
Vol.:(0123456789)

Annali di Matematica Pura ed Applicata (1923 -) (2021) 200:2473–2513
https://doi.org/10.1007/s10231-021-01088-4

1 3

Characterisation of upper gradients on the weighted 
Euclidean space and applications

Danka Lučić1 · Enrico Pasqualetto1 · Tapio Rajala1 

Received: 10 August 2020 / Accepted: 13 February 2021 / Published online: 10 March 2021 
© The Author(s) 2021

Abstract
In the context of Euclidean spaces equipped with an arbitrary Radon measure, we prove the 
equivalence among several different notions of Sobolev space present in the literature and 
we characterise the minimal weak upper gradient of all Lipschitz functions.
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1 Introduction

In this paper, we study first-order Sobolev spaces on the Euclidean space ℝn equipped 
with an arbitrary Radon measure � ≥ 0 . This theory has been initiated in the late nine-
ties, with the pioneering work [9] by G. Bouchitté, G. Buttazzo, and P. Seppecher. The 
motivations and applications were numerous, in the fields of calculus of variations [9], 
shape optimisation [10], optimal transport problems with gradient penalisation [33], 
among many others. Compared to Allard’s theory of varifolds [3] or to Federer–Flem-
ing’s theory of currents [21], the usage of measures in optimisation problems presents 
two main advantages: it allows to model objects made of parts having different Haus-
dorff dimension (such as multijunctions), and it rests on a solid functional-analytic 
machinery. About the former feature, we just mention that the aim of [9] was to rep-
resent low-dimensional elastic structures (such as membrane and beams) in an intrin-
sic way, as opposed to the more classical idea of first ‘fattening’ the structure under 
consideration and then passing to the limit in the vanishing thickness parameter (via 
Γ-convergence methods, for instance). With regard to the latter feature, let us briefly 
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explain which is the analytic framework the theory of Sobolev spaces on weighted ℝn 
relies upon.

The key idea introduced by [9] was to define a suitable ‘tangent distribution’ 
associated with the measure � , namely a �-a.e. defined measurable subbundle of 
Tℝn ≅ ℝn ×ℝn ; see Definition 2.21. In the approach adopted in [9], the tangent fibres 
are identified by looking at vector fields whose distributional divergence belongs to 
L2(�) (see (2.24) for the precise definition we are referring to). A different (but similar 
in spirit) notion was studied by Fragalà–Mantegazza [22]; we do not investigate it in 
this paper. For a complete account on this technique via the distributional divergence, 
we refer to the survey [11] and the references therein. An alternative way to select the 
tangent fibres was proposed by Zhikov in [40, 41], where the strategy was to perform a 
relaxation at the level of gradients of smooth functions. We introduce a useful generali-
sation —called G-structure—of Zhikov’s concept in Definition 3.8. Later on, J. Louet 
studied in his PhD thesis [32] the relation between the above two approaches, but their 
complete equivalence was not known; we will obtain it as a by-product of Theorem 3.16. 
Once the tangent distribution is given, the Sobolev space is defined by first projecting 
the gradients of smooth functions on the tangent fibres (obtaining the tangential gradi-
ent with respect to � ) and then passing to the closure. The resulting energy functional 
is lower semicontinuous, or equivalently the associated notion of weak gradient yields 
a closed linear operator. It is worth to recall that other geometric and measure-theoretic 
notions of tangent space to a measure are studied in the literature—for instance, Preiss’ 
notion of ‘tangent measure’ [36] or Simon’s notion of ‘approximate tangent space’ [39]. 
However, these are not the correct objects to look at in order to define a Sobolev space: 
besides the fact that they not always exist, a noteworthy problem is that the consequent 
tangential gradient may well be not closable (since the geometric fibres are typically 
bigger than the analytic ones).

In the present paper, we start our investigation of the Sobolev space on weighted ℝn 
from a rather different viewpoint. More precisely, we regard it as a special case of the more 
general theory of Sobolev spaces over a metric measure space (X, �,�) . In this respect, the 
first definition was given by Hajłasz [29], but we will not consider it here because of its 
‘non-local’ nature. At a later time, several other notions (which eventually turned out to be 
equivalent) have been proposed by Cheeger [13], Shanmugalingam [38], Ambrosio et al. 
[6], and Di Marino [17]. It will be convenient for us to work with the approach W1,2(X,�) 
based on the concept of test plan, introduced in [6]; see Definition 2.3. The common fea-
ture of all the above approaches is the following: in lack of an underlying Banach structure, 
the weakly differentiable functions f  on a metric measure space are detected by estimating 
the entity of their variation, rather than the variation itself. In other words, one obtains the 
‘modulus of the weak differential’ |D�f | instead of the weak differential D�f .

Let us focus our attention on the case in which � is a Radon measure on ℝn . Contrarily 
to what was discussed in the first part of this introduction, we now have a Sobolev space 
W1,2(ℝn,�) at our disposal, but not (a priori) a notion of tangent fibre. Still, a tangent distri-
bution can be recovered by appealing to results available in the literature, as we are going 
to describe:

• Gigli [24] built an abstract tensor calculus for metric measure spaces (X, �,�) , which is 
based upon the notion of L2(�)-normed L∞(�)-module. In particular, the Sobolev space 
gives rise to a natural notion of tangent module L2

�
(TX) , whose elements should be 

regarded as the ‘synthetic’ vector fields over (X, �,�) . See Definition 2.10.
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• In the framework of the weighted Euclidean space, N. Gigli and the second named 
author proved in [27] that the tangent module L2

�
(Tℝn) can be isometrically embedded 

into the space L2(ℝn,ℝn;�) of all L2(�)-maps from ℝn to itself. See Theorem 2.16.
• The first and second named authors proved in [34] that (locally finitely generated) L2(�)

-normed L∞(�)-modules can be always represented as the spaces of sections of a meas-
urable Banach bundle. In the specific case of weighted ℝn , this grants that the tangent 
module L2

�
(Tℝn) is canonically associated with a distribution T� in ℝn , that we will call 

the tangent distribution. See Definition 3.4.

One of the main achievements of the present paper is Theorem 3.16, where we prove that 
the tangent distribution T�—and accordingly the Sobolev space W1,2(ℝn,�)—is consistent 
both with the notion obtained via divergence by Bouchitté–Buttazzo–Seppecher [9] and 
with the one via vectorial relaxation by Zhikov [40, 41]. Moreover, by building on top of 
this equivalence result, we will identify the minimal object |D�f | (called the minimal weak 
upper gradient) associated with any compactly supported Lipschitz function f  on ℝn ; see 
Theorem 3.20. The case n = 1 was previously investigated by S. Di Marino and G. Speight 
in [20].

In order to establish the above-mentioned characterisation of the weak gradient of Lip-
schitz functions, we will need to study the interaction between the Sobolev calculus on 
weighted ℝn and the Alberti–Marchese differentiation theorem [1], which says—roughly 
speaking—that there exists a maximal distribution V� in ℝn along which all Lipschitz 
functions are �-a.e. differentiable (in the sense of Fréchet); cf. Theorem 3.1. This kind of 
investigation has been initiated by the first and second named authors together with S. Di 
Marino in [19], where it is proven that the absolute value of the Alberti–Marchese gradient 
is a weak upper gradient (see Theorem 3.3). By using the machinery discussed so far, we 
show (in Corollary 3.17) that

However, in general ‘Sobolev calculus’ and ‘Lipschitz calculus’ are not equivalent, 
thus one cannot expect the equality T� = V� to hold for all measures � . Indeed, the 
Alberti–Marchese distribution just depends on the negligible sets of � , while the Sobolev 
space W1,2(ℝn,�)—and thus, a fortiori, the tangent distribution T�—strongly depends on 
the measure � itself. An example of a measure � on ℝ for which T� ≠ V� will be described 
in Remark 3.18.

We are now in a position to state Theorem 3.20: given any f ∈ LIPc(ℝ
n) , it holds that

where we denote by prT� ∶ V� → T� the natural projection operator, while ∇
AM
f  stands for 

the Alberti–Marchese gradient of f  (that is a measurable section of the distribution V�).
In the last part of the paper—namely in Sect. 4—we shall provide a few applications 

(for the moment, only at a theoretical level) of our main Theorems 3.16 and 3.20:

• Section 4.1: By combining our techniques with a deep result by G. De Philippis and F. 
Rindler [15] about Radon measures on ℝn , we prove that for �s-a.e. point x ∈ ℝn the 
tangent fibre T�(x) cannot coincide with the whole ℝn , where �s stands for the singular 
part of � with respect to the Lebesgue measure Ln ; see Theorem 4.6.

• Section 4.2: The tangent distribution T� admits a geometric interpretation, in terms of 
the initial velocities of suitably chosen test plans on (ℝn, �Eucl,�) ; see Theorem 4.16.

T𝜇(x) ⊆ V𝜇(x), for 𝜇-a.e. x ∈ ℝ
n.

|D�f | = ||prT� (∇AM
f )||, in the �-a.e. sense,
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• Section 4.3: Sobolev spaces over the weighted Euclidean space satisfy the expected ten-
sorisation property; see Theorem 4.21.

We wish to point out that in the whole paper we just stick to the case p = 2 , but mostly 
for a matter of practicality. The main reason is that many of the tools we will use—those 
concerning the theory of normed modules—are explicitly written in the literature only for 
the case p = 2 . However, we expect that our results have appropriate counterparts for every 
p ∈ (1,∞).

Finally, we conclude this introduction by mentioning that also second-order Sobolev 
spaces on weighted Euclidean spaces (for suitable Radon measures) have been studied, e.g. 
in [12]. It would be definitely interesting to understand whether even these second-order 
spaces admit an equivalent reformulation in the language of metric measure spaces. Yet 
another interesting problem would be to study the space BV(ℝn,�) of functions of bounded 
variation.

2  List of symbols

We provide below a list of the non-standard symbols we shall use throughout the paper. 

L1  Restriction of the Lebesgue measure to the interval [0, 1]
�∞  Supremum distance on C([0, 1],X)
et , eXt   Evaluation map at time t
|�̇�|  Metric speed of an absolutely continuous curve �
KEt  Kinetic energy functional at time t
lip(f )  Local Lipschitz constant of a Lipschitz function f
Comp(�)  Compression constant of a test plan �
ConstX  ‘Constant curve’ map
W1,2(X,�)  Sobolev space on a metric measure space (X, �,�)
|D�f |  Minimal weak upper gradient of f ∈ W1,2(X,�)

ECh  Cheeger energy functional
Elip  ‘Lipschitz’ energy functional
Δ�  Laplacian operator
{Pt}t≥0  Heat flow semigroup
�M   Riesz isomorphism associated with a Hilbert module M
N

⟂  Orthogonal complement of a submodule N ⊆ M

L2
�
(T∗X)  Abstract cotangent module on (X, �,�)

d�f   Abstract differential of a function f ∈ W1,2(X,�)

L2
�
(TX)  Abstract tangent module on (X, �,�)

∇�f   Abstract gradient of a function f ∈ W1,2(X,�)

�
′
t
  Velocity at time t of a test plan �

div�  Abstract divergence operator
Dert  ‘Derivation’ map
�
�
  The space L2

(
C([0, 1],ℝn),ℝn;�

)

P�  ‘Projection of 1-forms’ map
��  ‘Embedding of vector fields’ map
div

�
  Concrete divergence operator

Gr(ℝn)  Grassmannian of ℝn
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Dn(�)  Space of distributions on ℝn (up to �-a.e. equality)
Γ(V)  Space of L2(�)-sections of a distribution V ∈ Dn(�)

prV  Orthogonal projection map onto Γ(V)
V⟂  Orthogonal complement of a distribution V ∈ Dn(�)

V�  Alberti–Marchese distribution
∇

AM
f   Alberti–Marchese gradient of f ∈ LIPc(ℝ

n)

E
AM

  Alberti–Marchese energy functional
T�  Tangent distribution
(V, ∇̄)  An arbitrary G-structure
G�  The G�-structure 

(
C∞
c
(ℝn),∇

)

G
AM

  The G
AM

-structure 
(
LIPc(ℝ

n),∇
AM

)

G(f )  The family of G-gradients of f
WG  The unique distribution satisfying Γ(WG) = G(0)

W�  The distribution WG�

I(v)  ‘Currentification’ of a vector field v ∈ D(div
�
)

D
�
  Initial velocity of a test plan �

3  Preliminaries

3.1  Sobolev calculus on metric measure spaces

For the purposes of the present paper, a metric measure space is any triple (X, �,�) , 
where (X, �) is a complete and separable metric space, while � ≥ 0 is a boundedly finite 
Borel measure on (X, �) . We denote by P(X) the family of all Borel probability measures 
on (X, �).

3.1.1  Absolutely continuous curves

First of all, let us introduce the shorthand notation

We denote by C([0, 1],X) the family of all continuous curves � ∶ [0, 1] → X . It holds that 
the set C([0, 1],X) is a complete and separable metric space when endowed with the supre-
mum distance �∞ , which is defined as

Given any t ∈ [0, 1] , we denote by et ∶ C([0, 1],X) → X the evaluation map at time t , i.e.

We say that � ∈ C([0, 1],X) is absolutely continuous if there exists g ∈ L1(0, 1) such that

(2.1)L1 ∶= L
1|[0,1], where L1 stands for the Lebesgue measure on ℝ.

(2.2)�∞(� , �) ∶= max
t∈[0,1]

�(�t, �t), for every � , � ∈ C([0, 1],X).

(2.3)et(�) = eX
t
(�) ∶= �t, for every � ∈ C([0, 1],X).

�(𝛾t, 𝛾s) ≤ �
t

s

g(r) dr, for every s, t ∈ [0, 1] such that s < t.
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The minimal such function g (where minimality is intended in the L1-a.e. sense) is called 
the metric speed of � and denoted by |�̇�| ∈ L1(0, 1) . As proven in [4, Theorem 1.1.2], it 
holds

The family of absolutely continuous curves on X is denoted by AC([0, 1],X) . Also, we 
define

It is well known that AC2([0, 1],X) is a Borel subset of the metric space 
(
C([0, 1],X), �∞

)
 . 

Given any t ∈ (0, 1] , we define the functional KEt ∶ C([0, 1],X) → [0,+∞] as

Given a reflexive, separable Banach space 
�
�, ‖ ⋅ ‖

�
 and a curve � ∈ AC([0, 1],�) , it holds 

that � is L1-a.e. differentiable, its L1-a.e. derivative �̇� ∶ [0, 1] → � is Bochner integrable, 
and

Observe that the identity ‖�̇�t‖ = ��̇�t� is satisfied for L1-a.e. t ∈ [0, 1].

3.1.2  Lipschitz functions

The family of all real-valued Lipschitz functions defined on (X, �) is indicated with LIP(X) . 
The subfamily of those Lipschitz functions having compact support (resp. bounded sup-
port) is denoted by LIPc(X) (resp. LIPbs(X) ). Given any f ∈ LIP(X) , we define its local 
Lipschitz constant as

and lip(f )(x) ∶= 0 elsewhere.

3.1.3  Sobolev space via test plans

We recall here the definition of Sobolev space in the metric measure setting and its main 
properties. The approach we are going to describe has been proposed in [5, 6]. To begin 
with, let us recall the important notion of test plan:

Definition 2.1 (Test plan [5, 6]) Let (X, �,�) be a metric measure space. Then, we say 
that a Borel probability measure � on 

(
C([0, 1],X), �∞

)
 is a test plan on (X, �,�) provided 

the following properties are satisfied: 

 (i) There exists a compression constant Comp(�) > 0 such that 

(2.4)|�̇�t| = lim
h→0

𝖽(𝛾t+h, 𝛾t)

|h| , for L1-a.e. t ∈ [0, 1].

AC2([0, 1],X) ∶=
{
𝛾 ∈ AC([0, 1],X)

||| |�̇�| ∈ L2(0, 1)
}
.

(2.5)KEt(𝛾) ∶=

{
t
( ⨏ t

0
|�̇�s|2 ds

)1∕2
,

+∞

if 𝛾 ∈ AC2([0, 1],X),

otherwise.

𝛾t − 𝛾s = ∫
t

s

�̇�r dr, for every s, t ∈ [0, 1] such that s < t.

