Definition 1.8  Given a finite group R and x ∈ R , we let o(x) denote the order of the ele-
ment x and we let

{S ⊆ R ∣ S = S−1, R = �Aut(R,S)(R), ∃f ∈ �Aut(Γ(R,S))(N) with f ≠ 1 and 1f = 1},

{S ⊆ R ∣S = S−1, R = �Aut(R,S)(R), ∃f ∈ �Aut(Γ(R,S))(N) with f ≠ 1

and 1f = 1, f fixes each N-orbit setwise}

{S ⊆ R ∣S = S−1, R = �Aut(R,S)(R), ∃f ∈ �Aut(Γ(R,S))(N) with f ≠ 1

and 1f = 1, f fixes each N-orbit setwise}

�(R) ∶= {x ∈ R ∣ o(x) ≤ 2}
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be the set of elements of R having order at most 2. Given a subset X of R, we write 
�(X) ∶= X ∩ �(R) . Given an inverse-closed subset X of R, we let

Definition 1.9  Let A be an abelian group of even order and of exponent greater than 2, 
and let y be an involution of A. The generalised dicyclic group Dic(A, y, x) is the group 
⟨A, x ∣ x2 = y, ax = a−1,∀a ∈ A⟩ . A group is called generalised dicyclic if it is isomorphic 
to some Dic(A, y, x) . When A is cyclic, Dic(A, y, x) is called a dicyclic or generalised qua-
ternion group.

We let 𝜄A ∶ Dic(A, y, x) → Dic(A, y, x) be the mapping defined by (ax)𝜄A = ax−1 and 
a𝜄A = a , for every a ∈ A . In particular, 𝜄A is an automorphism of Dic(A, y, x) . The role of 
the label “A” in 𝜄A seems unnecessary; however, we use this label to stress one important 
fact. An abstract group R might be isomorphic to Dic(A, y, x) , for various choices of A. 
Therefore, since the automorphism 𝜄A depends on A and since we might have more than one 
choice of A, we prefer a notation that emphasizes this fact.

It follows from [18, Section 2.1 and 4] that if D = Dic(A, x, y) is generalized dicyclic 
over A, then either A is characteristic in D, or D ≅ Q8 × C�

2
 for some � ∈ ℕ . In particular, 

when D is not isomorphic to Q8 × C�

2
 , the automorphism 𝜄A is uniquely determined by D.

When D = Q8 × C�

2
 , the group D is generalized dicyclic over three distinct abelian sub-

groups, namely if Q8 = ⟨i, j⟩ , then D is generalized dicyclic over ⟨i⟩ × C�

2
 , ⟨j⟩ × C�

2
 and 

⟨ij⟩ × C�

2
 . In particular, we have three distinct options for the automorphism 𝜄A : one for 

each of these abelian subgroups. For simplicity, we denote by 𝜄i, 𝜄j and 𝜄k the corresponding 
automorphisms. It is not hard to check that 𝜄k = 𝜄i𝜄j and hence ⟨𝜄i, 𝜄j⟩ is elementary abelian 
of order 4.

Definition 1.10  Let A be an abelian group. We let �A ∶ A → A denote the automorphism of 
A defined by x�A = x−1 ∀x ∈ A . Very often, we drop the label A from �A because this should 
cause no confusion.

In what follows we use the following facts repeatedly.

Remark 1.11  Let X be a finite group. Since a chain of subgroups of X has length at most 
log2(|X|) , X has a generating set of cardinality at most ⌊log2(�X�)⌋ ≤ log2(�X�).

Any automorphism of X is uniquely determined by its action on the elements of a gener-
ating set for X. Therefore, �Aut(X)� ≤ �X�⌊log2(�X�)⌋ ≤ 2(log2(�X�))2.

Lemma 1.12  Let R be a finite group and let X be an inverse-closed subset of X. The number 
of inverse-closed subsets S of X is 2�(X). In particular, R has 2�(R) inverse-closed subsets.

Proof  Given an arbitrary inverse-closed subset S of X, S ∩ �(X) is an arbitrary subset of 
�(X) whereas in S ∩ (X ⧵ �(X)) the elements come in pairs, where each element is paired up 
to its inverse. Thus, the number of inverse-closed subsets of X is

The last statement follows using X = R . 	�  ◻

�(X) ∶=
|X| + |�(X)|

2
.

2|�(X)| ⋅ 2
|X⧵�(X)|

2 = 2�(X).
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The following important results by the third author deal with the case where there is 
a graph automorphism that is also a group automorphism of R.

Theorem 1.13  ([22], Lemma 2.7) Let R be a finite group and let � be a non-identity auto-
morphism of R. Then, one of the following holds 

(1)	 the number of �-invariant inverse-closed subsets of R is at most 2�(R)−
|R|
96,

(2)	 �R(�) is abelian of exponent greater than 2 and has index 2 in R, R is a generalized 
dicyclic group over �R(�) and 𝜑 = 𝜄

�R(𝜑)
,

(3)	 R is abelian of exponent greater than 2 and � is the automorphism of R mapping each 
element to its inverse.

Proposition 1.14  ([22], Proposition 2.8) Let R be a finite group and suppose that R is not 
an abelian group of exponent greater than 2 and that R is not a generalized dicyclic group. 
Then, the set

has cardinality at most 2�(R)−|R|∕96+(log2 |R|)2.

Notation 1.15  With R a finite group that is neither abelian of exponent greater than 2 nor 
generalised dicyclic, we define

so that |SN| is a value we aim to bound to prove Theorem 1.5. We divide SN into three 
subsets:

so

Observe that

Proposition 1.14 already provides us with a bound for |S1
N
| . In the next section, we will 

show that |UN| = 0.

{S ⊆ R ∣ S = S−1,R < �Aut(Γ(R,S))(R)}

SN = {S ⊆ R ∣ S = S−1, ∃f ∈ �Aut(Γ(R,S))(N) with f ≠ 1 and 1f = 1},

S
1
N
∶= {S ∈ SN ∣ R < �Aut(Γ(R,S))(R)},

TN ∶= {S ∈ SN ⧵ S1
N
∣ ∃x ∈ R and ∃f ∈ �Aut(Γ(R,S))(N) with 1

f = 1 and xf ∉ {x, x−1}},

UN ∶= SN ⧵ S1
N
⧵ TN .

SN = S
1
N
∪ TN ∪ UN .

UN = {S ∈ SN ⧵ S1
N
∣ ∀f ∈ �Aut(Γ(R,S))(N) with 1

f = 1 we have xf ∈ {x, x−1}∀x ∈ R}.
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2 � Graph automorphisms that fix or invert every group element

The bulk of this section consists of a long lemma in which we show that if a nontrivial 
permutation that fixes or inverts every element of a group exists, then the normaliser of 
R in the appropriate group is in fact larger than R. This means that any connection sets 
that could arise in UN have actually already arisen in S1

N
 , and therefore do not appear in 

UN.

Lemma 2.1  Let G be a subgroup of Sym(R) with R < G and with the property that 
rg ∈ {r, r−1} , for every r ∈ R and for every g ∈ G1 . Then, �G(R) > R.

Proof  We argue by contradiction and, among all groups satisfying the hypothesis of this 
lemma, we choose G with |R||G| as small as possible and with

In this proof, we denote by rg the image of the point r ∈ R via the permutation g and we 
denote by r�g ∶= g−1rg the conjugation of r via g.

Let M be a subgroup of G with R < M . For every r ∈ R and for every x ∈ M1 = M ∩ G1, 
rx ∈ {r, r−1} , and, from the modular law,

Therefore, by the minimality of our counterexample, we get M = G . As M was an arbitrary 
subgroup of G with R < M , we deduce

Let K be the core of R in G, that is, K ∶=
⋂

g∈G Rg.
We claim that

To prove this claim, we argue by contradiction and we suppose that K ≠ 1 . Let Ḡ be the 
permutation group induced by G on the action on K-orbits. Moreover, we let ̄ ∶ G → Ḡ 
denote the natural projection.

Let H be the kernel of ̄ . Thus, H is the largest subgroup of G fixing each K-orbit set-
wise and H ≤ G1K . Since R is a maximal subgroup of G and R ≤ RH ≤ G , we have that 
either R = RH or G = RH.

In the first case, H ≤ R and, since H ≤ G1K , from the modular law we obtain 
H ≤ R ∩ G1K = (R ∩ G1)K = K , that is, H = K . Moreover, as H = K ≤ R , we have 
R̄ = �Ḡ(R̄) . Now, R̄ is a regular subgroup of Ḡ ≤ Sym(R̄) and, for every r̄ ∈ R̄ and for every 
ḡ ∈ Ḡ1 , we have r̄ḡ ∈ {r̄, r̄−1} . Using our assumption that K ≠ 1 , we get that |R̄| < |R| , and 
by the minimality of our couterexample we have that Ḡ = G∕K = R∕K = R̄ . That is, G = R 
contradicting the fact that R is a proper subgroup of G.

So the second case holds, and G = RH , so G1 acts trivially on K-orbits. In other words, 
G1 fixes each K-orbit setwise. Thus, H = KG1 , and consequently

R = �G(R).

R = M ∩ R = M ∩ �G(R) = �M(R).

(2.1)R is a maximal subgroup of G.

(2.2)the core of R in G is 1.

(2.3)KG1 ⊴ G.
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Suppose there exist x ∈ G1 and r ∈ R such that rx = r−1 and o(rK) ≥ 3 . Then 
rx = r−1 ∈ r−1K = (rK)−1 ≠ rK , contradicting the fact that G1 fixes each K-orbit. This 
shows that

Let L be the subgroup of R fixed pointwise by G1 , that is, L ∶= {r ∈ R ∣ Gr = G1} . (The set 
L is indeed a subgroup of R, because it is a block of imprimitivity for the action of G on R 
containing the point 1.) Clearly, L < R , because G1 ≠ 1 . Now, from (2.4), we deduce that 
for every r ∈ R ⧵ L , o(rK) ≤ 2 . Hence,

Now, by (2.5), we must have ⟨xK ∈ R∕K ∣ x2 ∉ K⟩ ≤ L∕K . Since either 
�R∕K ∶ ⟨xK ∈ R∕K ∣ x2 ∉ K⟩� = 2 or R/K is a 2-group, we deduce that one of the follow-
ing holds 

(1)	 R/K is an elementary abelian 2-group,
(2)	 R = KL,
(3)	 |R ∶ KL| = 2 and every element in R∕K ⧵ KL∕K is an involution.

In what follows, we analyze these three alternatives.
Case (1)
Since R/K and G1 are elementary abelian 2-groups, we deduce that G/K is a 2-group. 

From R∕K < G∕K , it follows that �G∕K(R∕K) > R∕K . So �G(R) > R , but this contradicts 
our choice of G and R.

Case (2)
Let f ∈ G1 with f ≠ 1 . Now, as G1 normalizes K, the action of f on the points in K coin-

cides with the action of f by conjugation on K. Thus, k�f = kf ∈ {k, k−1} , for every k ∈ K . 
In particular, �f  is a non-trivial automorphism of K with the property that it maps each ele-
ment to itself or to its inverse (so every inverse-closed subset of K is invariant under �f  ). 
Therefore using Theorem 1.13 only one of the following holds true:

•	 K is abelian of exponent greater than 2 and �f = � is the automorphism inverting each 
element of K,

•	 K is generalised dicyclic over an abelian subgroup A of exponent greater than 2 and 
𝜄f = 𝜄A,

•	 K ≅ Q8 × C�

2 , for some � ≥ 0 , and 𝜄f ∈ {𝜄i, 𝜄j, 𝜄k}.

Since R = KL and since G1 fixes L pointwise, the action of g ∈ G1 on R is uniquely deter-
mined once the action of g on K is determined. Since we have at most four choices for the 
action of g ∈ G1 on K, we deduce that |G1| divides 4. If |G1| = 2 , then |G ∶ R| = 2 and 
hence R ⊴ G , which contradicts R = �G(R) . Thus 4 = |G1| = |G ∶ R| and K ≅ Q8 × C�

2
 , 

for some � ≥ 0.
Since |G ∶ R| = 4 , the transitive action of G on the right cosets of R gives rise to a 

permutation group of degree 4 and hence G/K is isomorphic to a transitive subgroup of 
Sym(4) . As R∕K = �G∕K(R∕K) , we deduce that G/K is isomorphic to either Sym(4) or 
Alt(4).

(2.4)for every x ∈ G1 and for every r ∈ R either rx = r or o(rK) ≤ 2.

(2.5)every element in
R

K
⧵
KL

K
is an involution.
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If R/K were a 2-group, we reach a contradiction using the same argument as in Case  (1). 
So R/K is a maximal subgroup of G/K which is not a 2-group, hence R/K isomorphic to 
either Sym(3) or Alt(3).

Let C be a Sylow 3-subgroup of R. Thus C = ⟨c⟩ is a cyclic group of order 3. Since K is 
a 2-group and R = KL , replacing C by a suitable R-conjugate, from Sylow’s theorem, we 
can assume that C ≤ L . Let k ∈ K with k ∉ L . As k is not fixed by each element of G1 , there 
exists x ∈ G1 such that kx = k−1 ≠ k . Now, as cx−1 = c , we obtain

On the other hand, (ck)x ∈ {ck, (ck)−1} . If (ck)x = ck , then we deduce k = k−1 , con-
tradicting the fact that kx ≠ k . If (ck)x = (ck)−1 , we deduce k−1c−1 = ck−1 and hence 
k−1 = ck−1c = c2(k−1)�c . Again we obtain a contradiction because k and k�c belong to K but 
c2 ∉ K.

Case (3)
Before proceeding with this case, we collect some information on G/K. Observe that in 

this case, R/K is a generalized dihedral group over the abelian group KL/K. Consider the 
set Ω of the right cosets of R/K in G/K. By (2.1) R/K is a maximal subgroup of G/K. So 
G/K is a primitive permutation with generalised dihedral point stabilisers.

These groups were classified in [7, Lemma  2.2]. Using this and the fact that G1 is 
2-elementary abelian group, the only possibility that can occur is that G/K is a primitive 
group of affine type of degree |R ∶ K| = |G1| . Since G = G1R and R ∩ G1 = 1 , G1K∕K acts 
regularly on Ω . Moreover, as KG1 ⊴ G by (2.3), G1K∕K is the socle of G/K. Since every 
element of G1 is an involution (it fixes or inverts each element of R), then G1K∕K is an 
elementary abelian 2-group.

Now, R/K acts by conjugation irreducibly as a linear group over the elemen-
tary abelian 2-group G1K∕K. Let �K ∈ LK∕K ⧵ {K}. Since LK/K is abelian, then 
�G1K∕K

(�K) = {aK ∈ G1K∕K ∣ �−1a�K = aK} is stable under the conjugation by 
uK, for every uK ∈ LK∕K. Further, since R∕K = ⟨rK, LK∕K⟩ , where rK = r−1K , and 
r−1�rK = �

−1K, for every �K ∈ LK∕K, then �G1K∕K
(�K) is stable under the conjugation 

by xK. In other words, we proved that �G1K∕K
(�K) is a proper R-submodule of the irruduc-

ible R-module G1K∕K, and consequently �G1K∕K
(�K) is trivial. Summing up, KL/K is abe-

lian and �G1K∕K
(�K) is trivial for every �K ∈ LK∕K ⧵ {K}. Thus, KL/K is a cyclic group 

of odd order. Moreover, as the socle G1K∕K has even order, |KL/K| must be odd. We let 
t ∶= |KL∕K| . At this point, the reader might find it useful to consider Fig. 1. Since KL/K is 
cyclic, there exists c ∈ L with ⟨c⟩K = KL and with o(cK) = t.

(2.6)(ck)x = ckx = cx
−1kx = ck

�x
= ck

−1

= ck−1.

Fig. 1   Local structure of Ḡ G

KLG1

KG1

R

KL

K
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Suppose now that K ≰ L and let k ∈ K ⧵ L . As k is not fixed by each element of G1 , 
there exists x ∈ G1 with kx = k−1 ≠ k . Now, since x fixes c, we are in position to use the 
same argument as in Case  (2). That is (2.6) holds, and consequently either k = k−1 or 
c2 ∈ K. Since k ≠ k−1 and o(cK) = t is odd, in both cases we get a contradiction.

We conclude that K ≤ L . (For the proof here, it might be useful again considering 
Fig.  1.) In particular, KL = L . Fix r ∈ R ⧵ L . As |R ∶ L| = 2 , we have R = L ∪ rL . Now, 
LG1 fixes L and rL setwise. The action induced by LG1 on L is the regular action of L 
because G1 fixes L pointwise. As LG1 ⊴ G , we must also have that the action of LG1 on rL 
is simply the regular action of L. In particular, for every x ∈ G1 , there exists �x ∈ L with 
the property that

The set {�x ∣ x ∈ G1} forms a subgroup of L, which we denote by T. As G1 is elementary 
abelian, so is T.

