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Abstract
Given a smooth projective variety, a Chow–Künneth decomposition is called multiplicative 
if it is compatible with the intersection product. Following works of Beauville and Voisin, 
Shen and Vial conjectured that hyper-Kähler varieties admit a multiplicative Chow–Kün-
neth decomposition. In this paper, based on the mysterious link between Fano varieties 
with cohomology of K3 type and hyper-Kähler varieties, we ask whether Fano varieties 
with cohomology of K3 type also admit a multiplicative Chow–Künneth decomposition, 
and provide evidence by establishing their existence for cubic fourfolds and Küchle four-
folds of type c7. The main input in the cubic hypersurface case is the Franchetta property 
for the square of the Fano variety of lines; this was established in our earlier work in the 
fourfold case and is generalized here to arbitrary dimension. On the other end of the spec-
trum, we also give evidence that varieties with ample canonical class and with cohomology 
of K3 type might admit a multiplicative Chow–Künneth decomposition, by establishing 
this for two families of Todorov surfaces.
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1 Introduction

1.1  Multiplicative Chow–Künneth decompositions

Let X be a smooth projective variety over a field k. A multiplicative Chow–Künneth decom-
position—abbreviated MCK decomposition—for X is a decomposition of the Chow motive 
of X, considered as an algebra object, that lifts the Künneth decomposition of its homo-
logical motive (when it exists). This notion was first introduced in [61] as a way to make 
explicitly verifiable the splitting principle for hyper-Kähler varieties due to Beauville [3]. 
Having a multiplicative Chow–Künneth decomposition is a restrictive condition on the 
variety X and determining the class of varieties that could admit an MCK decomposition 
is still elusive. A precise definition of MCK decomposition is given in Sect. 2 and exam-
ples of varieties admitting or not admitting MCK decompositions are reviewed. Nonethe-
less, Beauville’s splitting principle suggests that the situation for hyper-Kähler varieties is 
special.

Conjecture 1.1 [61] Any hyper-Kähler variety admits a multiplicative Chow–Künneth 
decomposition.

In fact, it could be moreover expected that, if it exists, such an MCK decomposition 
is unique for hyper-Kähler varieties. So far, Conjecture  1.1 has been established in the 
hyper-Kähler world for K3 surfaces [5] (reinterpreted by [61, Prop. 8.14]), Hilbert schemes 
of points on K3 surfaces [70] (see also [49]), generalized Kummer varieties [20] and all 
hyper-Kähler varieties birationally equivalent to these examples by [56].

1.2  Fano varieties of cohomological K3 type

A smooth projective complex variety is said to be of cohomological K3 type, or more suc-
cinctly of K3 type, if it is even-dimensional, say dimX = 2m , and the Hodge numbers 
hp,q(X) are 0 for all p ≠ q except for hm−1,m+1(X) = hm+1,m−1(X) = 1 . Since the founda-
tional work of Beauville–Donagi [2], it has become clear that hyper-Kähler varieties are 
intimately related to Fano varieties of cohomological K3 type. The folklore expectation 
seems to be that to any Fano variety of K3 type can be associated geometrically (via a 
moduli construction) a hyper-Kähler variety, and that the transcendental part of the mid-
dle cohomology of the Fano variety corresponds to the transcendental part of the second 
cohomology of the hyper-Kähler variety (via an Abel–Jacobi isomorphism). Apart from 
the example of Beauville–Donagi [2], this “folklore expectation” is based on the examples 
[11, 14, 24–26, 43, 44, 50]. It is further motivated by the construction of a closed holomor-
phic 2-form on the non-singular locus of moduli spaces associated with any Fano variety of 
cohomological K3 type [34].

In this paper, we give further evidence that the conjectural existence of an MCK decom-
position for hyper-Kähler varieties could transfer to Fano varieties of K3 type, and there-
fore strengthen the apparent connection between those two types of varieties. This question 
was already tackled for certain Fano varieties of K3 type in [38–41], where the so-called 
Franchetta property (cf. Definition 5.1) plays a crucial role. In our previous work [16], we 
established the Franchetta property for the Fano variety of lines on a cubic fourfold and its 
square. Here, we provide a generalization to smooth cubic hypersurfaces of any dimension:
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Theorem  1.2 (See Theorem  5.2) Let B be the open subset of ℙH0(ℙn+1,O(3)) param-
eterizing smooth cubic hypersurfaces, and let F → B be the universal family of their Fano 
varieties of lines. Then the families F → B and F ×B F → B have the Franchetta property: 
For all fibers F of F → B, the images of the restriction maps

inject, via the cycle class map, in the cohomology rings H∗(F,ℚ) and H∗(F × F,ℚ), 
respectively.