(2.6)lip(f )(x) ∶= lim
y→x

||f (x) − f (y)||
𝖽(x, y)

, whenever x ∈ X is an accumulation point,
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 where (et)∗� stands for the pushforward measure of � under the evaluation map et.
 (ii) The measure � is concentrated on AC2([0, 1],X) and has finite kinetic energy, i.e. 

Example 2.2 Given a metric measure space (X, �,�) , we set ConstX ∶ X → C([0, 1],X) as

Then, the map ConstX is an isometry and the measure � ∶= ConstX
∗
� is a test plan on 

(X, �,�) for every � ∈ P(X) satisfying � ≤ C� for some constant C > 0 .   ◻

The notion of test plan plays an essential role in the definition of Sobolev space:

Definition 2.3 (Sobolev space via test plans [5, 6]) Let (X, �,�) be a metric measure 
space. Fix f ∈ L2(�) . Then, a function G ∈ L2(�) is said to be a weak upper gradient of 
f  provided for any test plan � on (X, �,�) the following property is satisfied: for �-a.e. � , it 
holds that f◦� ∈ W1,1(0, 1) and

We define the Sobolev space W1,2(X,�) as the family of all those functions f ∈ L2(�) that 
admit a weak upper gradient. Given any f ∈ W1,2(X,�) , we denote by |D�f | the minimal 
weak upper gradient of f  , where minimality is intended in the �-a.e. sense.

The original notion of Sobolev space W1,2(X,�) via test plans has been introduced in [6], 
but its equivalent reformulation we presented above has been established in [23, Appendix 
B]. We chose the unusual notation W1,2(X,�) , where the distance � does not appear (even 
though it plays a role in the definition), for a matter of practicality, since in all the cases we 
shall consider, the distance —differently from the measure—will always remain fixed.

Given any function f ∈ LIPbs(X) , it holds that f ∈ W1,2(X,�) and

The equality in (2.8) is achieved only in particular circumstances; see, e.g. Corollary 3.21 
and Remark 4.10.

3.1.4  Energy functionals

Throughout the whole paper, we will consider several different energy functionals 
E ∶ L2(�) → [0,+∞] over a given metric measure space (X, �,�) . Let us fix some nota-
tion. The finiteness domain of E is given by D(E) ∶=

{
f ∈ L2(𝜇) ∶ E(f ) < +∞

}
 . We say 

that E is 2-homogeneous provided E(�f ) = �2 E(f ) for every f ∈ D(E) and � ∈ ℝ , while 
it is convex provided E

(
�f + (1 − �)g

) ≤ �E(f ) + (1 − �)E(g) for every f , g ∈ L2(�) and 
� ∈ [0, 1] . The functional E is said to satisfy the parallelogram rule if it holds that

(et)∗� ≤ Comp(�)�, for every t ∈ [0, 1],

∫ KE1(𝛾)
2 d�(𝛾) = ∫ ∫

1

0

|�̇�t|2 dt d�(𝛾) < +∞.

(2.7)ConstX(x)t ∶= x, for every x ∈ X and t ∈ [0, 1].

||(f◦𝛾)�t|| ≤ G(𝛾t) |�̇�t|, for L1-a.e. t ∈ [0, 1].

(2.8)|D�f | ≤ lip(f ), �-a.e. on X.
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Moreover, we say that the functional E is lower semicontinuous provided

The lower semicontinuous envelope Ẽ ∶ L2(𝜇) → [0,+∞] of E is defined as

where the infimum is taken among all sequences (fn)n ⊆ L2(𝜇) such that fn → f  in L2(�) . It 
holds that Ẽ is the greatest lower semicontinuous functional which is dominated by E.

The most important energy functional we will consider is the so-called Cheeger energy:

Definition 2.4 (Cheeger energy) Let (X, �,�) be a metric measure space. Then, we define

The functional ECh ∶ L2(�) → [0,+∞] is called the Cheeger energy associated with 
(X, �,�).

The map ECh is convex, 2-homogeneous, and lower semicontinuous. Also, 
f ↦

√
2ECh(f ) is a seminorm on D(ECh) = W1,2(X,�) . In particular, W1,2(X,�) is a 

Banach space if endowed with the following norm:

Another energy functional to take into account is the following one:

In view of (2.8), we know that ECh ≤ Elip . Actually, ECh is the lower semicontinuous enve-
lope of Elip , as granted by the following important result.

Theorem  2.5 (Density in energy of Lipschitz functions [5]) Let (X, �,�) be a metric 
measure space. Let f ∈ W1,2(X,�) be given. Then, there exists (fn)n ⊆ LIPbs(X) such that 
fn → f  and lip(fn) → |D�f | in L2(�).

3.1.5  Infinitesimal Hilbertianity

The following definition has been introduced in [23]:

Definition 2.6 (Infinitesimal Hilbertianity) A metric measure space (X, �,�) is said to be 
infinitesimally Hilbertian provided the Sobolev space W1,2(X,�) is Hilbert. Equivalently, 
if the Cheeger energy ECh satisfies the parallelogram rule.

E(f + g) + E(f − g) = 2E(f ) + 2E(g), for every f , g ∈ D(E).

E(f ) ≤ lim
n→∞

E(fn), for every f , fn ∈ L2(�) such that fn → f in L2(�).

Ẽ(f ) ∶= inf lim
n→∞

E(fn), for every f ∈ L2(𝜇),

(2.9)ECh(f ) ∶=

{
1

2
∫ |D�f |2 d�,

+∞,

if f ∈ W1,2(X,�),

otherwise.

‖f‖W1,2(X,�) ∶=
�
‖f‖2

L2(�)
+ 2ECh(f )

�1∕2

, for every f ∈ W1,2(X,�).

(2.10)Elip(f ) ∶=

{
1

2
∫ lip2(f ) d�,

+∞,

if f ∈ LIPbs(X),

otherwise.
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Given an infinitesimally Hilbertian space (X, �,�) , it holds that the mapping

defines a symmetric, bilinear form on W1,2(X,�) ×W1,2(X,�) with values in L1(�).

3.1.6  Laplacian and heat flow

Let (X, �,�) be an infinitesimally Hilbertian space. Given any function f ∈ W1,2(X,�) , we 
declare that f ∈ D(Δ�) if there exists h ∈ L2(�) such that

Since h is uniquely determined, we denote it by Δ�f  and call it the Laplacian of f  . It holds 
that D(Δ�) is a linear subspace of W1,2(X,�) and Δ� ∶ D(Δ�) → L2(�) is a linear operator.

The heat flow {Pt}t≥0 on (X, �,�) is defined as follows: for any given function f ∈ L2(�) , 
we have that [0,+∞) ∋ t ↦ Ptf ∈ L2(�) is the unique continuous curve satisfying P0f = f  , 
which is absolutely continuous on (0,+∞) , such that Ptf ∈ D(Δ�) holds for all t > 0 and

Given any function f ∈ W1,2(X,�) , it holds that

The above properties are ensured by the classical Komura–Brezis theory of gradient flows.

3.2  Differential structure of metric measure spaces

A first-order differential calculus on metric measure spaces has been developed in [24, 25]. 
Let us briefly recall the key concepts.

3.2.1  The theory of normed modules

Let (X, �,�) be a given metric measure space. Let M  be an algebraic module over the 
commutative ring L∞(�) . Then, a pointwise norm on M  is a mapping | ⋅ | ∶ M → L2(�) 
satisfying the following properties:

(All inequalities are intended in the �-a.e. sense.) We say that 
(
M, | ⋅ |

)
 , or just M  , is an 

L2(�)-normed L∞(�)-module provided the norm ‖v‖M ∶= ���v���L2(�) on M  is complete.
By a morphism � ∶ M → N  between two given L2(�)-normed L∞(�)-modules M,N  

we mean an L∞(�)-linear and continuous map. The dual module M∗ of M  is defined 
as the space of all L∞(�)-linear and continuous maps from M  to L1(�) . It holds that M∗ 
has a natural L2(�)-normed L∞(�)-module structure, the pointwise norm |L| of L ∈ M

∗ 

⟨∇�f ,∇�g⟩ ∶=
��D�(f + g)��

2
− �D�f �2 − �D�g�2

2
, �-a.e. on X,

(2.11)∫ gh d� = −∫ ⟨∇�f ,∇�g⟩ d�, for every g ∈ W1,2(X,�).

(2.12)
d

dt
Ptf = Δ𝜇Ptf , for L1-a.e. t > 0.

(2.13)‖Ptf‖W1,2(X,𝜇) ≤ ‖f‖W1,2(X,𝜇), for every t > 0.

|v| ≥ 0, for every v ∈ M, with equality if and only if v = 0,

|v + w| ≤ |v| + |w|, for every v,w ∈ M,

|fv| = |f ||v|, for every f ∈ L∞(�) and v ∈ M.
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being defined as the minimal function G ∈ L2(�) , where minimality is intended in the �
-a.e. sense, such that the inequality ||L(v)|| ≤ G|v| is satisfied �-a.e. on X for every element 
v ∈ M .

By a Hilbert module on (X, �,�) we mean an L2(�)-normed L∞(�)-module M  such 
that

Clearly, M  is a Hilbert module if and only if it is Hilbert when viewed as a Banach space. 
Given two elements v,w ∈ M  , we define their pointwise scalar product ⟨v,w⟩ ∈ L1(�) as

The resulting mapping ⟨⋅, ⋅⟩ ∶ M ×M → L1(�) is L∞(�)-bilinear and symmetric. It holds 
that the morphism 𝖱M ∶ M → M

∗ of L2(�)-normed L∞(�)-modules defined as

is an isometric isomorphism. We call �M  the Riesz isomorphism associated with M .

Remark 2.7 (Orthogonal complement, I) Let M  be a Hilbert module on (X, �,�) . Then, we 
define the orthogonal complement of a given submodule N ⊆ M  as

Then, N⟂ is a submodule of M  that satisfies N ∩N
⟂ = {0} and N +N

⟂ = M  .   ◻

Definition 2.8 (Dimension of a normed module [24, Section 1.4]) Let (X, �,�) be a met-
ric measure space. Let M  be an L2(�)-normed L∞(�)-module and let E ⊆ X be a Borel set 
such that 𝜇(E) > 0 . Then: 

 (i) We say that some elements v1,… , vn ∈ M  are independent on the set E provided 
the mapping L∞(��E)n ∋ (f1,… , fn) ↦

∑n

i=1
fi vi ∈ M  is injective.

 (ii) A family F ⊆ M  is said to generate M  on E provided the linear space V , given by 

 is dense in the restricted module M|E ∶=
{
�E v ∶ v ∈ M

}
.

We say that M  has dimension n ∈ ℕ on E provided it admits a local basis v1,… , vn ∈ M  
on E , i.e. the elements v1,… , vn are independent on E and {v1,… , vn} generates M  on E.

Let (X, �X ,�) , (Y , �Y , �) be metric measure spaces. Let � ∶ X → Y  be a given Borel 
map. Then, we say that � is a map of bounded compression provided �∗� ≤ C� for some 
C > 0.

Theorem 2.9 (Pullback module [25, Section 1.4.1]) Let (X, �X ,�) , (Y , �Y , �) be two met-
ric measure spaces. Let M  be an L2(�)-normed L∞(�)-module and � ∶ X → Y  a map of 
bounded compression. Then, there exists a unique couple (�∗M,�∗) , where �∗M  is an 
L2(�)-normed L∞(�)-module called the pullback module and �∗ ∶ M → �∗M  is a linear 

|v + w|2 + |v − w|2 = 2 |v|2 + 2 |w|2 �-a.e., for every v,w ∈ M.

⟨v,w⟩ ∶= �v + w�2 − �v�2 − �w�2
2

, in the �-a.e. sense.

(2.14)�M(v)(w) ∶= ⟨v,w⟩ ∈ L1(�), for every v,w ∈ M,

N
⟂ ∶=

�
v ∈ M

��� ⟨v,w⟩ = 0 in the �-a.e. sense, for every w ∈ N

�
.

V ∶=

{ n∑

i=1

fi vi
||||
n ∈ ℕ, (fi)

n
i=1

⊆ L∞(𝜇|E), (vi)ni=1 ⊆ F

}
⊆ M,
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operator called the pullback map, such that |�∗v| = |v|◦� holds �-a.e. for all v ∈ M  and 
{�∗v ∶ v ∈ M} generates �∗M  on X.

Moreover, given two L2(�)-normed L∞(�)-modules M  , N  and a morphism 
Φ ∶ M → N  , there is a unique morphism �∗Φ ∶ �∗M → �∗N  of L2(�)-normed L∞(�)
-modules such that

is a commutative diagram.

3.2.2  Abstract 1‑forms and vector fields

The language of normed modules discussed in the previous section can be used to provide 
abstract notions of 1-forms and vector fields —tightly linked to the Sobolev calculus—on 
general metric measure spaces:

Theorem  2.10 (Cotangent and tangent modules [25, Sections  1.2.2 and 1.3.2]) Let 
(X, �,�) be a metric measure space. Then, there exists a unique couple 

(
L2
�
(T∗X), d�

)
 , 

where the cotangent module L2
�
(T∗X) is an L2(�)-normed L∞(�)-module and the 

differential

is a linear operator, such that the following properties are satisfied:

Moreover, if (X, �,�) is infinitesimally Hilbertian, then L2
�
(T∗X) is a Hilbert module and 

the tangent module is defined as L2
�
(TX) ∶= L2

�
(T∗X)∗ . The gradient ∇�f ∈ L2

�
(TX) of a 

function f ∈ W1,2(X,�) is given by the image of d�f  under the Riesz isomorphism �L2
�
(T∗X).

It holds that a given metric measure space (X, �,�) is infinitesimally Hilbertian if and 
only if its associated modules L2

�
(T∗X) and L2

�
(TX) are Hilbert.

Proposition 2.11 (Closure of the differential [24, Theorem 2.2.9]) Let (X, �,�) be a met-
ric measure space. Let (fn)n ⊆ W1,2(X,𝜇) satisfy fn ⇀ f  weakly in L2(�) for some f ∈ L2(�) 
and d�fn ⇀ � weakly in L2

�
(T∗X) for some � ∈ L2

�
(T∗X) . Then f ∈ W1,2(X,�) and d�f = �

.

Given a test plan � on a metric measure space (X, �,�) , it holds that for every t ∈ [0, 1] 
the evaluation map et is a map of bounded compression between 

(
C([0, 1],X),�

)
 and (X,�) . 

This allows us to consider the pullback modules e∗
t
L2
�
(T∗X) and e∗

t
L2
�
(TX).

d� ∶ W1,2(X,�) ⟶ L2
�
(T∗X)

|d�f | = |D�f | �-a.e., for every f ∈ W1,2(X,�),
{
d�f

|| f ∈ W1,2(X,�)
}

generates L2
�
(T∗X) on X.
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Proposition 2.12 (Velocity of a test plan [24, Theorem 2.3.18]) Let (X, �,�) be a metric 
measure space such that the module L2

�
(TX) is separable. Let � be a test plan on (X, �,�) . 

Then, for L1-a.e. t ∈ [0, 1] there exists a unique element ��
t
∈ e∗

t
L2
�
(TX) , called the velocity 

of � at t , such that

Moreover, it holds that |��
t
|(𝛾) = |�̇�t| for (� ⊗ L1)-a.e. (� , t) ∈ AC2([0, 1],X) × [0, 1].

3.2.3  Divergence of abstract vector fields

Let (X, �,�) be an infinitesimally Hilbertian space. We declare that v ∈ L2
�
(TX) belongs to 

D(div�) provided there exists h ∈ L2(�) such that

The uniquely determined function h will be denoted by div�(v) and called the abstract 
divergence of v . It can be readily checked that a function f ∈ W1,2(X,�) belongs to D(Δ�) 
if and only if ∇�f ∈ D(div�) . In this case, it also holds that div�(∇�f ) = Δ�f .

Let f ∈ LIPbs(X) and v ∈ D(div�) be given. Then, it holds that fv ∈ D(div�) and

In other words, we say that the abstract divergence satisfies the Leibniz rule.

Lemma 2.13 (Density of vector fields with divergence) Let (X, �,�) be an infinitesimally 
Hilbertian space. Then D(Δ�) is dense in W1,2(X,�) and D(div�) is dense in L2

�
(TX).

