
Vol.:(0123456789)

Annali di Matematica Pura ed Applicata (1923 -) (2022) 201:637–654
https://doi.org/10.1007/s10231-021-01132-3

1 3

Monodromy of projections of hypersurfaces

Maria Gioia Cifani1 · Alice Cuzzucoli2 · Riccardo Moschetti1 

Received: 18 April 2020 / Accepted: 7 June 2021 / Published online: 17 June 2021 
© The Author(s) 2021

Abstract
Let X be an irreducible, reduced complex projective hypersurface of degree d. A point P 
not contained in X is called uniform if the monodromy group of the projection of X from 
P is isomorphic to the symmetric group S

d
 . We prove that the locus of non-uniform points 

is finite when X is smooth or a general projection of a smooth variety. In general, it is 
contained in a finite union of linear spaces of codimension at least 2, except possibly for a 
special class of hypersurfaces with singular locus linear in codimension 1. Moreover, we 
generalise a result of Fukasawa and Takahashi on the finiteness of Galois points.
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1 Introduction

This paper aims at studying the monodromy group of projections of irreducible and 
reduced complex projective hypersurfaces. Several accounts of this study, in particular in 
the case of projective curves, can be found in the literature. The classical Uniform Position 
Principle due to Castelnuovo, in the formulation of Harris [17], can be applied to show 
that the monodromy group of a general projection of a curve is the symmetric group. It has 
been proved in [13–15] that the monodromy group of an indecomposable projection of a 
general curve of genus greater than 3 is either the symmetric or the alternating group. More 
recently, all the monodromy groups of projections of a smooth planar curve of degree 
smaller or equal than 5 have been classified (see [23, 24, 29]).

This paper is motivated by the work of Pirola and Schlesinger [25], in which the 
authors consider the monodromy group of projections of any irreducible reduced 
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projective curve. In our case, we fix a hypersurface X ⊂ ℙ
n+1 of degree d and we con-

sider all its natural linear projections �P from a point P ∉ X . We classify such source 
points by means of the monodromy group of the associated projection. Our final goal is 
a characterisation of the locus of points for which the associated monodromy group is 
strictly contained in the symmetric group Sd.

Definition 1.1 The point P is called uniform if M(�P) ≅ Sd and non-uniform otherwise. 
We denote by W(X) the locus of non-uniform points of X.

Specifically, we are interested in two classes of non-uniform points: a point P ∈ W(X) 
is called Galois if the field extension associated with the map �P is a Galois extension. 
A point P ∈ W(X) is called decomposable if the projection �P is decomposable, i.e. if it 
factors via two morphisms of degree greater than 1. The loci of Galois and decompos-
able points are denoted by G(X) and D(X) , respectively.

The non-uniform locus W(X) is constructible and a first step in order to understand its 
structure is to compute its dimension. The uniform position principle extends to hyper-
surfaces by taking general hyperplane sections: indeed, for any irreducible, reduced 
hypersurface X ⊂ ℙ

n+1 we have dimW(X) < n + 1 . This bound is far from optimal. The 
case of curves has been solved by Pirola and Schlesinger: in the work [25], the authors 
proved that the locus of non-uniform points associated with projections of an irreduc-
ible reduced plane curve is finite. The case of surfaces in ℙ3 has been partially covered 
in [7], where it is proved that the locus of non-uniform points of a smooth surface in ℙ3 
is finite. All these bounds are optimal.

The main result of this paper describes a property of the locus of non-uniform points 
for projective hypersurfaces:

Theorem  1.2 Let X be an irreducible, reduced hypersurface of ℙn+1 , n ≥ 2 . Then, W(X) 
is contained in a finite union of linear spaces of codimension 2 in ℙn+1 , unless Xsing is the 
union of at least 2 components isomorphic to ℙn−1 . In this case, W(X) must be a union of 
rational curves, lying in the intersection of the tangent cones to points in Xsing.

Cones over planar curves which admit non-uniform points give examples of hyper-
surfaces X for which W(X) has codimension 2 (see Example 4.6). The possibility of 
W(X) being a union of rational curves seems unlikely, and it is discussed in Remark 
4.11. As a consequence of the main result, we give in Proposition 4.8 a bound on the 
dimension of the locus of non-uniform points for smooth varieties; in particular, such 
locus is finite for smooth hypersurfaces.

Theorem 1.3 Let X be a smooth, complex projective hypersurface of dimension n in ℙn+1 . 
Then, the locus of non-uniform points is finite.

The primary tool in the proofs is the theory of focal loci of families of lines in ℙn+1 , 
a classical topic dating back to Segre ([26]). For our specific problem, we prove a gen-
eralisation of [6, Proposition 4.3] and of [8, Lemma 2], described in Lemma 3.7 and 
Lemma 3.8, respectively.

We also use the focal machinery to give a property of the monodromy group when 
W(X) is infinite and X is not a cone.
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Theorem 1.4 If dimW(X) > 0 and X is not a cone, then the monodromy group associated 
with all but finitely many points of W(X) contains transpositions.

As a consequence of this result, we can give a characterisation of the two loci 
G(X) and D(X) . Galois points have been introduced and extensively studied in various 
works, for instance [10–12, 30] to name a few. These works were particularly focused 
on computing the number of Galois points. Yoshihara gives many examples of smooth 
hypersurfaces X with non-empty G(X) in [30, Proposition 11] (see also [12] for more 
general examples in case of normal hypersurfaces). We give a generalisation of a result 
of Fukasawa and Takahashi ([12, Proposition 6]).

Proposition 1.5 Let X be an irreducible, reduced hypersurface in ℙn+1 of degree d ≥ 3 . 
Then G(X) is finite unless X is a cone.

Decomposable maps were studied in many different contexts as in [4, 5]. A con-
sequence of Theorem 1.4 is that the case W(X) of positive dimension when X is not a 
cone depends only on the locus D(X).

Proposition 1.6 Let X be an irreducible, reduced hypersurface in ℙn+1 which is not a cone. 
Then W(X) ∖D(X) is finite.

Notice that for all hypersurfaces X having prime degree, the locus D(X) is empty. 
These results serve as evidence of the following:

Conjecture 1.7 Let X be an irreducible, reduced hypersurface of ℙn+1 , n ≥ 1 . Then, the 
locus W(X) is finite unless X is a cone.