As a consequence, we deduce the following, which can also be obtained from previous 
results of Diaz [13]:

Corollary 1.3 [13] All smooth cubic hypersurfaces have a multiplicative Chow–Künneth 
decomposition.

In particular, this applies to smooth cubic fourfolds, which are the Fano fourfolds that 
occur in the foundational work of Beauville–Donagi [2]. Corollary 1.3 is stated in a more 
precise form in Theorem 5.4 and is proved in Sect. 5.6, where we also explain the connec-
tion with the work of Diaz.

Finally, we obtain in Theorem  6.2 yet another positive answer for another type of 
Fano varieties of K3 type, namely Küchle fourfolds of type c7. The method of proof also 
involves the Franchetta property.

1.3  Varieties with ample canonical class and of cohomological K3 type

On the other end of the spectrum, we also provide examples of varieties of K3 type with 
ample canonical class that admit an MCK decomposition:

Theorem 1.4 Let S be a smooth Todorov surface with fundamental invariants (0, 9) or (1, 
10). Then S has a multiplicative Chow–Künneth decomposition.

The proof again involves, among other things, establishing the Franchetta property for 
some families. Theorem  1.4 gives the first example of a regular surface of general type 
with pg ≠ 0 that admits an MCK decomposition. For details on Todorov surfaces, we refer 
to Sect. 7.2 and to the references therein.

We are led to ask:

Question 1.5 Let X be a smooth projective variety whose canonical divisor is ample 
or anti-ample. Assume that X is of cohomological K3 type. Does X have a multiplicative 
Chow–Künneth decomposition ?  If it exists, is it unique ?

We note that without the assumption that X be of cohomological K3 type, the question 
has a negative answer. In the case where the canonical divisor is ample, a very general 
curve of genus larger than 2 already provides an example that does not admit an MCK 
decomposition; see Example 3.3. Other examples are provided by very general surfaces in 
ℙ3 of degree ≥ 7 ; see Proposition 4.4. In the case where the canonical divisor is anti-ample, 

CH∗(F) → CH∗(F) and CH∗(F ×B F) → CH∗(F × F)
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examples are provided by Beauville’s examples of Fano threefolds that do not satisfy the 
so-called weak splitting property; see Example 2.11.

1.4  Organization of the paper

We start in Sect. 2 by reviewing the notion of MCK decomposition and examples of varie-
ties for which such an MCK decomposition exists. The case of curves and regular surfaces 
is then extensively reviewed in Sects. 3 and 4, respectively. The results of Sects. 2, 3 and 4 
are mostly expository and serve as motivation for the special role that hyper-Kähler varie-
ties and varieties of K3 type with ample or anti-ample canonical class play with respect to 
MCK decompositions. Our new results are contained in the subsequent Sects. 5, 6 and 7 
where we establish the existence of an MCK decomposition for smooth cubic hypersur-
faces, Küchle fourfolds of type c7 and certain Todorov surfaces, respectively.

1.5  Future work

In concomitant work, we use Corollary  1.3 on the existence of an MCK decomposition 
for smooth cubic fourfolds to establish in [17] the generalized Franchetta conjecture for 
Lehn–Lehn–Sorger–van Straten hyper-Kähler eightfolds and to study in [19] the Chow 
motives, as algebra objects, of smooth cubic fourfolds with Fourier–Mukai equivalent 
Kuznetsov categories. Furthermore, we will use Theorem 1.2 in [17] to compute the Chow 
motive of the Fano variety of lines on a smooth cubic hypersurface in terms of the Chow 
motive of the cubic hypersurface.

1.6  Notation and conventions

In this note, the word variety will refer to a reduced irreducible separated scheme of 
finite type over ℂ . We will write Hj(X) to indicate its rational singular cohomology group 
Hj(X(ℂ),ℚ) . For a scheme of finite type over a field, CHi(X) denotes the Chow group of 
codimension i cycle classes on X with rational coefficients. The category of rational Chow 
motives (pure motives with respect to rational equivalence as in [1]) is denoted by Mrat , 
which is a pseudo-abelian rigid tensor category, whose tensor unit is denoted by � . The 
contravariant functor from the category of smooth projective varieties to Mrat that sends a 
variety to its Chow motive is denoted by �.

2  Generalities on multiplicative Chow–Künneth decompositions

2.1  Chow–Künneth decomposition

Definition 2.1 (Chow–Künneth decomposition) Let X be a smooth projective variety of 
dimension d. A Chow–Künneth decomposition for X is a direct-sum decomposition

of its rational Chow motive in Mrat , such that for any 0 ≤ i ≤ 2d , the Betti realization 
H∗(�i(X)) = Hi(X).