Proof First of all, fix f ∈ W1,2(X,�) and consider Ptf ∈ D(Δ�) for every t > 0 . Since the 
family {Ptf }t>0 ⊆ W1,2(X,𝜇) is bounded by (2.13) and W1,2(X,�) is reflexive, there exists 
a sequence tn ↘ 0 such that Ptn

f ⇀ f  weakly in W1,2(X,�) . By Banach–Saks theorem, we 
have that (possibly passing to a not relabelled subsequence) the sequence (fn)n ⊆ D(Δ𝜇) 
given by fn ∶=

1

n

∑n

i=1
Pti

f  satisfies fn → f  with respect to the strong topology of W1,2(X,�)

.
In order to prove the last part of the statement, fix v ∈ L2

�
(TX) and 𝜀 > 0 . We can find 

functions f �
1
,… , f �

n
∈ W1,2(X,�) and g�

1
,… , g�

n
∈ L∞(�) with ��v −

∑n

i=1
g�
i
∇𝜇f

�
i
��L2

𝜇
(TX)

<
𝜀

2
 . 

Thanks to the first part of the statement and the fact that boundedly supported Lipschitz 
functions are weakly  dense in L∞(�) , there are f1,… , fn ∈ D(Δ�) and 
g1,… , gn ∈ LIPbs(X) such that ��

∑n

i=1
(g�

i
∇𝜇f

�
i
− gi∇𝜇fi)

��L2
𝜇
(TX)

<
𝜀

2
 . Consequently, we con-

clude that the vector field w ∶=
∑n

i=1
gi∇�fi , which belongs to D(div�) by (2.17), satisfies 

‖v − w‖L2
𝜇
(TX) < 𝜀 .   ◻

(2.15)lim
h→0

‖‖‖‖
f◦et+h − f◦et

h
− (e∗

t
d�f )(�

�
t
)
‖‖‖‖L1(�)

= 0, for every f ∈ W1,2(X,�).

(2.16)∫ d�f (v) d� = −∫ fh d�, for every f ∈ W1,2(X,�).

(2.17)div�(fv) = f div�(v) + ⟨∇�f , v⟩, �-a.e. on X.
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3.2.4  Concrete 1‑forms and vector fields on weighted ℝn

Let (X, �,�) be a metric measure space and 
�
�, ‖ ⋅ ‖

�
 a separable Banach space. 

Then, we denote by L2(X,�;�) the family of all Borel maps v ∶ X → � such that 
∫ ‖‖v(x)‖‖

2
d𝜇(x) < +∞ , considered up to �-a.e. equality. It holds that L2(X,�;�) is an 

L2(�)-normed L∞(�)-module when endowed with the natural pointwise operations and 
the following pointwise norm: given any v ∈ L2(X,�;�) , we define

Moreover, it holds (assuming � ≠ 0 ) that L2(X,�;�) is Hilbert if and only if � is Hilbert.
We denote by �Eucl the Euclidean distance �Eucl(x, y) ∶= |x − y| on ℝn . Given any 

t ∈ [0, 1] , we define the mapping Dert ∶ C([0, 1],ℝn) → ℝn as

Standard arguments show that Dert is Borel. Given a non-negative Radon measure � on ℝn 
and a test plan � on (ℝn, �Eucl,�) , we define the space �

�
 as

Observe that �
�
 is a separable Hilbert space.

Proposition 2.14 Let � be a Radon measure on ℝn . Let � be a test plan on (ℝn, �Eucl,�) . 
Then, it holds that (the equivalence classes up to L1-a.e. equality of) the mappings

belong to the space L2([0, 1],�
�
;L1) . Moreover, we have that e − e0 ∈ AC2([0, 1],�

�
) and

where the derivative is intended with respect to the strong topology of �
�
.

Proof First of all, let us observe that

thus Dert ∈ �
�
 for L1-a.e. t ∈ [0, 1] and Der ∈ L2([0, 1],�

�
;L1) ; we omit the standard 

proof of the fact that Der is Borel. Moreover, for every s, t ∈ [0, 1] with s < t it holds

so that (et − e0) − (es − e0) = et − es = ∫ t

s
Derr dr ∈ �

�
 , whence the statement follows.  

 ◻

|v|(x) ∶= ‖‖v(x)‖‖, for �-a.e. x ∈ X.

(2.18)Dert(𝛾) ∶=

{
�̇�t,

0,

if �̇�t = limh→0

𝛾t+h−𝛾t

h
exists,

otherwise.

(2.19)𝔹
�
∶= L2

(
C([0, 1],ℝn),ℝn;�

)
.

e − e0 ∶ [0, 1] ⟶ �
�
, t ⟼ et − e0,

Der ∶ [0, 1] ⟶ �
�
, t ⟼ Dert,

(2.20)
d

dt
(et − e0) = Dert, for L1-a.e. t ∈ [0, 1],

∫
1

0

(

∫ |Dert|2 d�
)
dt = ∫ ∫

1

0

|�̇�t|2 dt d�(𝛾) < +∞,

(et − es)(𝛾) = 𝛾t − 𝛾s = ∫
t

s

�̇�r dr =

(

∫
t

s

Derr dr

)
(𝛾), for �-a.e. 𝛾 ,
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Given any non-negative Radon measure � on ℝn , we will refer to the metric measure 
space (ℝn, �Eucl,�) as a weighted Euclidean space. The rest of this paper is devoted to the 
study of the Sobolev space and the differential structure associated with (ℝn, �Eucl,�) . We 
will refer to the elements of the Hilbert module L2(ℝn,ℝn;�) as the concrete vector fields 
on (ℝn, �Eucl,�) . Given any f ∈ C∞

c
(ℝn) , we denote by ∇f ∈ L2(ℝn,ℝn;�) the (equivalence 

class of the) ‘strong’ gradient of f  , i.e. for any x ∈ ℝn we characterise ∇f (x) ∈ ℝn as the 
unique vector satisfying

The Hilbert module L2(ℝn, (ℝn)∗;�) is the dual module of L2(ℝn,ℝn;�) , and its elements 
are said to be the concrete 1-forms on (ℝn, �Eucl,�) . The ‘strong’ differential of a given 
function f ∈ C∞

c
(ℝn) will be denoted by df ∈ L2(ℝn, (ℝn)∗;�).

The relation between abstract and concrete vector fields on the weighted Euclidean 
space has been investigated in [27], where the following results have been proven:

Theorem 2.15 (Density in energy of smooth functions) Let � be a non-negative Radon 
measure on ℝn . Let f ∈ W1,2(ℝn,�) be given. Then, there exists a sequence (fi)i ⊆ C∞

c
(ℝn) 

such that fi → f  and |∇fi| → |D�f | in L2(�).

The proof of the above result was obtained by combining a standard convolution argu-
ment with (a stronger variant of) Theorem 2.5. As a consequence, the following statement 
holds:

Theorem 2.16 (The isometric embedding �� ) Let � ≥ 0 be a Radon measure on ℝn . Then, 
there exists a unique morphism P� ∶ L2

(
ℝn, (ℝn)∗;�

)
→ L2

�
(T∗ℝn) such that

Calling �� ∶ L2
�
(Tℝn) → L2(ℝn,ℝn;�) the adjoint of P� , i.e. the unique morphism satisfying

we have that ||��(v)|| = |v| holds �-a.e. on ℝn for any given v ∈ L2
�
(Tℝn).

Remark 2.17 Given any Radon measure � ≥ 0 on ℝn and any vector field v ∈ L2
�
(Tℝn) , it 

holds that ��(v) can be characterised as the unique element of L2(ℝn,ℝn;�) such that

This readily follows from the fact that 
{
df ∶ f ∈ C∞

c
(ℝn)

}
 generates L2(ℝn, (ℝn)∗;�) and 

that �� ∶ L2
�
(Tℝn) → L2(ℝn,ℝn;�) is a morphism of L2(�)-normed L∞(�)-modules.   ◻

As it was observed in [27], it immediately follows from Theorem 2.16 that Euclidean 
spaces are universally infinitesimally Hilbertian, in the following sense.

Theorem 2.18 (Infinitesimal Hilbertianity of weighted ℝn ) Let � ≥ 0 be a Radon meas-
ure on ℝn . Then, the metric measure space (ℝd, �Eucl,�) is infinitesimally Hilbertian.

lim
y→x

f (y) − f (x) − ∇f (x) ⋅ (y − x)

|y − x| = 0.

P�(df ) = d�f , for every f ∈ C∞
c
(ℝn).

(2.21)P�(�)(v) = �
(
��(v)

)
, for every v ∈ L2

�
(Tℝn) and � ∈ L2(ℝn, (ℝn)∗;�),

(2.22)∫ d�f (v) d� = ∫ df
(
��(v)

)
d�, for every f ∈ C∞

c
(ℝn).
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We point out that other two different proofs of Theorem  2.18 are known: it directly 
follows from [18, Theorem 1.1], and it is one of the main achievements of [19]; in Sec-
tion 3.1, we will briefly describe the strategy of the latter approach. Let us now recall an 
important consequence of Theorems 2.15 and 2.18. For the reader’s usefulness, we also 
provide its proof.

Corollary 2.19 (Strong density of smooth functions) Let � ≥ 0 be a Radon measure on 
ℝn . Let f ∈ W1,2(ℝn,�) be given. Then, there exists a sequence (fi)i ⊆ C∞

c
(ℝn) such that

Proof Thanks to Theorem 2.15, we can find a sequence (fi)i ⊆ C∞
c
(ℝn) satisfying (2.23a) 

and (2.23b). Given that |∇�fi| = |D�fi| ≤ |∇fi| holds �-a.e. for every i ∈ ℕ , we deduce 
that the sequence (∇�fi)i is bounded in L2

�
(Tℝn) . Being L2

�
(Tℝn) Hilbert, there exists 

v ∈ L2
�
(Tℝn) such that (up to a not relabelled subsequence) it holds that ∇�fi ⇀ v weakly in 

L2
�
(Tℝn) . By using Proposition 2.11 (and the Riesz isomorphism), we obtain that v = ∇�f  . 

Moreover,

where the first inequality is granted by the weak convergence ∇�fi ⇀ ∇�f  . Consequently, 
we conclude that ∫ |D�f |2 d� = limi ∫ |D�fi|2 d� and thus ∇�fi → ∇�f  strongly in 
L2
�
(Tℝn) , which shows the validity of (2.23c).   ◻

3.2.5  Divergence of concrete vector fields

Let � ≥ 0 be a Radon measure on ℝn . Then, we denote by D(div
�
) the space of all those 

vector fields v ∈ L2(ℝn,ℝn;�) whose distributional divergence belongs to L2(�) . Namely, 
there exists a function div

�
(v) ∈ L2(�) such that

Observe that div
�
 satisfies the Leibniz rule, i.e. it holds that f v ∈ D(div

�
) and

for every f ∈ C∞
c
(ℝn) and v ∈ D(div

�
).

Lemma 2.20 (Relation between div� and div
�
 ) Let � ≥ 0 be a Radon measure on ℝn . 

Then, for any vector field v ∈ L2
�
(Tℝn) we have that

(2.23a)fi ⟶ f , strongly in L2(�),

(2.23b)|∇fi| ⟶ |D�f |, strongly in L2(�),

(2.23c)∇�fi ⟶ ∇�f , strongly in L2
�
(Tℝn).

� |D�f |2 d� ≤ lim
i→∞

� |D�fi|2 d�

≤ lim
i→∞� |D�fi|2 d� ≤ lim

i→∞� |∇fi|2 d�
(1.23b)
= � |D�f |2 d�,

(2.24)∫ ∇f ⋅ v d� = −∫ f div
�
(v) d�, for every f ∈ C∞

c
(ℝn).

div
�
(f v) = f div

�
(v) + ∇f ⋅ v
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In this case, it holds that div�(v) = div
�

(
��(v)

)
 in the �-a.e. sense.

Proof On the one hand, suppose v ∈ D(div�) . Then, for any f ∈ C∞
c
(ℝn) it holds that

whence ��(v) ∈ D(div
�
) and div

�

(
��(v)

)
= div�(v) holds �-a.e. on ℝn . On the other hand, 

suppose ��(v) ∈ D(div
�
) . Let us fix any function f ∈ W1,2(ℝn,�) . Corollary 2.19 grants the 

existence of (fi)i ⊆ C∞
c
(ℝn) such that fi → f  in L2(�) and ∇�fi → ∇�f  in L2

�
(Tℝn) . There-

fore, it holds that

This shows that v ∈ D(div�) and div�(v) = div
�

(
��(v)

)
 holds �-a.e. on ℝn , as required.  

 ◻

3.3  Distributions on the Euclidean space

We denote by Gr(ℝn) the Grassmannian of ℝn , i.e. the family of all linear subspaces of 
ℝn . We endow Gr(ℝn) with the distance

i.e. �Gr(ℝn)(V ,W) is the Hausdorff distance in ℝn between the closed unit balls of V  and W . 
It holds that 

(
Gr(ℝn), �Gr(ℝn)

)
 is a compact metric space; see, for instance, [2].

Definition 2.21 (Distribution) A distribution on ℝn is a Borel map V ∶ ℝn → Gr(ℝn) . 
Given any Radon measure � on ℝn , we denote by Dn(�) the family of all distributions on 
ℝn , considered up to �-a.e. equality. Given any V ∈ Dn(�) , we define Γ(V) ⊆ L2(ℝn,ℝn;𝜇) 
as

Moreover, we define a partial order on Dn(�) in the following way: given any V ,W ∈ Dn(�) , 
we declare that V ≤ W provided it holds that V(x) ⊆ W(x) for �-a.e. x ∈ ℝn.

(2.25)v ∈ D(div�) ⟺ ��(v) ∈ D(div
�
).

∫ ∇f ⋅ ��(v) d� = ∫ df
�
��(v)

�
d�

(1.22)
= ∫ d�f (v) d� = ∫ ⟨∇�f , v⟩ d�

= −∫ f div�(v) d�,

∫ ⟨∇�f , v⟩ d� = lim
i→∞∫ ⟨∇�fi, v⟩ d�

(1.22)
= lim

i→∞∫ ∇fi ⋅ ��(v) d�

= − lim
i→∞∫ fi div�

�
��(v)

�
d�

= −∫ f div
�

�
��(v)

�
d�.

�Gr(ℝn)(V ,W) ∶=max

{
sup

v ∈ V ,

|v| ≤ 1

inf
w ∈ W,

|w| ≤ 1

|v − w|, sup

w ∈ W,

|w| ≤ 1

inf
v ∈ V ,

|v| ≤ 1

|v − w|
}
,

for every V ,W ∈ Gr(ℝn),

Γ(V) ∶=
{
v ∈ L2(ℝn,ℝn;�)

||| v(x) ∈ V(x), for �-a.e. x ∈ ℝ
n
}
.
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It can be readily checked that Γ(V) is an L2(�)-normed L∞(�)-submodule of 
L2(ℝn,ℝn;�).

Proposition 2.22 Let � ≥ 0 be a Radon measure on ℝn . Then, the mapping V ↦ Γ(V) 
is a bijection between Dn(�) and the family of L2(�)-normed L∞(�)-submodules of 
L2(ℝn,ℝn;�) . Moreover, the map Γ is order-preserving, i.e. one has V ≤ W if and only if 
Γ(V) ⊆ Γ(W).

Proof The only non-trivial fact to check is that the mapping Γ is surjective. To this aim, let 
us fix an L2(�)-normed L∞(�)-submodule M  of L2(ℝn,ℝn;�) . Also, take any countable, 
dense ℚ-linear subspace (v

i
)i of M  . Define

The resulting map V ∶ ℝn → Gr(ℝn) is Borel. Indeed, for every W ∈ Gr(ℝn) we have that

holds for �-a.e. x ∈ ℝn , where (wj)j is any dense sequence in the closed unit ball of W , thus 
accordingly x ↦ 𝖽Gr(ℝn)

(
V(x),W

)
 is �-a.e. equivalent to a Borel function. Then, V ∈ Dn(�).

Let us now prove that M = Γ(V) . Given that v
i
∈ Γ(V) for every i ∈ ℕ by construction 

and M = cl {v
i
∶ i ∈ ℕ} , we deduce that M ⊆ Γ(V) . Conversely, fix any v ∈ Γ(V) . By 

dominated convergence theorem we see that the sequence (w
j
)j ⊆ Γ(V) , given by 

w
j
∶= �Bj(0)

v for all j ∈ ℕ , converges to v in Γ(V) . Fix j0 ∈ ℕ satisfying 𝜇
(
Bj0

(0)
)
> 0 . 