Plan of the paper In Sect.  2, we recall some basic definitions which will be use-
ful in the following. The theory of focal loci, which is the main technical tool used 
in this paper, is introduced in Sect.  3. The main results in this context are Lemma 
3.7 and Lemma 3.8. The first part of Sect. 4 is devoted to the proof of Theorem 1.2 
about non-uniform points, followed by the consequences concerning general projec-
tions of smooth varieties. The second part contains the study of families of simply 
tangent lines passing through W(X) (see Theorem 1.4) and their relationship with G(X) 
and D(X) . We conclude the paper by summarising our results in light of Conjecture 
1.7, this is done in Remark 4.11.

Notation From now on, the varieties are assumed to be complex and projective. Let 
F  be a family of objects parametrised by a scheme V. We say the general element of 
F  satisfies a certain property P if P holds for every element in a Zariski dense open 
subset of V. We will use the notation 𝔾(r,ℙn) for the Grassmannian parametrising lin-
ear spaces of projective dimension r contained in ℙn . We denote by Xsing the singular 
locus of a variety X and by Xsm its complement. In the following, we will use integral 
instead of the equivalent notion of irreducible and reduced.

2  Preliminaries

In this section, we will briefly recall some results useful for various proofs in Sect. 4.
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2.1  Monodromy

We can define the monodromy group of a finite dominant morphism f ∶ X → Y  of degree 
d > 1 between complex integral hypersurfaces in ℙn+1 as follows. Let U ⊂ Y  be a Zariski 
open set over which f is étale, and let y denote a point in U. We have a well-defined map

The image M(f ) ∶= �
(
�1(U, y)

)
 is called monodromy group of the map f; it is a transitive 

subgroup of Aut(f −1(y)) ≃ Sd.
We can also describe this group by means of Galois extensions: let K be the Galois clo-

sure of the extension k(X)/k(Y), where k(X), k(Y) define the fields of rational functions of X 
and Y, respectively. Define the Galois group G(f) of the map f to be the Galois group of the 
field extension K/k(Y). It turns out that G(f) is isomorphic to M(f), see [16, Section I]. It fol-
lows that M(f) does not depend on the choices of U and y.

2.2  Projections

Let X ⊂ ℙ
n+c be a smooth variety of dimension n. Let T be a linear subspace of dimension 

t ≤ c − 1 such that T ∩ X = � . Fix a target space ℙn+c−(t+1) not intersecting T, and consider 
the finite map defined by the linear projection �T ∶ X → ℙ

n+c−(t+1) . Here and in the follow-
ing, we will always assume the target space to be fixed, thus speaking of the linear projec-
tion �T instead of a linear projection �T . The following theorem is the algebraic version of 
a result of Mather in [21], which provides a powerful tool in order to understand singulari-
ties arising from projections. We will apply it in Proposition 4.7 and 4.8, for t = c − 2 and 
t = c − 1 , respectively.

Theorem  2.1 [2, Theorem  1] Let X and T as above. For any i1 ≤ t + 1 , 
define Xi1

∶= {x ∈ X | dim(TxX ∩ T) = i1 − 1} . When Xi1
 is smooth, define 

Xi1,i2
∶= {x ∈ Xi1

| dim(TxXi1
∩ T) = i2 − 1} and so on. When possible, define Xi1,⋯,ik

 for 
ik ≤ ⋯ ≤ i2 ≤ i1 . For T general, every Xi1,…,ik

 is smooth and, when not empty, its codimen-
sion is positive, see [3, Theorem 2] for details. In particular, the codimension of Xi1

 in X is 
i1 ⋅ (i1 + 1).

We recall here the definition of projective cone and the statement of Bertini’s Theorem.

Definition 2.2 [18, Ex 3.1] Let Γ ≅ ℙ
k be a linear subspace in ℙn+1 and let Y ⊂ Γ be a 

variety. Let V ≅ ℙ
n−k be a linear subspace disjoint from Γ . The cone over Y of vertex V is a 

variety in ℙn+1 defined as the union of the lines joining the vertex V with points of Y.

The notion of cone will be used in Lemma 3.8 and Theorem 1.4 in conjunction with the 
notion of dual variety. An introduction to this topic can be found in [28].

Theorem 2.3 [20, Theorem 3.3.1] Let X be an irreducible variety and f ∶ X → ℙ
r a mor-

phism. Fix an integer d < dimf (X) . If L ⊂ ℙ
r is a general (r − d)–plane, then f −1(L) is 

irreducible.

� ∶ �1(U, y) → Aut
(
f −1(y)

)
.
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When dealing with a projective hypersurface X, the map f as defined in Theorem 2.3 
above is the inclusion X ↪ ℙ

n+1 , so we just have d < dimX , and f −1(L) = X ∩ L . Moreo-
ver, by following the proof, it is easy to see that the hypothesis general concerning L means 
that we can fix a (r − d − 1)–plane transverse to X, and then choose L general among the 
(r − d)–planes containing L.

For what concerns the monodromy group, we have the following version of Bertini-type 
theorem.

Lemma 2.4 Let X be an irreducible variety in ℙn+1 of dimension n ≥ 2 . Let H be a general 
linear subspace of codimension k ≥ 1 , and XH the section of X cut by H. Then, for a point 
P ∈ H such that P ∉ X , we have

XH

πP |XH

i
X

πP

Pk i Pn.

As a consequence, we have M(�P|XH
) ≤ M(�P) , which in term of non-uniform points 

gives that

2.3  Families of tangent lines

This section is devoted to the study of families of lines that are tangent to a hypersurface. 
We will briefly go through some preliminaries to highlight the aspects related to our prob-
lem; for a more general introduction see for instance [31].

Consider an integral hypersurface X ⊂ ℙ
n+1 of degree d and a line � ⊈ X . The inter-

section X ∩ � consists of a finite number of points P1,… ,Pk counted with multiplicities 
m1,… ,mk such that 

∑
mi = d.

We recall some terminology that is useful to characterise the family of lines with respect 
to the hypersurface.