�(X) = �0(X)⊕⋯⊕ �2d(X)
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In other words, a Chow–Künneth decomposition is a system of self-correspondences {
�0,… ,�2d

}
 in CHd(X × X) satisfying the following properties:

• (Projectors) �i◦�i = �i for any i;
• (Orthogonality) �i◦�j = 0 for any i ≠ j;
• (Completeness) �0 +⋯ + �2d = ΔX;
• (Künneth property) �i

∗
H∗(X) = Hi(X) for any i.

The existence of a Chow–Künneth decomposition for any smooth projective variety is part 
of Murre’s conjectures [48].

Remark 2.2 (�0 and �2d ) In a Chow–Künneth decomposition of a d-dimensional irreduc-
ible smooth projective variety X, the first and the last projectors are usually taken to be of 
the form �0 = z × 1X and �2d = 1X × z�, respectively, where z, z′ are 0-cycles of degree 1 
and 1X is the fundamental class. We point out that if X is Kimura finite-dimensional [29], 
we have �0(X) ≃ � and �2d(X) ≃ �(−d) ; therefore, �0 and �2d must be of the above form.

Remark 2.3 (Duality) Thanks to the motivic Poincaré duality �(X) = �(X)∨(−d) , we see 
that a Chow–Künneth decomposition

naturally admits a dual decomposition:

In terms of projectors, the dual of a system 
{
�0,… ,�2d

}
 is 

{
t�2d,… , t�0

}
 . A Chow–Kün-

neth decomposition is called self-dual if for any 0 ≤ i ≤ 2d , we have �i(X)∨ = �2d−i(X)(d) , 
or equivalently, �i = t�2d−i.

2.2  Murre’s conjectures and the Bloch–Beilinson filtration

Conjecture 2.4 [48] Let X be a smooth projective variety of dimension d. Then 

(A) there exists a Chow–Künneth decomposition 
{
�0,… ,�2d

}
 . Any such decomposition 

induces a descending filtration 

 with the following properties:
(B) F0CHi(X) = CHi(X) and (B’) Fi+1CHi(X) = 0.
(C) The filtration F∙ on CHi(X) is independent of the choice of the Chow–Künneth decom-

position.
(D) F1CHi(X) = CHi(X)hom.

We note that Murre’s conjecture for all smooth projective varieties is equivalent to 
the existence of the Bloch–Beilinson filtration; see [28] for a precise statement. In 

�(X) = �0(X)⊕⋯⊕ �2d(X),

�(X) = �2d(X)∨(−d)⊕⋯⊕ �0(X)∨(−d).

FjCHi(X) ∶=
⋂

k>2i−j

ker(𝜋k
∗
∶ CHi(X) → CHi(X)) =

∑
k≤2i−j

im(𝜋k
∗
∶ CHi(X) → CHi(X))
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particular, any Chow–Künneth decomposition induces a splitting of the conjectural 
Bloch–Beilinson filtration. As will be explained in Remark 2.8, the following notion of 
multiplicative Chow–Künneth decomposition gives a sufficient condition for the above 
splitting to be compatible with intersection product.

2.3  Multiplicative Chow–Künneth decomposition

Recall that if X is a d-dimensional irreducible smooth scheme of finite type over a 
field, intersection product defines a (graded) ring structure on CH∗(X) =

⨁
i CH

i(X) ; 
moreover, if X is in addition proper, the intersection product is controlled by the 
class of the small diagonal �X ∶= {(x, x, x) ∈ X3} in CH2d(X × X × X) in the sense that 
(�X)∗(� × �) = � ⋅ � for all � and � ∈ CH∗(X) , where �X is viewed as a correspondence 
from X × X to X, or equivalently as a morphism �(X × X) → �(X) . Together with the 
canonical isomorphism �(X × X) ≃ �(X)⊗ �(X) , the small diagonal �X endows the Chow 
motive �(X) with the structure of a unital commutative algebra object. (The unit is the 
fundamental class of X, seen as a morphism � → �(X) .) We write

for the multiplication thus defined.

Definition 2.5 (Multiplicative Chow–Künneth (MCK) decomposition, Shen–Vial [61]) 
Let X be a smooth projective variety of dimension d. A Chow–Künneth decomposition

is called multiplicative, if for any 0 ≤ i, j ≤ 2d , the restriction of the multiplication 
𝜇 ∶ �(X)⊗ �(X) → �(X) to the direct summand �i(X)⊗ �j(X) factors through the direct 
summand �i+j(X).

Note that a Chow–Künneth decomposition is always multiplicative modulo homo-
logical equivalence; the key point is to require this property modulo rational equiva-
lence. In practice, it is useful to express the above notion in terms of projectors and 
correspondences.

