Skip to main content
Log in

Analysis of a pseudo-parabolic equation by potential wells

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

In this paper, we consider a pseudo-parabolic equation, which was studied extensively in recent years. We generalize and extend the existing results in the following three aspects. First, we consider the vacuum isolating phenomenon with the initial energy \(J(u_0)\) satisfying \(J(u_0)\le 0\) and \(0<J(u_0)<d\), respectively, where d is a positive constant denoting the potential well depth. By means of potential well method, we find that there are two explicit vacuum regions which are annulus and ball, respectively. Second, we study the asymptotic behaviors of the solutions and the energy functional. Generally speaking, we establish the exponential decay of the solutions and energy functional when the solutions exist globally, and the concrete decay rate is given. As for the blow-up solutions, we prove that the solutions grow exponentially and obtain the behavior of energy functional as the time t tends to the maximal existence time. We get further two necessary and sufficient conditions for the solutions existing globally and blowing up in finite time, respectively, under the assumption that \(J(u_0)<d\). Finally, we give a new blow-up condition with eigenfunction method; it should be point out that this initial condition is independent of the initial energy. Under this condition, an upper bound estimation of the blow-up time is obtained and we prove that the solutions grow exponentially; the grow speed is given specifically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Al’shin, A.B., Korpusov, M.O., Sveshnikov, A.G.: Blow-up in nonlinear Sobolev type equations. In: De Gruyter Series in Nonlinear Analysis and Applications (2011)

  2. Barenblat, G., Zheltov, I., Kochiva, I.: Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks. J. Appl. Math. Mech. 24(5), 1286–1303 (1960)

    Google Scholar 

  3. Brill, H.: A semilinear Sobolev evolution equation in a Banach space. J. Differ. Equ. 24(3), 412–425 (1977)

    MathSciNet  MATH  Google Scholar 

  4. Benjamin, T.B., Bona, J.L., Mahony, J.J.: Model equations for long waves in nonlinear dispersive systems. Philos. Trans. R. Soc. Lond. Ser. A 272(1220), 47–78 (1972)

    MathSciNet  MATH  Google Scholar 

  5. Chen, H., Liu, G.W.: Global existence, uniform decay and exponential growth for a class of semi-linear wave equation with strong damping. Acta Mathematica Scientia 33(1), 41–58 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Chen, H., Liu, G.W.: Global existence and nonexistence for semilinear parabolic equations with conical degeneration. J. Pseudo-Differ. Oper. Appl. 3(3), 329–349 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Chen, P.J., Gurtin, M.E.: On a theory of heat conduction involving two temperatures. Z. Angew. Math. Phys. 19, 614–627 (1968)

    MATH  Google Scholar 

  8. Cao, Y., Yin, J.X., Wang, C.P.: Cauchy problems of semilinear pseudo-parabolic equations. J. Differ. Equ. 246, 4568–4590 (2009)

    MathSciNet  MATH  Google Scholar 

  9. Dibenedetto, E., Pierre, M.: On the maximum principle for pseudoparabolic equations. Indiana Univ. Math. J. 30(6), 821–851 (1981)

    MathSciNet  MATH  Google Scholar 

  10. Evans, L.C.: Partial Differential Equations, 2nd edn. American Mathematical Society, Providence (2010)

    MATH  Google Scholar 

  11. Gopala Rao, V.R., Ting, T.W.: Solutions of pseudo-heat equations in the whole space. Arch. Ration. Mech. Anal. 49, 57–78 (1972/73)

  12. Kaikina, E.I.: Initial-boundary value problems for nonlinear pseudoparabolic equations in a critical case. Electron. J. Differ. Equ. 2007(109), 249–266 (2007)

    MathSciNet  MATH  Google Scholar 

  13. Kaikina, E.I., Naumkin, P.I., Shishmarev, I.A.: The Cauchy problem for a Sobolev type equation with power like nonlinearity. Izv. Math. 69(1), 59–111 (2005)