Definition 2.5 We call the contact order of � with X at Pi the number mi − 1 , and we 
denote it by ordPi

(� ∩ X) . The line � is transverse to X at Pi if ordPi
(� ∩ X) = 0 , and tan-

gent to X at Pi if ordPi
(� ∩ X) ≥ 1 . In the case of higher contact order, i.e. ordPi

(� ∩ X) ≥ 2 , 
we say that the line � is an asymptotic tangent to X at Pi . The line � is called bitangent to X 
at two points Pi ≠ Pj , if � is tangent to X at both points Pi,Pj . We say that � is a simple tan-
gent if there is a unique tangent point Pi ∈ � ∩ X with ordPi

(� ∩ X) = 1 and � is transverse 
to X for all the other Pj ≠ Pi in � ∩ X.

Notice that if we take a singular point in a hypersurface X, then all the lines passing 
through it will be at least simply tangent. We remark that this is not true when X is a 
variety of codimension higher than 1.

W(X) ∩ H ⊆ W(X ∩ H).
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Definition 2.6 [18, Lecture 20] Consider a hypersurface X and a point P ∈ X . Choose an 
affine neighbourhood of P, where P is the origin. In this neighbourhood, X is described by 
a certain polynomial f ∶= fm + fm+1 +⋯ , where fk is homogeneous of degree k, and m is 
the smallest integer such that fm is not vanishing. The tangent cone to X at the point P is the 
hypersurface described by the polynomial fm.

2.4  Branch locus

Let X be an integral hypersurface in ℙn+1 of degree d, and �P ∶ X → ℙ
n be the projec-

tion from a point P ∉ X and let y be a point in ℙn . The fibre over y is defined by the set 
�−1
P
(y) = {P1,… ,Pk} consisting of k ≤ d distinct points. This set corresponds to the set-

theoretical intersection of X with the line through P and y.

Definition 2.7 We call classical branch locus of �P the locus B of points y ∈ ℙ
n such that 

the cardinality of the fibre �−1
P
(y) is strictly lower than d.

The image via �P of Xsing is contained in the classical branch locus, since any line 
passing through Xsing is tangent to X. We want to distinguish the points in the classical 
branch locus related to Xsing from the points coming from lines in ℙn+1 for which the tan-
gency order is greater than the order of the general line in ℙn+1 . To this end, consider the 
normalisation map 𝜈 ∶ X̃ → X , and its composition � with the projection �P:

Let y be a general point of an irreducible component of B and let l be the 0 dimensional 
subscheme of X obtained by cutting X with the line ⟨P, y⟩ . Thus, its pullback to X̃ is given 
by l̃ = m1x1 +⋯ + mtxt , where d ≥ t ≥ k and 

∑t

i=1
mi = d . The image of the singular locus 

of X̃ via � is in codimension 2 in ℙn . As y is chosen to be general, the points x1,… , xt are 
smooth in X̃.

Definition 2.8 An irreducible component of B is called a branch component if the fibre on 
X̃ of a general point y has at least a (necessarily smooth) point xi with mi ≥ 2 . The union 
of all the branch components is called the branch locus of �P . We will denote it by BP . 
Moreover, we can define the branching weight of a point y in the branch locus as

We say that y ∈ BP is a simple branch point if b(y) = 1.

There is a relationship between the branching weight and the permutation type of the 
corresponding element in Sd via the monodromy map. In particular, simple branch points 
correspond to transpositions in the monodromy group, see [16, Section II.3]. The following 
lemma is proved in [22, Chapter III, Lemma 4.6]. We report its statement in the particular 
case of projections by using the notation introduced before.

𝜙 = 𝜋P◦𝜈 ∶ X̃ → ℙ
n.

b(y) ∶=

t∑
i=1

(mi − 1) ≥ 1.
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Lemma 2.9 Consider the projection �P of an integral planar curve X from a point P ∉ X . 
Let y be a point of BP . The cycle structure of the permutation representing a small loop 
around y in the monodromy group is (m1,… ,mt) , where the mi are defined as above.

As a consequence, we can rephrase algebraic results about symmetric groups in terms 
of tangency and monodromy. For instance, we know that a transitive subgroup of Sd which 
is generated by transpositions, coincides with Sd . As a consequence, assume dimX > 1 ; if 
there is a simple tangent line to X passing through P ∈ Xsm , then the general line tangent 
to X in P is simply tangent. If we take a general hyperplane H passing through P, then the 
point P ∈ H is uniform for X ∩ H , and so by Lemma 2.4 P is also uniform for X.

3  Focal loci of a family of lines

In this section, we discuss some special families of lines related to our hypersurface which 
will be important for their relationship with the monodromy group. We refer the reader to 
[19, Chapter III.9] and to [27, Chapter  4.6.7] for background material about families of 
algebraic spaces.

Let X  be a flat family of closed subschemes of ℙn+1 parametrised by a integral base 
scheme S. This can be described by the following diagram, where the map i is the inclusion 
and p, q are the projections on the first and second factor, respectively: 

X

p|X
f

i
S × Pn+1

q

S Pn+1.

Definition 3.1 The kernel of the differential df  defines a sheaf F  over X  and it is called 
focal sheaf. The locus F(X) , i.e. the support of the sheaf, is called the focal scheme or, 
more classically, focal locus.

From now on, as in [6, Section 4.2], we will consider only the case in which X  is a 
family of lines in ℙn+1 , for instance by choosing S to be a subscheme of the Grassmannian 
𝔾(1,ℙn+1) . The family X  can be interpreted via the map f as the subset of the points in ℙn+1 
of the corresponding lines.

Definition 3.2 The family X  of lines in ℙn+1 over the base S is called filling family if the 
dimension of S is n and the map f = i◦q is dominant.