Summing up, we have

Using this and the fact that T is a group we see that if x ∈ G1 fixes some point in rL, then 
�x = 1 and consequently x fixes all points in rL. Further, x fixes all points in L, hence x = 1 . 
Therefore, each element in G1 ⧵ {1} acts fixed-point-freely on rL. Now, let x ∈ G1 ⧵ {1} . 
Since (r�)x ∈ {r�, (r�)−1} for each � ∈ L we deduce that (r�)x = (r�)−1 for every � ∈ L . 
Hence, G1 ⧵ {1} = {x} . Therefore, |G1| = 2 and |G ∶ R| = 2 contradicting the fact that 
�G(R) = R.

We have shown that none of the three alternatives is possible. Therefore, we obtain a 
contradiction, and the contradiction has arisen from assuming K ≠ 1 . Hence, K = 1 , which 
is our original claim (2.2).

Now, as R is maximal in G and as R is core-free in G, we may view G as a primitive per-
mutation group on the set Ω = G�R of right cosets of R in G. Observe that in this action G1 
acts as a regular subgroup and it is an elementary abelian 2-group which itself is core-free 
in G.

The primitive permutation groups containing an abelian regular subgroup have been 
classified by Cai Heng Li in [14]. Applying this classification [14, Theorem 1.1] to our 
group G in its action on Ω and to its elementary abelian regular subgroup G1 , we deduce 
that one of the following holds: 

(1)	 G is an affine primitive permutation group,
(2)	 the set Ω admits a Cartesian decomposition Ω = Δ� (for some � ≥ 1 ) and the primitive 

group G preserves this cartesian decomposition; moreover, T̃� ≤ G ≤ T̃wr Sym(�) , 
where the action of T̃ wr Sym(�) on Δ� is the natural primitive product action. The 
group T̃  is either Alt(Δ) or Sym(Δ) , G1 = G1,1 × G1,2 ×⋯ × G1,𝓁 with G1,i ≤ T̃  and 
with G1,i acting regularly on Δ , for each i.

Now, we shall see that neither of these two alternatives is possible.
Case (1)
Let V be socle of G. Thus V ⊴ G and V is an elementary abelian 2-group. Observe 

that

(r�)x = r��x, ∀� ∈ L.

�
x = �, (r�)x = r��x, ∀x ∈ G1,∀� ∈ L.

G = VR = G1R,
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where the first equality follows from the fact that V acts transitively on Ω with point sta-
biliser R and the second equality follows because G acts also transitively on R with point 
stabilizer G1 . Moreover,

where the first equality follows because V acts regularly on Ω with point stabilizer R and 
the second equality follows because R acts regularly on itself with point stabilizer G1.

Since G1 is a regular subgroup of the affine group G, from [5, Corollary  5  (1)], we 
deduce

Let

Since G1 is abelian, we have G1 ≤ N and hence

Similarly, since V is abelian, we have V ≤ N and hence

Thus,

Let r ∈ R and let v ∈ V ∩ G1 . We recall that rv ∈ {r, r−1}.
If rv = r , then 1r = r = rv = 1rv and hence rvr−1 ∈ G1.

If rv = r−1 , then 1r−1 = r−1 = rv = 1rv and hence rvr = r2(r−1vr) ∈ G1 . As V ⊴ G , we 
have r−1vr ∈ V  and hence r2V ∈ G1V∕V  . Since all the elements of G1V∕V  have order at 
most 2, it follows that r4V = V  , that is r4 ∈ V ∩ R = 1 . This shows that if o(r) ≠ 4 , then 
r−1vr ∈ V ∩ G1 . Therefore, all elements of R of order different from 4 normalise V ∩ G1 
and hence they all lie in Q.

This shows that R ⧵ Q is either empty, or contains only elements of order 4.
In the first case  (2.8) yields �G(V ∩ G1) = N = QV = RV = G, that is V ∩ G1 ⊴ G . 

Since V is the unique minimal normal subgroup of G and since V ∩ G1 ≠ 1 by (2.7), we 
deduce that V = V ∩ G1 , that is, V ≤ G1 . However, this contradicts the fact that G1 is core-
free in G. Thus

Q < R and every element in R ⧵ Q has order 4.
For every r ∈ R ⧵ Q , r2 does not have order 4, so r2 ∈ Q . This shows that Q contains the 

square of each element of R, hence

and R/Q is an elementary abelian 2-group.
Let x ∈ G1 and let r ∈ R . If rx = r , then rxr−1 ∈ G1 ≤ G1Q = N . If rx = r−1 , then 

rxr ∈ G1 and hence rxr = r2(r−1xr) ∈ G1 ≤ G1Q = N . Since r2 ∈ Q , we deduce that 
r−2 ⋅ r2(r−1xr) = r−1xr ∈ N . We have shown that

V ∩ R = 1 = G1 ∩ R,

(2.7)V ∩ G1 ≠ 1.

N ∶= �G(V ∩ G1) and let Q ∶= �R(V ∩ G1).

N = N ∩ G = N ∩ RG1 = (N ∩ R)G1 = QG1.

N = N ∩ G = N ∩ RV = (N ∩ R)V = QV .

(2.8)N = QG1 = QV .

(2.9)Q ⊴ R

(2.10)for every r ∈ R, r−1G1r ≤ N.
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From (2.9) and (2.10), we deduce that R normalises G1Q = N . Since G1 also normalizes N, 
we have that RG1 = G normalises N, that is,

Since Q ⊴ R and since R is a maximal subgroup of G by  (2.1), we deduce that either 
�G(Q) = G or �G(Q) = R . If �G(Q) = G , then Q is a normal subgroup of G contained in 
the core-free subgroup R. Therefore, Q = 1.

From (2.8), we have G1 = QG1 = N = QV = V  , contradicting the fact that G1 is core-
free in G. Thus,

When G is viewed as a permutation group on R, QG1 is the setwise stabilizer in G of Q ⊆ R ; 
hence, we can consider the permutation group induced by N = QG1 in its action on Q.

From (2.12), we have �N(Q) = N ∩ R = QG1 ∩ R = Q(G1 ∩ R) = Q . Let H be the ker-
nel of the permutational representation of N on Q. Note that H ≤ G1.

Now, QH/H is a regular subgroup of N∕H ≤ Sym(Q) and, for every rH ∈ QH∕H and 
for every gH ∈ G1∕H , we have rgH ∈ {rH, r−1H} . If �N∕H(QH∕H) = QH∕H , from the 
minimality of our counterexample, we deduce that either N = G or G1 acts trivially on Q. 
In the first case, G = N = �G(V ∩ G1) , that is G1 ∩ V  is a normal subgroup of G. Since 
V is the unique minimal subgroup of G, and since V ∩ G1 ≠ 1 by  (2.7), we deduce that 
V = V ∩ G1 , and consequently, V = G1 . However, this contradicts the fact that G1 is core-
free in G. Therefore, G1 fixes Q pointwise, that is, G1 is the kernel of the action of N = QG1 
on Q and hence

Let

Observe that U ⊴ G . From (2.11), for every g ∈ G , we have Gg

1
≤ Ng = N, that is U ≤ N.

Moreover, for every g ∈ G , from (2.13), we have Gg

1
⊴ Ng = N . Since G1 is an elemen-

tary abelian 2-group, then each Gg

1
 is a normal 2-subgroup of N, for every g ∈ G . Conse-

quently U is a normal 2-subgroup of G. In particular, U ∩ R is a normal 2-subgroup of R.
Since V is an irreducible �2R-module and U ∩ R ⊴ R , we deduce that V is completely 

reducible �2(U ∩ R)-module by Clifford’s theorem. Since V has characteristic 2 and since 
U ∩ R is a 2-group, this can happen only when

Since V is the unique minimal normal subgroup of G and since U ⊴ G , we have V ≤ U. 
Further, U = U ∩ G = U ∩ G1R = (U ∩ R)G1 = G1 and hence V = G1 . This is a contradic-
tion because V is normal in G but G1 is core-free in G.

Therefore, we can assume that �N∕H(QH∕H) > QH∕H. That is, there exists a non-iden-
tity element g ∈ G1 normalizing QH/H. Hence, for every r ∈ Q , g−1rg = uh , for some u ∈ Q 
and for some h ∈ H . Since g ∈ G1 , and rg ∈ {r, r−1} , we get u = uh = 1uh = 1g

−1rg = rg. 
This means that g−1rgH ∈ {rH, (rH)−1} for every r ∈ Q , and consequently �g is a non-
identity automorphism of QH/H with the property that (rH)�g ∈ {rH, (rH)−1} , for every 
rH ∈ QH∕H . Thus from Theorem 1.13, Q ≅ QH∕H is either an abelian group of exponent 
greater than 2 or a generalized dicyclic group.

(2.11)QV = QG1 = N ⊴ G.

(2.12)�G(Q) = R.

(2.13)G1 ⊴ N = QG1 = VG1.

U ∶= ⟨Gg

1
∣ g ∈ G⟩.

U ∩ R = 1.
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Since V is an irreducibly �2R-module and �2(Q) ⊴ R , we deduce that V is completely 
reducible �2(Q)-module by Clifford’s theorem. Since V has characteristic 2 and since �2(Q) 
is a 2-group, this can happen only when

If Q is a generalised dicyclic group, that is, Q = Dic(A, y, x) , with A an abelian group of 
even order and of exponent greater than 2, and y an involution in A, then ⟨y⟩ is a character-
istic subgroup of order 2, which contradicts (2.14). Thus, Q is an abelian group, and Q has 
odd order by (2.14). Since N = QV = QG1 by (2.11), and since V ⊴ N , then V is the unique 
Sylow 2-subgroup of N. As |G1| = |V| and G1 ≤ N , we get G1 = V  . This contradicts the 
fact that G1 is core-free in G.

Case (2)
We identify Ω with Δ� , and we recall that Alt(Δ)� ≤ G ≤ Sym(Δ)wr Sym(�) . Let 

�1 ∈ Δ and let � = (�1,… , �1) ∈ Ω . Since R is a maximal subgroup of G, replacing R by a 
suitable conjugate we may suppose that R = G� . Now, Alt(Δ ⧵ {�1})

� ≤ R . Further, recall 
that G1 = G1,1 × G1,2 ×⋯ × G1,𝓁 , where G1,i ≤ Sym(Δ) is an elementary abelian 2-sub-
group of acting regularly on Δ , for each i. Let �2 ∈ Δ ⧵ {�1} . As G1,1 ≤ Sym(Δ) is transi-
tive on Δ , there exists g ∈ G1,1 such that �g

1
= �2 and, since G1,1 is a 2-group, rearranging 

the points from �3 onwards if necessary, we can assume

(Observe that |Δ| ≥ 8 because |Δ| is a power of 2 larger than 5.) Let consider the 3-cycle 
r = (�2 �3 �4) and observe that it lies in R because it fixes the point �1 and R = G�.

In this new setting, to look at the original action of G on R, we have to identify the set R 
with the set of right cosets of G1 in G. In particular,

is such a point. We have

Since neither rgr−1 ∈ G1 nor rgr ∈ G1 , then G1rg ∉ {G1r,G1r
−1} . This contradicts our 

hypotheses.
We have shown that neither of the alternatives is possible. Therefore, we have contra-

dicted the existence of such G and R. 	� ◻

During the refereeing process of this paper, we found out that a short and elementary 
proof of Lemma 2.1 can be easily deduced from a classical result of Bergman and Len-
stra [4, Theorem 1]. We have decided to keep our more elaborate proof hoping that it 
can play some role in possible generalizations.

Lemma 2.1 is sufficient to show that UN is empty.

Corollary 2.2  When R is neither abelian of exponent greater than 2 nor generalised dicy-
clic, UN = �.

Proof  Recall from Notation 1.15 that when R is neither abelian of exponent greater than 2 
nor generalised dicyclic

(2.14)�2(Q) = 1.

g = (�1 �2)(�3 �4)(�5 �6)(�7 �8)⋯ .

G1r = G1(�2 �3 �4)

G1rg = G1(�2 �3 �4)(�1 �2)(�3 �4)(�5 �6)(�7 �8)⋯ = G1(�1 �2 �4)(�5 �6)(�7 �8)⋯ .
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while

and

Notice that the set of all elements of Aut(Γ(R, S)) that fix the vertex 1 and fix or invert 
every other element of R is a subgroup of Aut(Γ(R, S)) . By Lemma 2.1 with G being gener-
ated by R and the set of all such elements, we have UN = � . This is because every set that 
could lie in UN must appear in S1

N
 . 	�  ◻

3 � Groups with a “large” normal subgroup

We begin this section with a lovely little general result showing that in a non-abelian group, 
there cannot be a group automorphism � such that the result of computing nn� is constant 
for more than 3/4 of the group elements (and in fact in an abelian group, this can only hap-
pen if � is the automorphism that inverts every group element). For the special case where 
� is trivial and the constant is 1, our proof relies on (so does not replace) classical work by 
Liebeck and MacHale [15].

Lemma 3.1  Let N be a group, let � be an automorphism of N and let t ∈ N . Then one of the 
following holds: 

(1)	 |{n ∈ N ∣ nn� = t}| ≤ 3|N|∕4,
(2)	 N is abelian, t = 1 and n� = n−1 ∀n ∈ N.

Proof  We let S ∶= {n ∈ N ∣ nn� = t} . Suppose |S| > 3|N|∕4 . Observe that for every 
n ∈ S , we have n� = n−1t.

As |S| > 3|N|∕4 , we have S
�−1 ∩ S ≠ � . Let n ∈ S

�−1 ∩ S , so that n, n� ∈ S . 
Then nn� = t because n ∈ S , and n�(n�)� = t because n� ∈ S . Therefore, 
t = n�(n�)� = (nn�)� = t� , that is, t = t�.

As |S| > 3|N|∕4 , we have |S ⋅ t ∩ S| = |S ⋅ t| + |S| − |S ⋅ t ∪ S| > 3|N|∕4 + 3|N|∕4 − |N| = |N|∕2 . 
Let n ∈ S ⋅ t ∩ S . Then n = mt , for some m ∈ S . Therefore

From this we obtain mt = t−1m , that is, tm = t−1 . As n = mt , we also have tn = t−1 . 
We have shown that for every n ∈ S ⋅ t ∩ S , we have tn = t−1 . For every two ele-
ments n1, n2 ∈ N with tn1 = t−1 = tn2 , we have n1n−12 ∈ �N(t) . Therefore, we deduce 
that |N|∕2 < |S ⋅ t ∩ S| ≤ |�N(t)| . Thus, N = �N(t) and t ∈ �(N) . Moreover, for every 

SN = {S ⊆ R ∣ S = S−1, ∃f ∈ �Aut(Γ(R,S))(N) with f ≠ 1 and 1f = 1},

S
1
N
= {S ∈ SN ∣ R < �Aut(Γ(R,S))(R)},

UN = {S ∈ SN ⧵ S1
N
∣ ∀f ∈ �Aut(Γ(R,S))(N) with 1

f = 1 we have xf ∈ {x, x−1}∀x ∈ R}.

t−1m−1
⋅ t = n−1t = n� = (mt)� = m�t� = m−1t ⋅ t.
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n ∈ St ∩ S , we have tn = t−1 and, as t ∈ �(N) , we have tn = t . Thus, t2 = 1 . Summing up, t 
is a central element of N of order at most 2.

Suppose that t = 1 . Then S = {n ∈ N ∣ n� = n−1} . In particular, � is an automorphism 
inverting more than 3|N|/4 of the elements of N. From a classical result of Liebeck and 
MacHale [15], we deduce that N is abelian and � is the automorphism inverting each ele-
ment of N, that is, n� = n−1 ∀n ∈ N.

Suppose that t ≠ 1 . Since t ∈ �(N) and since t� = t , we may consider the group 
N̄ ∶= N∕⟨t⟩ and the induced automorphism 𝛼̄ ∶ N̄ → N̄ . In particular, in N̄ , the set S pro-
jects to the set S̄ = {n̄ ∈ N̄ ∣ n̄𝛼̄ = n̄−1} . Since this set has cardinality larger than 3|N̄|∕4 , 
applying again the theorem of Liebeck and MacHale, we deduce that N̄ is abelian and 
n̄𝛼̄ = n̄−1 ∀n̄ ∈ N̄ . It follows that for every n ∈ N , n� ∈ ⟨t⟩n−1 = {n−1, tn−1}.