Lemma 2.6 Let X be a smooth projective variety of dimension d. Let {�0,… ,�2d} be the 
system of projectors corresponding to a Chow–Künneth decomposition of X (see Defini-
tion 2.1). Then the following conditions are equivalent: 

 (i) The Chow–Künneth decomposition is multiplicative.
 (ii) For any i, j, k such that i + j ≠ k, we have 𝜋k◦𝛿X◦(𝜋

i ⊗ 𝜋j) = 0.
 (iii) For any i, j, we have 𝜋i+j◦𝛿X◦(𝜋

i ⊗ 𝜋j) = 𝛿X◦(𝜋
i ⊗ 𝜋j).

 (iv) 𝛿X =
∑

i,j 𝜋
i+j◦𝛿X◦(𝜋

i ⊗ 𝜋j).

Here, �X denotes the small diagonal of X3, viewed as a correspondence from X × X to X.
Proof Noting that � is induced by �X by definition, the equivalence between (i) and (ii) 
becomes tautological.

(ii) ⟹ (iv) : by the completeness of the system 
∑

i �
i = ΔX , we see that

𝜇 ∶ �(X)⊗ �(X) → �(X)

�(X) = �0(X)⊕⋯⊕ �2d(X)
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(iv) ⟹ (iii) : it is enough to post-compose both sides of (iv) with 𝜋i ⊗ 𝜋j and use the 
orthogonality between the projectors.

(iii) ⟹ (ii) : it suffices to pre-compose both sides of (iii) with �k and use the orthogo-
nality between the projectors.   ◻

It turns out that an MCK decomposition is automatically self-dual (Remark 2.3):

Proposition 2.7 (Multiplicativity implies self-duality [18, §6 Footnote 24]).  Let 
{�0,… ,�2d} be a multiplicative Chow–Künneth decomposition for a smooth projective 
variety X of dimension d. Then it is self-dual, that is, �i = t�2d−i for all i.

Proof Projecting both sides of (iv) in Lemma 2.6 to the first two factors (or equivalently, pre-com-
posing with the canonical morphism � ∶ �(X) → �(−d) given by the fundamental class), one finds

As �◦�k ∶ �(X) → �(−d) is  a rational multiple of the fundamental class for all k, we get 
that for any i + j ≠ 2d , �◦�i+j = 0 and �◦�2d = � . Therefore, the equality simplifies to

Now noting that �◦�X is the diagonal class ΔX ∈ CHd(X × X) , we obtain

In other words, id =
∑

i
t�2d−i◦�i . This allows us to conclude by composing with �i and t�2d−i:

  ◻

Remark 2.8 (Multiplicative bigrading) A multiplicative Chow–Künneth decomposition 
�(X) = �0(X)⊕⋯⊕ �2d(X) naturally gives rise to a multiplicative bigrading on the Chow 
ring CH∗(X) =

⨁
i,s CH

i(X)(s) with

Here, the multiplicativity means that

𝛿X =
∑
i,j,k

𝜋k
◦𝛿X◦(𝜋

i ⊗ 𝜋j)

=
∑
k=i+j

𝜋k
◦𝛿X◦(𝜋

i ⊗ 𝜋j) +
∑
k≠i+j

𝜋k
◦𝛿X◦(𝜋

i ⊗ 𝜋j)

=
∑
i,j

𝜋i+j
◦𝛿X◦(𝜋

i ⊗ 𝜋j).

𝜖◦𝛿X =
∑
i,j

𝜖◦𝜋i+j
◦𝛿X◦(𝜋

i ⊗ 𝜋j).

𝜖◦𝛿X =
∑
i

𝜖◦𝛿X◦(𝜋
2d−i ⊗ 𝜋i).

ΔX =
∑
i

(t𝜋2d−i ⊗ 𝜋i)∗(ΔX).

�i =

(∑
j

t�2d−j
◦�j

)
◦�i = t�2d−i

◦�i = t�2d−i
◦

(∑
j

t�2d−j
◦�j

)
= t�2d−i.

CHi(X)(s) ∶= CHi
(
�2i−s(X)

)
∶= Hom

(
�(−i), �

2i−s(X)
)
.
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which clearly follows from the multiplicativity of the Chow–Künneth decomposi-
tion. However, we note that actually any Chow–Künneth decomposition induces 
a splitting of the Chow groups of X and the property that it is a ring grading, i.e., that 
CHi(X)(s) ⋅ CH

i� (X)(s�) ⊆ CHi+i� (X)(s+s�) is strictly weaker than having a MCK decomposi-
tion; a very general curve of genus ≥ 2 does not admit an MCK decomposition (Exam-
ple 3.3), but any splitting of its Chow groups induced by a Chow–Künneth decomposition 
is compatible with the intersection product. The new grading is chosen so that, via Murre’s 
conjecture 2.4 (C),

In other words, a multiplicative Chow–Künneth decomposition should induce a multiplica-
tive splitting of the (conjectural) Bloch–Beilinson filtration on Chow groups.