The focal locus F(�s) restricted to a general line �s of the family X  is where the fol-
lowing map has not maximal rank

O⊕n

�s

≅ TS,s ⊗O�s
→ N�s|ℙn+1 ≅ O�s

(1)⊕n
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We will now introduce the notation for proving Lemma 3.5. Let X  be a filling family of 
lines in ℙn+1 , so that dimX = n . Assume X  is locally parametrised by S ∶= S(u1,… , un) . 
The line �s corresponding to a point s ∈ S can be described by the intersection of n distinct 
hyperplanes

Here, x = (x0 ∶ … ∶ xn+1) is the vector of the coordinates in ℙ
n+1 and 

ai(s) = (ai(s)0 ∶ … ∶ ai(s)n+1) determines the i-th hyperplane. We will denote by �ukai(s)j 
the partial derivative of ai(s)j with respect to the variable uk , and inductively for high order 
derivatives �uk ,ulai(s)j , and so on. In the following, we will omit the dependency on s, by 
writing for instance just �uiai for the vector (�uia1(s)0 ∶ … ∶ �uiai(s)n+1) . With this nota-
tion, the equation of the focal locus on the line �s is

together with the equations in (1).
We have sketched the proof of the following lemma, which was originally stated in 

[26]. Our sketch is based on [6, Proposition 4.1].

Lemma 3.3 Let X  be a filling family of lines in ℙn+1 and let s ∈ S be a general point of the 
base. Then the focal locus in the fibre �s consists of n points counted with the right multi-
plicity as roots of Eq. (2).

Definition 3.4 A point P in ℙn+1 is called fundamental for the family X  if there is a sub-
family X ′ of lines all passing through it. The fundamental locus is the subset of ℙn+1 of 
fundamental points.

The following facts on fundamental points are well known, and their origins date 
back to Segre, in the work [26]:

Lemma 3.5 Consider a filling family of lines in ℙn+1 and assume there is a subfamily X ′ of 
lines all passing through a point P. If the dimension of the base of X′ is k, then P is a focus 
of multiplicity k.

The number of lines of a family X  through a general point of ℙn+1 is classically called 
the order of the family X .

Proposition 3.6 [8, Proposition 4.3] Let X  be a filling family of lines in ℙn+1 of order 1. 
Then, the focal locus coincides with the fundamental locus.

We now prove two results on the fundamental locus of particular filling families of 
lines in ℙn+1 that we will use later. The following result is a generalisation of parts (a) 
and (c) of Proposition 5.1 in [6].

Lemma 3.7 Consider a filling family X  of lines in ℙn+1 and an integral hypersurface X. 
Assume the general � ∈ X  is tangent to X at a general point P. Then P is a focus on � . 

(1)𝓁s ∶= {a1(s) ⋅ x = ⋯ = an(s) ⋅ x = 0}.

(2)det

⎛
⎜⎜⎝

(�u1a1) ⋅ x ⋯ (�una1) ⋅ x

⋮ ⋮

(�u1an) ⋅ x ⋯ (�unan) ⋅ x

⎞
⎟⎟⎠
= 0,
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Moreover, if the contact order of  � with X at P is at least 2, then P is a focus with multi-
plicity at least 2 on �.

Proof We can assume that the hypersurface X is parametrised locally around P by the same 
S which parametrises the family X  , so P ∶= P(s) will denote the point varying on X, and 
𝓁s ∶= {a1(s) ⋅ x = ⋯ = an(s) ⋅ x = 0} will denote the line tangent at P(s) varying in X  , as 
in Eq. (1). Let a1(s) ⋅ x = 0 be the hyperplane tangent to X at P(s), so that

By taking partial derivatives, we get

It immediately follows that P(s) satisfies Equation (2), and so is a focus on �(s) indepen-
dently of the choices of the other n − 1 hyperplanes.

For the second part, since �s is tangent to X at P, we can assume � to be parametrised as 
follows:

With this notation, Eq. (2) becomes an equation in � with a parameter s. Proving that 
P(s) is a focus of with multiplicity at least 2 on �s means that we can collect �2 in the 
previous equation. The hypothesis that the contact order of �s with X at P(s) is at least 
2 gives a1(s) ⋅

(
�u1,u1P(s)

)
= 0 , and as a consequence �u1a1(s) ⋅

(
�u1P(s)

)
= 0 . Note 

that a2(s),… , an(s) can be choose to be general hyperplanes containing �s . We have 
ai(s) ⋅ P(s) = ai(s) ⋅ �u1P(s) = 0 , hence �u1ai(s) ⋅ P(s) = 0.

After omitting the dependencies on the point s ∈ S for better reading, these computa-
tions show that the matrix in Eq. (2) becomes

Lemma 3.3 guarantees that this determinant is not identically zero whenever �s is a general 
element of the family. Such a determinant is a multiple of �2 , hence the point P is a focus of 
multiplicity at least 2.  □

In the proof of Theorem 1.2, we will have to deal also with a family of lines obtained 
by joining a curve and a variety of codimension 2. At this purpose, we generalise [8, 
Lemma 2] to higher dimension.

Lemma 3.8 Let F be a subvariety of ℙn+1 of codimension 2, and C ⊈ F be a curve not 
contained in a ℙn−1. Assume that the family X  of lines joining C  and F is filling. Then, F is 
linear and C  is rational. If C ∩ F = � , C  is also linear. Otherwise, F meets C  in deg(C) − 1 
points.

Proof In this proof we will follow [8]. We also refer to it for the notations and preliminar-
ies about Schubert cycles. The points of F and the points of C  are fundamental, they yield 

a1(s) ⋅ P(s) = a1(s) ⋅
(
�u1P(s)

)
= ⋯ = a1(s) ⋅

(
�unP(s)

)
= 0.

(
�u1a1(s)

)
⋅ P(s) = ⋯ =

(
�una1(s)

)
⋅ P(s) = 0.

�s ∶=
{
P(s) + ��u1P(s)

}
.

det

⎛
⎜⎜⎜⎝

0 �(�u2a1) ⋅ (�u1P) ⋯ �(�una1) ⋅ (�u1P)

�(�u1a2) ⋅ (�u1P) ⋯ ⋯ ⋯

⋮ ⋮

�(�u1an) ⋅ (�u1P) ⋯ ⋯ ⋯

⎞
⎟⎟⎟⎠
= 0.
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on the general � ∈ X  a focus of multiplicity n − 1 in � ∩ C and a focus of multiplicity 1 in 
� ∩ F . By Lemma 3.3 there are no other focal points on � , and so the focal locus has codi-
mension exactly 2. We can apply [9, Theorem 2.1] and conclude that the order of X  must 
be 1 since we are assuming X  is filling. Let d1 and d2 be the degree of C  and F, respec-
tively. Assume first that C ∩ F ≠ � , and let m be the number of lines through a general 
point P ∈ ℙ

n+1 passing through C ∩ F . The cone �C,P over C  of vertex P has dimension 2 
and degree d1 , while the cone �F,P has dimension n and degree d2 . They intersect in d1d2 
lines through the point P, and we know that one of these lines belongs to the family X  . 
Since the family of lines through each point of C ∩ F form itself a filling family of order 
one, that line does not pass through C ∩ F . Therefore, we have that m = d1d2 − 1.