Set S
� ∶= {n ∈ N ∣ n� = n−1} . In particular, {S,S�} is a partition of N and 

|S�| = |N ⧵ S| < |N|∕4.
Suppose that N is not abelian. As |N ⧵ �(N)| ≥ |N|∕2 and |S| > 3|N|∕4 , 

there exists n ∈ (N ⧵ �(N)) ∩ S . Since N̄ is abelian, we have [N,N] = ⟨t⟩ , 
from which it follows that |N ∶ �N(n)| = 2 . For every m ∈ �N(n) ∩ S , we have 
(nm)� = n�m� = n−1t ⋅ m−1t = n−1m−1t2 = m−1n−1 = (nm)−1 and hence nm ∈ S

� . This 
shows that n(�N(n) ∩ S) ⊆ S

� . Now,

contradicting the fact that |S�| < |N|∕4 . This contradiction has arisen assuming that N is 
not abelian and hence N is abelian.

Now, for every n,m ∈ S , we have (nm)� = n−1t ⋅ m−1t = n−1m−1t2 = (nm)−1 and hence 
nm ∈ S

� . Therefore, S ⋅ S ⊆ S
′ , but this is impossible because |S′| < |S| . This contradiction 

has arisen from assuming t ≠ 1 and hence t = 1 and the proof is now complete. 	�  ◻

We will also require a similar result that considers when inversion is applied after the 
automorphism.

Lemma 3.2  Let N be a group, let � be an automorphism of N and let t ∈ N . Then one of the 
following holds: 

(1)	 |{n ∈ N ∣ n(n�)−1 = t}| ≤ 3|N|∕4,
(2)	 t = 1 and n� = n ∀n ∈ N.

Proof  The proof of this is very similar to the proof of Lemma 3.1, so we omit some of the 
repeated details.

We let S ∶= {n ∈ N ∣ n(n�)−1 = t} . Suppose |S| > 3|N|∕4 . Observe that for every 
n ∈ S , we have n� = t−1n.

As before, by taking some n ∈ S
�−1 ∩ S , we can conclude that t = t�.

As |S| > 3|N|∕4 , we can argue as before that |S−1t ∩ S| > |N|∕2 . Let n ∈ S
−1t ∩ S . 

Then n = mt , for some m ∈ S
−1 ; that is, m−1 ∈ S . Notice that this means (m−1)� = t−1m−1 , 

so m� = mt . Therefore

|S�| ≥ |n(�N(n) ∩ S)| = |�N(n) ∩ S| = |�N(n)| + |S| − |�N(n) ∪ S| ≥ |�N(n)|
+ |S| − |N| = |S| − |N|

2
>

|N|
4

,
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From this we obtain mt = t−1m , that is, tm = t−1 . As n = mt , we also have tn = t−1 . We 
have shown that for every n ∈ S

−1t ∩ S , we have tn = t−1 . As before, this implies that 
|N|∕2 < |S−1t ∩ S| ≤ |�N(t)| . Thus, N = �N(t) and t ∈ �(N) . As before, this implies that 
t2 = 1 . Summing up, t is a central element of N of order at most 2.

Suppose that t = 1 . Then S = {n ∈ N ∣ n� = n} . In particular, � is an automorphism fix-
ing more than half of the elements of N. Since the set of fixed points of an automorphism is 
a subgroup of N, we deduce that � = 1 ; that is, n� = n ∀n ∈ N.

Suppose that t ≠ 1 . Since t ∈ �(N) and since t� = t , we may consider the group 
N̄ ∶= N∕⟨t⟩ and the induced automorphism 𝛼̄ ∶ N̄ → N̄ . In particular, in N̄ , the set S pro-
jects to the set S̄ = {n̄ ∈ N̄ ∣ n̄𝛼̄ = n̄} . Since this set has cardinality larger than |N̄|∕2 , again 
we see that n̄𝛼̄ = n̄ ∀n̄ ∈ N̄ . It follows that for every n ∈ N , n� ∈ ⟨t⟩n = {n, tn}.

Set S
� ∶= {n ∈ N ∣ n� = n} . In particular, {S,S�} is a partition of N and 

|S�| = |N ⧵ S| < |N|∕4.
Now, for every n,m ∈ S , we have (nm)� = (tn)(tm) = (nm)t2 = nm since t is central of 

order 2, and hence nm ∈ S
� . Therefore, S ⋅ S ⊆ S

′ , but this is impossible because |S′| < |S| . 
Again this contradiction completes our proof. 	�  ◻

Our next few results show that except in some very special cases, if we have a group T 
with an index-2 subgroup N and a permutation of T that has a very specific sort of action 
on every element of the nontrivial coset of N in T, then the number of subsets of T that are 
closed under both inversion and this permutation is vanishingly small relative to the num-
ber of Cayley graphs on T.

Lemma 3.3  Let T be a finite group, let N be a subgroup of T having index 2, let � ∈ T ⧵ N , 
let t ∈ N and let �t ∶ T → T  be any permutation defined by

Then one of the following holds: 

(1)	 |{X ⊆ T ∣ X = X−1,X𝛼t = X}| ≤ 2
�(T)−

|N|
16 ,

(2)	 T ≅ C4 × C�

2
 for some � ∈ ℕ , t is the only non-identity square in T and N is an elemen-

tary abelian 2-group,
(3)	 o(t) = 2 , t = �2 and T = Dic(N, �2, �),
(4)	 t = 1.

In parts  (2),  (3) and  (4), if n�t ∈ {n, n−1} for every n ∈ N , then we have x�t ∈ {x, x−1} 
∀x ∈ T .

Proof  If t = 1 , then we obtain part (4). Thus, for the rest of the argument, we assume t ≠ 1.
Observe that �t fixes N setwise and induces on T ⧵ N a permutation which is 

the product of disjoint cycles each of whose lengths is o(t). For simplicity, we let 
S ∶= {X ⊆ T ∣ X = X−1,X𝛼t = X}.

If o(t) ≥ 3 , then

t−1(mt) = t−1n = n� = (mt)� = m�t� = (mt)t.

n�t ∈ N and (�n)�t = �tn, ∀n ∈ N.
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and hence part (1) follows.
The only remaining possibility is o(t) = 2 . Consider H ∶= ⟨�t, �⟩ , where � ∶ T → T  is 

the mapping defined by x� = x−1 ∀x ∈ T  . Clearly, S ∈ S if and only if S is H-invariant. The 
orbits of H on T ⧵ N have even cardinality because o(�t) = o(t) = 2 and �t has no fixed 
points on T ⧵ N . There are only two possibilities for H having an orbit of cardinality 2 on 
T ⧵ N:

•	 this orbit is {�n, �tn} where both �n and �tn are involutions (in this case � fixes both 
�n and �tn),

•	 this orbit is {�n, �tn} and (�n)−1 = �tn (in this case (�n)�t = (�n)�).

Let n0 be an element in N with o(�n0) = o(�tn0) = 2 . As o(�n0) = 2 , we have 
n0� = �−1n−1

0
 and hence

Therefore t(�−1n−1
0
)t = �−1n−1

0
 . Since o(t) = 2 , we deduce (n0�)t = n0� , that is, n0� ∈ �T (t) . 

As �n0 = (n0�)
�−1 ∈ �T (t)

�−1 = �T (t
�−1 ) , the elements of the first type are in the set

Let n1 be an element in N with (�n1)−1 = �tn1 . Let n ∈ N and suppose that �n1n ∈ T ⧵ N 
also satisfies (�n1n)−1 = �tn1n . This means n−1�tn1 = �tn1n , that is, n(�tn1)−1 = n−1 . There-
fore, the elements of the second type are in the set

Observe that A or B might be the empty set: A = � when there is no involution in 
�T⧵N(t

�−1 ) , B = � when there is no element n1 ∈ N with (�n1)−1 = �tn1 . Observe also that 
A ∩ B = � : indeed, if �n ∈ A ∩ B , then (�n)2 = 1 and (�n)−1 = �tn , that is t = 1 , which is 
a contradiction.

Since X ∈ S if and only X is a union of orbits of H, we get

If |B| ≤ 3|N|∕4 , then

and part  (1) follows. Suppose now that |B| > 3|N|∕4 , that is, 
|{n ∈ N ∣ n𝛾tn1 = n−1}| > 3|N|∕4 . This means that the action of �tn1 by conjugation on N 
inverts more than 3/4 of the elements of N. From [15], N is abelian and the action of �tn1 
by conjugation on N inverts each element of N. Therefore B ⊃ 𝛾N and hence � ∈ B . There-
fore �−1 = �t , that is, t = �2 (since o(t) = 2 ). When N is an elementary abelian 2-group, 
we deduce T ≅ C4 × C�

2
 for some � ∈ ℕ and hence part (2) holds. When N has exponent 

greater than 2, we deduce T = Dic(N, �2, �) and hence part (3) holds. 	�  ◻

|S| ≤ 2
�(N)+

|T⧵N|
3 = 2

�(N)+
|N|
3 = 2

|N|+|I(N)|
2

+
|N|
3 ≤ 2

|N|+|I(T)|
2

+
|N|
3 ≤ 2

�(T)−
|N|
6

1 = (�tn0)
2 = �tn0�tn0 = �t�−1n−1

0
tn0.

A ∶= I([T ⧵ N] ∩ �T (t
�−1 )) = I(�T⧵N(t

�−1 )).

B ∶= �n1{n ∈ N ∣ n�tn1 = n−1}.

|S| ≤ 2�(N)+
|A∪B|

2
+

|T⧵N|−|A∪B|
4 = 2�(N)+

|A∪B|
4

+
|T⧵N|

4 = 2
|N|+|I(N)|

2
+

|A∪B|
4

+
|N|
4

= 2
|T|+|I(N)|

2
+

|A∪B|
4

−
|N|
4 = 2

|T|+|I(N)|
2

+
|A|
4
+

|B|
4
−

|N|
4 = 2

|T|+|I(N)∪A|
2

−
|A|
4
+

|B|
4
−

|N|
4 ≤ 2�(T)−

|A|
4
+

|B|
4
−

|N|
4 .

|S| ≤ 2
�(T)+

3|N|
16

−
|N|
4 = 2

�(T)−
|N|
16
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The hypotheses of the next lemma look much like the previous one, with the addi-
tional assumption that N is abelian (of exponent greater than 2), and a different action 
on the nontrivial coset of N. The exceptional cases and the proof are quite different, 
though.

Lemma 3.4  Let T be a finite group, let N be an abelian subgroup of T having index 2 
and exponent greater than 2, let t ∈ N , let � ∈ T ⧵ N , let �t ∶ T → T  be any permutation 
defined by

Further suppose that either o(�) = 2 , or (�n)�t = �n whenever o(�n) = 2 . Then one of the 
following holds: 

(1)	 |{X ⊆ T ∣ X = X−1,X𝛼t = X}| ≤ 2�(T)−
|N|
24 ;

(2)	 T is abelian and t = �−2;
(3)	 T ≅ Q8 × C�

2
 and N ≅ C4 × C�

2
 for some � ∈ ℕ;

(4)	 t = �2 , T ≅ ⟨x, y ∣ x4 = y4 = (xy)4, x2 = y2⟩ × C�

2
 and N ≅ C4 × C�+1

2
 for some � ∈ ℕ . 

(The group with presentation ⟨x, y ∣ x4 = y4 = (xy)4, x2 = y2⟩ has order 16.)

In parts  (2),  (3) and  (4), if n�t ∈ {n, n−1} for every n ∈ N , then we have x�t ∈ {x, x−1} 
∀x ∈ T .

Proof  We let � ∶ T → T  the permutation defined by x� = x−1 ∀x ∈ T  . Since N is abelian, for 
every n ∈ N , we have

Thus, �t is a permutation having order 2. Clearly, � has also order 2. For simplicity, we let 
S ∶= {X ⊆ T ∣ X = X−1,X𝛼t = X} . In particular, X ∈ S if and only if X is ⟨�t, �⟩-invariant, 
that is, X is a union of ⟨�t, �⟩-orbits.

Observe that n−1�−1 = � ⋅ (�−1n−1�−1) and �−1n−1�−1 ∈ N because |T ∶ N| = 2 . 
Therefore

We divide the proof in two cases.
Case (�n)�t = �n whenever o(�n) = 2.
Note that

So c(N) = c(T) − |N|∕2 − |I(T ⧵ N)|∕2.
Given n ∈ N , the ⟨�⟩-orbit containing �n is {�n, n−1�−1} . Now, there are only two 

possibilities for �t not fusing this ⟨�⟩-orbit with another ⟨�⟩-orbit. The first possibility is 
when �t fixes both �n and n−1�−1 ; the second possibility is when (�n)�t = (�n)� , that is, 
�tn−1 = n−1�−1 . Let

n�t ∈ N and (�n)�t = �tn−1, ∀n ∈ N.

(�n)�
2
t = ((�n)�t )�t = (�tn−1)�t = �t(tn−1)−1 = �tnt−1 = �n.

(3.1)(n−1�−1)�t = (� ⋅ �−1n−1�−1)�t = �t�n� .

c(T) =
|T|
2

+
|I(T)|
2

=
|T|
2

+
|I(N)|
2

+
|I(T ⧵ N)|

2
= c(N) +

|N|
2

+
|I(T ⧵ N)|

2
.
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Given n ∈ A , we have �tn−1 = (�n)�t = �n and, from (3.1), �t�n� = (n−1�−1)�t = n−1�−1 . 
The first equality yields n2 = t . The second equality yields

where in the second equality we have used that �2 ∈ N and that N is abelian. Therefore, 
if n ∈ A , then n2 = t and t = �−1t−1�−3 . Observe that the second condition does not 
depend on n any longer. This means that we have two possibilities for A ; either A = � , or 
A = n0Ω2(N) where Ω2(N) ∶= {n ∈ N ∣ o(n) ≤ 2} and where n0 ∈ N satisfies n2

0
= t . Sum-

ming up

Given n ∈ B , we have t = �−1n−1�−1n = �−1n−1�n�−2 = [� , n]�−2 (using �2 ∈ N in 
the second equality). This means that we have two possibilities for B ; either B = � , or 
B = n1�N(�) where n1 ∈ N satisfies t = [� , n1]�

−2 . Summing up

We claim that A ∩ B = {n ∈ N ∶ o(�n) = 2} . Certainly if o(�n) = 2 then by the case 
we are in, (�n)�t = �n = (�n)−1 and therefore n ∈ A ∩ B . Conversely, if n ∈ A ∩ B then 
(�n)�t = �n and (�n)�t = (�n)−1 , so o(�n) = 2 . Therefore |A ∩ B| = |I(T ⧵ N)|.

Using the sets A and B we are ready to estimate |S| . Indeed, we have

If A = B = � , then part  (1) follows immediately. Suppose then A and B are not both 
empty. If A = � , then part (1) follows as long as N ≠ �N(�) . If N = �N(�) , then [� , n1] = 1 
and hence t = �−2 . Thus, we obtain part  (2). If B = � , then part  (1) follows as long as 
N ≠ Ω2(N) . However, since we are assuming that N has exponent greater than 2, we can-
not have N = Ω2(N) . Thus, we have finished discussing the case A = � or B = � . We now 
assume A ≠ ∅ ≠ B . In particular, |N ∶ �N(�)| ≥ 2 and |N ∶ Ω2(N)| ≥ 2 . If |N ∶ �N(�)| ≥ 3 
or if |N ∶ Ω2(N)| ≥ 3 , then from (3.2) we have

and part (1) follows.
It remains to deal with the case that |N ∶ Ω2(N)| = 2 = |N ∶ �N(�)| , so A and B 

are both cosets of an index 2 subgroup of N. If A ∩ B ≠ � then since both are cosets of 
index-2 subgroups of N, it is straightforward to see that their intersection has cardinality 
at least |N|/4, and part (1) follows. If A ∩ B = � , we obtain that A and B are both cosets 
of the same index 2 subgroup of N. Therefore, �N(�) = Ω2(N) and N ≅ C4 × C�

2
 for some 

� ∈ ℕ . Let us call this index-2 subgroup of N, M. Therefore, we have either A = M and 
B = N ⧵M , or A = N ⧵M and B = M . In the first possibility, we have n2

0
= 1 , A = Ω2(N) , 

A ∶= {n ∈ N ∣ (�n)�t = �n, (n−1�−1)�t = n−1�−1},

B ∶= {n ∈ N ∣ �tn−1 = n−1�−1}.

t = �−1n−1�−2n−1�−1 = �−1n−2�−3 = �−1t−1�−3,

A =

{
� if there is no n ∈ N with n2 = t, or if t ≠ �−1t−1�−3,

n0Ω2(N) where n0 ∈ N satisfies n2
0
= t and t = �−1t−1�−3.

B =

{
� if there is no n ∈ N with t = [� , n]�−2,

n1�N(�) where n1 ∈ N satisfies t = [� , n1]�
−2.