We call the indexation by s the grade of a cycle. For example, by Murre’s conjecture 2.4 
(B) and (D), all cycles of negative grade are expected to be zero and the subspace con-
sisting of cycles of grade zero, CH∗(X)(0) , is expected to inject into the cohomology of X 
via the cycle class map. In particular, the subalgebra of CH∗(X) generated by CH1(X)(0) is 
expected to inject into cohomology; this is Beauville’s so-called weak splitting property 
[3].

2.4  Which varieties admit a multiplicative Chow–Künneth decomposition?

Although a Chow–Künneth decomposition is conjectured to exist for all smooth projective 
varieties, there exist examples of varieties (in fact, examples of curves; see, e.g., Exam-
ple 3.3) that do not admit any MCK decomposition. Nonetheless, as shown by Shen–Vial 
[60], the notion of multiplicative Chow–Künneth decomposition is robust enough to allow 
many standard procedures to produce new examples out of old ones.

Proposition 2.9 [60] Let X and Y be smooth projective varieties admitting MCK decom-
positions {�i

X
} and {�i

Y
}, respectively.

• (Product) The product X × Y  has a naturally induced MCK decomposition: for all k, 
𝜋k
X×Y

∶=
∑k

i=0
𝜋i
X
⊗ 𝜋k−i

Y
.

• (Projective bundle) If E is a vector bundle on X whose Chern classes are all of grade 0. 
then ℙ(E) has a natural MCK decomposition.

• (Blow-up) Suppose that Y is a subvariety of X and that, as an element in CH(X × Y) , 
the graph of the embedding is of grade 0 for the natural product MCK decomposition. 
Assume further that the Chern classes of the normal bundle are of grade 0 and the 
Chern classes of the tangent bundle of X are of grade 0. Then the blow-up of X along Y 
admits a natural MCK decomposition.

• (Quotient) If a finite group G acts on X such that the graphs of the automorphisms (as 
elements in CH(X × X)) are of grade 0, then the quotient X/G admits a natural MCK 
decomposition.

(1)CHi(X)(s) ⋅ CH
i� (X)(s�) ⊆ CHi+i� (X)(s+s�),

CHi(X)(s) = Grs
F
CHi(X).
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• (Hilbert scheme) Assume that the Chern classes of X are of grade 0. Then the Hilbert 
schemes of length-2 and length-3 subschemes of X admit an MCK.

Consequently, we may ask the following general, but vague, question:

Question 2.10 Which smooth projective varieties constitute the “building blocks” of 
varieties admitting an MCK decomposition ? For which of those can we expect an MCK 
decomposition to be unique ?

Note that, since homological equivalence and rational equivalence agree on powers 
of a variety whose motive is of Lefschetz type (for example, toric varieties, homogene-
ous varieties), such a variety admits a unique Chow–Künneth decomposition and this 
decomposition is multiplicative.

The original and main motivation for studying MCK decompositions comes from the 
study of Chow rings of varieties with trivial canonical bundle. A canonical multiplica-
tive Chow–Künneth decomposition exists in the following cases: abelian varieties [4, 
12, 31], K3 surfaces [5] (interpreted by [61, Proposition 8.4]) and some (conjecturally, 
all) hyper-Kähler varieties [16, 20, 61, 70]. The case of Calabi–Yau varieties is not so 
clear: there are examples of Calabi–Yau varieties due to Beauville [3, Example 2.1.5(b)] 
that do not admit a Chow–Künneth decomposition inducing a grading satisfying  (1), 
while examples of Calabi–Yau varieties with a MCK decomposition exist in all dimen-
sions [42]. Concerning the uniqueness of an MCK decomposition, we will show that 
this is the case for curves and for regular surfaces with finite-dimensional motive in 
the sense of Kimura. It is expected [18, 61] that for hyper-Kähler varieties, if an MCK 
decomposition exists, then it is unique. Note, however, that an MCK decomposition is 
not unique for abelian varieties; translating the canonical Chow–Künneth decomposi-
tion (which is multiplicative) of an abelian variety along a point that is not rationally 
equivalent to the origin provides a new MCK decomposition.

Concerning the existence of an MCK decomposition in general, the answer is for 
the time being not clear in general. The main purpose of the paper is, beyond review-
ing known examples of varieties admitting or not admitting an MCK decomposition, to 
explore whether varieties with ample or anti-ample canonical class can be added to the 
list of varieties admitting such a decomposition.