Assume by contradiction that F is not linear. If F is non degenerate, consider the cone 
�F,Q , where Q is a general point of F, which has degree d2 − 1 . Recall that the general line 
of X  meets C  (resp. F) at a single point and those are the only focal points on the line. The 
cone �F,Q does not contain the cone �C,Q since otherwise the lines secant to F and intersect-
ing C  will form a hypersurface of focal points.

As before, the intersection of the two cones gives d1(d2 − 1) lines through Q meet-
ing C ∩ F : if one of these lines meets C  and F in distinct points, then all the line would 
be focal, and this contradicts the fact that the focal locus has codimension 2. There-
fore, we have that m = d1(d2 − 1) . Summing up, d2d1 − 1 = d2d1 − d1 which gives that 
d1 = deg(C) = 1 that is a contradiction. If F is contained in a hyperplane H, then C  is not 
contained in H since the family X  is filling. Hence, the number of points in C ∩ F is lesser 
than or equal to d1 = deg(C) . As before, we have that m = d1d2 − 1 ≤ d1 and so C  is linear 
and F has degree 2, that is again a contradiction. Therefore, F must be linear.

We are left with the case C ∩ F = � . By following the notation of [8], let M(F) be the 
family of lines in ℙn+1 meeting F. It is a codimension 1 family in 𝔾(1,ℙn+1) , hence it can 
be written as

In the same way, let M(C) be the family of lines meeting C  . It is a codimension n − 1 fam-
ily in 𝔾(1,ℙn+1) , hence it can be written as

where k = ⌊ n−1

2
⌋ . The complementary cycle of �n−1−t,t with t > 0 is �n−t,t+1 , which gives 

a family of lines contained in a ℙn−t . But if t ≥ 1 , a general ℙn−t does not intersect the 
curve C  , hence we have that M(C) ⋅ �n−t,t+1 = at = 0 for t > 0 . The complementary cycle 
of �n−1,0 is �n,1 , which gives a family of lines contained in a ℙn passing through a general 
point. A general hyperplane cuts C  in d1 points and the lines passing through them are lines 
of M(C) contained in this hyperplane. Hence, M(C) reduces to d1�n−1,0 . The filling family 
X  is given by the intersection of M(F) and M(C) . Pieri’s formula gives

saying that through a general point of ℙn+1 pass d1d2 lines of X  . By our assumption, 
d1 = d2 = 1 , i.e. both C  and F are linear. The proof of the rationality of C  follows the same 
lines of [8, Theorem 7].  □

M(F) = d2�1,0.

M(C) =

k∑
t=0

at�n−1−t,t = a0�n−1,0 +⋯ + ak�n−1−k,k,

M(F) ⋅M(C) = d1d2(�n,0 + �n−1,1),
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4  The locus of non‑uniform points

The first part of this section is devoted to the proof of Theorem 1.2. We will apply all the 
focal machinery developed in the previous section to the following family.

Definition 4.1 Let V be the family in 𝔾(1,ℙn+1) composed by the lines � of the following 
types: 

(C1)  The line � if is bitangent or asymptotic tangent to Xsm;
(C2)  The line � passes through a point of Xsing and is also tangent at a (necessarily differ-

ent) point of Xsm;
(C3)  The line � intersects Xsing in more than one point;
(C4)  The line � is in the tangent cone to X at a point in Xsing , see Definition 2.6.

 If Y  is a variety in ℙn+1 we define VY the subfamily of V composed of the lines passing 
through points of Y.

The subfamily of lines of type (Ck) has expected dimension 2n − 2 for k = 1,… , 4 . The 
whole family V is deeply related with non-uniform points. Indeed, if we take Q ∈ W(X) , 
the following lemma shows that the family VQ defined above has the greatest possible 
dimension. This will be crucial in the proof of Theorem 1.2.

Lemma 4.2 Let X be an integral hypersurface in ℙn+1, and let Q ∈ W(X) be a non-uniform 
point. Then, the base parametrising the family VQ has dimension n − 1 in the Grassmann-
ian �(1, n + 1).

Proof For n = 1 , [25, Proposition 2.5] guarantees that a non-uniform point must have 
at least two non-simple tangent lines passing through it. We proceed now by induction. 
Assume that the claim is true for a hypersurface of dimX = n − 1 and prove it for the case 
dimX = n . By contradiction, assume that the dimension of the base of VQ is smaller than 
n − 1 . Take a general hyperplane H in ℙn+1 passing through Q; by Bertini’s Theorem, the 
section X ∩ H is integral since Q ∉ X . The hyperplane H meets the family VQ in a subfam-
ily parametrised by a base of dimension strictly lower than n − 1 , but this contradicts the 
induction hypothesis.  □

Lemma 4.3 Let C ⊂ W(X) be an irreducible curve not contained in a linear space of codi-
mension 2. Then the family VC  is filling.

Proof We want to show that VC  is a family whose base space has dimension n and the map 
VC → ℙ

n+1 of Definition 3.2 is dominant. For every choice of Q ∈ C  , the dimension of the 
base of VQ is n − 1 thanks to Lemma 4.2. Every line in VC  belongs to the cone VQ for a cer-
tain Q ∈ C  , so the dimension of the base of VC  is n.

If the map VC → ℙ
n+1 of Definition 3.2 were not dominant, then the union of all the VQ 

would be contained a finite union of divisors Vj, j = 1,… , r in ℙn+1 . For a general Q ∈ C  , 
VQ is the union of cones over Vj ∩ X with vertex Q, each of which correspond to Vj since 
they have the same dimension, again by Lemma 4.2. Let us work with just one Vj ∶= V  for 
some j = 1,… , r . The cone VQ coincides with VQ′ for every Q,Q� ∈ C  and we will just 
denote it by V. We claim that V is a linear space. Indeed, since C  is contained in the vertex 
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of V, then we can apply [1, Proposition 1.3 (i)] and get that also the linear span ⟨C⟩ must be 
contained in the vertex of V. From the assumption on the curve, V must be linear.