(3.2)
|S| ≤ 2�(N)+

|�N⧵(�A∪�B)|
4

+
|�A⧵�(A∩B)|

2
+

|�B⧵�(A∩B)|
2

+|�(A∩B)|

= 2�(N)+
|�N|
4

+
|A|
4
+

|B|
4 = 2�(T)−

|N|
2
+

|�N|
4

+
|A|
4
+

|B|
4
−

|I(T⧵N)|
2 = 2�(T)−

|N|
4
+

|A|
4
+

|B|
4
−

|A∩B|
2 .

|S| ≤ 2�(T)−
|N|
4
+

|A|
4
+

|B|
4 ≤ 2

�(T)−
|N|
4
+

|N|
12

+
|N|
8 = 2�(T)−

|N|
24
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�4 = 1 and �2 = [� , n1] = �−1n−1
1
�n1 . From this it follows �−1 = n−1

1
�n1 . Since n2

1
= �2 

is the unique involution that is a square in N, we get part  (3). In the second possibil-
ity, �−2 = t = n2

0
 . If we also have (�n0)2 = t , then T = Dic(N, �2, �) and we obtain again 

part (3). If (�n0)2 ≠ t , then ⟨� , n0⟩ has order 16 and is isomorphic to the group with presen-
tation ⟨x, y ∣ x4 = y4 = (xy)4 = 1, x2 = y2⟩ and we obtain part (4).

Case o(�) = 2 . For every n ∈ N , from (3.1) (and using o(�) = 2 ), we have

Moreover, n�t ��t � ∈ N ∀n ∈ N . Define z ∶= (tt�
�

)−1 and � ∶ T → T  by

In particular, � = �t��t�.
Recall that X ∈ S if and only if X is ⟨�t, �⟩-invariant. Since � ∈ ⟨�t, �⟩ , we deduce that X 

is also ⟨�, �⟩-invariant.
Subcase o(z) ≥ 3.
Since the orbits of � on T ⧵ N have all length o(z) ≥ 3 , we have

and part (1) follows.
Subcase o(z) = 2.
For every n ∈ N , we have

Define �� ∶ T → T  by

If X ∈ S , then X is ⟨�, �⟩-invariant and hence X is also ⟨�, �′⟩-invariant. Suppose z� ≠ z . 
Since the orbits of ⟨�, �′⟩ on T ⧵ N have all length �⟨z, z� ′⟩� ≥ 4 , we have

and part (1) follows.
Suppose o(z) = 2 and z� = z . For every n ∈ N , we have

This shows that �� = �� in its action on T ⧵ N and hence ⟨��T⧵N , ��T⧵N⟩ is an elementary abe-
lian 2-group of order 1, 2 or 4. (Here, we are denoting by �|T⧵N and by �|T⧵N the restrictions 
of � and of � to T ⧵ N .) This group cannot have order 1 because o(z) = 2 and hence �|T⧵N is 
not the identity permutation.

If this group has order 2, then �|T⧵N must be either �|T⧵N or the identity permutation. Sup-
pose that �|T⧵N = �|T⧵N . Then, for every n ∈ N , we have n−1� = �zn , so n� = zn−1 and hence 
nn� = z . But since z ≠ 1 , Lemma 3.1 implies that we cannot have z = nn� for every n ∈ N.

So we must have �|T⧵N being the identity permutation, that is, n−1� = (�n)� = �n , so 
n� = n−1 ∀n ∈ N . In particular, �(�N) = |N| and �(T) = �(N) + |N| . Since the orbits of 

(�n)�t ��t � = (�tn−1)��t � = ((tn−1)−1(�)−1)�t � = (�t�(tn−1)�)� = (�tt� (n−1)� )�

= n� (tt� )−1� = (tt� )−1n�� = (t� )−1t−1�n = �(t� t)−1n = �(tt� )−1n.

n� = n�t ��t � and (�n)� = �zn, ∀n ∈ N.

|S| ≤ 2
�(N)+

|N|
3 = 2

|N|+|I(N)|
2

+
|N|
2
−

|N|
6 = 2

|T|+|I(N)|
2

−
|N|
6 ≤ 2

�(T)−
|N|
6

(�n)���� = (n−1�)��� = (�(n−1)� )��� = (�z(n−1)� )�� = (n�z�)� = (�nz� )� = (�z�n)� = �zz�n.

n�
�

= n� and (�n)�
�

= �zz�n, ∀n ∈ N.

|S| ≤ 2�(N)+
|N|
4 = 2

|N|+|I(N)|
2

+
|N|
2
−

|N|
4 = 2

|T|+|I(N)|
2

−
|N|
4 ≤ 2�(T)−

|N|
4

(�n)�� = (n−1�)� = (�(n−1)� )� = �z(n−1)� = z�(n−1)� = zn−1� = (�zn)� = (�n)��.
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⟨�⟩ on T ⧵ N have all length o(z) = 2 , we have |S| ≤ 2�(N)+|N|∕2 = 2�(T)−|N|∕2 and part  (1) 
follows.

It remains to consider the case that ⟨��T⧵N , ��T⧵N⟩ has order 4. By the orbit counting 
lemma, the number of orbits of ⟨�⟩ on T ⧵ N is

Also, by the orbit counting lemma, the number of orbits of ⟨��T⧵N , ��T⧵N⟩ on T ⧵ N is

where in the first equality we have used  (3.3) and in the second equality we have used 
the fact that � has no fixed points on T ⧵ N . Now, �n ∈ FixT⧵N(��) if and only if 
�n = (�n)�� = �z(n−1)� , that is, z = nn� . From Lemma 3.1, we deduce |FixT⧵N(��)| ≤ 3|N|∕4 
because z ≠ 1 . Thus

and part (1) follows.
Subcase o(z) = 1.
In this case, tt� = z = 1 and t� = t−1 . In this case, for every n ∈ N , we have

This shows that ��t = �t� on T ⧵ N , and hence (in particular) ⟨��T⧵N , (�t)�T⧵N⟩ is an ele-
mentary abelian 2-group of order 1, 2 or 4. If (�t)|T⧵N is the identity mapping, then 
�n = (�n)�t = �tn−1, for every n ∈ N . In particular, �t = �tt−1 which implies t = 1 . This 
means that for every n ∈ N , �n = (�n)�t = �n−1 , so that N is an elementary abelian 2-group, 
contradicting our hypothesis that N has exponent greater than 2.

If �T⧵N is the identity mapping, then �(�N) = |N| and hence �(T) = �(N) + |N| . Observe 
that

Let n2
0
= t , an easy computation shows that

(3.3)
1

2
(|T ⧵ N| + |FixT⧵N(�)|) = 1

2
(|T ⧵ N| + |I(T ⧵ N)|) = �(T ⧵ N).

1

4

(|N| + |Fix
T⧵N(�)| + |Fix

T⧵N(�)| + |Fix
T⧵N(��)|

)
= �(T ⧵ N) −

|N|
4

−
|Fix

T⧵N(�)|
4

+
|Fix

T⧵N(�)|
4

+
|Fix

T⧵N(��)|
4

= �(T ⧵ N) −
|N|
4

−
|Fix

T⧵N(�)|
4

+
|Fix

T⧵N(��)|
4

≤ �(T ⧵ N) −
|N|
4

+
|Fix

T⧵N(��)|
4

,

|S| ≤ 2
�(N)+�(T⧵N)−

|N|
4
+

3|N|
16 = 2

�(T)−
|N|
16

(�n)��t = (�(n−1)� )�t = �tn� = t−1�n� = t−1n� = (�tn−1)� = (�n)�t �.

FixT⧵N(�t) ∶= {�n ∣ t = n2}.

FixT⧵N(�t) = �n0Ω2(N),
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hence |FixT⧵N(�t)| = |Ω2(N)| ≤ |N|∕2 . This shows that ⟨(�t)�T⧵N⟩ has at most 
|N|∕2 + (|N|∕2)∕2 = 3|N|∕4 orbits on T ⧵ N . Therefore

and part (1) follows. So we can assume that �T⧵N is not the identity.
Since �2 = 1 , when �|T⧵N = (�t)|T⧵N , then t−1� = (�t)�T⧵N = (�t)�t = � , so t = 1 . Further, 

n−1� = (�n)�T⧵N = (�n)�t = �n−1, for every n ∈ N , that is T is abelian, and part (2) holds.
It only remains to consider the case that ⟨��T⧵N , (�t)�T⧵N⟩ has order 4.
By the orbit counting lemma, the number of orbits of ⟨�, �t⟩ on T ⧵ N is

where the equality between the two members follows by (3.3). If |FixT⧵N(�t)| ≤ |N|∕3 and 
|FixT⧵N(��t)| ≤ |N|∕2 , or |FixT⧵N(�t)| ≤ |N|∕2 and |FixT⧵N(��t)| ≤ |N|∕3 , then we immedi-
ately obtain part (1). Therefore, we suppose that this does not hold. An easy computation 
reveals that

As (�t)|T⧵N and (��t)|T⧵N are not the identity mappings, we deduce

•	 FixT⧵N(�t) = �n0Ω2(N) , n20 = t and |N ∶ Ω2(N)| = 2,
•	 FixT⧵N(��t) = �n1�N(�) , t−1 = [n1, �] and |N ∶ �N(�)| = 2,
•	 |FixT⧵N(�t)| = |N|∕2 = |FixT⧵N(��t)|.

If Ω2(N) ≠ �N(�) or if FixT⧵N(�t) = FixT⧵N(��t) , we have |FixT⧵N(�)| ≥ |N|∕4 , because 
FixT⧵N(�) contains both �(Ω2(N) ∩ �N(�)) and FixT⧵N(�t) ∩ FixT⧵N(��t) . Hence, from (3.4), 
the number of orbits of ⟨�, �t⟩ on T ⧵ N is at most

and part (1) follows again. Assume, at last, Ω2(N) = �N(�) and FixT⧵N(�t) ≠ FixT⧵N(��t) . 
Set M ∶= Ω2(N) = �N(�) . Then FixT⧵N(�t) = �M and FixT⧵N(��t) = �(N ⧵M) , or 
FixT⧵N(�t) = �(N ⧵M) and FixT⧵N(��t) = �M . If FixT⧵N(�t) = �M , then t = 1 and 
1 = t−1 = [� , n1] . Thus n1 ∈ �N(�) = M and hence FixT⧵N(��t) = �M , contradict-
ing FixT⧵N(��t) = �(N ⧵M) . Thus FixT⧵N(�t) = �(N ⧵M) and FixT⧵N(��t) = �M . As 
FixT⧵N(��t) = �M = ��N(�) , we have n1 ∈ �N(�) and hence t−1 = [� , n1] = 1 . Then 
n2
0
= t = 1 and hence FixT⧵N(�t) = �Ω2(N) = �M , contradicting FixT⧵N(�t) = �(N ⧵M) . 	

� ◻

The next lemma again has a similar flavour. This time we are assuming that the index-2 
subgroup N of T is generalised dicyclic, and we need to assume that our permutation fixes 
each of the cosets of the abelian subgroup A of N setwise.

|S| ≤ 2�(N)+
3|N|
4 = 2�(T)−|N|+

3|N|
4 = 2�(T)−

|N|
4

(3.4)

1

4

(|N| + |FixT⧵N(�)| + |FixT⧵N(�t)| + |FixT⧵N(��t)|
)

= �(T ⧵ N) −
|N|
4

−
|FixT⧵N(�)|

4
+

|FixT⧵N(�t)|
4

+
|FixT⧵N(��t)|

4
,

FixT⧵N(��t) ∶= {�n ∣ t−1 = [n, �]}.

�(T ⧵ N) −
|N|
4

−
|N|
16

+
|N|
8

+
|N|
8

= �(�N) −
|N|
16
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Lemma 3.5  Let T be a finite group, let N = Dic(A, y, x) be a generalised dicyclic subgroup 
of T having index 2, let t ∈ N , let � ∈ T ⧵ N , let �t ∶ T → T  be any permutation defined by

Recall that 𝜄A is given in Definition 1.9. Then one of the following holds: 

(1)	 |{S ⊆ T ∣ X = X−1,X𝛼t = X}| ≤ 2�(𝛾N)−
|N|
24 ,

(2)	 �2 = y = t and a� = a−1 ∀a ∈ A,
(3)	 t = 1 , ⟨� ,A⟩ is abelian, and T = Dic(⟨� ,A⟩, y, x).

In parts (2) and  (3), if n�t ∈ {n, n−1} for every n ∈ N , then we have z�t ∈ {z, z−1} ∀x ∈ T .
Proof  We let � ∶ T → T  the permutation defined by z� = z−1 ∀z ∈ T  . For simplicity, we let 
S ∶= {X ⊆ T ∣ X = X−1,X𝛼t = X} . Observe that for every a ∈ A , we have a�t ∈ A and

Suppose o(t) ≥ 3 . Then, the orbits of ⟨�t⟩ on �A all have length o(t) ≥ 3 and hence

and part (1) follows in this case. In particular, for the rest of the proof we may suppose that 
o(t) ≤ 2 . Since N is generalised dicyclic and t ∈ N , we obtain t ∈ A . Now, for every a ∈ A , 
we have (�a)�t = �ta ∈ �A and hence �A is �t-invariant. Therefore, �t has |A|/o(t) cycles on 
�A . This also means that �xA is �t-invariant.

Suppose that �2 ∉ A , that is, �A ≠ �−1A . Then, T/A is a cyclic group and N = ⟨�2,A⟩ . If 
o(t) ≠ 1 , then

and part (1) follows in this case. Suppose then t = 1 . In this case, �t fixes �A pointwise. For 
every a ∈ A , we have

As ⟨�2,A⟩ = N = Dic(A, y, x) and as all elements in N ⧵ A have order 4, we deduce 
o(�2) = 4 and o(�) = 8 . In particular, �3 ≠ �−1 and from  (3.6) we deduce that �t has no 
fixed points on �−1A . Hence, �t has at most |A|/2 cycles on �−1A . Therefore

and part (1) follows in this case.
Henceforth, we may assume that �2 ∈ A . Then, ⟨� ,A⟩ is a group having a subgroup A of 

index 2. Furthermore, since both N = ⟨x,A⟩ and ⟨� ,A⟩ are index-2 subgroups of T, we must 
have (�x)2 ∈ N ∩ ⟨� ,A⟩ = A . Also, since � and x both normalise A, so does �x . So ⟨�x,A⟩ 
is a group having a subgroup of index 2 and �t restricts to a permutation of ⟨�x,A⟩ . Since 
t ∈ A and o(t) ≤ 2 we see that x and t commute, so for every a ∈ A we have

a𝛼t ∈ A, (xa)𝛼t ∈ xA,∀a ∈ A, and (𝛾n)𝛼t = 𝛾tn𝜄A , ∀n ∈ N.

(3.5)(𝛾a)𝛼t = 𝛾ta𝜄A = 𝛾ta.

|S| ≤ 2
�(T⧵(�A∪�−1A))+

|�A|
3 ≤ 2

�(T)−
|A|
2
+

|A|
3 = 2

�(T)−
|A|
6 = 2�(T)−

|N|
12

|S| ≤ 2�(T⧵(�A∪�
−1A))+

|A|
2 = 2�(T)−|A|+

|A|
2 = 2�(T)−

|A|
2 = 2�(T)−

|N|
4

(3.6)(𝛾−1a)𝛼t = (𝛾(𝛾−2a))𝛼t = 𝛾(𝛾−2a)𝜄A = 𝛾𝛾2a = 𝛾3a.

|S| ≤ 2�(T⧵(�A∪�
−1A))+

|A|
2 = 2�(T)−|A|+

|A|
2 = 2�(T)−

|A|
2 = 2�(T)−

|N|
4

(3.7)(𝛾xa)𝛼t = 𝛾t(xa)𝜄A = 𝛾tx−1a = 𝛾x−1ta = 𝛾x(x2t)a.
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So, we can apply Lemma 3.3 to the group ⟨�x,A⟩ and the permutation (�t)�⟨�x,A⟩ with �x tak-
ing the role of the “ � ” in that lemma, and x2t taking the role of “t.”

If part (1) in Lemma 3.3 holds, then

and conclusion (1) holds.
If part (2) in Lemma 3.3 holds, then A is an elementary abelian 2-group, but this con-

tradicts our definition of a generalised dicyclic group together with our hypothesis that N is 
such a group.

So either part  (3) in Lemma  3.3 holds, so that o(x2t) = 2 , x2t = (�x)2 , and 
⟨�x,A⟩ = Dic(A, (�x)2, �x) ; or part (4) holds, so that x2t = 1 , meaning x2 = t . We postpone 
further consideration of these cases briefly.

We can also apply Lemma 3.3 to the group ⟨� ,A⟩ and the permutation �t . In this case � 
takes the role of “ � ” in the lemma, and t takes the role of “t”.