    MathSciNet  MATH  Google Scholar 

  14. Kaikina, E.I., Naumkin, P.I., Shishmarev, I.A.: Periodic boundary value problem for nonlinear Sobolev-type equations. Funct. Anal. Appl. 44(3), 171–181 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Karch, G.: Asymptotic behaviour of solutions to some pesudo-parabolic equations. Math. Methods Appl. Sci. 20(3), 271–289 (1997)

    MathSciNet  MATH  Google Scholar 

  16. Kaplan, S.: On the growth of solutions of quasi-linear parabolic equations. Commun. Pure Appl. Math. 16(3), 305–330 (1963)

    MathSciNet  MATH  Google Scholar 

  17. Korpusov, M.O., Sveshnikov, A.G.: Three-dimensional nonlinear evolution equations of pseudoparabolic type in problems of mathematical physics. Zh. Vychisl. Matem. Mat. Fiz. 43, 1835–1869 (2003)

    MathSciNet  MATH  Google Scholar 

  18. Kwek, K.H., Qu, C.C.: Alternative principle for pseudo-parabolic equations. Dyn. Syst. Appl. 5(2), 211–217 (1996)

    MathSciNet  MATH  Google Scholar 

  19. L’vovich Sobolev, S.: On a new problem of mathematical physics. Izv. Akad. Nauk SSSR Ser. Mat. 18, 3–50 (1954)

  20. Liu, W.J., Yu, J.Y.: A note on blow-up of solution for a class of semilinear pseudo-parabolic equations. J. Funct. Anal. 274(5), 1276–1283 (2018)

    MathSciNet  MATH  Google Scholar 

  21. Li, X.L., Liu, B.Y.: Vacuum isolating, blow up threshold and asymptotic behavior of solutions for a nonlocal parabolic equation. J. Math. Phys. 58, 101503 (2017)

    MathSciNet  MATH  Google Scholar 

  22. Liu, Y.C.: On potential wells and vacuum isolating of solutions for semilinear wave equations. J. Differ. Equ. 192(1), 155–169 (2003)

    MathSciNet  MATH  Google Scholar 

  23. Liu, Y.C., Zhao, J.S.: On potential wells and applications to semilinear hyperbolic equations and parabolic equations. Nonlinear Anal. Theory Methods Appl. 64(12), 2665–2687 (2006)

    MathSciNet  MATH  Google Scholar 

  24. Liu, Y.C., Xu, R.Z.: A class of fourth order wave equations with dissipative and nonlinear strain terms. J. Differ. Equ. 244(1), 200–228 (2008)

    MathSciNet  MATH  Google Scholar 

  25. Liu, Y.C., Xu, R.Z.: Potential well method for Cauchy problem of generalized double dispersion equations. J. Math. Anal. Appl. 338(2), 1169–1187 (2008)

    MathSciNet  MATH  Google Scholar 

  26. Liu, Y.C., Xu, R.Z.: Global existence and blow up of solutions for Cauchy problem of generalized Boussinesq equation. Physica D 237(6), 721–731 (2008)

    MathSciNet  MATH  Google Scholar 

  27. Luo, P.: Blow-up phenomena for a pseudo-parabolic equation. Math. Methods Appl. Sci. 38(12), 2636–2641 (2015)

    MathSciNet  MATH  Google Scholar 

  28. Matahashi, T., Tsutsumi, M.: On a periodic problem for pseudo-parabolic equations of Sobolev–Galpen type. Mathematica Japonica 22(5), 535–553 (1978)

    MATH  Google Scholar 

  29. Matahashi, T., Tsutsumi, M.: Periodic solutions of semilinear pseudo-parabolic equations in Hilbert space. Funkcialaj Ekvacioj 22(1), 51–66 (1979)

    MathSciNet  MATH  Google Scholar 

  30. Payne, L.E., Sattinger, D.H.: Saddle points and instability of nonlinear hyperbolic equations. Isr. J. Math. 22(3–4), 273–303 (1975)

    MathSciNet  MATH  Google Scholar 

  31. Ptashnyk, M.: Degenerate quasilinear pseudoparabolic equations with memory terms and variational inequalities. Nonlinear Anal. 66(12), 2653–2675 (2007)

    MathSciNet  MATH  Google Scholar 

  32. Peszynska, M., Showalter, R., Yi, S.Y.: Homogenization of a pseudoparabolic system. Appl. Anal. 88(9), 1265–1282 (2009)