In the case of Fano varieties, there are examples of varieties (with motive not of 
Lefschetz type) that admit an MCK decomposition. By [18, Proposition 5.7], all Fer-
mat cubic hypersurfaces admit an MCK decomposition. It is in fact conjectured in [18, 
Conjecture 5.8] that all Fano or Calabi–Yau Fermat hypersurfaces admit MCK decom-
positions. Other examples have been exhibited in [38–41], and Corollary 1.3 shows that 
cubic fourfolds can be added to the list. On the other hand, there are also examples of 
Fano varieties that do not admit an MCK decomposition:

Example 2.11 (Fano varieties may fail to have an MCK decomposition) In [3, Exam-
ple 2.1.5(a)], Beauville constructed, by blowing up ℙ3 along certain smooth curves, exam-
ples of Fano threefolds such that the subalgebra generated by divisors does not inject in 
cohomology. Such Fano threefolds cannot have an MCK decomposition. Indeed, by [68, 
§4.2.2], any Chow–Künneth decomposition of the blow-up X of a curve inside ℙ3 will be 
such that CH1(X) = CH1(X)(0) and such that CH∗(X)(0) ↪ H∗(X) is injective. In particu-
lar, for any choice of Chow–Künneth decomposition, X fails to satisfy Beauville’s weak 
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splitting property, and hence, by Remark 2.8 any choice of Chow–Künneth decomposition 
for X fails to be multiplicative.

In the case of varieties with ample canonical bundle, we will review below that a very 
general curve of genus > 2 (Example 3.3) does not admit an MCK decomposition. Moreo-
ver, Proposition 4.4 suggests that a general surface in ℙ3 of degree ≥ 7 also does not admit 
an MCK decomposition. There are, however, examples of varieties with ample canonical 
bundle (and with motive not of Lefschetz type) that admit an MCK decomposition: This 
is the case, for example, for any product of hyperelliptic curves of genus > 1 by combining 
Example  3.2 with Proposition  2.9. Our Theorem  1.4 provides further examples, namely 
Todorov surfaces of type (0, 9) or (1, 10), that are not (birational to) products of curves.

It turns out that the Todorov surfaces we study are intimately linked to K3 surfaces. 
Likewise the Fano examples of [38–41], as well as the cubic fourfolds of Corollary 1.3, 
have cohomology of K3 type: these are Fano fourfolds with Hodge numbers hp,q = 0 for 
all p ≠ q except for h3,1(X) = h1,3(X) = 1 . In the light of these examples, but also based (in 
the Fano case) on the folklore expectation that to any Fano variety of K3 type can be asso-
ciated geometrically (via a moduli construction) a hyper-Kähler variety, we ask whether 
every smooth projective variety with ample or anti-ample canonical bundle, and with coho-
mology of K3 type, admits a (unique) multiplicative Chow–Künneth decomposition; cf. 
Question 1.5.

3  Curves

3.1  Multiplicative Chow–Künneth decomposition for curves

As mentioned before, the projective line (a special case of homogeneous varieties) 
and elliptic curves (special cases of abelian varieties) admit canonical multiplicative 
Chow–Künneth decompositions. Let C be a smooth projective curve of genus g ≥ 2 . 
As it is Kimura finite-dimensional, by Remark  2.2 and Proposition 2.7, a multiplicative 
Chow–Künneth decomposition for C must take the following form:

where z is a 0-cycle of degree 1 and 1C is the fundamental class. Given such a 0-cycle 
z, there is the natural embedding � ∶ C → J(C) , which sends a point p ∈ C to OC(p − z) . 
Denote [C] ∶= �∗(1C) ∈ CH1(J(C)).

Proposition 3.1 (MCK decomposition for curves) Notation is as above (g ≥ 2). Let z be 
a 0-cycle of degree 1 on C. Then the following conditions are equivalent: 

 (i) the Chow–Künneth decomposition (2) determined by z is multiplicative;
 (ii) the modified small diagonal Γ3(C, z) = 0 in CH2(C3), where 

 (iii) the class [C] belongs to CH1(J(C))(0).

(2)�0 = z × 1C,�
1 = ΔC − z × 1C − 1C × z,�2 = 1C × z,

Γ3(C, z) ∶= �C − p∗
12
(ΔC)p

∗
3
(z) − p∗

23
(ΔC)p

∗
1
(z)

− p∗
13
(ΔC)p

∗
2
(z) + p∗

1
(z)p∗

2
(z) + p∗

1
(z)p∗

3
(z) + p∗

2
(z)p∗

3
(z);
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 In particular, if it exists, an MCK decomposition for C is unique, given by z = 1

2g−2
KC.

Proof The equivalence between (i) and (ii) follows from a direct computation using 
Lemma 2.6 (see [61, Proposition 8.14]).

(ii) ⟹ (iii) is proved in [18, Proposition 7.1] using an idea from [5, Proposition 3.2]. 
Let f ∶ C3 → J(C) be the composition of the embedding �3 ∶ C3 → J(C)3 followed by the 
summation on J(C). We have

Using the Beauville decomposition [4] of CH1(J(C)) , we see that [C] belongs to 
CH1(J(C))(0).