If part (1) in Lemma 3.3 holds, then

and conclusion (1) holds.
If part  (2) in Lemma  3.3 holds, then A is an elementary abelian 2-group, again a 

contradiction.
So either part (3) in Lemma 3.3 holds, so that o(t) = 2 , t = �2 , and ⟨� ,A⟩ = Dic(A, t, �) ; 

or part (4) of Lemma 3.3 holds, so that t = 1.
We have now applied Lemma 3.3 to two different subgroups of T and have completed 

the proof except in the cases where parts (3) or (4) arise from both applications. We now 
consider these final four possible outcomes individually.

It is not possible that part  (4) holds in both applications, since this would imply that 
t = 1 and x2 = t , contradicting o(x) = 4 from the definition of a generalised dicyclic group.

If part  (3) holds in both applications, then ⟨�x,A⟩ = Dic(A, (�x)2, �x) implies that 
a�x = ax = a−1 , so a� = a for every a ∈ A . But ⟨� ,A⟩ = Dic(A, t, �) implies that a� = a−1 for 
every a ∈ A . Taken together, these imply that A is an elementary abelian 2-group, again a 
contradiction.

If part  (3) holds in the first application and part  (4) holds in the second, then 
we have t = 1 , ( o(x2t) = 2 ), x2t = (�x)2 , and ⟨�x,A⟩ = Dic(A, (�x)2, �x) . Since 
⟨�x,A⟩ = Dic(A, (�x)2, �x) , we see that a�x = ax = a−1 , so a� = a for every a ∈ A , and 
⟨� ,A⟩ is abelian. Since x2t = x2 = (�x)2 , we have �x = �−1 , so T = Dic(⟨� ,A⟩, y, x) . This is 
conclusion (3).

Finally, if part (4) holds in the first application and part (3) holds in the second, then we 
have y = x2 = t , o(t) = 2 , t = �2 , and ⟨� ,A⟩ = Dic(A, t, �) . This is conclusion (2).	�  ◻

With these preliminary results in hand, we are ready to prove bounds on the number of 
connection sets that admit various types of graph automorphisms. Recall Notation  1.15. 
We already have bounds on |S1

N
| and on |UN| . Our goal in this section is to bound |TN| when 

|N| is relatively large. In order to do this, we need to further subdivide TN.

�S� ≤ 2
�(T⧵⟨�x,A⟩)+�(⟨�x,A⟩)− �A�

16 = 2
�(T)−

�N�
32

�S� ≤ 2
�(T⧵⟨� ,A⟩)+�(⟨� ,A⟩)− �A�

16 = 2
�(T)−

�N�
32
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Notation 3.6  For what follows, R is a group that is neither generalised dicyclic, nor abe-
lian of exponent greater than 2. We let N be normal subgroup of R and we let

It should be clear from this definition that

We will bound the cardinality of each of these sets. Most of the bounds we find will 
only be vanishingly small relative to 2�(R) if |N| is relatively large compared to |R|. Spe-
cifically, they will all work if |N| ≥ 9 log2 |R| . In order to create the best possible bound, 
however, we will want to balance |N| against |R/N|, so we will use these bounds only when 
�N� ≥ √�R�.

The first bound is only useful if |N|/2 dominates 2 log2 |R| . In particular, it will be useful 
if |N| ≥ 5 log2 |R|.

Proposition 3.7  We have |T1
N
| ≤ 2�(R)−

|N|
2
+2 log2 |R|−log2 |N|+(log2 |N|)2+2.

Proof  Let S ∈ T
1
N

 and set GS ∶= �Aut(Γ(R,S))(N) . Say, (xN)f = yN , for some xN, yN ∈ R∕N 
with yN ∉ {xN, x−1N} and for some f ∈ GS with 1f = 1 . Now, xf = yt , for some t ∈ N . 
Observe that

where we are denoting by �f ∶ N → N the automorphism induced by the conjugation 
via f on N. Observe that we have at most |Aut(N)| ≤ 2(log2 |N|)2 choices for the automor-
phism �f  . Therefore, as t ∈ N , given xN and yN, we deduce from (3.8) that we have at most 
|N|2(log2 |N|)2 choices for the permutation f|xN ∶ xN → yN restricted to xN.

We consider various possibilities: 

	 (i)	 o(xN) = o(yN) = 2 , or
	 (ii)	 o(xN) > 2 and o(yN) > 2 , or
	 (iii)	 o(xN) = 2 and o(yN) > 2 , or
	 (iv)	 o(xN) > 2 and o(yN) = 2.

We consider these cases in turn: we let Bi,Bii,Biii,Biv be the subsets of S2
N

 satisfying, 
respectively, (i), (ii), (iii) or (iv). In the first case, the number of inverse-closed subsets of 

T
1
N
∶= {S ∈ SN⧵S

1
N
∣; ∃x ∈ R and ∃f ∈ �Aut(Γ(R,S))(N) with 1

f = 1 and (xN)f ∉ {xN, x−1N}},

T
2
N
∶= {S ∈ SN⧵S

1

N
⧵T1

N
∣;

∃f ∈ �Aut(Γ(R,S))(N)⧵�Aut(Γ(R,S))(N) with 1
f = 1 and

N is neither abelian of exponent greater than 2 nor generalised dicyclic, or

N is abelian of exponent greater than 2 and nf ≠ n−1for some n ∈ N, or

N = Dic(A, y, x) ≇ Q8 × C�

2
and nf ≠ n𝜄A for some n ∈ N, or

N ≅ Q8 × C�

2
and nf ∉ {n𝜄i , n𝜄j , n𝜄k} for some n ∈ N},

T
3
N
. ∶= {S ∈ SN⧵S

1

N
⧵

2⋃
�=1

T
�

N
∣;

∃x ∈ R and ∃f ∈ �Aut(Γ(R,S))(N) with 1
f = 1, (xN)f ≠ xN and

either N is non - abelian or there exists n ∈ N with (xn)f ≠ (xn)−1},

T
4
N
. ∶= {S ∈ SN⧵S

1

N
⧵

3⋃
�=1

T
�

N
∣; ∃x ∈ R and ∃f ∈ �Aut(Γ(R,S))(N) with 1

f = 1 and xf ∉ {x, x−1}}

TN =

4⋃
�=1

T
�

N
.

(3.8)(xn)f = xnf = xf (f
−1nf ) = ytn�f ,
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R ⧵ (xN ∪ yN) is 2�(R)−�(xN)−�(yN) and the number of inverse-closed f-invariant subsets T of 
xN ∪ yN is at most 2�(xN) , because once T ∩ xN has been chosen the set T ∩ yN must equal 
(T ∩ xN)f  . Therefore

In the second case, the number of inverse-closed subsets of R ⧵ (xN ∪ yN ∪ x−1N ∪ y−1N) is 
2�(R)−2|N| and the number of inverse-closed f-invariant subsets T of xN ∪ yN ∪ x−1N ∪ y−1N 
is at most 2|N| , because once T ∩ xN has been chosen we must have T ∩ x−1N = (T ∩ xN)−1 , 
T ∩ yN = (T ∩ xN)f  and T ∩ y−1 = ((T ∩ xN)f )−1 . Therefore

In the third case, the number of inverse-closed subsets of R ⧵ (xN ∪ yN ∪ y−1N) is 
2�(R)−�(xN)−|N| and the number of inverse-closed f-invariant subsets of xN ∪ yN ∪ y−1N is at 
most 2|N| , because once we choose a subset of xN all the others are uniquely determined. 
Therefore

The fourth case is similar to the third case and we have |Biv| ≤ 2�(R)−
|N|
2
+2 log2 |R|−log2 |N|+(log2 |N|)2 .

The proof now follows by adding the contribution of the four sets Bi , Bii , Biii and Biv . 	
� ◻

Our second bound is useful whenever |N| grows with |R|.

Proposition 3.8  We have |T2
N
| ≤ 2

�(R)−
|N|
96

+(log2 |N|)2.

Proof  Given S ∈ T
2
N

 , we let GS ∶= �Aut(Γ(R,S))(N) . Given f ∈ (GS)1 , we let �f ∶ N → N 
denote the automorphism induced by the action of conjugation of f on N. Let 
f ∈ (GS)1 ⧵ �(GS)1

(N) witnessing that S ∈ T
2
N

 , that is,

•	 N is neither an abelian group of exponent greater than 2 nor a generalised dicyclic 
group, or

•	 N is an abelian group of exponent greater than 2 and �f ≠ � (where � ∶ N → N is defined 
by x� = x−1 , for every x ∈ N ), or

•	 N = Dic(A, x, y) ≇ Q8 × C�

2 and 𝜄f ≠ 𝜄A (where 𝜄A is given in Definition 1.9), or
•	 N ≅ Q8 × C�

2 and 𝜄f ∉ {𝜄i, 𝜄j, 𝜄k} (where 𝜄i, 𝜄j, 𝜄k are given in Definition 1.9).

In each of these cases, by Theorem  1.13 applied to N, we deduce that the number of 
f-invariant inverse-closed subsets of N is at most 2�(N)−|N|∕96 . In particular,

where the first factor accounts for the number of inverse-closed subsets of R ⧵ N , the sec-
ond factor accounts for the number of inverse-closed f-invariant subsets of N and the third 
factor accounts for the number of choices of �f  . 	� ◻

|Bi| ≤|N|2(log2 |N|)2 |R∕N|22�(R)−�(xN)−�(yN) ⋅ 2�(xN)
=2�(R)−�(yN)+2 log2 |R|−log2 |N|+(log2 |N|)2 ≤ 2�(R)−

|N|
2
+2 log2 |R|−log2 |N|+(log2 |N|)2 .

|Bii| ≤|N|2(log2 |N|)2 |R∕N|22�(R)−2|N| ⋅ 2|N| = 2�(R)−|N|+2 log2 |R|−log2 |N|+(log2 |N|)2 .

|Biii| ≤ |N|2(log2 |N|)2 |R∕N|22�(R)−�(xN)−|N| ⋅ 2|N| ≤ 2�(R)−
|N|
2
+2 log2 |R|−log2 |N|+(log2 |N|)2 .

|T2
N
| ≤ 2�(R⧵N) ⋅ 2

�(N)−
|N|
96 |Aut(N)| ≤ 2�(R)−|N|∕96+(log |N|)2 ,
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For our third bound to be useful, we need |N|/8 to dominate log2 |R| . In particular, it 
will be useful if |N| ≥ 9 log2 |R|.

Proposition 3.9  We have |T3
N
| ≤ 2

�(R)−
|N|
8
+log2 |R|+(log2 |N|)2.

Proof  Given S ∈ T
3
N

 , we let GS ∶= �Aut(Γ(R,S))(N) . Given any element � ∈ GS , we let 
�� ∶ N → N denote the automorphism induced by the action of conjugation of � on N. Let 
x ∈ R and let f ∈ (GS)1 ⧵ �(GS)1

(N) with o(xN) > 2 and assume either

•	 N is non-abelian, or
•	 N is abelian and there exists n ∈ N with (xn)f ≠ (xn)−1.

As S ∉ T
1
N

 , we have (xN)f ∈ {xN, x−1N} and hence (xN)f = x−1N . Thus xf = x−1t , for 
some t ∈ N . Observe that

From  (3.9), we deduce that we have at most |Aut(N)||N| ≤ 2(log2 |N|)2+log2 |N| choices 
for the restriction f|xN ∶ xN → x−1N of f to xN. Let � ∶ xN → xN be the permuta-
tion obtained by composing first f|xN and then � ∶ x−1N → xN , where � is defined by 
(x−1n)� = (x−1n)−1 = n−1x ∀n ∈ N . Thus, from (3.9), we have

Since S is inverse-closed and f-invariant, we deduce that S ∩ xN is �-invariant.
Let �� ∶ N → N the permutation defined by n�� = (n−1)�fx (t−1)�x ∀n ∈ N . An easy com-

putation reveals that n ∈ FixN(�
�) if and only if n−1(n−1)�fx = t�x . In particular, we are in the 

position to apply Lemma 3.1 (with � = �fx and with the element t there replaced by t�x here). 
From Lemma 3.1, we have two possibilities:

•	 |FixN(��)| ≤ 3|N|∕4 , or
•	 N is abelian, t = 1 and n�fx = n−1 ∀n ∈ N.

If the second possibility holds, then N is abelian, �f = �x−1 � and from  (3.9) we get 
(xn)f = x−1(n�x−1 )−1 = x−1xn−1x−1 = (xn)−1 for every n ∈ N ; however, this contradicts the 
fact that S ∈ T

3
N

 . Therefore, |FixN(��)| ≤ 3|N|∕4.
The definition of �′ and the previous paragraph yield that � has at most

orbits. Since S ∩ xN is �-invariant, the number of choices for S ∩ xN is at most 27|N|∕8 . By 
taking in account the contributions of �f  , xN and t, we obtain

	�  ◻

Our fifth bound is again useful whenever |N| grows with |R|.

(3.9)(xn)f = xnf = xf (f
−1nf ) = x−1tn�f .

(xn)� = ((xn)f )� = (x−1tn�f )−1 = (n−1)�f t−1x = x(n−1)�fx (t−1)�x .

3|N|
4

+
|N| − 3|N|

4

2
=

7|N|
8

|T3
N
| ≤ 2(log2 |N|)2 |N||R∕N|2�(R⧵(xN∪x−1N))2 7|N|

8 = 2
�(R)−

|N|
8
+log2 |R|+(log2 |N|)2 .
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Proposition 3.10  We have |T4
N
| ≤ 2�(R)−

|N|
24

+log2 |R|+2.

Proof  Given S ∈ T
4
N

 , we let GS ∶= �Aut(Γ(R,S))(N) . Given any element � ∈ GS , we let 
�� ∶ N → N denote the automorphism induced by the action of conjugation of � on N. Let 
� ∈ R and let f ∈ (GS)1 with � f ∉ {� , �−1} . Furthermore, if possible we will choose � so 
that o(�) = 2 . Therefore, we may assume that if o(�) ≠ 2 , then (� �)f = � � for every � � ∈ R 
with o(� �) = 2 . (This will be important when we apply Lemma 3.4.)

We now consider various possibilities depending on the behaviour of �N , but first, we 
state the fact that the set S does not lie in T2

N
 in a manner tailored to our current needs:

Case A (GS)1 = �(GS)1
(N) , or

Case B N is abelian of exponent greater than 2 and, for every f ∈ (GS)1 ⧵ �(GS)1
(N) we 

have nf = n−1 ∀n ∈ N , so |(GS)1 ∶ �(GS)1
(N)| = 2 , or

Case C N = Dic(A, y, x) ≇ Q8 × C�

2
 , for every f ∈ (GS)1 ⧵ �(GS)1

(N) , A = �N(f ) and the 
automorphism �f  induced by f on N is 𝜄A , or

Case D N = Q8 × C�

2
 , |(GS)1 ∶ �(GS)1

(N)| ∈ {2, 4} , for every f ∈ (GS)1 ⧵ �(GS)1
(N) , the 

automorphism �f  induced by f on N is one of 𝜄i , 𝜄j , 𝜄k.
In particular, in cases B, C, and D, n�f ∈ {n, n−1} ∀n ∈ N.
Suppose that � ∈ N . Since 1f = 1 and since f normalises N, we have � f = ��f ∈ {� , �−1} . 

For the rest of the proof, we may suppose that � ∉ N . Since S ∉ T
1
N

 , we have 
(�N)f ∈ {�N, �−1N}.

Suppose (�N)f ≠ �N . Since S ∉ T
3
N

 , we have (�n)f = (�n)−1 ∀n ∈ N and hence, in par-
ticular, � f = �−1 . Therefore, for the rest of the proof, we may suppose that (�N)f = �N.

Since � f ∈ �N , there exists t ∈ N with � f = �t . Now,

Suppose now that �N ≠ �−1N . Then (�n)−1 ∈ �−1N ≠ �N for every n ∈ N . Since 
(�N)f = �N , we cannot have (�n)−1 = (�n)f  . Thus the orbits of f fuse orbits of the inverse 
map on �N ∪ �−1N unless (using (�n)f = �n in (3.10)) there exists some n ∈ N with

Note that (3.10) with n = 1 together with � f ≠ � implies that t ≠ 1 . So applying Lemma 3.2 
to N with n� = n�f implies that the number of fixed points of f in �N is at most 3|N|/4. 
Therefore the action of f on �N together with the action of the inverse map on �N ∪ �−1N 
results in at least |N|/4 orbits of length at least 4 and all other orbits having length 
at least 2. So when f|�N is given, the number of choices for S ∩ (�N ∪ �−1N) is at most 
2(3|N|∕4)∕2+(|N|∕4)∕4 = 27|N|∕16 . Therefore

(where 3|N| is the number of choices for the restriction f�N ∶ �N → �N of f to �N , and 
|R/N| is the number of choices for �N ∈ R∕N).

For the remainder of the proof, we may assume that �N = �−1N , meaning that N is an 
index-2 subgroup of ⟨� ,N⟩.