Given any j ≥ j0 , we infer from (2.26) that there is a Borel partition (Ej

i
)i of Bj(0) having 

the property that

Define z
j
∶=

∑∞

i=1
�
E
j

i

v
i
∈ M  . By exploiting the inequality in (2.27), we thus obtain that

Therefore, we conclude that ‖z
j
− v‖Γ(V) ≤ 1

j
+ ‖w

j
− v‖Γ(V) → 0 , so that v ∈ M  .   ◻

Remark 2.23 The statement of Proposition 2.22 is a particular instance of a more general 
result proven in [34], concerning the representation of a certain class of normed modules as 
spaces of sections of a measurable Banach bundle. Nevertheless, in the special case under 
consideration (i.e. only submodules of L2(ℝn,ℝn;�) are taken into account) the argument is 
simpler than the original one in [34], so we opted for providing an easier proof.   ◻

Lemma 2.24 Let � be a Radon measure on ℝn . Let V  be a linear subspace of 
L2(ℝn,ℝn;�) such that gv ∈ V  holds for every g ∈ C∞

c
(ℝn) and v ∈ V  . Given a dense 

sequence (v
i
)i ⊆ V  , we define V(x) ∶= cl

{
v
i
(x) ∶ i ∈ ℕ

}
 for �-a.e. x ∈ ℝn . Then 

(2.26)V(x) ∶= cl
{
v
i
(x) || i ∈ ℕ

}
∈ Gr(ℝn), for �-a.e. x ∈ ℝ

n.

�Gr(ℝn)

(
V(x),W

)

= max

{
sup
i∈ℕ

inf
j∈ℕ

||||
v
i
(x)

max
{
|v

i
(x)|, 1

} − wj

||||
, sup
j∈ℕ

inf
i∈ℕ

||||
v
i
(x)

max
{
|v

i
(x)|, 1

} − wj

||||

}

(2.27)||vi(x) − v(x)||
2 ≤ 1

j2�
(
Bj(0)

) , for every i ∈ ℕ and �-a.e. x ∈ E
j

i
.

� |z
j
− w

j
|2 d� =

∞∑

i=1
�E

j

i

|v
i
− v|2 d� ≤

∞∑

i=1

�(E
j

i
)

j2�
(
Bj(0)

) =
1

j2
.
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{
V(x)

}
x∈ℝn is a family of linear subspaces of ℝn , which are �-a.e. independent of (v

i
)i . 

Moreover, it holds that

In particular, the map V ∶ ℝn → Gr(ℝn) is a distribution on ℝn , the Banach space clV  is 
an L2(�)-normed L∞(�)-submodule of L2(ℝn,ℝn;�) , and Γ(V) = clV .

Proof The first part of the statement follows, e.g. from [12, Lemma A.1]. The fact that V  
is a distribution on ℝn can be proved by arguing exactly as in the proof of Proposition 2.22, 
whence the remaining claims immediately follow.   ◻

Remark 2.25 (Orthogonal projection) Let � ≥ 0 be a Radon measure on ℝn . Let V ∈ Dn(�) 
be given. We define the orthogonal projection mapping prV ∶ L2(ℝn,ℝn;�) → Γ(V) as

where �V(x) ∶ ℝn → V(x) is the standard orthogonal projection. Clearly, the mapping prV is 
a surjective, 1-Lipschitz morphism of L2(�)-normed L∞(�)-modules.   ◻

Remark 2.26 (Orthogonal complement, II) Given any Radon measure � on ℝn and any dis-
tribution V ∈ Dn(�) , we define the orthogonal complement V⟂ ∈ Dn(�) of V  as

Moreover, observe that Γ(V⟂) = Γ(V)⟂ , where Γ(V)⟂ is defined as in Remark 2.7.   ◻

4  Characterisation of the Sobolev space on weighted Euclidean spaces

4.1  Alberti–Marchese distribution

In our investigation of the Sobolev space associated with a weighted Euclidean space, a 
key role is played by the following result, whose statement can be roughly summed up in 
this way: given a Radon measure � on ℝn , there is a ‘maximal’ distribution V� on ℝn along 
which all Lipschitz functions are �-a.e. (Fréchet) differentiable.

Theorem 3.1 (Alberti–Marchese distribution [1]) Let � ≥ 0 be a Radon measure on ℝn . 
Then, there exists a unique distribution V� ∈ Dn(�) such that the following properties hold:

 (i) Every function f ∈ LIPc(ℝ
n) is �-a.e. differentiable with respect to V� , i.e. there 

exists a vector field ∇
AM
f ∈ Γ(V�) such that 

 (ii) There exists a function f0 ∈ LIP(ℝn) such that for �-a.e. x ∈ ℝn it holds that f0 is not 
differentiable at x with respect to any direction v ∈ ℝn ⧵ V�(x).

clV =
{
v ∈ L2(ℝn,ℝn;�)

||| v(x) ∈ V(x), for �-a.e. x ∈ ℝ
n
}
.

prV (v)(x) ∶= �V(x)
(
v(x)

)
, for �-a.e. x ∈ ℝ

n,

V⟂(x) ∶=
(
V(x)

)⟂
⊆ ℝ

n, for 𝜇-a.e. x ∈ ℝ
n.

(3.1)lim
V�(x)∋v→0

f (x + v) − f (x) − ∇
AM
f (x) ⋅ v

|v| = 0, for �-a.e. x ∈ ℝ
n.
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We call V� the Alberti–Marchese distribution associated with �.
In [1], the object V� is called the ‘decomposability bundle’ of � . Here, we chose the term 

‘distribution’ in order to be consistent with our Definition 2.21. Moreover, Theorem 3.1 
was actually proven under the additional assumption of � being a finite measure, whence 
the case of a possibly infinite Radon measure follows by arguing as in [19, Remark 1.6].

Remark 3.2 It follows from Rademacher theorem that

In particular, if 𝜇 ≪ L
n , then V�(x) = ℝn holds for �-a.e. x ∈ ℝn .   ◻

We shall refer to ∇
AM

 as the Alberti–Marchese gradient operator. It readily follows 
from (3.1) that the element ∇

AM
f  is uniquely determined (up to �-a.e. equality). Moreover,

are satisfied for every f , g ∈ LIPc(ℝ
n) . Let us also recall that it holds that

as shown in [19, Remark 1.7].

4.1.1  Consequences of Alberti–Marchese theorem

Aim of this section is to illustrate the relation between the Alberti–Marchese distribution 
and the Sobolev space on weighted ℝn , investigated in [19]. We collect in the following 
statement the main results of [19, Section 2].

Theorem 3.3 Let � ≥ 0 be a Radon measure on ℝn . Then, the following properties hold:

 (i) Let � be a test plan on (ℝn, �Eucl,�) . Then, for �-a.e. curve � it holds that

 (ii) Let f ∈ LIPc(ℝ
n) be given. Then |∇

AM
f | ∈ L2(�) is a weak upper gradient of f .

 (iii) Let f ∈ W1,2(ℝn,�) be given. Then, there exists a sequence (fi)i ⊆ LIPc(ℝ
n) such that 

fi → f  and |∇
AM
fi| → |D�f | in the strong topology of L2(�).

As we already mentioned in the paragraph below Theorem 2.18, the universal infini-
tesimal Hilbertianity of ℝn was obtained in [19, Theorem 2.3] as a consequence of Theo-
rem 3.3. The argument was the following: the Cheeger energy ECh is the lower semicontin-
uous envelope of the Alberti–Marchese energy functional E

AM
∶ L2(�) → [0,+∞] , given 

by

VL
n (x) = ℝ

n, for Ln-a.e. x ∈ ℝ
n.

(3.2)
∇

AM
(f + g)(x) = ∇

AM
f (x) + ∇

AM
g(x), for �-a.e. x ∈ ℝ

n,

∇
AM
(f − g)(x) = ∇

AM
f (x) − ∇

AM
g(x), for �-a.e. x ∈ ℝ

n,

(3.3)||∇AM
f (x)|| ≤ lip(f )(x), for �-a.e. x ∈ ℝ

n,

�̇�t ∈ V𝜇(𝛾t), for L1-a.e. t ∈ [0, 1].

(3.4)E
AM
(f ) ∶=

{
1

2
∫ |∇

AM
f |2 d�,

+∞,

if f ∈ LIPc(ℝ
n),

otherwise,
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which is clearly 2-homogeneous by construction, and satisfies the parallelogram rule by 
(3.2). Consequently, the Cheeger energy associated with (ℝn, �Eucl,�) satisfies the paral-
lelogram rule, thus yielding the sought conclusion.

4.2  Identification of the tangent module

Let � be a given Radon measure on ℝn . We know from Theorem 2.16 that the tangent mod-
ule L2

�
(Tℝn) can be canonically seen as a submodule of L2(ℝn,ℝn;�) , whence (by Proposi-

tion 2.22) we have a natural notion of tangent distribution T� . In this section, we provide 
some alternative characterisations of T� , thus showing (as described in the introduction) 
that our approach is equivalent to the ones introduced in [9] and [40, 41]. Some of the 
proofs that we will carry out are inspired by [33].

4.2.1  Tangent distribution

We introduce the notion of tangent distribution on (ℝn, �Eucl,�):

Definition 3.4 (Tangent distribution) Let � be a Radon measure on ℝn . Then, we define 
the tangent distribution T� as the unique element of Dn(�) such that

where �� ∶ L2
�
(Tℝn) → L2(ℝn,ℝn;�) is the isometric embedding described in 

Theorem 2.16.

Remark 3.5 It is straightforward to check that the module L2
�
(Tℝn) has dimension k on a 

given Borel set E ⊆ ℝn with 𝜇(E) > 0 if and only if dimT�(x) = k for �-a.e. x ∈ E .   ◻

The following result shows that ‘test plans are tangent to the distribution T� ’, in a sense.

Lemma 3.6 Let � be a Radon measure on ℝn . Let � be a given test plan on (ℝn, �Eucl,�) . 
Then, for �-a.e. curve � it holds that

Proof Let � be a given test plan on (ℝn, �Eucl,�) . Given any t ∈ [0, 1] , con-
sider the pullback morphisms e∗

t
P� ∶ e∗

t
L2(ℝn, (ℝn)∗;�) → e∗

t
L2
�
(T∗ℝn) and 

e∗
t
�� ∶ e∗

t
L2
�
(Tℝn) → e∗

t
L2(ℝn,ℝn;�) as in Theorem  2.9. The spaces e∗

t
L2
�
(Tℝn) 

and e∗
t
L2(ℝn,ℝn;�) can be identified with the dual modules of e∗

t
L2
�
(T∗ℝn) and 

e∗
t
L2(ℝn, (ℝn)∗;�) , respectively, as a consequence of the separability of L2(ℝn,ℝn;�) 

(which can be readily checked) and of its subspace ��
(
L2
�
(Tℝn)

)
 ; cf. [24, Theorem 1.6.7]. 

Since �� is the adjoint of P� , it holds that e∗
t
�� is the adjoint of e∗

t
P� , thus in particular for 

any element z ∈ e∗
t
L2
�
(Tℝn) we have that

Moreover, the morphism e∗
t
�� preserves the pointwise norm. In order to prove it, notice that

(3.5)Γ(T�) = ��
(
L2
�
(Tℝn)

)
,

(3.6)�̇�t ∈ T𝜇(𝛾t), for L1-a.e. t ∈ [0, 1].

(3.7)
(
(e∗

t
P�)(e

∗
t
df )

)
(z) = (e∗

t
df )

(
(e∗

t
��)(z)

)
�-a.e., for every f ∈ C∞

c
(ℝn).

||(e∗t ��)(e
∗
t
v)|| = ||e∗t (��(v))|| = ||��(v)||◦et = |v|◦et = |e∗

t
v| �-a.e., for every v ∈ L2

�
(Tℝn),
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whence e∗
t
�� is an isometry as we know that 

{
e∗
t
v ∶ v ∈ L2

�
(Tℝn)

}
 generates e∗

t
L2
�
(Tℝn).

One can readily check that e∗
t
L2(ℝn,ℝn;�) can be identified with the space �

�
 , the pull-

back map e∗
t
∶ L2(ℝn,ℝn;�) → 𝔹

�
 being given by e∗

t
v ∶= v◦et for every v ∈ L2(ℝn,ℝn;�) . 

An analogous statement holds for e∗
t
L2(ℝn, (ℝn)∗;�) . Observe that

Let us consider, for L1-a.e. t ∈ [0, 1] , the velocity ��
t
∈ e∗

t
L2
�
(Tℝn) of � as in Proposi-

tion 2.12. We deduce from (2.15) that for any given function f ∈ C∞
c
(ℝn) it holds that

For L1-a.e. t ∈ [0, 1] , consider the mapping Dert ∈ �
�
 defined in (2.18). We claim that

Given any function f ∈ C∞
c
(ℝn) , we have that for �-a.e. curve � it holds that

Since the identity in (3.7) actually characterises e∗
t
�� , we deduce that the claim (3.10) holds. 

In particular, we have that Dert ∈ (e∗
t
��)

(
e∗
t
L2
�
(Tℝn)

)
 for L1-a.e. t ∈ [0, 1] , whence (3.8) 

yields

Thanks to Fubini theorem, we finally conclude that the sought property (3.6) is satisfied.  
 ◻

Clearly, in order to identify the minimal weak upper gradient of a given Sobolev func-
tion, it is sufficient to look at the directions that are selected by the test plans. The follow-
ing result makes this claim precise.

Lemma 3.7 Let � be a Radon measure on ℝn . Let V ∈ Dn(�) satisfy the following prop-
erty: given any test plan � on (ℝn, �Eucl,�) , it holds that �̇�t ∈ V(𝛾t) for (� ⊗ L1)-a.e. (� , t) . 
Then, for any function f ∈ C∞

c
(ℝn) we have that ||prV (∇f )|| is a weak upper gradient of f .

Proof Fix any test plan � on (ℝn, �Eucl,�) . Then for �-a.e. curve � it holds that

By arbitrariness of � , we conclude that ||prV (∇f )|| is a weak upper gradient of f  .   ◻

4.2.2  An axiomatic notion of weak gradient

Another possible way to define the tangent fibres is via the vectorial relaxation procedure 
proposed by Zhikov in [40, 41] and studied by Louet in [33]. Below we introduce a gener-
alisation of such approach, tailored for our purposes.

(3.8)(e∗
t
��)

(
e∗
t
L2
�
(Tℝn)

)
=
{
z ∈ 𝔹

�

||| z(�) ∈ T�(�t), for �-a.e. �
}
.

(3.9)(f◦�)�
t
= (e∗

t
d�f )(�

�
t
)(�), for �-a.e. � .

(3.10)(e∗
t
��)(�

�
t
) = Dert, for L1-a.e. t ∈ [0, 1].

(
(e∗

t
P�)(e

∗
t
df )

)
(��

t
)(�)

= (e∗
t
d�f )(�

�
t
)(�)

(2.9)
= (f◦�)�

t
= (df◦et)(Dert)(�) = (e∗

t
df )(Dert)(�).

�̇�t = Dert(𝛾) ∈ T𝜇(𝛾t), for (� ⊗ L1)-a.e. (𝛾 , t).

||(f◦𝛾)�t || = ||∇f (𝛾t) ⋅ �̇�t|| = ||prV (∇f )(𝛾t) ⋅ �̇�t|| ≤ ||prV (∇f )||(𝛾t) |�̇�t|, for L1-a.e. t ∈ [0, 1].
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Definition 3.8 (G-structure) Let � ≥ 0 be a Radon measure on ℝn . Then, by G-structure 
on (ℝn, �Eucl,�) we mean a couple (V, ∇̄) satisfying the following list of axioms: 

A1.  V is a linear subspace of W1,2(ℝn,�) containing C∞
c
(ℝn).

A2.  ̄∇ ∶ V → L2(ℝn,ℝn;𝜇) is a linear operator.
A3.  |∇̄f | is a weak upper gradient of f  for any f ∈ V , with |∇̄f | ∈ L∞(𝜇) if f ∈ C∞

c
(ℝn).

A4.  ̄∇ satisfies the Leibniz rule, i.e. if f ∈ V and g ∈ C∞
c
(ℝn) , then fg ∈ V and 

A5.  Calling EG ∶ L2(�) → [0,+∞] the energy functional 

 it holds that ECh is the lower semicontinuous envelope of EG.