As a consequence, the curve C  must be contained in the intersection of H1,… ,Hk , so 
we have to rule out the case in which k = 1 . A general ℙ2 passing through a general point Q 
of C  will intersect X in an integral curve. The hyperplanes Hi intersect this last ℙ2 in lines 
which, together with some transposition coming from lines outside the Hi’s, are generators 
of the monodromy group �Q . Recall that the product of all the generators is the identity: 
if k = 1 , the monodromy group �Q will be generated just by the transpositions outside H1 . 
However, this cannot happen, as the point Q is not uniform. Consequently, there must be at 
least two generators coming from the Hi , hence k > 1 .  □

The problem of finding a bound on the dimension of W(X) for planar curves has been 
completely solved in [25]:

Theorem 4.4 [25, Theorem 3.5, r = 2] Let X ⊂ ℙ
2 be an irreducible curve. Then the locus 

of non-uniform points is finite.

Notice that by subsequently taking general hyperplane sections (see Lemma 2.4), 
Theorem 4.4 implies that the codimension of W(X) must be at least 2. In order to prove 
the main theorem, we start by the following lemma, in which under some technical 
hypotheses, we use the theory of focal loci to get a crucial property of certain curves 
contained in W(X) which will be useful in the following.

Lemma 4.5 Let X be an integral hypersurface of ℙn+1 , n ≥ 2. Assume C ⊂ W(X) is a curve 
such that VC  has a component of maximal dimension of lines of type ( C1 ), ( C2) or ( C3). 
Then, C  must be contained in a linear space of codimension 2 in ℙn+1.

Proof If the thesis is false, we can assume C  is not contained in a linear space of codimen-
sion 2. We want to apply the focal machinery to the family VC  . The hypothesis of Lemma 
4.3 are satisfied, so we know that VC  is filling. Consider a general element � ∈ VC .

The general element of VC  is of type ( C1 ). We claim that the general � of VC  is tangent 
at a general point of X. Indeed, if it were not true, there would be a divisor Y ⊂ Xsm such 
that the family VC  of lines would be the join of Y and C  . Therefore, C  would be contained 
in the tangent hyperplane TyX for every y ∈ Y  , so C  belongs to the intersection of all the 
TyX , and the lines of VC  belong to the union of all the TyX . Since we assumed C  not be 
contained in a linear space of codimension 2, the only possibility is that that T ∶= TyX is 
constant for y ∈ Y  . But then VC  would be contained in T hence not filling, contradicting 
Lemma 4.3.

If � is an asymptotic tangent line at a general point P ∈ X , then it is a focal point with 
multiplicity 2; if � is bitangent at two distinct points then both of them are focal points for 
� (see Lemma 3.7).

The general element of VC  is of type ( C2).
As for the previous case, we can assume that the point in � is tangent at a general point 

in Xsm , so the tangency point is a focus by Lemma 3.7, while a point in � ∩ Xsing is focal by 
Lemma 3.5.

The general element of VC  is of type ( C3 ). The family VC  consists of lines pass-
ing through at least two points of Xsing and intersecting W(X) . Hence, there is a 
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one-dimensional subfamily of lines of VC  through every point in Xsing . By Lemma 3.5, the 
points in � ∩ Xsing are focal points for � , each of multiplicity 1.

In each of the previous cases, the focal locus of � has multiplicity at least 2 in points 
where � is tangent to X. Moreover, � passes through a point of C  and, by construction, for 
every such point there is a n − 1 dimensional subfamily of VC  . Therefore, this point is a 
focus for � as well, its multiplicity being, at least, n − 1 by Lemma 3.5. Note that the gen-
eral line meets C  in a point outside X. Thus, we have at least n + 1 focal points in a general 
line � of the filling family VC  . But this is a contradiction because of Lemma 3.3, as the 
focal locus in a general line of a filling family of lines in ℙn+1 consists of n points counted 
with multiplicity.  □

We are now ready for the proof of the main result of this paper.

Proof of Theorem 1.2 Let us assume that there exists a component of W(X) not contained 
in a linear space of codimension 2. Consider an irreducible curve C ⊂ W(X) with the same 
property. If VC  has a component of maximal dimension of lines of type ( C1 ), ( C2 ) or ( C3 ), 
we apply Lemma 4.5 and get a contradiction. We are left to consider the case in which the 
general � ∈ VC  is of type ( C4 ). In this case, � belongs to the tangent cone to X at a point 
x in Xsing . As a consequence, C  must be contained in the intersection of all the tangent 
cones at points in Xsing . The family VC  is composed by lines joining C  and Xsing . Recall 
that we are still assuming C  not contained in a linear space of codimension 2, hence VC  is 
filling and, by applying Lemma 3.8, we get that C  is rational, Xsing is linear and meets C  in 
deg(C) − 1 points. There could be only a finite number of curves C ⊂ W(X) satisfying these 
properties. Therefore, the dimension of W(X) must be at most 1. We also remark that the 
image of Xsing under the projection from a point is a linear subspace of ℙn and, by Lemma 
2.9 gives generators of the monodromy group of the projection which are not transposi-
tions. We are assuming the general � ∈ VC  is of type ( C4 ), hence Xsing must split in at least 
two linear spaces, in order to have a non-uniform monodromy.  □

We remark that the only obstruction to prove that W(X) is always contained in a linear 
space of codimension 2 comes from the general � ∈ VC  being of type ( C4 ). Notice that the 
case of W(X) being a finite union of linear space of codimension 2 can actually happen, as 
shown in the following example.