Suppose that f ∈ �GS
(N) . Then, (3.10) becomes nf = n and (�n)f = �tn , ∀n ∈ N . When 

f|�N is given, from Lemma 3.3, we deduce that the number of choices for S ∩ ⟨� ,N⟩ is at 
most 2�(⟨� ,N⟩)−

�N�
16  (recall that the other cases cannot arise since � f ∉ {� , �−1} ). Therefore

(3.10)(�n)f = �nf = � f ⋅f
−1nf = (�t)n

�f
= �tn�f , ∀n ∈ N.

(3.11)t = n(n�f )−1.

|T4
N
| ≤ 3|N||R∕N|2�(R)−�(�N∪�−1N)27|N|∕16 ≤ 22+log2 |R|2�(R)−|N|+7|N|∕16 = 2�(R)−9|N|∕16+log2 |R|+2
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(where |N| is the number of choices for the restriction f�N ∶ �N → �N of f to �N , and |R/N| 
is the number of choices for �N ∈ R∕N ). Therefore, for the rest of the proof we may sup-
pose that f ∉ �GS

(N) . In particular, only Case B, C or D may arise.
Suppose that Case B holds. Then, (3.10) becomes nf = n−1 and (�n)f = �tn−1 , ∀n ∈ N , 

so n�f = n−1 for every n ∈ N . As already observed at the beginning, if � cannot be cho-
sen with o(�) = 2, then for every �n ∈ �N with o(�n) = 2, we have (�n)f = �n. So we may 
apply Lemma 3.4 with f�⟨� ,N⟩ taking the role of �t.

When f|�N is given, from Lemma  3.4, we deduce that the number of choices for 
S ∩ ⟨� ,N⟩ is at most 2�(⟨� ,N⟩)−

�N�
24  (again, the other cases cannot arise since � f ∉ {� , �−1} ). 

Therefore

(again, |N| is the number of choices for the restriction f�N ∶ �N → �N of f to �N , and |R/N| 
is the number of choices for �N ∈ R∕N).

Cases  C and  D can be dealt with simultaneously. Here,  (3.10) becomes nf = n𝜄A and 
(𝛾n)f = 𝛾tn𝜄A , ∀n ∈ N . When f|�N is given, from Lemma 3.5, we deduce that the number 
of choices for S ∩ ⟨� ,N⟩ is at most 2�(⟨� ,N⟩)−

�N�
24  (again, the other cases cannot arise since 

� f ∉ {� , �−1} ). Therefore

(where 3|N| is the number of choices for the restriction f�N ∶ �N → �N of f to �N , and 
|R/N| is the number of choices for �N ∈ R∕N).

	�  ◻

Combining these results, we are able to bound |TN|.

Proof of Theorem 1.5  Since the initial statement excludes S1
N

 , its proof follows by adding 
the bounds produced in Propositions 3.7, 3.8, 3.9 and 3.10 for |Ti

N
| , for each 1 ≤ i ≤ 4 . If 

we drop the condition R = �Aut(Γ(R,S))(R) , then we must also add the bound produced in 
Proposition 1.14 for S1

N
 (which has no effect on the bound we have given). Using Proposi-

tion 1.14 requires us to exclude groups that are either abelian of exponent greater than 2, or 
generalised dicyclic. 	�  ◻

4 � Groups with a “small” normal subgroup

We begin this section of our paper with a counting result that we will need. The flavour 
of this result is quite distinct from most of the rest of the paper, and we have placed it in 
advance of the introduction of the notation and situational information that we will be 
using for the rest of this section.

Lemma 4.1  Let X be a set and let f and g be permutations of X. Then either 

�T4
N
� ≤ �N��R∕N�2�(R)−�(⟨� ,N⟩)2�(⟨� ,N⟩)− �N�

16 ≤ 2
�(R)−

�N�
16

+log2 �R�.

�T4
N
� ≤ �N��R∕N�2�(R)−�(⟨� ,N⟩)2�(⟨� ,N⟩)− �N�

24 ≤ 2�(R)−
�N�
24

+log2 �R�

�T4
N
� ≤ 3�N��R∕N�2�(R)−�(⟨� ,N⟩)2�(⟨� ,N⟩)− �N�

24 ≤ 2�(R)−
�N�
24

+log2 �R�+2
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(1)	 |{S ⊆ X ∣ |S ∩ Sf | = |S ∩ Sg|}| ≤ 3

4
⋅ 2|X| , or

(2)	 there exists a subset I ⊆ X such that

•	 I is f- and g-invariant (that is, If = I and Ig = I),
•	 f|I = g|I,
•	 f|X⧵I = (g−1)|X⧵I.

Proof  We denote by F and by G the permutation matrices of f and g, respectively. There-
fore, F and G are |X| × |X|-matrices with {0, 1} entries, with rows and columns indexed by 
the set X and such that

Let A ∶= F − G . For any S ⊆ X , let �S ∈ ℤX be the “indicator” vector of the set S, that is,

Finally, let ⟨⋅, ⋅⟩ ∶ ℚX ×ℚX
→ ℚ be the standard scalar product and let (ex)x∈X be the 

canonical basis of ℚX.
With the notation above, for every subset S of X, we have

Therefore,

For simplicity, we write Δ ∶ {0, 1}X → ℚ for the mapping defined by � ↦ Δ(�) = ⟨�,A�⟩ , 
for every � ∈ {0, 1}X.

Suppose first that, there exist i, j ∈ X with i ≠ j and Ai,j + Aj,i ≠ 0 . Fix �x ∈ {0, 1} arbi-
trarily for every x ∈ X ⧵ {i, j} , and let � ∶=

∑
x∈X⧵{i,j} �xex . By restricting Δ , we define the 

function Δ� ∶ {0, 1} × {0, 1} → ℚ by setting

A computation yields

In particular, at least one out of the four choices (�i, �j) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} gives 
rise to a non-zero value for Δ(� + �iei + �jej) . Therefore, for every choice of �x ∈ {0, 1} 
with x ∈ X ⧵ {i, j} , we have at most three more choices for �i, �j ∈ {0, 1} , for constructing a 
vector � ∈ {0, 1}X with Δ(�) = 0 . Therefore,

Fx,y =

{
1 if xf = y,

0 otherwise,
Gx,y =

{
1 if xg = y,

0 otherwise.

(�S)x ∶=

{
1 if x ∈ S,

0 otherwise.

�S ∩ Sf � = ⟨�S,F�S⟩ and �S ∩ Sg� = ⟨�S,G�S⟩.

{S ⊆ X ∣ �S ∩ Sf � = �S ∩ Sg�} = {S ⊆ X ∣ ⟨𝛿S,F𝛿S⟩ = ⟨𝛿S,G𝛿S⟩} = {S ⊆ X ∣ ⟨𝛿S,A𝛿S⟩ = 0}.

(�i, �j) ↦Δ�(�i, �j) ∶= Δ(� + �iei + �jej) = ⟨� + �iei + �jej,A(� + �iei + �jej)⟩
= ⟨�,A�⟩ + �i⟨�,Aei⟩ + �j⟨�,Aej⟩ + �i⟨ei,A�⟩ + �j⟨ej,A�⟩
+ �2

i
⟨ei,Aei⟩ + �2

j
⟨ej,Aej⟩ + �i�j⟨ei,Aej⟩ + �i�j⟨ej,Aei⟩.

Δ�(0, 0) + Δ�(1, 1) − Δ�(1, 0) − Δ�(0, 1) = Ai,j + Aj,i ≠ 0.
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and (1) holds.
Suppose that for every i, j ∈ X with i ≠ j , we have Ai,j + Aj,i = 0 . In this case,

If Ai,i ≠ 0 for some i ∈ X , then we may use the same argument as in the previous paragraph 
by fixing �x ∈ {0, 1} arbitrarily for every x ∈ X ⧵ {i} , and by considering the restriction of 
Δ as a function Δ�(�i) of �i ∈ {0, 1} only. In this case, we see that one of the two choices for 
�i gives rise to a vector � ∈ {0, 1}X with Δ(�) = 0 . Therefore,

and (1) holds.
Suppose now that for every i, j ∈ X with i ≠ j , we have Ai,j + Aj,i = 0 and Ai,i = 0 , that 

is, A is antisymmetric. Let I be the set of rows of A = F − G that are zero. From the fact 
that A is antisymmetric and from the definition of A, we see that I is f- and g-invariant, 
f|I = g|I and f|X⧵J = g−1|X⧵J . In particular, (2) holds. 	�  ◻

Incidentally, we observe that if  (2) holds in Lemma  4.1, then |S ∩ Sf | = |S ∩ Sg| , 
for every subset S of X. We find this quite interesting on its own. For instance, 
f ∶= (1 2 3 4 5)(6 7 8)(9 10 11 12) and g ∶= (1 5 4 3 2)(6 7 8)(9 12 11 10) have the prop-
erty that |S ∩ Sf | = |S ∩ Sg| , for every subset S of {1,… , 12} . This condition seems very 
much related to the condition defining spreading groups. (For defining properly spread-
ing groups, one needs some technical notation concerning multisets. A multiset of Ω is a 
function from Ω to the non-negative integers. A multiset is said to be trivial if it is the zero 
function. Given a multiset A ∶ Ω → {0, 1,…} , the multiplicity of i ∈ Ω in the multiset A is 
by definition A(i). The cardinality of A is then defined by

Clearly, every subset of Ω can be regarded as a multiset, by considering its characteris-
tic function; conversely, a multiset A of Ω is said to be a subset of Ω if A(i) ∈ {0, 1} for 
every i ∈ Ω . The product of two multisets A and B of Ω is the multiset A ∗ B defined by 
(A ∗ B)(i) = A(i)B(i) , for every i ∈ Ω . In particular, when A and B are subsets of Ω , A ∗ B 
is the usual intersection of A with B. The image of a multiset A under a permutation g of 
Ω is defined by Ag(i) ∶= A(ig

−1

) , for every i ∈ Ω . Now, with all of these definitions, we 
are ready to define spreading permutation groups. A transitive permutation group G on Ω 
is said to be non-spreading, if there exist two non-trivial multisets A and B of Ω and there 
exists a positive integer � with

•	 |A ∗ Bg| = � , for every g ∈ G,
•	 B is a set,
•	 |A| divides |Ω|.

{S ⊆ X ∣ ⟨𝛿S,A𝛿S⟩ = 0} ≤ 2�X�−2 ⋅ 3 =
3

4
⋅ 2�X�

� ∶=
∑
x∈X

�xex ↦ Δ(�) =
∑
x∈X

Ax,x�x.

{S ⊆ X ∣ ⟨𝛿S,A𝛿S = 0⟩} ≤ 2�X�−1 ⋅ 1 ≤
3

4
2�X�

|A| = ∑
i∈Ω

A(i).
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A transitive permutation group is said to be spreading if it is not non-spreading. Although 
the definition of spreading permutation groups might seem a bit artificial and technical, it has 
been introduced as a valuable tool for classifying synchronizing permutation groups, see for 
instance [1] for more details.) We are not sure whether Lemma 4.1 can play any role in the 
study of spreading permutation groups, or whether the analogy between Lemma 4.1 and the 
defining condition of spreading permutation groups is only superficial.

4.1 � Specific notation

Henceforth, let R be a finite group of order r acting regularly on itself via the right regular 
representation: here, we identify the elements of R as permutation in Sym(R) . Let N denote a 
non-identity proper normal subgroup of R. We let b ∶= |R ∶ N| and we let �1,… , �b be coset 
representatives of N in R. Moreover, we choose �1 ∶= 1 to be the identity in R. Observe that 
R/N defines a group structure on {1,… , b} by setting ij = k for every i, j, k ∈ {1,… , b} with 
�iN�jN = �kN.

Write v0 ∶= 1 where v0 has to be understood as a point in the set R. For each i ∈ {1,… , b} , 
set Oi ∶= v0

�iN = �iN = N�i . Observe that the Oi s are the orbits of N on R, the group N acts 
regularly on Oi and |Oi| = |N|.

For an inverse-closed subset S of R, we let Γ(R, S) be the Cayley graph of R with connec-
tion set S, and we denote by FS the largest subgroup of Aut(Γ(R, S)) under which each orbit of 
N is invariant. In symbols we have

(The subscript S in FS will make some of the later notation cumbersome to use, but it con-
stantly emphasizes that the definition of “F” depends on S.) Similarly, we define

As above, let S be an inverse-closed subset of R. For a vertex u of Γ(R, S) in Oi,
let �(S, u, j) denote the neighbours of v0 and u lying in Oj.
See Fig. 2. It is clear that

FS ∶= {g ∈ Aut(Γ(R, S)) ∣ O
g

i
= Oi, for each i ∈ {1,… , b}}.

BS ∶= FS ∩ �Aut(Γ(R,S))(N).

Fig. 2   The definition of �(S, u, j) v0 uO1 Oi

Oj

σ(S, u, j)
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where gu ∈ R with vgu
0
= u . Since u ∈ Oi , we have u = v

�iku
0

 , for some ku ∈ N . In particu-
lar, gu = �iku . Let s ∈ S with sgu ∈ Sj . Then sgu ∈ Oj = v

�jN

0
= v

N�j
0

 and sgu�
−1
j ∈ vN

0
= O1 . 

Since gu maps the element v0 of O1 to the element u of Oi , we see that gu ∈ �iN and 
s ∈ O

�jg
−1
u

1
= v

N�j�
−1
i

0
= v

�j�
−1
i

N

0
= Oji−1 . This shows

For two distinct vertices u, v ∈ Oi and j ∈ {1,… , b} , let

In the results that follow, we use the notation that we have established here. Our aim 
with the next few results is to show that |Ψ({u, v}, j)| is at most 3

4
⋅ 2�(R) . This will sub-

sequently be used to bound the number of graphs admitting automorphisms that fix the 
vertex 1 and also fix each Oi setwise while mapping u to v. We generally end up with some 
other possibilities that we gradually eliminate by introducing additional assumptions.

Proposition 4.2  Let i ∈ {2,… , b} , let u and v be two distinct vertices in Oi and let 
j ∈ {1,… , b} ⧵ {1, i} . Then, one of the following holds: 

(1)	 |Ψ({u, v}, j)| ≤ 3

4
⋅ 2�(R),

(2)	 j2 = i , 𝛾i = 𝛾2
j
ȳ for some ȳ ∈ N , ku = ȳ−1𝛾−1

j
ȳkv𝛾j , kv = ȳ−1𝛾−1

j
ȳku𝛾j and �ikv, �iku cen-

tralize N,
(3)	 o(ji−1) > 2 , o(j) = 2 , o(i) is even, o(�j) = 4 , �2

j
= k−1

v
ku = k−1

u
kv , N is abelian and 

y�j = y−1 for every y ∈ N,
(4)	 o(ji−1) = 2 , o(j) > 2 , o(i) is even, o(�ji−1 ) = 4 , �2

ji−1
= k−1

v
ku = k−1

u
kv , N is abelian and 

y�ji−1 = y−1 for every y ∈ N,
(5)	 o(ji−1) = o(j) = 2

Proof  We divide the proof in various cases.
Case  j2 = i.
Observe that if S ⊆ R is inverse-closed, then Sj−1 = S−1

j
 . As ji−1 = j−1 , from  (4.1), we 

obtain

Let � ∶ N�−1
j

→ N�j be the mapping defined by x ↦ x� = x−1 for every x ∈ N�−1
j

 and set
f ∶= k−1

u
�−1
i
� ∶ N�j → N�j and g ∶= k−1

v
�−1
i
� ∶ N�j → N�j

as permutations of N�j . Now, (4.2) yields

�(S, u, j) = S ∩ Sgu ∩Oj = (S ∩Oj) ∩ Sgu = Sj ∩ Sgu ,

(4.1)�(S, u, j) = Sj ∩ S
gu

ji−1
= Sj ∩ S

�iku
ji−1

.

Ψ({u, v}, j) ∶= {S ⊆ R ∣ S = S−1 and |𝜎(S, u, j)| = |𝜎(S, v, j)|}.

(4.2)
|�(S, u, j)| = |Sji−1 ∩ S

k−1
u
�−1
i

j
| = |Sj−1 ∩ S

k−1
u
�−1
i

j
|,

|�(S, v, j)| = |Sji−1 ∩ S
k−1
v
�−1
i

j
| = |Sj−1 ∩ S

k−1
v
�−1
i

j
|.
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From  (4.3), we see that we are in the position to apply Lemma  4.1 with X ∶= Oj . If 
Lemma 4.1 (1) holds, then the number of subsets Sj ⊆ Oj satisfying (4.3) is at most 3

4
⋅ 2|N| . 

Therefore

observe that 2�(R)−|N| counts the number of inverse-closed subsets of R ⧵ (�jN ∪ �−1
j
N) . 