(iii) ⟹ (i) is implied by [18, Propositions 5.3 and 6.1]. Finally, for the uniqueness, let-
ting (ii) act on ΔC , we get c1(TC) = (2 − 2g)z . Hence, z is determined by the curve.   ◻

The next two examples illustrate that Proposition 3.1 leads to both existence and non-
existence results on MCK decompositions for curves:

Example 3.2 (Curves with MCK decompositions [61, Example 8.16]) If C is hyperelliptic, 
take z to be a Weierstrass point, then Gross–Schoen [23] proved that the modified small 
diagonal Γ3(C, z) vanishes. Alternately, by [64, Proposition 2.1], the class [C] belongs to 
CH1(J(C))(0) . By Proposition 3.1, this implies that the Chow–Künneth decomposition (2) 
is multiplicative.

Example 3.3 (Curves without MCK decompositions [18, §7]) As is pointed out before, any 
MCK decomposition for a curve C is determined by a 0-cycle of degree 1. If C admits an 
MCK decomposition, then Proposition 3.1 (iii) implies in particular that the Ceresa cycle 
[C] − [−1]∗[C] ∈ CH1(J(C)) vanishes.

Ceresa [10] proved that the Ceresa cycle of a very general complex curve of genus > 2 
is not algebraically trivial; as such, a very general complex curve of genus > 2 does not 
admit an MCK decomposition.

As more explicit examples, Otsubo [53] proves that the Ceresa cycle of Fermat curves 
of degree 4 ≤ d ≤ 1000 is not algebraically trivial. Therefore, those curves do not admit 
any MCK decomposition. A specialization argument (cf. [72, Lemma 3.2]) then estab-
lishes that a very general plane curve of degree 4 ≤ d ≤ 1000 does not admit an MCK 
decomposition.

Remark 3.4 (MCK decomposition modulo algebraic equivalence) If instead of rational 
equivalence, we work with algebraic equivalence, the analogue of Proposition  3.1 still 
holds and the choice of the 0-cycle z becomes irrelevant. More precisely, given a smooth 
projective curve C, the following conditions are equivalent: 

(i) C admits a multiplicative Chow–Künneth decomposition modulo algebraic equiv-
alence (which, again, must be of the form (2)).
(ii) The modified small diagonal Γ3(C, pt) is algebraically trivial.
(iii) The class [C] belongs to CH1(J(C))(0)∕alg.

Of course, (iii) implies as before
(iv) the Ceresa cycle [C] − [−1]∗[C] is algebraically trivial.

f∗(Γ3(C, z)) = [3]∗[C] − 3[2]∗[C] + 3[C] = 0 in CH1(J(C)).



2096 L. Fu et al.

1 3

Now the point of this remark is that (iv) is actually equivalent to (iii), hence also to (i), 
or (ii). Indeed, in the Beauville decomposition

denote by C(s) the grade s component of the class [C]. It is well-defined modulo algebraic 
equivalence. Then (iv) implies that C(1) = 0 . By Marini’s result [45, Corollary 26], we have 
C(s) is algebraically trivial for all s > 0 , that is, [C] ∈ CH1(J(C))(0)∕alg.

In conclusion, the vanishing of the Ceresa cycle characterizes the multiplicativity of the 
Chow–Künneth decomposition modulo algebraic equivalence.

3.2  On the tautological ring of powers of curves

The following proposition, essentially due to Tavakol [64], relates for a given curve the exist-
ence of an MCK decomposition to the existence of enough relations in the tautological ring.

Proposition 3.5 Let C be a smooth projective complex curve. Let R∗(Cm) ⊆ CH∗(Cm) 
denote the subring generated by pullbacks of the canonical divisor and of the diagonal ΔC. 
Then C admits an MCK decomposition if and only if the cycle class map induces injections

for all positive integers m and all i.

Proof Tavakol [64] shows that the cohomological relations among p∗
i
KC and p∗

ij
ΔC are gen-

erated by three relations, namely the Faber–Pandharipande relation, the Gross–Schoen rela-
tion and a relation implied by the finite-dimensionality relation; see also [74, Remark 3.8(i)]. 
By Kimura [29], the finite-dimensionality relation holds modulo rational equivalence. The 
Gross–Schoen relation is nothing but the vanishing of the modified small diagonal. By Propo-
sition 3.1, this relation is equivalent to the existence of an MCK decomposition. Finally, the 
Faber–Pandharipande relation, p∗

1
KC ⋅ p∗

2
KC = deg(KC) p

∗
1
KC ⋅ ΔC , can be obtained by mak-

ing both sides of the Gross–Schoen relation, viewed as correspondences from C to C × C , act 
on KC.  ◻

4  Regular surfaces

4.1  Multiplicative Chow–Künneth decomposition for regular surfaces

Let S be a regular surface, that is, a smooth projective complex surface with H1(S,OS) = 0 . 
Then for any 0-cycle of degree 1 on S, we have a self-dual Chow–Künneth decomposition

CH1(J(C)) =

g−1⨁
s=0

CH1(J(C))(s),

Ri(Cm) ↪ H2i(Cm)

(3)�0 = z × 1S , �
4 = 1S × z , �2 = ΔS − �0 − �4 , �1 = �3 = 0.
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Assuming the Kimura finite-dimensionality conjecture [29], any self-dual Chow–Künneth 
decomposition should be of this form (Remark 2.2). Similarly to Proposition 3.1, we have 
the following result.