Example 4.6 Fix an integral curve C ⊂ ℙ
n+1 contained in a plane H ≅ ℙ

2 and consider a 
linear space V of dimension n − 2 disjoint from H. Let X be the cone on C with vertex 
V. We claim that W(X) is the join of W(C) and V. Assume that Q is a non-uniform point 
for C in H. First, notice that every point in the line ⟨Q,V⟩ is non-uniform for X: the linear 
projection from the vertex induces an isomorphism from the general ℙ2 to H which sends 
X ∩ ℙ

2 to C, so ⟨W(C),V⟩ ⊂ W(X) . In a similar way, if Q ∈ W(X) we have that ⟨Q,V⟩ ∩ H 
is a non-uniform point for C, hence W(X) ⊂ ⟨W(C),V⟩ . In a similar flavour, cones provide 
an example of an integral X ⊂ ℙ

n+1 with W(X) being a finite union of ℙk , k = 1,… , n − 1.

As a consequence of the main theorem, we are able to prove the finiteness of W(X) 
for many hypersurfaces. As a generalisation of Theorem 1.1 in [7] we have Theorem 1.3. 
We prove it more generally by obtaining the analogous of [25, Theorem 3.5] in higher 
dimension. Consider a smooth, irreducible variety X̃ of dimension n in ℙn+c , c ≥ 1 . We 
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can define the monodromy group M(�L) associated with the projection from a linear 
space L ∈ 𝔾(c − 1,ℙn+c) . Our next step is to study the dimension of W(X̃) . We start with 
projecting X̃ to a hypersurface X ⊂ ℙ

n+1 , and to study W(X).

Proposition 4.7 Let X̃ be a smooth irreducible projective variety of dimension n in ℙn+c 
and X the projection of X̃ from a general linear subspace L ⊂ ℙ

n+c of dimension c − 2 . 
Then, the locus W(X) is at most finite.

Proof Assume by contradiction that W(X) is not finite, and moreover that there exists a 
component of W(X) not contained in a linear space of codimension 2. Consider an irreduc-
ible curve C ⊂ W(X) with the same property. We start by a remark on the tangent cone 
at points in Xsing . In particular, we claim that the general line of the family VC  is not of 
type ( C4 ). If Xsing has codimension greater than 1, this is trivially true. Assume now Xsing 
of codimension 1. A point x̃ ∈ X̃ is projected to x ∈ Xsing in two cases: either the ℙc−1 
given by the join ⟨L, x⟩ is secant to X̃ in other points ỹ1,… ỹk , or x belongs to the locus 
Xt described in Theorem 2.1 for a certain t ≥ 1 . In the first case, the tangent cone to X at 
the point x is a finite union of hyperplanes, corresponding to the projection of the tangent 
spaces to X̃ at x̃, ỹ1,… ỹk . The locus of points on X corresponding to the second case has 
codimension greater than 1 thanks to Theorem 2.1. As a consequence, the general element 
of VC  is of type ( C1 ), ( C2 ) or ( C3 ) and Lemma 4.5 gives a contradiction. Hence, W(X) must 
be contained in a linear space of codimension at least 2.

Denote by K ≅ ℙ
k the smallest linear subspace of ℙn+1 containing a irreducible compo-

nent of W(X) and assume that the curve C ⊂ W(X) spans K. Consider a general H ≅ ℙ
k+1 

containing K. Since X is reduced, also is X ∩ H . We will first show that assuming X ∩ H to 
be irreducible leads to a contradiction. By Lemma 4.3, since C  spans a space of codimen-
sion 1 in H, the family VC,H of lines in VC  which belongs to H is filling. If the hypothesis of 
Lemma 4.5 is satisfied we immediately get a contradiction. So the only possibility is that 
the general element of VC,H is of type ( C4 ). This was not true for the family VC  , due to the 
dimension of the locus in Xsing giving rise to lines of type ( C4 ). Since H is general, the only 
possibility is that the general � ∈ VC,H is tangent to X at the base locus of X ∩ H , namely 
in points of X ∩ K . This, however, gives that � is contained in K, contradicting the fact that 
VC,H is filling.

We are left with the case in which X ∩ H is reducible. Denote by K̃ and H̃ the linear 
spaces ⟨L,K⟩ and ⟨L,H⟩ , respectively. The variety X ∩ H is the linear projection from L 
of X̃ ∩ H̃ , hence also X̃ ∩ H̃ must be reducible since the projection is a continuous map. 
In the case we are considering, Theorem 2.3 cannot be applied, hence K̃ is not transverse 
to X, namely for all x ∈ X̃ ∩ K̃ , the tangent space TxX̃ is contained in K̃ . The dimension of 
the intersection of TxX̃ with L in K̃ is then n − k − 1 , which is greater than or equal to 0, 
since 1 ≤ k ≤ n − 1 . This shows that X̃ ∩ K̃ is contained in the locus X̃n−k defined in Theo-
rem 2.1. Now, X̃ ∩ K̃ has dimension k − 1 and X̃n−k has dimension n − (n − k)(n − k + 1) . 
We get

The only possibility is k = n − 1 , for which X̃ ∩ K̃ has the same dimension of X̃1 . We know 
by Theorem 2.1, that X̃1 is smooth, and this gives a contradiction. □

k − 1 ≤ n − (n − k)(n − k + 1)

0 ≤ 1 − (n − k)2
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As a consequence of this proposition, we can reason as in [25, Theorem 3.5] and show 
the following

Proposition 4.8 Let X̃ be a smooth irreducible complex projective variety of dimension n in 
ℙ
n+c , c ≥ 1 . The locus of non-uniform (c − 1)-planes L not intersecting X̃ has codimension 

at least n + 1 in the Grassmannian 𝔾(c − 1,ℙn+c).