Thus (1) is proved in this case.
Therefore, we may suppose that Lemma 4.1 (2) holds. Therefore, there exists an f- and 

g-invariant subset I of N�j such that f|I = g|I and f|N�j⧵I = (g−1)|N�j⧵I . If I ≠ ∅ , then there 
exists x ∈ I and hence

Simplifying � and �−1
i

 , we obtain xk−1
u

= xk−1
v

 . This yields ku = kv , contradicting the fact 
that u ≠ v . Therefore I = � and hence f = g−1.

This means that for every x ∈ N�j , we have

As j2 = i , there exists ȳ ∈ N with

When x = �j, (4.4) gives

Using (4.5), we obtain 𝛾−1
i
𝛾j𝛾i = ȳ−1𝛾jȳ . Therefore

From (4.4), (4.5) and (4.6), we obtain

By writing x = y�j with y ∈ N , we deduce

Since y is an arbitrary element of N, we get that �ikv centralizes N. From this and from (4.5) 
and (4.6) we see that (2) holds. � ◻

For the rest of the proof, we suppose j2 ≠ i . From (4.1), we obtain

(4.3)
|�(S, u, j)| = |S�

j
∩ S

k−1
u
�−1
i

j
| = |Sj ∩ S

k−1
u
�−1
i

�

j
| = |Sj ∩ S

f

j
|,

|�(S, v, j)| = |S�
j
∩ S

k−1
v
�−1
i

j
| = |Sj ∩ S

k−1
v
�−1
i

�

j
| = |Sj ∩ S

g

j
|.

|Ψ({u, v}, j)| ≤ 3

4
2|N| ⋅ 2�(R)−|N|,

xk
−1
u
�−1
i

� = xf = xg = xk
−1
v
�−1
i

�.

(4.4)
x = xfg = xk

−1
u
�−1
i

�k−1
v
�−1
i

� = (xk−1
u
)�

−1
i

�k−1
v
�−1
i

� = (xk−1
u
�−1
i
)�k

−1
v
�−1
i

� = (�ikux
−1)k

−1
v
�−1
i

�

= (�ikux
−1k−1

v
)�

−1
i

� = (�ikux
−1k−1

v
�−1
i
)� = �ikvxk

−1
u
�−1
i
.

(4.5)𝛾i = 𝛾2
j
ȳ.

�−1
i
�j�i = kv�jk

−1
u
.

(4.6)ku = ȳ−1𝛾−1
j
ȳkv𝛾j.

x = 𝛾ikvx𝛾
−1
j
k−1
v
ȳ−1𝛾−1

j
, ∀x ∈ N𝛾j.

y = (�ikv)y(�ikv)
−1, ∀y ∈ N.

(4.7)|�(S, u, j)| = |Sji−1 ∩ S
k−1
u
�−1
i

j
| and |�(S, v, j)| = |Sji−1 ∩ S

k−1
v
�−1
i

j
|.
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From (4.1), we see that the condition “ |�(S, u, j)| = |�(S, v, j)| ” imposes no constraint on Sx , 
for x ∉ {j, ji−1, j−1, (ji−1)−1} . Observe that

because we are assuming j2 ≠ i . As usual, there is one implicit condition on the set S: it is 
inverse-closed. This suggests a natural decomposition of S. Write 
Rj,i ∶= �jN ∪ �−1

j
N ∪ �ji−1N ∪ �−1

ji−1
N and Rc

j,i
∶= R ⧵ Rj,i . We have

Observe that Rj,i and Rc
j,i

 are inverse-closed; moreover, we may write S ∶= Sj,i ∪ Sc
j,i

 , where 
Sj,i ⊆ Rj,i and Sc

j,i
⊆ Rc

j,i
.

Using this decomposition of the inverse-closed subsets, we get

where 2B is the number of inverse-closed subsets Sc
j,i
⊆ Rc

j,i
 and A is the number of inverse-

closed subsets Sj,i ⊆ Rj,i such that |Sji−1 ∩ S
k−1
u
�−1
i

j
| = |Sji−1 ∩ S

k−1
v
�−1
i

j
| with S ∶= Sj,i ∪ Sc

j,i
 . We 

deduce

Case o(ji−1) > 2.
When o(j) > 2 , let t1 be the number of subsets Sj of Oj with Sk

−1
u

j
= S

k−1
v

j
 . When o(j) = 2 , 

let t1 be the number of inverse-closed subsets Sj of Oj with Sk
−1
u

j
= S

k−1
v

j
 . In both cases, let

Observe that for every subset S ⊆ R with Sk
−1
u

j
= S

k−1
v

j
 , we have S ∈ Ψ({u, v}, j) because 

S
k−1
u
�−1
i

j
= S

k−1
v
�−1
i

j
 and hence |Sji−1 ∩ S

k−1
u
�−1
i

j
| = |Sji−1 ∩ S

k−1
v
�−1
i

j
| . (In other words, when 

S
k−1
u

j
= S

k−1
v

j
 , we have no constraint on Sji−1 .) If S

k−1
u

j
= S

k−1
v

j
 , then Sj = S

k−1
v
ku

j
 and hence Sj is a 

union of ⟨k−1
v
ku⟩-orbits. As N acts regularly on Oj , we have

Next let S ∈ Ψ({u, v}, j) and suppose Sj is a subset of Oj with Sk
−1
u

j
≠ S

k−1
v

j
 . Here to estimate 

the number of inverse-closed subsets S of R with |Sji−1 ∩ S
k−1
u
�−1
i

j
| = |Sji−1 ∩ S

k−1
v
�−1
i

j
| , we esti-

mate the number of subsets satisfying the weaker (but easier to handle) condition

Now Sk
−1
u
�−1
i

j
 and Sk

−1
v
�−1
i

j
 are two distinct subsets of Oji−1 of the same size a, say. Let b be the 

size of Sk
−1
u
�−1
i

j
∩ S

k−1
v
�−1
i

j
 . Observe that a − b > 0 because Sk

−1
u

j
≠ S

k−1
v

j
 . A subset Sji−1 of Oji−1 

{j, j−1} ≠ {ji−1, (ji−1)−1},

(4.8)�(Rj,i) =

⎧
⎪⎨⎪⎩

2�N� if o(j) > 2 and o(ji−1) > 2,

�N� + �(𝛾jN) if o(j) = 2 and o(ji−1) > 2,

�N� + �(𝛾ji−1N) if o(j) > 2 and o(ji−1) = 2,

�(𝛾jN) + �(𝛾ji−1N) if o(j) = o(ji−1) = 2.

|Ψ({u, v}, j)| = A ⋅ 2B,

(4.9)B = �(R) − �(Rj,i).

t2 = 2
�(�jN∪�

−1
j

N)
− t1.

(4.10)t1 ≤ 2
|N|

o(k−1v ku ) .

|Sji−1 ∩ S
k−1
u
�−1
i

j
| ≡ |Sji−1 ∩ S

k−1
v
�−1
i

j
| mod 2.
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with |Sji−1 ∩ S
k−1
u
�−1
i

j
| ≡ |Sji−1 ∩ S

k−1
v
�−1
i

j
| mod 2 can be written as X ∪ Y  , where X is an arbi-

trary subset of Oji−1 ⧵ (S
k−1
v
�−1
i

j
⧵ S

k−1
u
�−1
i

j
) and Y is a subset of Sk

−1
v
�−1
i

j
⧵ S

k−1
u
�−1
i

j
 of size having 

parity uniquely determined by the parity of |X|. Therefore we have 2|N|−(a−b)2(a−b)−1 = 2|N|−1 
choices for Sji−1 . Altogether we have

As o(ji−1) > 2 , from  (4.8), we have |N| + �(�jN ∪ �−1
j
N) = �(Rj,i) and hence, from  (4.10) 

(noting that if o(j) > 2 then �(�jN ∪ �−1
j
N) = |N| , and otherwise �jN ∪ �−1

j
N = �jN ), we get

When �(𝛾jN ∪ 𝛾−1
j
N) > |N|∕o(k−1

v
ku), (4.11) yields

and hence (1) holds in this case. Assume �(�jN ∪ �−1
j
N) ≤ |N|∕o(k−1

v
ku) , that is,

As k−1
v
ku ≠ 1 , we have o(k−1

v
ku) ≥ 2 and hence o(j) = 2 . Thus

Since the left-hand side is at most |N|/2 and since the right-hand side is at least |N|/2, this 
implies o(k−1

v
ku) = 2 and

Therefore N�j ∩ I(R) = � , N�j contains no involutions and �(�jN) = |N|∕2 . Under these 
strong conditions, we refine the upper bound in (4.11) by first improving our upper bound 
in (4.10).

As o(j) = 2 , N�j is inverse-closed. Recall that t1 is the number of inverse-closed subsets 
Sj ⊆ N𝛾j with Sk

−1
v
ku

j
= Sj . Consider the permutation � ∶ �jN → �jN defined by mapping

for each y ∈ N , and consider the permutation � ∶ �jN → �jN defined by mapping

for each y ∈ N . Observe that � and � are involutions with no fixed points: � has no fixed 
points because �jN contains no involutions and � is an involution because o(k−1

v
ku) = 2 . In 

this new setting,

A ≤t1 ⋅ 2
|N| + t2 ⋅ 2

|N|−1 = t12
|N| + (2

�(�jN∪�
−1
j

N)
− t1)2

|N|−1 = 2
|N|+�(�jN∪�−1j

N)−1
+ t12

|N|−1

(4.11)
A ≤2�(Rj,i)−1 + t12

|N|−1 ≤ 2�(Rj,i)−1 + 2
|N|+ |N|

o(k−1v ku )
−1

=2�(Rj,i)

(
1

2
+

1

2
1+�(Rj,i)−|N|− |N|

o(k−1v ku )

)
= 2�(Rj,i)

(
1

2
+

1

2
1+�(�jN∪�

−1
j

N)−
|N|

o(k−1v ku )

)
.

A ≤ 2�(Rj,i) ⋅

(
1

2
+

1

22

)
=

3

4
⋅ 2�(Rj,i)

|N|
o(k−1

v
ku)

≥

{ |N𝛾j|+|N𝛾j∩I(R)|
2

when o(j) = 2,

|N| when o(j) > 2.

|N|
o(k−1

v
ku)

≥
|N�j| + |N�j ∩ I(R)|

2
.

0 ≥
|N�j ∩ I(R)|

2
.

�jy ↦ (�jy)
−1 = y−1�−1

j
,

�jy ↦ �jyk
−1
v
ku,
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where o is the number of orbits of ⟨�, �⟩ ≤ Sym(�jN) . Each orbit of ⟨�, �⟩ has even length, 
because � has order 2 and has no fixed points. Suppose ⟨�, �⟩ has at least one orbit of length 
greater then 2. Then o ≤ |N|∕2 − 1 (the upper bound is achieved when ⟨�, �⟩ has |N|∕2 − 2 
orbits of length 2 and one of length 4). Thus, in this case,

Using this slight improvement on x and �(�jN) = |N|∕2 , we obtain

As �(Rj,i) = |N| + �(�jN) = 3|N|∕2 (see (4.8)), we obtain

In particular, from (4.9) and (4.12), we see that (1) holds.
It remains to suppose that each orbit of ⟨�, �⟩ has length 2; this means � = � , that is,

In other words, y−1�−1
j

= �jyk
−1
v
ku , for every y ∈ N . Set z ∶= k−1

v
ku . Applying this equal-

ity with y = 1 , we get �−1
j

= �jz and hence �2
j
= z because z has order 2. Thus we have 

y−1�−1
j

= �jy�
−2
j

 and hence �jy�−1j
= y−1 . This shows that the element �j acts by conjugation 

on N inverting each of its elements. Therefore, N is abelian.
To complete this case, we need to show that o(i) is even. Observe that since o(j) = 2 we 

have j = (i−1)(ij) = ((i−1)(ij))−1 = (ij)−1i . Therefore, i2j = (i)(ij) = (ij)−1i−1 = ji−2 has order 
2. Since o(ij) = o(ji−1) > 2 , we cannot have i ∈ ⟨i2⟩ , so o(i) must be even. In particular, (3) 
holds. � ◻

Case o(ji−1) = 2 and o(j) > 2.
This case can be reduced to the case above. Set u� ∶= v

g−1
u

0
 and observe that g−1

u
= k−1

u
�−1
i

 
and hence u� ∈ Oi−1 . From (4.1), we have

Similarly, |�(S, v, j)| = |�(S, v�, ji−1)| , where v� ∶= v
g−1
v

0
 . In particular, |�(S, u, j)| = |�(S, v, j)| 

if and only if |�(S, u�, ji−1)| = |�(S, v�, ji−1)| . Thus |Ψ({u, v}, j)| = |Ψ({u�, v�}, ji−1)| . As 
o(j) > 2 and o(ji−1) = 2 , this case follows by applying the previous case to Ψ({u�, v�}, ji−1) . 
We obtain that either (1) or (4) holds.

Case o(ji−1) = o(j) = 2 . This is the only remaining option.
	�  ◻

For three distinct vertices u, v,w ∈ Oi and j ∈ {1,… , b} , let

t1 = 2o,

t1 ≤ 2
|N|
2
−1.

A ≤ t1 ⋅ 2
|N| + t2 ⋅ 2

|N|−1 = t12
|N| + (2

|N|
2 − t1)2

|N|−1 = 2
3|N|
2

−1 + t12
|N|−1

≤ 2
3|N|
2

−1 + 2
3|N|
2

−2 =
3

4
⋅ 2

3|N|
2 .

(4.12)A ≤
3

4
⋅ 2�(Rj,i).

(�jy)
� = (�jy)

� , ∀y ∈ N.

|�(S, u, j)| = |Sj ∩ S
gu

ji−1
| = |Sg−1u

j
∩ Sji−1 | = |Sji−1 ∩ S

g−1
u

j
| = |�(S, u�, ji−1)|.

Ψ({u, v,w}, j) ∶= {S ⊆ R ∣ S = S−1 and |𝜎(S, u, j)| = |𝜎(S, v, j)| = |𝜎(S,w, j)|}.
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Proposition 4.3  Let i ∈ {2,… , b} , let u, v, and possibly w be distinct vertices in Oi and let 
j ∈ {1,… , b} ⧵ {1, i} . Then unless o(j) = o(ji−1) = 2 , we can conclude that:

•	 if o(i) is odd, then |Ψ({u, v}, j)| ≤ 3

4
⋅ 2�(R) or j2 = i ; and

•	 if w exists, then |Ψ({u, v,w}, j)| ≤ 3

4
⋅ 2�(R).

Proof  Assume that we do not have o(j) = o(ji−1) = 2.
We apply Proposition  4.2 to {u, v} . If o(i) is odd, we see immediately that Proposi-

tion 4.2 parts (3), (4), and (5) cannot arise. Parts (1) and (2) are the conclusions we desire.
We also apply Proposition 4.2 for the pairs {v,w} and {w, u} . If Proposition 4.2 part (1) 

holds for one (or more) of the three pairs, then the result immediately follows. Therefore, 
we suppose that none of the pairs {v,w} , {v, u} and {w, u} satisfies Proposition 4.2 part (1).

Assume that there exists a pair satisfying Proposition 4.2 part (2). Then j2 = i . It fol-
lows that o(j) > 2 and o(ji−1) > 2 . In particular, each pair satisfies Proposition 4.2 part (2). 
However, by applying Proposition 4.2 part (2) to the pairs {u, v} and {w, v} , we get

contradicting the fact that u ≠ w . Therefore, none of the pairs {v,w} , {v, u} and {w, u} satis-
fies Proposition 4.2 part (2).

Now, it is readily seen that if one of the pairs satisfies Proposition 4.2 part (3) (respec-
tively, part  (4)), then all pairs satisfy Proposition  4.2 part  (3) (respectively, part  (4)). In 
particular, we deduce

contradicting the fact that u ≠ w . (The argument when the pairs satisfy Proposition  4.2 
part (4) is similar.) 	�  ◻

For two distinct vertices u, v ∈ Oi , let

Similarly, for three distinct vertices u, v,w ∈ Oi and j ∈ {1,… , b} ⧵ {1, i} , let

Our next result further refines these possibilities.

Proposition 4.4  Let i ∈ {2,… , b} , and let u, v,  and possibly w be distinct vertices in Oi.

•	 If o(i) is odd, then |Ψ({u, v})| ≤ 2
�(R)−0.02⋅

|R|
|N|.

•	 If w exists and R/N is not an elementary abelian 2-group, then 
|Ψ({u, v,w})| ≤ 2

�(R)−0.02⋅
|R|
|N|.

ku = ȳ−1𝛾−1
j
ȳkv𝛾j = kw,

k−1
v
kw = �2

j
= k−1

v
ku,

Ψ({u, v}) ∶=
⋂

j∈{1,…,b}⧵{1,i}

Ψ({u, v}, j).