The term ‘ G-structure’ is somehow inspired by the notion of D-structure, which 
has been proposed by V. Gol’dshtein and M. Troyanov in the paper [28]. Therein, they 
developed an axiomatic theory of Sobolev spaces on general metric measure spaces. In 
our setting, thanks to the presence of an underlying linear structure, the axiomatisation 
can be formulated in terms of ‘gradients’ rather than ‘moduli of the gradients’.

Remark 3.9 (Density in energy) Observe that axiom A5 is equivalent to requiring that 
the elements of V are dense in energy in W1,2(ℝn,�) , i.e. for every f ∈ W1,2(ℝn,�) there 
exists a sequence (fi)i ⊆ V such that fi → f  and |∇̄fi| → |D𝜇f | strongly in L2(�) .   ◻

Example 3.10 (Examples of G-structures) Let us describe two examples of G-structures on 
(ℝn, �Eucl,�) that will play a fundamental role in the forthcoming discussion: 

(a) The G�-structure 
(
C∞
c
(ℝn),∇

)
.

(b) The G
AM

-structure 
(
LIPc(ℝ

n),∇
AM

)
 . Observe that 

The axioms defining a G-structure are satisfied both in (a) and in (b), as a consequence 
of the results contained in Sects. 2.2 and 3.1, respectively.   ◻

Much like in the case of Sobolev spaces via test plans and minimal weak upper gradi-
ents, any G-structure naturally comes with a unique minimal object, called the minimal 
G-gradient:

Definition 3.11 (G-gradient) Let � ≥ 0 be a Radon measure on ℝn and (V, ∇̄) a G
-structure on (ℝn, �Eucl,�) . Fix f ∈ L2(�) . Then, we say that f  admits a G-gradient 
v ∈ L2(ℝn,ℝn;�) provided there exists a sequence (fi)i ⊆ V such that

∇̄(fg) = f ∇̄g + g∇̄f , in the 𝜇-a.e. sense.

EG(f ) ∶=

{
1

2
∫ |∇̄f |2 d𝜇,

+∞,

if f ∈ V,

otherwise,

(3.11)∇
AM
f = prV�

(∇f ), for every f ∈ C∞
c
(ℝn).

fi → f , strongly in L2(𝜇),

∇̄fi → v, strongly in L2(ℝn,ℝn;𝜇).
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We denote by G(f ) the closed affine subspace of L2(ℝn,ℝn;�) made of all G-gradients of 
f  . The (unique) element of G(f ) of minimal norm is called the minimal G-gradient of f .

Observe that ∇̄f ∈ G(f ) for every f ∈ V , as one can see by taking fi ∶= f  for every 
i ∈ ℕ.

Remark 3.12 Note that the space G(0) is closed under multiplication by C∞
c
(ℝn)-functions: 

given any g ∈ C∞
c
(ℝn) and v ∈ G(0) , it holds that gv ∈ G(0) . Indeed, if (fi)i ⊆ C∞

c
(ℝn) is 

a sequence satisfying fi → 0 in L2(�) and ∇̄fi → v in L2(ℝn,ℝn;�) , then gfi → 0 in L2(�) 
and ∇̄(gfi) = g∇̄fi + fi∇̄g → gv in L2(ℝn,ℝn;�) . In particular, we deduce from Lemma 2.24 
that the space G(0) is an L2(�)-normed L∞(�)-submodule of L2(ℝn,ℝn;�) .   ◻

Definition 3.13 Let � be a Radon measure on ℝn and (V, ∇̄) a G-structure on 
(ℝn, �Eucl,�) . Then, we define WG as the unique element of Dn(�) such that

Notice that the previous definition is meaningful as a consequence of Remark 3.12.

4.2.3  Alternative characterisations of the tangent distribution

The following two results show that G-structures can be used to provide an alternative 
notion of Sobolev space, which turns out to be fully equivalent to the approach via test 
plans.

Theorem 3.14 (Alternative characterisation of W1,2 ) Let � ≥ 0 be a Radon measure on 
ℝn and let (V, ∇̄) be a G-structure on (ℝn, �Eucl,�) . Then

Moreover, for every f ∈ W1,2(ℝn,�) it holds that the minimal weak upper gradient |D�f | 
coincides (in the �-a.e. sense) with the pointwise norm of the minimal G-gradient of f .

Proof First of all, let us fix any function f ∈ W1,2(ℝn,�) . We claim that G(f ) ≠ � and that 
there exists an element v ∈ G(f ) such that ‖‖|v|‖‖L2(�) ≤ ‖‖|D�f |‖‖L2(�) . In order to prove it, 
choose a sequence (fi)i ⊆ V such that fi → f  and |∇̄fi| → |D𝜇f | in L2(�) , whose existence is 
observed in Remark 3.9. Up to a not relabelled subsequence, it holds that ∇̄fi ⇀ v weakly 
in L2(ℝn,ℝn;�) for some vector field v ∈ L2(ℝn,ℝn;�) . By Banach–Saks theorem we know 
that (up to taking a further subsequence) it holds that the functions gi ∶=

1

i

∑i

j=1
fj ∈ V sat-

isfy gi → f  in L2(�) and ∇̄gi → v strongly in L2(ℝn,ℝn;�) , which yields v ∈ G(f ) . It also 
holds that ���v���L2(𝜇) = limi

���∇̄gi���L2(𝜇) ≤ limi
1

i

∑i

j=1
���∇̄fj���L2(𝜇) = ���D𝜇f ���L2(𝜇).

Conversely, let us suppose that f ∈ L2(�) satisfies G(f ) ≠ � . Fix an element v ∈ G(f ) . 
Pick any sequence (fi)i ⊆ V such that fi → f  in L2(�) and ∇̄fi → v in L2(ℝn,ℝn;�) . In par-
ticular, |∇̄fi| → |v| in L2(�) . Since |∇̄fi| is a weak upper gradient of fi for every i ∈ ℕ , we 
deduce from Proposition 2.11 that f ∈ W1,2(ℝn,�) and |D�f | ≤ |v| holds �-a.e. in ℝn . All 
in all, the proof of the statement is finally achieved.   ◻

(3.12)Γ(WG) = G(0).

W1,2(ℝn,�) =
{
f ∈ L2(�) || G(f ) ≠ �

}
.
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Proposition 3.15 Let � ≥ 0 be a Radon measure on ℝn and let (V, ∇̄) be a G-structure on 
(ℝn, �Eucl,�) . Then, for any f ∈ V it holds that prW⟂

G
(∇̄f ) is the minimal G-gradient of f  . In 

particular, ||prW⟂
G
(∇̄f )|| is the minimal weak upper gradient of f .

Proof We claim that for any element v ∈ G(f ) it holds that prW⟂
G
(v) belongs to G(f ) and is 

independent of v . First, recall that ∇̄f ∈ G(f ) . Since Lemma 2.24 yields prWG
(∇̄f ) ∈ G(0) , 

there exists (gi)i ⊆ V such that gi → 0 in L2(�) and ∇̄gi → prWG
(∇̄f ) in L2(ℝn,ℝn;�) . 

Hence, the sequence (f − gi)i ⊆ V satisfies f − gi → f  in L2(�) and ∇̄(f − gi) → prW⟂
G
(∇̄f ) 

in L2(ℝn,ℝn;�) , yielding prW⟂
G
(∇̄f ) ∈ G(f ) . Furthermore, let v ∈ G(f ) be fixed. Pick any 

sequence (fi)i ⊆ V such that fi → f  in L2(�) and ∇̄fi → v in L2(ℝn,ℝn;�) . This implies that 
(f − fi)i ⊆ V satisfies f − fi → 0 in L2(�) and ∇̄(f − fi) → ∇̄f − v in L2(ℝn,ℝn;�) . Conse-
quently, we conclude that ∇̄f − v ∈ G(0) , thus ∇̄f (x) − v(x) ∈ WG(x) for �-a.e. x ∈ ℝn . This 
means that prW⟂

G
(∇̄f ) − prW⟂

G
(v) = prW⟂

G
(∇̄f − v) = 0 . All in all, the claim is proven.

Now the first part of the statement readily follows: given any v ∈ G(f ) , it holds that

Therefore, we finally conclude that prW⟂
G
(∇̄f ) is the minimal G-gradient of f  . The last part 

of the statement now follows from Theorem 3.14, thus the proof is complete.   ◻

We are now ready to state and prove the main result of this section. It says that the 
tangent distribution T� can be expressed either in terms of the domain of the distributional 
divergence div

�
 , or of the G�-structure. We point out that, to the best of our knowledge, 

the equivalence between these two approaches (namely items ii) and iii) of the following 
result) was previously not known; one of the two implications is proved in [33, end of 
Section 1].

Theorem  3.16 (Alternative characterisations of T� ) Let � ≥ 0 be a Radon measure on 
ℝn . Then, the tangent distribution T� can be equivalently characterised in the following 
ways:

 (i) T� is the unique minimal element of Dn(�) with the property that for any test plan � 
on (ℝn, �Eucl,�) it holds �̇�t ∈ T𝜇(𝛾t) for (� ⊗ L1)-a.e. (� , t) ∈ AC2([0, 1],ℝn) × [0, 1].

 (ii) T� is the unique minimal element of Dn(�) with the property that for any v ∈ D(div
�
) 

it holds that v(x) ∈ T�(x) for �-a.e. x ∈ ℝn . Equivalently, ��
(
L2
�
(Tℝn)

)
= clD(div

�
).

 (iii) It holds that T� = W⟂
�

 , where W� ∶= WG�
 stands for the distribution on ℝn associated 

with the G�-structure 
(
C∞
c
(ℝn),∇

)
 , which is described in item a) of Example 3.10.

In items i) and ii) , minimality has to be intended with respect to the partial order ≤ on 
Dn(�).
Proof We subdivide the proof into several steps:

Step 1. First of all, we claim that T� ≤ W⟂
�

 . This would follow from the inclusions

Indeed, by using (3.13), (3.5), (3.12), and Remark 2.26, we deduce that Γ(T𝜇) ⊆ Γ(W⟂
𝜇
) , 

whence T� ≤ W⟂
�

 by the last part of the statement of Proposition 2.22. To prove the first 
inclusion in (3.13), recall that clD(div�) = L2

�
(Tℝn) by Lemma 2.13 and notice that

��prW⟂
G
(∇̄f )��L2(ℝn ,ℝn;𝜇)

= ��prW⟂
G
(v)��L2(ℝn ,ℝn;𝜇)

≤ ‖v‖L2(ℝn,ℝn;𝜇).

(3.13)𝜄𝜇
(
L2
𝜇
(Tℝn)

)
⊆ clD(div

𝜇
) ⊆ G𝜇(0)

⟂.
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To prove the second inclusion in (3.13), it clearly suffices to show that D(div
𝜇
) ⊆ G𝜇(0)

⟂ . 
To this aim, fix v ∈ D(div

�
) and w ∈ G�(0) . Choose any (fi)i ⊆ C∞

c
(ℝn) such that fi → 0 in 

L2(�) and ∇fi → w in L2(ℝn,ℝn;�) . Therefore, we have that

By arbitrariness of v and w , we conclude that D(div
𝜇
) ⊆ G𝜇(0)

⟂ , so that (3.13) is proven.
Step 2. Let V ∈ Dn(�) be a distribution on ℝn such that for any test plan � on 

(ℝn, �Eucl,�) it holds that �̇�t ∈ V(𝛾t) for (� ⊗ L1)-a.e. (� , t) . Then, we claim that W⟂
�
≤ V .

First, from Step 1 and Lemma  3.6 we know that W⟂
�
∩ V ∈ Dn(�) satisfies the same 

property as V  , i.e. for any test plan � one has �̇�t ∈ W𝜇(𝛾t)
⟂ ∩ V(𝛾t) for (� ⊗ L1)-a.e. (� , t) . 

Let W ∈ Dn(�) be defined so that W(x) is the orthogonal complement of W�(x)
⟂ ∩ V(x) in 

W�(x)
⟂ for �-a.e. point x ∈ ℝn . Given any function f ∈ C∞

c
(ℝn) , it holds that ||prW⟂

�
∩V (∇f )

|| 
is a weak upper gradient of f  by Lemma 3.7, while ||prW⟂

�
(∇f )|| is the minimal weak upper 

gradient of f  by Proposition 3.15. This implies that ||prW⟂
�
∩V (∇f )

|| = ||prW⟂
�
(∇f )|| holds �-a.e. 

in ℝn for every f ∈ C∞
c
(ℝn) , thus accordingly we might conclude that

Given that 
{
∇f ∶ f ∈ C∞

c
(ℝn)

}
 generates L2(ℝn,ℝn;�) on ℝn , we deduce that the image of 

prW coincides with {0} , thus necessarily W = {0} . This means that W�(x)
⟂ ∩ V(x) = W�(x)

⟂ 
for �-a.e. point x ∈ ℝn , which grants that W⟂

�
≤ V  . Hence, the claim is proven.

Step 3. By Lemma 3.6 we know that T� satisfies the property in item (i), whence by Steps 
1 and 2 we see that T� = W⟂

�
 is the (unique) minimal distribution on ℝn having this prop-

erty, proving items iii) and i). Moreover, notice that ��
(
L2
�
(Tℝn)

)
= clD(div

�
) = G�(0)

⟂ 
follows from (3.13) and the identity T� = W⟂

�
 , thus item (ii) is proven as well.   ◻

Note that by combining Lemma  2.20 with item (ii) of the previous theorem, we 
obtain that

As another immediate consequence of Theorem 3.16, we also see that the tangent distribu-
tion is always contained in the Alberti–Marchese distribution:

Corollary 3.17 Let � ≥ 0 be a Radon measure on ℝn . Then, it holds that

Proof Combine item (i) of Theorem 3.3 with item (i) of Theorem 3.16.   ◻

Remark 3.18 It might happen that T� ≠ V� . For instance, let C be a fat Cantor set in ℝ and 
consider � ∶= L

1|C . Then, V�(x) = ℝ for �-a.e. x ∈ ℝ by Remark 3.2, while T�(x) = {0} 
for �-a.e. x ∈ ℝ as a consequence of the fact that the support of � is totally disconnected, 
thus W1,2(ℝ,�) = L2(�) and |D�f | = 0 holds �-a.e. for every f ∈ W1,2(ℝ,�) .   ◻

𝜄𝜇
(
L2
𝜇
(Tℝn)

)
= 𝜄𝜇

(
clD(div𝜇)

)
⊆ cl 𝜄𝜇

(
D(div𝜇)

) (1.25)

⊆ clD(div
𝜇
).

∫ v ⋅ w d� = lim
i→∞∫ v ⋅ ∇fi d� = − lim

i→∞∫ fi div�(v) d� = 0.

||prW (∇f )||
2
= ||prW⟂

�
(∇f )||

2
− ||prW⟂

�
∩V (∇f )

||
2
= 0 �-a.e., for every f ∈ C∞

c
(ℝn).

��
(
D(div�)

)
= D(div

�
), for every Radon measure � ≥ 0 on ℝn.

(3.14)T� ≤ V�.
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4.3  Identification of the minimal weak upper gradient

Once we have the equivalent characterisations of the Sobolev space and of the tangent 
distribution at our disposal, we can identify the minimal weak upper gradient of every 
given Lipschitz function. First, we deal with smooth functions (in Proposition 3.19), 
then we pass to general Lipschitz functions (in Theorem 3.20). A consequence of Prop-
osition 3.19—namely the fact that |D�f | = ||prT� (∇f )|| holds for every f ∈ C∞

c
(ℝn)—was 

already proven by S. Di Marino in [16, Theorem 7.4.8].

Proposition 3.19 Let � ≥ 0 be a Radon measure on ℝn . Then, for every f ∈ W1,2(ℝn,�) 
it holds that ��(∇�f ) is the minimal G�-gradient of f  . In particular, we have that

Proof First of all, let us prove (3.15). Fix any f ∈ C∞
c
(ℝn) . Choose any v ∈ L2

�
(Tℝn) such 

that ��(v) = prT� (∇f ) . Therefore, for every g ∈ C∞
c
(ℝn) it holds that

In light of Remark 2.17, we can conclude that ��(∇�f ) = prT� (∇f ) , thus proving (3.15).
Let us now fix f ∈ W1,2(ℝn,�) . By Corollary 2.19 there is a sequence (fi)i ⊆ C∞

c
(ℝn) 

such that fi → f  , |D�fi| → |D�f | , and |∇fi| → |D�f | in L2(�) . Up to a not relabelled sub-
sequence, we can also assume that ∇�fi ⇀ v weakly in L2

�
(Tℝn) , for some v ∈ L2

�
(Tℝn) . 