Proof We will follow the proof of [25, Theorem 3.5]. When c = 1 we know from Proposi-
tion 4.7 that all but finitely many points P ∈ ℙ

n+1 ∖ X̃ are uniform. Now assume c ≥ 2 . 
After projecting from a general (c − 2)-subspace M, we get X ⊂ ℙ

n+1
M

 , where ℙn+1
M

 para-
metrises all the ( c − 1)-planes L containing M. Notice that projecting X̃ to ℙn from L is 
equivalent to projecting X to ℙn from the point in ℙn+1

M
 corresponding to L. Proposition 4.7 

applied to X gives dimW(X) ≤ 0.
Assume by contradiction that W(X̃) has codimension at most n in the Grassmannian 

𝔾(c − 1,ℙn+c) . In this case, there would be an irreducible subvariety D of codimension at 
most n such that the general L ∈ D is non-uniform, i.e. every L ∈ D ∖ Z is non-uniform for 
a proper Zariski closed subset Z. We claim that for a general element M ∈ 𝔾(c − 2,ℙn+c) , 
the dimension of (D ∖ Z) ∩ ℙ

n+1
M

 is greater than zero. Notice first that D ∩ ℙ
n+1
M

 is at least 
one-dimensional: D has codimension at most n in 𝔾(c − 1,ℙn+c) and ℙn+1

M
 is n + 1 dimen-

sional. Secondly, we have that

This implies that there exist infinitely many non-uniform such planes L containing a general 
M ∈ 𝔾(c − 2,ℙn+c) , but this would give dim(X) > 0 , which contradicts Proposition 4.7.  □

Remark 4.9 The same argument of [25, Remark 3.6] shows that the bound in Proposition 
4.8 is sharp. There are singular varieties X for which there exist points x ∉ X such that the 
projection 𝜋x ∶ X ⊂ ℙ

n+c
→ ℙ

n+c−1 is non-birational onto the image. If this is the case, a 
(c − 1)-plane L containing such an x is non-uniform because the map �L factorises in a non-
trivial way. Thus, the family of the (c − 1)-planes passing through x is a family consisting 
of non-uniform elements in 𝔾(c − 1,ℙn+c) of codimension n + 1.

We now focus on the case in which W(X) is not finite. Transpositions play a fundamen-
tal role in determining if a point is uniform or not, see [25, Remark 2.2]. This motivates 
Theorem 1.4, in which as in Lemma 4.5, we apply Lemma 3.7 to show that if dimW(X) > 0 
and X is not a cone, then the monodromy group associated with all but finitely many points 
of W(X) contains transpositions.

Proof of Theorem 1.4 Consider the family X  of lines in ℙn+1 tangent to X at smooth points 
and passing through a curve C  inside W(X).

Notice that X  is composed by lines lying on hyperplanes tangent to X and passing 
through C  . Let X∗ ⊂ (ℙn+1)∗ be the dual variety of X; let r be the dimension of X∗ . If X is 
not a cone, by [28, Theorem 1.25] we have that X∗ is not contained in a hyperplane. Con-
sider the family of hyperplanes in (ℙn+1)∗ dual to the points of C  . The general hyperplane 
of this family intersects X∗ in a locus of dimension r − 1 . Moreover, every point of X∗ is 
contained in one of such hyperplanes, which dualising means that the tangent hyperplane 
to X at a general point pass through the general point of C  . As a consequence, for the gen-
eral Q ∈ C  , we have a r − 1 dimensional family of tangent hyperplanes to X. The general 

dim(Z ∩ ℙ
n+1
M

) < dim(D ∩ ℙ
n+1
M

).
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member of this family is tangent to X along a subvariety of dimension n − r . Every line 
joining Q and this n − r subvariety is tangent to X, so in particular the dimension of the 
family X  is n, and the general line in X  is tangent at the general point of X.

To show that X  is filling we still have to prove that the map X → ℙ
n+1 is dominant. If 

this were not the case, the general line of X  would be contained in a finite union of hyper-
surfaces Vi , hence it would not be tangent at the general point of X.

Let us consider the focal scheme of X  on � . We have a fundamental point � ∩ Q of mul-
tiplicity n − 1 , hence a focus of multiplicity n − 1 by Lemma 3.5. Assume that the general 
line � of X  is not simply tangent to X. Then, it would be at least bitangent or asymptotic 
tangent to X. In the first case, we would have on � at least two focal points of degree at least 
1 each, in the second case we would have at least one focal point of degree at least 2. This 
contradicts Lemma 3.3.

As a consequence, if X is not a cone, we can find simple tangent lines to X passing 
through all but finitely many points of W(X) . Such lines correspond to transpositions in the 
monodromy group.  □

From Theorem 1.4, we get Proposition 1.5, that is a generalisation of [12, Proposi-
tion 6] on Galois points.

Proof of Proposition 1.5 Denote by G(X) the locus of Galois points associated with X. Recall 
that G(X) ⊂ W(X) . If we assume G(X) to be an infinite set and X not a cone, Theorem 1.4 
shows the existence of transpositions in the monodromy group associated with a general 
point Q in G(X) . As a consequence, the field extension given by �Q is not Galois, and this 
contradicts our initial hypothesis.  □

Recall that if M(�P) is isomorphic to the full symmetric group then the projection �P 
is indecomposable. The converse also holds if we require M(�P) to contain a transposi-
tion (see [25, Remark 2.2]). Hence, we have Proposition 1.6.

Proof of Proposition 1.6 By Theorem 1.4, the monodromy group of all but finitely many 
points contains a transposition. Hence, for all but finitely many points Q in W(X) , the pro-
jection �Q must be a decomposable map, i.e. the point Q belongs to D(X) .  □

Remark 4.10 Notice that this is enough to prove Conjecture 1.7 for all hypersurfaces X hav-
ing prime degree. Indeed, �P ∶ X → ℙ

n is indecomposable for every P ∉ X because other-
wise, the degree of an intermediate, not birational map would divide d.

There are two classes of hypersurfaces which could potentially provide a counterexam-
ple for Conjecture 1.7:

Type-1: Hypersurfaces X in ℙn+1 , where every component of Xsing in codimension 1 
is linear, and such that the intersection of all the tangent cones at points in Xsing is a finite 
union of rational curves.

Type-2: Hypersurfaces X in ℙn+1 such that there exists a ℙk ( 0 < k < n ), where X ∩ ℙ
k+1 

is reducible for every ℙk+1 ⊃ ℙ
k . Cones are a particular case of X of Type-2.

Remark 4.11 We have that if X is neither of Type-1 nor of Type-2, then W(X) is finite. The 
proof mimics the steps of Proposition 4.7: if X is not of Type-1 we can apply Theorem 1.2 
to get that that W(X) ⊂ ℙ

n−1 ; if X is not of Type-2 either, we can apply Lemma 2.4.
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While examples of hypersurfaces of Type-1 and Type-2 do exist, we were not able to 
find any variety with an infinite number of non-uniform points that is not a cone. We plan 
to study these cases in a future work.
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