Ψ({u, v,w}) ∶=
⋂

j∈{1,…,b}⧵{1,i}

Ψ({u, v,w}, j).
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Proof  If o(i) is odd, then R/N is not an elementary abelian 2-group, so we may assume this 
throughout the proof.

We define an auxiliary graph X: the vertex-set of X is {{j, j−1} ∣ j ∈ R∕N} and the vertex 
{j, j−1} is declared to be adjacent to

In particular, X is a graph with �(R∕N) vertices and where each vertex has valency at most 
4. Observe that some vertex {j, j−1} might have valency less than four, because the ele-
ments {ji−1, ij−1} , {ij, j−1i−1} , {j−1i, i−1j} and {ji, i−1j−1} are not necessarily distinct. Moreo-
ver, some vertex {j, j−1} might have a loop: indeed, it is easy to check that {j, j−1} has a loop 
if and only if j2 ∈ {i, i−1}.

Let Y be the subgraph induced by X on R∕N ⧵ I(R∕N) . Since R/N is not an elementary 
abelian 2-group, by a result of Miller [16], we get |R ⧵ I(R∕N)| ≥ |R∕N|∕4 . Now, a classi-
cal graph theoretic result of Caro-Turán-Wei [6, 23, 25] yields that Y has an independent 
set, I  say, of cardinality at least

Thus I = {{j1, j
−1
1
},… , {j

�
, j−1
�
}} , for some � ≥ |R|∕20|N| . The independence of I  yields 

that for every two distinct vertices {ju, j−1u } and {jv, j−1v } in I  , the neighbourhood of {ju, j−1u } 
and {jv, j−1v } are disjoint. Therefore, (4.1) yields that the events Ψ({u, v}, j) and Ψ({u, v}, j�) 
are independent, and likewise (if w exists) that the events Ψ({u, v,w}, j) and Ψ({u, v,w}, j�) 
are independent.

Furthermore, if o(i) is odd and one of these � vertices corresponds to the unique j with 
j2 = i then the same vertex corresponds to j−1 , and (j−1)2 = i−1 ≠ i since o(i) is odd, so 
we may choose the event Ψ({u, v}, j−1) instead of Ψ({u, v}, j) , avoiding the possibility that 
part (2) of Proposition 4.2 arises.

Thus, it follows from Proposition  4.3 for either Ψ = Ψ({u, v}) or Ψ = Ψ({u, v,w}) as 
appropriate, that

	�  ◻

We now use the bounds we have achieved, to show that the number of graphs admitting 
automorphisms that fix every orbit Ok setwise, but act nontrivially on some Oi is a vanishingly 
small fraction of the 2�(R) Cayley graphs on R, as long as either o(i) is odd, or the orbit on Oi 
has length at least 3. Actually, these formulas only produce results that are vanishingly small if 
|N| is small enough relative to |R| that |R|/|N| grows with |R|, so this is the point at which it starts 
to become clear that we need to be assuming that |N| is relatively small, in order to apply the 
results in this section. The result involving an orbit of length 3 does not work in the case that 
R/N is an elementary abelian 2-group; this case will need to be handled separately.

{ji−1, ij−1}, {ij, j−1i−1}, {j−1i, i−1j} and {ji, i−1j−1}.

∑
{j, j−1}

o(j) > 2

1

degX({j, j
−1}) + 1

≥
|R∕N|∕4

5
=

|R|
20|N| .

Ψ ≤

(
3

4

)𝓁

⋅ 2�(R) ≤
(
3

4

) |R|
20|N|

⋅ 2�(R) = 2
�(R)−log2(4∕3)(

|R|
20|N| ) < 2

�(R)−0.02⋅
|R|
|N| .
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Lemma 4.5  Let

Furthermore, if R/N is not elementary abelian 2-group, let

Then |S| ≤ 2
�(R)−0.02

|R|
|N|+log2(|R||N|∕2) and |S�| ≤ 2

�(R)−0.02
|R|
|N|+log2(|R||N|2∕6).

Proof  For each i ∈ {2,… , b} with o(i) odd, let Si be the subset of S defined by

If o(i) is even then define Si = � . Clearly, S =
⋃b

i=2
Si.

Similarly, for each i ∈ {2,… , b} , let S′
i
 be the subset of S′ defined by

Clearly, S� =
⋃b

i=2
S
�
i
.

Let i ∈ {2,… , b} , let S ∈ Si with o(i) odd, or S ∈ S
�
i
 (as appropriate) and let u, v,  and 

possibly w be distinct vertices of Oi in the same (FS)v0-orbit. In particular, there exists 
f ∈ (FS)v0 with u = vf  , and if w exists then there exists f � ∈ (FS)v0 with uf � = w . Since f 
(and f ′ if it exists) is an automorphism of Γ(R, S) fixing each N-orbit setwise, we deduce

for every j ∈ {1,… , b} ⧵ {1, i} . Hence, |�(S, u, j)| = |�(S, v, j)|(= |�(S,w, j)|) and 
S ∈ Ψ({u, v}, j) or Ψ({u, v,w}, j) . Since this holds for each j ∈ {1,… , b} ⧵ {1, i} , we get 
S ∈ Ψ({u, v}) or S ∈ Ψ({u, v,w}).

The argument in the previous paragraph shows that

From Proposition 4.4, we deduce that

and

	�  ◻

S ∶= {S ⊆ R S = S−1, there exists i ∈ {2,… , b}with o(i) odd such that

(FS)v0 has a nontrivial orbit on Oi}.

S� ∶= {S ⊆ R∣S = S−1, there exists i ∈ {2,… , b} such that

(FS)v0 has an orbit of cardinality at least 3 on Oi}.

Si ∶= {S ⊆ R ∣ S = S−1, (FS)v0 has a nontrivial orbit on Oi}.

S
�
i
∶= {S ⊆ R ∣ S = S−1, (FS)v0 has an orbit of cardinality at least 3 on Oi}.

�(S, v, j)f = �(S, vf , j) = �(S, u, j), and if w exists then

�(S, v, j)f
�

= �(S, vf
�

, j) = �(S,w, j),

Si ⊆
⋃

{u, v} ⊆ Oi

u ≠ v

Ψ({u, v}) or Si ⊆
⋃

{u, v,w} ⊆ Oi|{u, v,w}| = 3

Ψ({u, v,w}).

|S| ≤ (b − 1)

(|N|
2

)
2
�(R)−0.02⋅

|R|
|N| ≤

|R|
|N|

|N|2
2

2
�(R)−0.02⋅

|R|
|N|

|S�| ≤ (b − 1)

(|N|
3

)
2
�(R)−0.02⋅

|R|
|N| ≤

|R|
|N|

|N|3
6

2
�(R)−0.02⋅

|R|
|N| .
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Our next result deals specifically with the case that R/N is an elementary abelian 
2-group. (We refer to Sect. 4.1 for the definition of BS.)

Lemma 4.6  (Recall the notation in Sect. 4.1.) Suppose R is not an abelian group of expo-
nent greater than 2 that R is not a generalized dicyclic group and that R/N is an elementary 
abelian 2-group. Then

Proof  Let S ∶= {S ⊆ R ∣ S = S−1, (BS)v0 ≠ 1} . Observe that the definition of BS immedi-
ately yields BS ⊴ Aut(Γ(R, S)) . In particular, RBS is a group of automorphisms of Γ(R, S) 
acting transitively on the vertex set R and normalizing N. Since R is also transitive on the 
vertex set, the Frattini argument gives RBS = R(BS)v0.

Let

Since R is not an abelian group of exponent greater than 2 and since R is not a generalized 
dicyclic group, Proposition 1.14 yields

In particular, |S�| ≤ 2
�(R)−

|R|
96
+(log2 |R|)2.

For each S ∈ S
�� , choose GS a subgroup of RBS with R < GS and with R maximal in GS . 

Observe that �RBS∕N
(R∕N) = R∕N , because �RBS

(R) = R.
Let K be the core of R in GS . Then

Since R is maximal in GS , GS∕K acts primitively and faithfully on the set of right cosets of 
R in GS . The stabilizer of a point in this action is R/K. As N ≤ K , we deduce that R/K is 
an elementary abelian 2-group. From [18, Lemma 2.1], we deduce |GS ∶ R| = |(GS)v0 | is a 
prime odd number and |R ∶ K| = 2.

We now partition the set S′ further. We define

In what follows, we obtain an upper bound on the cardinality of C and C′.
For each S ∈ C , let �S ∶ (GS)v0 → Aut(K) the natural homomorphism given 

by the conjugation action of (GS)v0 on K. For each � ∈ Aut(K) ⧵ {idK} , let 
C� ∶= {S ∈ C ∣ � ∈ �S((GS)v0 )} . In other words, C� consists of the connection sets S such 
that (GS)v0 contains an element acting by conjugation on K as the automorphism � . With 
this new setting,

Since |(GS)v0 | is odd, then � ∈ �S((GS)v0 ) has odd order. Using this and applying Theo-
rem 1.13 to the group K, we deduce that

|{S ⊆ R ∣ S = S−1, (BS)v0 ≠ 1}| ≤ 2
�(R)−

|R|
192

+(log2 |R|)2+2.

S
� ∶= {S ∈ S ∣ R < �RBS

(R)} and S
�� ∶= S ⧵ S�.

|{S ⊆ R ∣ S = S−1,R < �Aut(Γ(R,S))(R)}| ≤ 2
�(R)−

|R|
96
+(log2 |R|)2 .

K =
⋂
g∈GS

Rg ≥
⋂
g∈GS

Ng = N.

C ∶= {S ∈ S
�� ∣ (GS)v0 does not act trivially by conjugation on K},

C
� ∶= S

�� ⧵ C = {S ∈ S≃≃ ∣ (GS)v0 ≤ �GS
(K)}.

C ⊆
⋃

𝜑∈Aut(K)⧵{idK}

C𝜑.



1458	 J. Morris et al.

1 3

for every � ∈ Aut(K) ⧵ {idK} . In particular, as |K| = |R|∕2 , we have

Since |Aut(K)| ≤ 2(log2 |K|)2 , we deduce

Let S ∈ C
� and let �S be a generator of (GS)v0 : recall that (GS)v0 is a cyclic group of order 

pS , where pS is an odd prime number. Suppose that �S fixes some vertex x ∈ R ⧵ K . Then 
x�S = x , that is, vx�S

0
= vx

0
 . This yields x�Sx−1 ∈ (GS)v0 and x ∈ �GS

((GS)v0 ) . Since (GS)v0 
centralizes K, we get ⟨K, x, (GS)v0⟩ ≤ �GS

((GS)v0 ) . As GS = ⟨K, x, (GS)v0⟩ , we deduce 
(GS)v0 ⊴ GS , which is a contradiction because (GS)v0 is core-free in GS . Therefore, �S fixes 
no vertex in R ⧵ K . Fix x ∈ R ⧵ K . Then x�S = xk , for some k ∈ K ⧵ {1} . Observe that for 
each k� ∈ K , the image of xk′ under �S is uniquely determined because

Applying this equality with k� = k , we deduce o(k) = pS and hence k ∈ N , because R/N 
is an elementary abelian 2-group. This shows that the mapping �S is uniquely determined 
by the image of one fixed element x ∈ R ⧵ K , which has to be of the form xk for some 
k ∈ N . Thus, we have at most |N| choices for �S . Once that �S is fixed, we have at most 
2|R|∕2pS ≤ 2|R|∕6 choices for an �S-invariant subset of R ⧵ K . We deduce

	�  ◻

We end this section by pulling together the above results. We are able to show that 
for all but a small number of connection sets, every connection set S for every group R 
containing a nontrivial proper normal subgroup N is covered in one of the previous two 
results. However, we may have to substitute a larger normal subgroup K > N of R for N, 
which may mean that the bound we achieve is not useful. These situations can be cov-
ered by the results from Sect. 3.

Proof of Theorem 1.6  We use the notation established in Sect. 4.1. Let

Observe that for every S ∈ S , we have (BS)v0 ≠ 1 . We divide the set S futher:

|{S ∩ K ∣ S ∈ C�}| ≤ 2
�(K)−

|K|
96 ,

|C�| ≤ 2
�(K)−

|K|
96 ⋅ 2�(R⧵K) = 2

|K|+|I(K)|
2

−
|R|
192

+
|R⧵K|+|I(R⧵K)|

2 ≤ 2
|R|+|I(R)|

2
−

|R|
192 = 2

�(R)−
|R|
192 .

|C| ≤ 2
�(R)−

|R|
192

+(log2 |R|)2 .

(xk�)�S = xk
��S = x�Sk

�

= (x�S )k
�

= (xk)k = xkk�.

|C�| ≤ 2�(K) ⋅ |N| ⋅ 2 |R|
6 ≤ 2�(R)−

|R|
12
+log2 |N| ≤ 2

�(R)−
|R|
192

+(log2 |R|)2+1.

S ∶= {S ⊆ R ∣ S = S−1, ∃f ∈ �Aut(Γ(R,S))(N) with f ≠ 1 and 1f = 1, f fixes each N-orbit setwise}.
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From Proposition 1.14, Lemma 4.5 and Lemma 4.6, we have explicit bounds for S1 , S2 , S3 
and S4 , and hence we may consider only the set S5.

Let S ∈ S5 . Since S ∉ S4 , R/N is not an elementary abelian 2-group. Since S ∉ S3 , (FS)v0 
has orbits of cardinality at most 2, and so does (BS)v0 . Therefore, (FS)v0 and (BS)v0 are ele-
mentary abelian 2-groups.

Now let LS = {�j ∶ (FS)v0 is trivial on Oj} . Notice that LS is in fact a group. Since (FS)v0 
is nontrivial, then LS is a proper subgroup of R. Since S ∉ S2 , �i ∈ LS for every i with o(i) 
odd. Therefore NLS contains all elements of R of odd order. Let

be the core of NLS in RBS . Since all conjugates of NLS in R also contain all elements of 
R of odd order, we deduce that K also contains all elements of R of odd order and hence 
R/K is a 2-group. As (BS)v0 is also a 2-group, we obtain that RBS∕K is a 2-group. There-
fore �RBS∕K

(R∕K) > R∕K . However, this implies that �RBS
(R) > R , but this contradicts the 

fact that S ∉ S1 . This shows that S5 = � . Now, adding the bounds produced for Si for each 
1 ≤ i ≤ 4 , we get the result. Indeed, using the first bound in Lemma 4.5 and the fact that 
|R| ≥ 2|N| ≥ 4, we get

Further, if |R| < 8, then |R| ≠ 7 (because N is a nontrivial proper subgroup), that is |R| ≤ 6. 
Consequently,

If |R| ≥ 8, then

Using these, and the second bound in Lemma 4.5 we get

This together with Proposition 1.14, and Lemma 4.6, yields

S1 ∶={S ∈ S ∣ R < �Aut(Γ(R,S))(R)},

S2 ∶={S ∈ S ⧵ S1 ∣

∃i ∈ {2,… , b} with o( i) odd such that (FS)v0 has a nontrivial orbit on Oi},

S3 ∶={S ∈ S ⧵ (S1 ∪ S2) ∣

R∕N not an elementary abelian 2-group,

∃i ∈ {2,… , b} such that (FS)v0 has an orbit of cardinality at least 3 on Oi},

S4 ∶={S ∈ S ⧵ (S1 ∪ S2 ∪ S3) ∣

R∕N is an elementary abelian 2-group, (BS)v0 ≠ 1},

S5 ∶=S ⧵ (S1 ∪ S2 ∪ S3 ∪ S4).

K ∶=
⋂

g∈RBS

(NLS)
g

|S2| ≤ 2
�(R)−

|R|
192|N|+log2 |R|+log2 |N|−1 ≤ 2

�(R)−
|R|

192|N|+(log2 |R|)2−2.

log2(|R||N|2∕6) ≤ 2 log2 |R| − 2 ≤ (log2 |R|)2 − 2.

log2(|R||N|2∕6) ≤ log2 |R| + 2 log2 |N| ≤ 3 log2 |R| − 2 ≤ (log2 |R|)2 − 2.

|S3| ≤ 2
�(R)−

|R|
192|N|+log2(|R||N|2∕6) ≤ 2

�(R)−
|R|

192|N|+(log2 |R|)2−2.

|S| ≤2�(R)− |R|
192|N|+(log2 |R|)2 (1 + 2−2 + 2−2 + 22) ≤ 2

�(R)−
|R|

192|N|+(log2 |R|)2+3,
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as required.
As in the proof of Theorem 1.5, we do not need to include the bound from Proposition 1.14 

if we include the condition R = �Aut(Γ(R,S))(R) . If we omit this condition, then we include this 
extra piece (which does not affect the overall bound as we have stated it) but must not allow 
groups that are either abelian of exponent greater than 2, or generalised dicyclic. 	�  ◻
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