    MathSciNet  MATH  Google Scholar 

  33. Pan, N., Pucci, P., Zhang, B.L.: Degenerate Kirchhoff-type hyperbolic problems involving the fractional Laplacian. J. Evol. Equ. (2017). https://doi.org/10.1007/s00028-017-0406-2

    Article  MATH  Google Scholar 

  34. Padron, V.: Effect of aggregation on population recovery modeled by a forward-backward pseudoparabolic equation. Trans. Am. Math. Soc. 356(7), 2739–2756 (2004)

    MathSciNet  MATH  Google Scholar 

  35. Quittner, P., Souplet, P.: Superlinear Parabolic Problems, Blow-Up. Global Existence and Steady States. Birkhauser Advanced Text, Basel/Boston/Berlin (2007)

  36. Showalter, R.E., Ting, T.W.: Pseudoparabolic partial differential equations. SIAM J. Math. Anal. 88(1), 1–26 (1970)

    MathSciNet  MATH  Google Scholar 

  37. Ting, T.W.: Certain non-steady flows of second-order fluids. Arch. Ration. Mech. Anal. 14, 1–26 (1963)

    MathSciNet  MATH  Google Scholar 

  38. Ting, T.W.: Parabolic and pseudo-parabolic partial differential equations. J. Math. Soc. Jpn. 21, 440–453 (1969)

    MathSciNet  MATH  Google Scholar 

  39. Xu, G.Y.: Global existence, finite time blow-up and vacuum isolating phenomena for semilinear parabolic equation with conical degeneration. Taiwan. J. Math. (2017). (in press). https://doi.org/10.11650/tjm/180302

  40. Xu, G.Y., Zhou, J.: Lifespan for a semilinear pseudo-parabolic equation. Math. Meth. Appl. Sci. 41, 705–713 (2018)

    MathSciNet  MATH  Google Scholar 

  41. Xu, R.Z., Su, J.: Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations. J. Funct. Anal. 264(12), 2732–2763 (2013)

    MathSciNet  MATH  Google Scholar 

  42. Xu, R.Z., Yi, N.: Addendum to “Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations” [J. Funct. Anal. 264(12) (2013) 2732–2763]. J. Funct. Anal. 270, 4039–4041 (2016)

  43. Yang, C.X., Cao, Y., Zheng, S.N.: Second critical exponent and life span for pseudo-parabolic equation. J. Differ. Equ. 253, 3286–3303 (2012)

    MathSciNet  MATH  Google Scholar 

  44. Zeidler, E.: Nonlinear Functional Analysis and its Applications I: Fixed-Point Theorems. Springer, New York (1986)

    MATH  Google Scholar 

  45. Zhu, X.L., Li, F.Y., Li, Y.H.: Some sharp results about the global existence and blowup of solutions to a class of pseudo-parabolic equations. Proc. R. Soc. Edinb. 147A, 1311–1331 (2017)

    MathSciNet  MATH  Google Scholar 

  46. Zhou, J.: Blow-up and exponential decay of solutions to a class of pseudo-parabolic equation. Bull. Belg. Math. Soc. Simon Stevin 26, 773–785 (2019)

    MathSciNet  MATH  Google Scholar 

  47. Zhou, J.: Initial boundary value problem for a inhomogeneous pseudo-parabolic equation. Electron. Res. Arch. 28, 67–90 (2020)

    MathSciNet  MATH  Google Scholar 

  48. Zhou, J.: Fujita exponent for an inhomogeneous pseudo-parabolic equation. Rocky Mt. J. Math. 50, 1125–1137 (2020)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their valuable comments and suggestions which improved the original manuscript. This work is supported by the Basic and Advanced Research Project of CQC-STC Grant cstc2016jcyjA0018, NSFC 11201380.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Xu, G. & Mu, C. Analysis of a pseudo-parabolic equation by potential wells. Annali di Matematica 200, 2741–2766 (2021). https://doi.org/10.1007/s10231-021-01099-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10231-021-01099-1

Keywords

Mathematics Subject Classification

Navigation