By Banach–Saks theorem we can find a sequence (gi)i ⊆ C∞
c
(ℝn) such that gi → f  in 

L2(�) , ∇�gi → v in L2
�
(Tℝn) , and limi

‖‖|∇gi|‖‖L2(�) ≤ ‖‖|D�f |‖‖L2(�) . It follows from Prop-
osition  2.11 that v = ∇�f  , thus in particular |D�gi| → |D�f | in L2(�) . Item iii) of Theo-
rem 3.16 yields

whence prW�
(∇gi) → 0 in L2(ℝn,ℝn;�) . Since ∇�gi → ∇�f  in L2

�
(Tℝn) and �� is continu-

ous, we can finally conclude that

This means that ��(∇�f ) ∈ G�(f ) . Given that ||��(∇�f )
|| = |D�f | holds �-a.e. in ℝn , we infer 

from Theorem 3.14 that ��(∇�f ) is the minimal G�-gradient of f  . The proof is complete.  
 ◻

Theorem  3.20 (Minimal weak upper gradient of Lipschitz functions) Let � ≥ 0 be a 
Radon measure on ℝn . Then, it holds that

(3.15)��(∇�f ) = prT� (∇f ), for every f ∈ C∞
c
(ℝn).

d�g(∇�f ) = d�f (∇�g)
(1.21)
= df

�
��(∇�g)

�
= ∇f ⋅ ��(∇�g) = prT� (∇f ) ⋅ ��(∇�g)

= ��(v) ⋅ ��(∇�g) = ⟨v,∇�g⟩ = d�g(v)
(1.21)
= dg

�
��(v)

�
= dg

�
prT� (∇f )

�
.

lim
i→∞� ||prW�

(∇gi)
||
2
d� = lim

i→∞

(

� |∇gi|2 d� − � ||prT� (∇gi)||
2
d�

)

(2.15)
= lim

i→∞� |∇gi|2 d� − lim
i→∞� |D�gi|2 d�

≤ � |D�f |2 d� − � |D�f |2 d� = 0,

∇gi = prT� (∇gi) + prW�
(∇gi)

(2.15)
= ��(∇�gi) + prW�

(∇gi) → ��(∇�f ), in L2(ℝn,ℝn;�).
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Proof Consider the G�-structure and the G
AM

-structure, which were defined in items (a) and 
(b) of Example 3.10, respectively. For brevity, we call W

AM
∶= WGAM

 . First, we prove that

In order to show one inclusion, fix v ∈ G
AM
(0)⟂ ∩ Γ(V�) and w ∈ G�(0) . Let us pick 

any sequence (fi)i ⊆ C∞
c
(ℝn) satisfying fi → 0 in L2(�) and ∇fi → w in L2(ℝn,ℝn;�) . 

The latter convergence, together with (3.11), yields ∇
AM
fi = prV�

(∇fi) → prV�
(w) in 

L2(ℝn,ℝn;�) , which gives prV�
(w) ∈ G

AM
(0) . Since v ∈ G

AM
(0)⟂ ∩ Γ(V�) , we get that 

v ⋅ w = v ⋅ prV�
(w) = 0 holds �-a.e., which implies G

AM
(0)⟂ ∩ Γ(V𝜇) ⊆ G𝜇(0)

⟂ and thus 
W⟂

AM
∩ V� ≤ W⟂

�
= T�.

To prove the converse inclusion, let us consider the orthogonal complement Z of 
W⟂

AM
∩ V� in T� , namely Z ∶= (W⟂

AM
∩ V�)

⟂ ∩ T� . Notice that for any f ∈ C∞
c
(ℝn) we have 

that

By applying Proposition 3.15 to the G�-structure and the G
AM

-structure, we obtain that

respectively. By plugging (3.18) into (3.17), we deduce that ||prZ(∇f )|| = ||prZ(∇AM
f )|| = 0 

holds �-a.e. for all f ∈ C∞
c
(ℝn) . Since 

{
∇f ∶ f ∈ C∞

c
(ℝn)

}
 generates L2(ℝn,ℝn;�) on ℝn , 

we conclude that Z = {0} , which means that the identity in (3.16) is verified.
Now fix any function f ∈ LIPc(ℝ

n) . We know that ||prW⟂
AM
(∇

AM
f )|| is the minimal weak 

upper gradient of f  by Proposition 3.15. Since it also holds that

we finally conclude that ||prT� (∇AM
f )|| is the minimal weak upper gradient of f  .   ◻

It readily follows from Theorem 3.20 that those measures � on ℝn for which minimal 
weak upper gradient and local Lipschitz constant always coincide can be explicitly char-
acterised in terms of the tangent distribution T� , as the next result shows.

Corollary 3.21 Let � ≥ 0 be a Radon measure on ℝn . Then, the following are equivalent:

i) |D�f | = lip(f ) holds �-a.e., for every f ∈ LIPc(ℝ
n),

ii) T�(x) = ℝn , for �-a.e. x ∈ ℝn.

Proof Suppose (i) holds. To prove (ii), we argue by contradiction: suppose there exists a 
Borel set E ⊆ ℝn such that 𝜇(E) > 0 and T�(x) ≠ ℝn for �-a.e. x ∈ E . This means that for �
-a.e. point x ∈ E there exists a vector v ∈ ℚn such that v ∉ T�(x) , in other words

|D�f | = ||prT� (∇AM
f )|| �-a.e., for every f ∈ LIPc(ℝ

n).

(3.16)W⟂
AM

∩ V� = T�.

(3.17)||prT� (∇AM
f )||

2
= ||prW⟂

AM
∩V�

(∇
AM
f )||

2
+ ||prZ(∇AM

f )||
2
, in the �-a.e. sense.

(3.18)
||prT� (∇AM

f )||
(2.14)
= ||prT� (∇f )|| = ||prW⟂

�
(∇f )|| = |D�f |,

||prW⟂
AM

∩V�
(∇

AM
f )|| = ||prW⟂

AM
(∇

AM
f )|| = |D�f |,

||prT� (∇AM
f )||

(2.16)
= ||prW⟂

AM
∩V�

(∇
AM
f )|| = ||prW⟂

AM
(∇

AM
f )||, in the �-a.e. sense,
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Hence, there exist a vector v ∈ ℚn and a Borel set F ⊆ E such that 𝜇(F) > 0 and v ∉ T�(x) 
for �-a.e. x ∈ F . Choose a radius r > 0 such that 𝜇

(
F ∩ Br(0)

)
> 0 and a function 

f ∈ C∞
c
(ℝn) satisfying ∇f (x) = v for every x ∈ Br(0) . By using Proposition 3.19, we thus 

deduce that

This leads to a contradiction with (i), whence accordingly (ii) is proven.
Conversely, suppose (ii) holds. A fortiori, we have that V�(x) = ℝn for �-a.e. x ∈ ℝn 

(recall Corollary 3.17), so that any given function f ∈ LIPc(ℝ
n) is �-a.e. differentiable and 

thus |∇
AM
f | = lip(f ) in the �-a.e. sense. Finally, by using Theorem 3.20 we obtain that

proving the validity of (i).   ◻

5  Some applications

5.1  Tangent fibres on the singular part

In the structure theory of Radon measures on Euclidean spaces, a breakthrough is repre-
sented by the celebrated paper [15] by G. De Philippis and F. Rindler. A consequence of 
their main result is reported in Theorem 4.1.

In this section, we will combine the results by De Philippis–Rindler with our knowledge 
of the tangent distribution, in order to prove that for any Radon measure � = �Ln + �s on 
ℝn (where �s ⟂ L

n ) it holds that T�(x) ≠ ℝn for �s-a.e. point x ∈ ℝn ; see Theorem 4.6. This 
gives a positive answer to a variant of a question raised by Fragalà and Mantegazza [22, 
Remark 4.4]; the original problem was posed in terms of a different notion of tangent fibre. 
However, by adapting our arguments one can solve also their original open problem. We 
point out that neither the kind of results we will prove in this section, nor the techniques we 
will use, are really new. See, e.g. [14, 27, 31] for similar statements and arguments.

5.1.1  Reminder on Euclidean 1‑currents

Recall that a 1-current T on ℝn is a linear and continuous real-valued functional 
defined on the space of smooth, compactly supported 1-forms on ℝn . Its total mass 
�(T) is given by the supremum of T(�) among all smooth, compactly supported 1-
forms � on ℝn that satisfy |�| ≤ 1 on all ℝn . If �(T) is finite, then T is an ℝn-valued 
Radon measure on ℝn , whence by using the Radon–Nikodým theorem one can find a 
finite, non-negative Borel measure ‖T‖ on ℝn and a vector field T⃗ ∈ L1(ℝn,ℝn;‖T‖) , 
with ||T⃗(x)|| = 1 for ‖T‖-a.e. point x ∈ ℝn , such that T = T⃗ ‖T‖ . The boundary �T of T is 
the 0-current (i.e. the generalised function) on ℝn which is defined as �T(f ) ∶= T(df ) for 
all f ∈ C∞

c
(ℝn) . A 1-current T on ℝn is said to be normal provided �(T),�(𝜕T) < +∞ , 

E ⊆
⋃

v∈ℚn

{
x ∈ ℝ

n || v ∉ T𝜇(x)
}
, up to 𝜇-null sets.

|D𝜇f |(x) = ||prT𝜇 (∇f )||(x) = ||𝜋T𝜇(x)(v)|| < |v| = lip(f )(x), for 𝜇-a.e. x ∈ F ∩ Br(0).

|D�f | = ||prT� (∇AM
f )|| = |∇

AM
f | = lip(f ), holds �-a.e. on ℝ

n,
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where �(�T) ∶= sup
{
�T(f ) ∶ f ∈ C∞

c
(ℝn), |f | ≤ 1 on ℝn

}
 . When the total mass �(�T) 

is finite, the 0-current �T can be canonically identified with a (finite) signed measure 
on ℝn.

The following deep result, concerning the structure of normal 1-currents in the 
Euclidean space, has been proven by G. De Philippis and F. Rindler in the paper [15].

Theorem 4.1 Let � ≥ 0 be a Radon measure on ℝn and let T1,… , Tn be normal 1-cur-
rents in ℝn such that 𝜇 ≪ ‖Ti‖ for every i = 1,… , n . Suppose that

Then, it holds that 𝜇 ≪ L
n.

As pointed out in [15],  Theorem  4.1 has—among many others—the following 
consequence:

Theorem 4.2 (Weak converse of Rademacher theorem) Let � be a Radon measure on ℝn 
such that every function f ∈ LIP(ℝn) is �-a.e. differentiable. Then, it holds that 𝜇 ≪ L

n.

In turn, the weak converse of Rademacher theorem readily implies that the 
Alberti–Marchese distribution has full rank if and only if the measure under considera-
tion is absolutely continuous with respect to the Lebesgue measure:

Corollary 4.3 Let � be a given Radon measure on ℝn . Then, it holds that

Proof If V�(x) = ℝn for �-a.e. x ∈ ℝn , then every Lipschitz function is �-a.e. differentiable, 
whence 𝜇 ≪ L

n by Theorem 4.2. The converse implication is observed in Remark 3.2.  
 ◻

Example 4.4 (Vector fields with divergence as normal 1-currents) Let � be a finite Borel 
measure on ℝn and v ∈ D(div

�
) . Let us associate to v the 1-current I(v) on ℝn , defined as

Then, we claim that I(v) is a normal 1-current and that it satisfies

Indeed, the fact that �
(
I(v)

)
< +∞ , and the explicit formulae for ������⃗I(v) and ‖‖I(v)‖‖ , are 

immediate consequences of (4.1), while it readily follows from the identity

that the 0-current �I(v) has finite total mass and satisfies �I(v) = −div
�
(v)� .   ◻

T⃗1(x),… , T⃗n(x) ∈ ℝ
n are linearly independent, for 𝜇-a.e. x ∈ ℝ

n.

V𝜇(x) = ℝ
n, for 𝜇-a.e. x ∈ ℝ

n
⟺ 𝜇 ≪ L

n.

(4.1)

I(v)(�) ∶= ∫ �(v) d�, for every smooth, compactly supported 1-form � on ℝn.

������⃗I(v) = �{|v|>0}
v

|v| ,
‖‖I(v)‖‖ = |v|𝜇, 𝜕I(v) = −div

𝜇
(v)𝜇.

�I(v)(f ) = I(v)(df ) = ∫ df (v) d� = −∫ f div
�
(v) d�, for every f ∈ C∞

c
(ℝn),
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5.1.2  The dimension drops on the singular part

As a first step, we show that a given Radon measure on ℝn must be absolutely continuous 
with respect to the Lebesgue measure Ln if restricted to any Borel set where the tangent 
module has maximal dimension.

Proposition 4.5 Let � be a finite Borel measure on ℝn . Suppose L2
�
(Tℝn) has dimension 

equal to n on a Borel set E ⊆ ℝn . Then 𝜇|E ≪ L
n.

Proof Fix a countable dense subset C of D(div
�
) . Given that Γ(T�) = clD(div

�
) by item (ii) 

of Theorem 3.16 and div
�
 satisfies the Leibniz rule, we know from Lemma 2.24 that T�(x) 

coincides with cl
{
v(x) ∶ v ∈ C

}
 for �-a.e. x ∈ ℝn . In particular, Remark 3.5 grants that:

Consider the family (Sk)k∈ℕ of all those subsets of C made exactly of n elements. Given any 
k ∈ ℕ , we denote by Ek the set of all points x ∈ E such that v

1
(x),… , v

n
(x) ∈ ℝn are lin-

early independent, where {v
1
,… , v

n
} = Sk . Then (4.2) grants that the Borel sets Ek satisfy 

�
�
E ⧵

⋃
k Ek

�
= 0 . Now fix any k ∈ ℕ and call Sk = {v

1
,… , v

n
} . Thanks to Example 4.4, 

the 1-currents I(v
1
),… , I(v

n
) are normal and satisfy 𝜇|Ek

≪ ‖‖I(vi)‖‖ for all i = 1,… , n . 
Therefore, we conclude from Theorem 4.1 that 𝜇|Ek

≪ L
n for all k ∈ ℕ , thus 𝜇|E ≪ L

n .  
 ◻

It is now easy to prove, as an immediate consequence of Proposition 4.5, that the tangent 
fibres cannot have dimension n on the singular part of the measure � under consideration.

Theorem 4.6 (Tangent fibres on the singular part) Let � be a finite Borel measure on ℝn , 
with Lebesgue decomposition � = �Ln + �s . Then, it holds that

Proof Fix a Borel set B ⊆ ℝn such that Ln(B) = �s(ℝn ⧵ B) = 0 . We argue by contra-
diction: suppose there is a Borel set E ⊆ B such that 𝜇s(E) > 0 and dimT�(x) = n for �s

-a.e. x ∈ E . In particular, 𝜇(E) > 0 and dimT�(x) = n for �-a.e. x ∈ E . As observed in 
Remark 3.5, this means that the tangent module L2

�
(Tℝn) has dimension n on E . Therefore, 

Proposition 4.5 grants that 𝜇s|E = 𝜇|E ≪ L
n . This leads to a contradiction, as Ln(E) = 0 

but 𝜇s(E) > 0 .   ◻

Remark 4.7 Actually, Theorem 4.6 holds for any non-negative Radon measure � on ℝn . 
Indeed, given any x̄ ∈ spt(𝜇) and r > 0 , it can be readily deduced from [23, Proposition 
2.6] that T�r

(x) = T�(x) is satisfied for �-a.e. x ∈ Br(x̄) , where we set 𝜇r ∶= 𝜇|Br(x̄)
 . Moreo-

ver, notice that (𝜇r)
s = 𝜇s|Br(x̄)

 . Therefore, by applying Theorem 4.6 to the measures (�k)k∈ℕ 
we deduce that � itself satisfies (4.3), thus showing that in the statement of Theorem 4.6 
the finiteness assumption on � can be dropped.   ◻

Remark 4.8 (Weighted real line) As already mentioned in the introduction, the Sobolev 
space on weighted ℝ has been fully understood by S. Di Marino and G. Speight in [20]. 
More specifically, they completely characterised the minimal weak upper gradient of 
any Lipschitz function f ∈ W1,2(ℝ,�) , where � is a given Radon measure on ℝ ; see [20, 

(4.2)For �-a.e. x ∈ E, there exist v
1
,… , v

n
∈ C ∶ span

{
v
1
(x),… , v

n
(x)

}
= ℝ

n.

(4.3)dimT𝜇(x) < n, for 𝜇s-a.e. x ∈ ℝ
n.
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Theorem 2]. We point out that our results imply a part (but not the whole) of their state-
ment: Theorem 3.20 grants that |D�f |(x) ∈

{
0, lip(f )(x)

}
 is satisfied for �-a.e. x ∈ ℝ , while 

Theorem 4.6 ensures that T�(x) = {0} and thus |D�f |(x) = 0 hold for �s-a.e. x ∈ ℝ .   ◻

It is worth to isolate the following statement, which might be seen as a special case of 
Theorem 4.6 (or, alternatively, of Corollary 4.3).

Corollary 4.9 Let � ≥ 0 be a Radon measure on ℝn such that

Then, it holds that 𝜇 ≪ L
n.

Proof By Corollary 3.21, we know that (4.4) is equivalent to T�(x) = ℝn for �-a.e. x ∈ ℝn . 
Therefore, it follows from Theorem 4.6 that �s = 0 , which exactly means that 𝜇 ≪ L

n.
Alternatively, one can argue as follows: since T�(x) = ℝn for �-a.e. x ∈ ℝn , we know a 

fortiori that V�(x) = ℝn for �-a.e. x ∈ ℝn , thus accordingly 𝜇 ≪ L
n by Corollary 4.3.   ◻

Remark 4.10 Suppose that � is a Radon measure on ℝn such that the resulting metric 
measure space (ℝn, �Eucl,�) is doubling and supports a weak (1, 2)-Poincaré inequality, in 
the sense of [30]. Then, the property in (4.4) is satisfied, as proven by J. Cheeger in [13]. 
Therefore, it follows from Corollary 4.9 that the measure � must be absolutely continuous 
with respect to Ln . This fact was already proven by A. Schioppa in [37]. See also [14].  
 ◻

5.2  A geometric characterisation of the tangent distribution

The aim of this section is to show that the tangent distribution T� associated with a given 
Radon measure � on ℝn admits a ‘geometric’ characterisation in terms of the velocity of 
test plans, somehow refining Theorem 3.16. More precisely, we will prove that there exists 
a sequence (�i)i of test plans on (ℝn, �Eucl,�) having the following property: T� is obtained 
as the closure of the velocities of the plans �i at time 0 , in a suitable sense; see Theo-
rem 4.16 for the correct statement. In order to achieve this goal, a key tool is given by the 
notion of test plan representing a gradient, which has been defined and proven to exist (in 
high generality) by N. Gigli in [23].

5.2.1  Reminder on test plans representing a gradient

First of all, let us report the notion of test plan representing the gradient of a Sobolev func-
tion; recall the definition (2.5) of KEt.

Definition 4.11 (Test plan representing a gradient [23]) Let (X, �,�) be a metric measure 
space. Let f ∈ W1,2(X,�) be given. Then, a test plan � on (X, �,�) is said to represent the 
gradient of the function f  provided it satisfies the following property:

(4.4)|D�f | = lip(f ) �-a.e., for every f ∈ LIPc(ℝ
n).

(4.5)lim
t↘0

f◦et − f◦e0

KEt

= lim
t↘0

KEt

t
= |D�f |◦e0, strongly in L2(�).
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Test plans representing a gradient exist under mild assumptions, as the next result 
shows.

Theorem  4.12 (Existence of test plans representing a gradient [23]) Let (X, �,�) 
be a metric measure space. Let � be a Borel probability measure on (X, �) such 
that ∫ �2(⋅, x̄) d𝜈 < +∞ for every x̄ ∈ X , and � ≤ C� for some constant C > 0 . Let 
f ∈ W1,2(X,�) be given. Then, there exists a test plan � on (X, �,�) that represents the gra-
dient of f  and satisfies (e0)∗� = �.

In lack of an appropriate reference, we provide a quick proof of the following ele-
mentary continuity result. To do so, we use the well-known density of LIPc(ℝn,ℝn) in 
L2(ℝn,ℝn;�).

Lemma 4.13 Let � ≥ 0 be a Radon measure on ℝn . Let � be a test plan on (ℝn, �Eucl,�) . 
Then, for every v ∈ L2(ℝn,ℝn;�) it holds that

Proof Fix any v ∈ L2(ℝn,ℝn;�) . Choose compactly supported Lipschitz 
maps v

i
∶ ℝn → ℝn such that v

i
→ v in L2(ℝn,ℝn;�) . Given any t ∈ [0, 1] , we 

have lims→t ∫ |v
i
◦es − v

i
◦et|2 d� = 0 by dominated convergence theorem, so 

[0, 1] ∋ t ↦ v
i
◦et ∈ �

�
 is continuous. Moreover, the curves t ↦ v

i
◦et uniformly converge 

to t ↦ v◦et as i → ∞ . Indeed, it holds that

Therefore, the curve [0, 1] ∋ t ↦ v◦et ∈ �
�
 is continuous as well, as required.   ◻

As one might expect, if a test plan � represents the gradient of a Sobolev function f  , 
then for any other Sobolev function g we have, roughly speaking, that the derivative at 
t = 0 of the map t ↦ g◦et ∈ L1(�) coincides with the scalar product ⟨∇�g,∇�f ⟩◦e0 . This 
claim is made precise by the ensuing result, which has been proven in [35, Corollary 2.4].

Proposition 4.14 Let (X, �,�) be an infinitesimally Hilbertian space. Let f ∈ W1,2(X,�) 
be given. Let � be a test plan on (X, �,�) that represents the gradient of f  . Then, for every 
function g ∈ W1,2(X,�) it holds that

5.2.2  Geometric characterisation of the tangent fibres

In the setting of weighted Euclidean spaces, we have that test plans representing a gradient 
admit a ‘concrete’ derivative at t = 0:

Theorem  4.15 (Initial velocity of test plans representing a gradient) Let � ≥ 0 be a 
Radon measure on ℝn . Let f ∈ W1,2(ℝn,�) be given. Let � be a test plan on (ℝn, �Eucl,�) 
that represents the gradient of f  . Then, it holds that

[0, 1] ∋ t ⟼ v◦et ∈ �
�

is a continuous curve.

sup
t∈[0,1]� ||vi◦et − v◦et

||
2
d� = sup

t∈[0,1]� |v
i
− v|2◦et d� ≤ Comp(�)� |v

i
− v|2 d�.

g◦et − g◦e0

t
⇀ ⟨∇�g,∇�f ⟩◦e0, weakly in L1(�) as t ↘ 0.
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Proof Fix any sequence ti ↘ 0 . Observe that for every t ∈ (0, 1) we have that

Since 
(
KEti

∕ti
)
i
 is convergent in L2(�) , we deduce that 

(
(eti − e0)∕ti

)
i
 is bounded in �

�
 , 

thus accordingly (up to a not relabelled subsequence) it holds that (eti − e0)∕ti ⇀ � weakly 
in �

�
 for some � ∈ �

�
 . Given v ∈ L2(ℝn,ℝn;�) and E ⊆ C([0, 1],ℝn) Borel, we claim that

In order to prove it, observe that

and that by exploiting Lemma 4.13 we obtain that

Since one has Dert(�) ∈ T�(�t) for (� ⊗ L1)-a.e. (� , t) by Lemma 3.6, we deduce from (4.8) 
that ∫

E
(v◦e0) ⋅ 𝓁 d� = 0 for every v ∈ Γ(T⟂

�
) and E ⊆ C([0, 1],ℝn) Borel, thus accordingly

Also, given g ∈ C∞
c
(ℝn) and E ⊆ C([0, 1],ℝn) Borel, we know from Proposition 4.14 that

(4.6)∃D
�
∶= lim

t↘0

et − e0

t
= ��(∇�f )◦e0, strongly in �

�
.

(4.7)
||||
et − e0

t

||||
(𝛾) ≤ �

t

0

|�̇�s| ds ≤
(

�
t

0

|�̇�s|2 ds
)1∕2

=
KEt(𝛾)

t
, for �-a.e. 𝛾 .

(4.8)∫E

(v◦e0) ⋅ 𝓁 d� = lim
i→∞∫E ⨏

ti

0

(v◦et) ⋅ Dert dt d�.

∫E

(v◦e0) ⋅ 𝓁 d� = lim
i→∞∫E

(v◦e0) ⋅
eti − e0

ti
d�

(1.20)
= lim

i→∞∫E ⨏
ti

0

(v◦e0) ⋅ Dert dt d�

lim
i→∞

||||�E �
ti

0

(v◦et) ⋅ Dert dt d� − �E �
ti

0

(v◦e0) ⋅ Dert dt d�
||||

≤ lim
i→∞�E �

ti

0

||v◦et − v◦e0
|||Dert| dt d�

≤ lim
i→∞

(

�
ti

0

‖‖v◦et − v◦e0
‖‖
2

�
�

dt

)1∕2(

�
KE2

ti

t2
i

d�

)1∕2

= 0.

(4.9)�(�) ∈ T�(�0), for �-a.e. � .

∫E

�
��(∇�g)◦e0

�
⋅
�
��(∇�f )◦e0

�
d�

= ∫E

⟨∇�g,∇�f ⟩◦e0 d� = lim
i→∞∫E

g◦eti − g◦e0

ti
d�

= lim
i→∞∫E ⨏

ti

0

d

dt
g(�t) dt d�(�) = lim

i→∞∫E ⨏
ti

0

(∇g◦et) ⋅ Dert dt d�

= lim
i→∞∫E ⨏

ti

0

�
prT� (∇g)◦et

�
⋅ Dert dt d�

(2.15)
= lim

i→∞∫E ⨏
ti

0

�
��(∇�g)◦et

�
⋅ Dert dt d�

(3.8)
= ∫E

�
��(∇�g)◦e0

�
⋅ 𝓁 d�,
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whence it follows that 
(
��(∇�g)◦e0

)
⋅
(
𝓁 − ��(∇�f )◦e0

)
= 0 holds �-a.e.. By using (4.9) 

and the arbitrariness of g ∈ C∞
c
(ℝn) , we get 𝓁 = ��(∇�f )◦e0 . Being the limit � independent 

of the sequence (ti)i , we deduce that

Finally, let us observe that

This shows that ∫ ||��(∇�f )
||
2
◦e0 d� = limt↘0 ∫ ||

et−e0

t
||
2
d� , which together with (4.10) 

grant that et−e0
t

→ ��(∇�f )◦e0 strongly in �
�
 as t ↘ 0 , thus proving the statement.   ◻

By building upon Theorem  4.15, we can eventually prove the main result of this 
section.

Theorem 4.16 (Geometric characterisation of the tangent fibres) Let � ≥ 0 be a Radon 
measure on ℝn . Then, there exists a sequence (�i)i of test plans on (ℝn, �Eucl,�) such that 
the limits D

�i
 exist as in (4.6), the property 𝜇 ≪ (e0)∗�i ≪ 𝜇 holds for every i ∈ ℕ , and

where the essential image Ime0,�i
(D

�i
) ∶ C([0, 1],ℝn) → ℝn of D

�i
 under e0 is defined as

Proof Given that C∞
c
(ℝn) is strongly dense in W1,2(ℝn,�) by Corollary 2.19, we can find a 

countable ℚ-linear subspace (fi)i of C∞
c
(ℝn) that is dense in W1,2(ℝn,�) . In particular, the 

family V ∶=
�∑k

j=1
gj∇𝜇fij ∶ k ∈ ℕ, (gj)

k
j=1

⊆ L∞(𝜇), (ij)
k
j=1

⊆ ℕ
�
 is dense in L2

�
(Tℝn) , 

thus the linear space ��(V) is dense in Γ(T�) . By using Lemma 2.24, we can deduce that

It is straightforward to check that one can find a Borel probability measure � on ℝn such 
that ∫ |x|2 d𝜈(x) < +∞ and 𝜇 ≪ 𝜈 ≤ C𝜇 for some C > 0 . Given any i ∈ ℕ , we know from 
Theorem 4.12 that there exists a test plan �i on (ℝn, �Eucl,�) representing the gradient of 
fi and satisfying (e0)∗�i = � . Theorem 4.15 grants that D

�i
 exists as in (4.6). Also, it holds

By taking (4.12) into account, we eventually obtain (4.11), as desired.   ◻

(4.10)
et − e0

t
⇀ ��(∇�f )◦e0, weakly in �

�
as t ↘ 0.

� |D�f |2◦e0 d� = � ||��(∇�f )
||
2
◦e0 d�

(3.10)≤ lim
t↘0

�
||||
et − e0

t

||||

2

d� ≤ lim
t↘0 �

||||
et − e0

t

||||

2

d�

(3.7)≤ lim
t↘0 �

KE2
t

t2
d� = � |D�f |2◦e0 d�.

(4.11)T�(x) = cl
{
Ime0,�i

(D
�i
)(x)

||| i ∈ ℕ

}
, for �-a.e. x ∈ ℝ

n,

Ime0,�i
(D

�i
) ∶=

d(e0)∗(D�i
�i)

d(e0)∗�i

, for every i ∈ ℕ.

(4.12)T�(x) = cl
{
��(∇�fi)(x)

|| i ∈ ℕ
}
, for �-a.e. x ∈ ℝ

n.

Ime0,�i
(D

�i
) = Ime0,�i

(
��(∇�fi)◦e0

)
=

d(e0)∗
(
��(∇�fi)◦e0 �i

)

d�
=

d
(
��(∇�fi) �

)

d�

= ��(∇�fi).
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5.3  Tensorisation of the Cheeger energy on weighted Euclidean spaces

In the framework of Sobolev calculus on metric measure spaces, a surprisingly difficult 
problem is the following: given two metric measure spaces (X, �X ,�) and (Y , �Y , �) , is the 
Sobolev space on the product space (X × Y , �X×Y ,𝜇 ⊗ 𝜈) the tensorisation of W1,2(X,�) 
and W1,2(Y , �)?

The precise statement would read as follows: given any function f ∈ W1,2(X × Y ,𝜇 ⊗ 𝜈) , 
it holds for (𝜇 ⊗ 𝜈)-a.e. (x, y) ∈ X × Y  that f (y) ∈ W1,2(X,�) , f(x) ∈ W1,2(Y , �) , and

where we set f (y)(x) = f(x)(y) ∶= f (x, y) . (Here, Fubini theorem plays a role.)
A positive answer to the above question is known only in some particular circumstances. 

About the spaces having such tensorisation property, this is the current state of the art: 

(a) Ambrosio et al. [7] proved that ���(K,∞) spaces, for any given K ∈ ℝ , have the 
tensorisation property.

(b) Ambrosio et al. [8] proved the tensorisation property on doubling metric measure 
spaces supporting a weak (1, 2)-Poincaré inequality.

(c) Gigli and Han [26] showed that the Sobolev space tensorises as soon as one of the two 
factors is a closed real interval I ⊆ ℝ.

To the best of our knowledge, these are all the cases that have been studied so far. The aim 
of this section is to prove that weighted Euclidean spaces have the tensorisation property 
(cf. Theorem 4.21), and we do so by first showing that the fibres of the tangent distribution 
‘tensorise’ as well (cf. Proposition 4.19). Notice that the family of all weighted Euclidean 
spaces is not contained in any of the classes of spaces described in items a), b), and c) 
above.

5.3.1  Test plans on product spaces

Let (X, �X ,�) , (Y , �Y , �) be two given metric measure spaces. The Cartesian product X × Y  
will be implicitly endowed with the product distance

and the product measure 𝜇 ⊗ 𝜈 . We denote by pX ∶ X × Y → X and pY ∶ X × Y → Y  the 
canonical projection maps pX(x, y) ∶= x and pY (x, y) ∶= y . They induce the 1-Lipschitz 
maps

It can be readily checked that

|D𝜇⊗𝜈 f |2(x, y) = |D𝜇f
(y)|2(x) + |D𝜈 f(x)|2(y),

�X×Y
(
(x, y), (x�, y�)

)
∶=

√
�X(x, x

�)2 + �Y (y, y
�)2, for every (x, y), (x�, y�) ∈ X × Y ,

p
X ∶ C([0, 1],X × Y) ⟶ C([0, 1],X), p

X(�) ∶= pX◦� ,

p
Y ∶ C([0, 1],X × Y) ⟶ C([0, 1],Y), p

Y (�) ∶= pY◦� .

p
X
(
AC2([0, 1],X × Y)

)
⊆ AC2([0, 1],X),

p
Y
(
AC2([0, 1],X × Y)

)
⊆ AC2([0, 1],Y).
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Moreover, let us consider the joint mapping

It turns out that (pX , pY ) is a 
√
2-Lipschitz bijection whose inverse is 1-Lipschitz. Also,

More precisely, given any curve � = (�X , �Y ) ∈ AC2([0, 1],X × Y) , it holds that

For completeness, we report below the elementary proofs of the following two technical 
results:

Lemma 4.17 Let (X, �X ,�) , (Y , �Y , �) be metric measure spaces such that � , � are finite 
Borel measures. Let � be a given test plan on (X × Y , �X×Y ,𝜇 ⊗ 𝜈) . Then �X ∶= p

X
∗
� is a 

test plan on (X, �X ,�) and �Y ∶= p
Y
∗
� is a test plan on (Y , �Y , �) . Moreover, it holds that

Proof By symmetry, it suffices to prove the statement just for �X . Since � is concentrated 
on AC2([0, 1],X × Y) , we have that �X is concentrated on AC2([0, 1],X) . Moreover, for any 
curve � = (�X , �Y ) ∈ AC2([0, 1],X × Y) it holds |�̇�X

t
| ≤ |�̇�t| for L1-a.e. t ∈ [0, 1] , whence

Finally, for any Borel set A ⊆ X we have that

for all t ∈ [0, 1] . Hence, �X is a test plan on (X, �X ,�) and Comp(�X) ≤ Comp(�) �(Y) .  
 ◻

Lemma 4.18 Let (X, �X ,�) , (Y , �Y , �) be metric measure spaces. Let �X and �Y be test 
plans on (X, �X ,�) and (Y , �Y , �) , respectively. Then � ∶= (pX , pY )−1

∗
(�X ⊗ �Y ) is a test 

plan on (X × Y , �X×Y ,𝜇 ⊗ 𝜈) . Moreover, it holds that Comp(�) ≤ Comp(�X)Comp(�Y ).

Proof We know from (4.14) that � is concentrated on AC2([0, 1],X × Y) , while (4.15) 
yields

Moreover, given any non-negative Borel function f  on X × Y  , for every t ∈ [0, 1] it holds 
that

(4.13)
(pX , pY ) ∶ C([0, 1],X × Y) ⟶ C([0, 1],X) × C([0, 1],Y),

� ⟼
(
p
X(�), pY (�)

)
.

(4.14)(pX , pY )
(
AC2([0, 1],X × Y)

)
= AC2([0, 1],X) × AC2([0, 1],Y).

(4.15)|�̇�t|2 = |�̇�X
t
|2 + |�̇�Y

t
|2, for L1-a.e. t ∈ [0, 1].

Comp(�X) ≤ Comp(�) �(Y), Comp(�Y ) ≤ Comp(�)�(X).

� �
1

0

|�̇�X
t
|2 dt d�X(𝛾

X) = � �
1

0

|�̇�X
t
|2 dt d�(𝛾X , 𝛾Y ) ≤ � �

1

0

|�̇�t|2 dt d�(𝛾) < +∞.

(eX
t
)∗�X(A) = �X

(
(eX

t
)−1(A)

)
= �

(
(eX×Y

t
)−1(A × Y)

)
= (eX×Y

t
)∗�(A × Y)

≤ Comp(�) (𝜇 ⊗ 𝜈)(A × Y) = Comp(�) 𝜈(Y)𝜇(A),

∫ ∫
1

0

|�̇�t|2 dt d�(𝛾) = ∫ ∫
1

0

|�̇�X
t
|2 dt d�X(𝛾

X) + ∫ ∫
1

0

|�̇�Y
t
|2 dt d�Y (𝛾

Y ) < +∞.
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whence (eX×Y
t

)∗� ≤ Comp(�X)Comp(�Y )𝜇 ⊗ 𝜈 . This proves the statement.   ◻

5.3.2  Tensorisation of the tangent distribution

Let us denote by pn and pm the canonical projections of the product ℝn+m ≅ ℝn ×ℝm onto 
ℝn and ℝm , respectively, instead of pℝn and pℝm . Also, we define the embedding maps 
�n ∶ ℝn → ℝn+m and �m ∶ ℝm → ℝn+m as

Proposition 4.19 (Tangent distribution on the product space) Let � and � be finite Borel 
measures on ℝn and ℝm , respectively. Then, it holds that

Proof Let us define S(x, y) ∶= 𝜄n
(
T𝜇(x)

)
⊕ 𝜄m

(
T𝜈(y)

)
 for (𝜇 ⊗ 𝜈)-a.e. (x, y) ∈ ℝn+m . It is 

straightforward to check that S ∈ Dn+m(𝜇 ⊗ 𝜈) . To prove the statement amounts to show-
ing that T𝜇⊗𝜈 = S . First, let us prove that T𝜇⊗𝜈 ≤ S . In light of item (i) of Theorem 3.16, 
this is equivalent to saying that for any test plan � on (ℝn+m, �Eucl,𝜇 ⊗ 𝜈) it holds that

Call �n ∶= p
n
∗
� and �m ∶= p

m
∗
� . We know from Lemma 4.17 that �n and �m are test plans 

on (ℝn, �Eucl,�) and (ℝm, �Eucl, �) , respectively. Hence, item (i) of Theorem 3.16 gives

which can be equivalently restated as follows: for �-a.e. � = (�n, �m) ∈ AC2([0, 1],ℝn+m) it 
holds (�̇�n

t
, �̇�m

t
) ∈ T𝜇(𝛾

n
t
) × T𝜈(𝛾

m
t
) for L1-a.e. t ∈ [0, 1] . This proves (4.16), whence T𝜇⊗𝜈 ≤ S

.
In order to prove that S ≤ T𝜇⊗𝜈 , it is clearly sufficient to show that T𝜇(x) ⊆ pn

(
T𝜇⊗𝜈(x, y)

)
 

and T𝜈(y) ⊆ pm
(
T𝜇⊗𝜈(x, y)

)
 hold for (𝜇 ⊗ 𝜈)-a.e. (x, y) ∈ ℝn+m . Let us just prove the former 

inclusion, since the latter one can be obtained by an analogous argument. Trivially, we 
have that pn

(
T𝜇⊗𝜈(⋅, y)

)
∈ Dn(𝜇) for �-a.e. y ∈ ℝm . Now fix a test plan �n on (ℝn, �Eucl,�) . 

We then define the measure � on C([0, 1],ℝn+m) as

� f d(eX×Y
t

)∗� = � f (𝛾t) d�(𝛾) = � � f (𝛾X
t
, 𝛾Y

t
) d�X(𝛾

X) d�Y (𝛾
Y )

= � � f (x, y) d(eX
t
)∗�X(x) d(e

Y
t
)∗�Y (y)

≤ Comp(�X)Comp(�Y )� � f (x, y) d𝜇(x) d𝜈(y)

= Comp(�X)Comp(�Y )� f d(𝜇 ⊗ 𝜈),

�n(v) ∶= (v, 0) ∈ ℝ
n ×ℝ

m, for every v ∈ ℝ
n,

�m(w) ∶= (0,w) ∈ ℝ
n ×ℝ

m, for every w ∈ ℝ
m.

T𝜇⊗𝜈(x, y) = 𝜄n
(
T𝜇(x)

)
⊕ 𝜄m

(
T𝜈(y)

)
, for (𝜇 ⊗ 𝜈)-a.e. (x, y) ∈ ℝ

n+m.

(4.16)�̇�t ∈ S(𝛾t), for (� ⊗ L1)-a.e. (𝛾 , t) ∈ AC2([0, 1],ℝn+m) × [0, 1].

�̇�n
t
∈ T𝜇(𝛾

n
t
), for (�n ⊗ L1)-a.e. (𝛾

n, t) ∈ AC2([0, 1],ℝn) × [0, 1],

�̇�m
t
∈ T𝜈(𝛾

m
t
), for (�m ⊗ L1)-a.e. (𝛾

m, t) ∈ AC2([0, 1],ℝm) × [0, 1],
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where the map Constm ∶= Constℝ
m is defined as in Example  2.2. Lemma  4.18 grants 

that � is a test plan on (ℝn+m, �Eucl,𝜇 ⊗ 𝜈) , thus item (i) of Theorem  3.16 ensures that 
�̇�t ∈ T𝜇⊗𝜈(𝛾t) is satisfied for (� ⊗ L1)-a.e. (� , t) ∈ AC2([0, 1],ℝn+m) × [0, 1] . This can be 
rewritten as

Therefore, by arbitrariness of �n we can finally conclude that T𝜇(x) ⊆ pn
(
T𝜇⊗𝜈(x, y)

)
 holds 

for (𝜇 ⊗ 𝜈)-a.e. (x, y) ∈ ℝn+m , whence the proof of the statement is complete.   ◻

Remark 4.20 Proposition 4.19 is claimed in [9, Remark 2.2(iv)]. Therein, the tangent dis-
tribution is defined in terms of the distributional divergence, an approach that is equivalent 
to ours in view of item (ii) of Theorem 3.16.   ◻

5.3.3  Tensorisation of the Sobolev space

We are in a position—by exploiting Propositions  3.19 and  4.19—to prove that weighted 
Euclidean spaces have the tensorisation property.

Given a Borel function f ∶ ℝn+m → ℝ , we define f (y) ∶ ℝn → ℝ and f(x) ∶ ℝm → ℝ as

Observe that f (y) and f(x) are Borel functions as well. Also, thanks to Fubini theorem, for 
every f ∈ L2(𝜇 ⊗ 𝜈) we have f (y) ∈ L2(�) for �-a.e. y ∈ ℝm and f(x) ∈ L2(�) for �-a.e. 
x ∈ ℝn.

Theorem 4.21 (Tensorisation of the Sobolev space on weighted ℝn ) Let � and � be finite 
Borel measures on ℝn and ℝm , respectively. Let f ∈ W1,2(ℝn+m,𝜇 ⊗ 𝜈) be given. Then

Moreover, it holds that

Proof First of all, we know from Proposition 3.19 that G𝜇⊗𝜈(f ) ≠ � and 𝜄𝜇⊗𝜈(∇𝜇⊗𝜈 f ) is the 
minimal G𝜇⊗𝜈-gradient of f  . We can choose a sequence (fi)i ⊆ C∞

c
(ℝn+m) such that fi → f  

in L2(𝜇 ⊗ 𝜈) and ∇fi → 𝜄𝜇⊗𝜈(∇𝜇⊗𝜈 f ) in L2(ℝn+m,ℝn+m;𝜇 ⊗ 𝜈) . Notice that (fi)(y) ∈ C∞
c
(ℝn) 

and (fi)(x) ∈ C∞
c
(ℝm) for every i ∈ ℕ and (x, y) ∈ ℝn+m . Proposition 4.19 grants that

for (𝜇 ⊗ 𝜈)-a.e. (x, y) ∈ ℝn+m . Recalling Proposition 3.19, we deduce from (4.19) that

� ∶= (pn, pm)−1
∗
(�n ⊗ Constm

∗
𝜈),

(�̇�n
t
, 0) ∈ T𝜇⊗𝜈(𝛾

n
t
, y), for (�n ⊗ 𝜈 ⊗ L1)-a.e. (𝛾

n, y, t) ∈ AC2([0, 1],ℝn) ×ℝ
m × [0, 1].

f (y)(x) = f(x)(y) ∶= f (x, y), for every (x, y) ∈ ℝ
n+m.

(4.17)
f (y) ∈ W1,2(ℝn,�), for �-a.e. y ∈ ℝ

m,

f(x) ∈ W1,2(ℝm, �), for �-a.e. x ∈ ℝ
n.

(4.18)
|D𝜇⊗𝜈 f |2(x, y) = |D𝜇f

(y)|2(x) + |D𝜈 f(x)|2(y), for (𝜇 ⊗ 𝜈)-a.e. (x, y) ∈ ℝ
n+m.

(4.19)prT𝜇⊗𝜈
(∇fi)(x, y) =

(
prT𝜇

(
∇(fi)

(y)
)
(x), prT𝜈

(
∇(fi)(x)

)
(y)

)
,

(4.20)
|D𝜇⊗𝜈 fi|2(x, y) = ||D𝜇(fi)

(y)||
2
(x) + ||D𝜈(fi)(x)

||
2
(y), for (𝜇 ⊗ 𝜈)-a.e. (x, y) ∈ ℝ

n+m.
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Thanks to Fubini theorem, we have (up to a not relabelled subsequence) that

Call v ∶= 𝜄𝜇⊗𝜈(∇𝜇⊗𝜈 f ) ∈ Γ(T𝜇⊗𝜈) . We have that prT𝜇⊗𝜈
(∇fi) → v in L2(ℝn+m,ℝn+m;𝜇 ⊗ 𝜈) , 

so that (up to passing to a further subsequence) it holds that

thus in particular

Set v(y)(x) ∶= pn
(
v(x, y)

)
∈ T�(x) and v

(x)
(y) ∶= pm

(
v(x, y)

)
∈ T�(y) for (𝜇 ⊗ 𝜈)-a.e. (x, y) . 

Therefore, for (𝜇 ⊗ 𝜈)-a.e. (x, y) ∈ ℝn+m it holds that

This implies v(y) ∈ ��
(
L2
�
(Tℝn)

)
 and v

(x)
∈ ��

(
L2
�
(Tℝm)

)
 for (𝜇 ⊗ 𝜈)-a.e. (x, y) ∈ ℝn+m , and

Moreover, it follows from (4.19) and (4.22) that for (𝜇 ⊗ 𝜈)-a.e. (x, y) ∈ ℝn+m it holds that

By applying Proposition 2.11, we deduce from (4.21) and (4.24) that (4.17) is satisfied, that 
∇�f

(y) = v(y) for �-a.e. y ∈ ℝm , and that ∇� f(x) = v(x) for �-a.e. x ∈ ℝn . Consequently, by let-
ting i → ∞ in (4.20) and using (4.23) and (4.25), wefinally conclude that (4.18) holds.  
 ◻

Remark 4.22 Proposition 4.19 and Theorem 4.21 are verified even when � and � are (not 
necessarily finite) Radon measures, by taking into account [23, Proposition 2.6], which 
says that the Sobolev space can be ‘localised’ in a suitable sense. We omit the details.  
 ◻
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(4.21)
(fi)

(y)
⟶ f (y), strongly in L2(�) for �-a.e. y ∈ ℝ

m,

(fi)(x) ⟶ f(x), strongly in L2(�) for �-a.e. x ∈ ℝ
n.

(4.22)prT𝜇⊗𝜈
(∇fi)(x, y) ⟶ v(x, y), for (𝜇 ⊗ 𝜈)-a.e. (x, y) ∈ ℝ

n+m,

(4.23)|D𝜇⊗𝜈 fi|
(2.15)
= ||prT𝜇⊗𝜈

(∇fi)
|| ⟶ |v| = |D𝜇⊗𝜈 f |, in the (𝜇 ⊗ 𝜈)-a.e. sense.

��
(
∇�(fi)

(y)
) (2.15)

= prT�

(
∇(fi)

(y)
)
⟶ v(y), strongly in L2(ℝn,ℝn;�),

��
(
∇�(fi)(x)

) (2.15)
= prT�

(
∇(fi)(x)

)
⟶ v

(x)
, strongly in L2(ℝm,ℝm;�).

(4.24)
∇�(fi)

(y)
⟶ �−1

�
(v(y)) =∶ v(y), strongly in L2

�
(Tℝn),

∇�(fi)(x) ⟶ �−1
�
(v

(x)
) =∶ v(x), strongly in L2

�
(Tℝm).

(4.25)
||D�(fi)

(y)||
(2.15)
= ||prT�

(
∇(fi)

(y)
)|| ⟶ |v(y)| = |v(y)|, in the �-a.e. sense,

||D�(fi)(x)
||
(2.15)
= ||prT�

(
∇(fi)(x)

)|| ⟶ |v
(x)
| = |v(x)|, in the �-a.e. sense.
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