Proposition 4.1 (MCK decomposition for regular surfaces) Let S be a regular smooth 
projective surface. Let z be a 0-cycle of degree 1 on S. Then the following conditions are 
equivalent: 

 (i) the Chow–Künneth decomposition (3) is multiplicative;
 (ii) the modified small diagonal Γ3(S, z) ∈ CH4(S3) vanishes, where 

Moreover, they imply the following two properties: 

 (iii) Im
(
CH1(S)⊗ CH1(S)

⋅

����→ CH2(S)
)
= ℚ ⋅ z.

 (iv) c2(TS) = �top(S) z, where �top is the topological Euler characteristic.

In particular, if it exists, an MCK decomposition of the form (3) for S is unique.
Proof The equivalence between (i) and (ii) is a direct computation using Lemma 2.6, 
which was first observed in [61, Proposition 8.4]. The implication from them to (iii) and 
(iv) is proved as in [5]: Let both sides of (ii) act on the exterior product of two divisors to 
obtain (iii) and on ΔS to get (iv).   ◻

Example 4.2 (Regular surfaces with an MCK decomposition) First we note that any 
Chow–Künneth decomposition of a surface whose Chow motive is of Lefschetz type is 
multiplicative. Hence, any complex surface with trivial Chow group of 0-cycles admits 
an MCK decomposition. Beyond the above obvious examples, the following regular sur-
faces are known to admit an MCK decomposition: K3 surfaces, certain elliptic surfaces 
constructed by Schreieder [59] and Todorov surfaces of type (0, 9) or (1, 10). The case of 
K3 surfaces is seminal and is due to Beauville–Voisin [5] who establish the existence of 
a canonical 0-cycle o of degree 1 such that the modified small diagonal Γ3(S, o) vanishes. 
This was reinterpreted, via a direct computation, as saying that a K3 surface admits an 
MCK decomposition in [61, §8]. The case of the Schreieder surfaces is [42, Theorem 2], 
while the case of Todorov surfaces is the content of Theorem 1.4 to be proved.

Remark 4.3 (MCK decomposition on the image) Let S be a smooth projective regular 
surface admitting a multiplicative Chow–Künneth decomposition (3). Let f ∶ S → S� be 
a surjective morphism to another smooth projective surface. Then S′ must be regular and 
it admits a multiplicative Chow–Künneth decomposition. Indeed, by Proposition 4.1, we 
have a degree one 0-cycle z on S such that Γ3(S, z) = 0 in CH4(S3) . It is easy to check that 
(f , f , f )∗(Γ3(S, z)) = deg(f )Γ3(S

�, f∗(z)) . Again by Proposition 4.1, S′ has an MCK decom-
position. Note that if f ∶ C → C� is a dominant morphism of curves, the same argument 
shows that an MCK decomposition for C yields an MCK decomposition for C′.

Γ3(S, z) ∶= �S − p∗
12
(ΔS)p

∗
3
(z) − p∗

23
(ΔS)p

∗
1
(z) − p∗

13
(ΔS)p

∗
2
(z)

+ p∗
1
(z)p∗

2
(z) + p∗

1
(z)p∗

3
(z) + p∗

2
(z)p∗

3
(z).
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Proposition  4.1 (iii) and (iv) give obstructions to the existence of multiplicative 
Chow–Künneth decompositions for regular surfaces. Moreover, we can use this to see the 
difference between (iii) and MCK decompositions:

Proposition 4.4 (MCK decomposition v.s. degeneration of intersection product). For 
any d ≥ 7, a very general smooth surface of degree d in ℙ3 does not admit any multiplica-
tive Chow–Künneth decomposition of the form (3). However, as a very general surface has 
Picard number  1, the conditions (iii) and (iv) in Proposition  4.1 are obviously satisfied 
with z = 1

d
c1(O(1))2.

Proof Generalizing the octic surface example in [15, §1.4], O’Grady [52] constructed, for 
each integer d, a smooth surface S of degree d in ℙ3 with

So by Proposition 4.1 such a surface S does not have an MCK decomposition of the form 
(3) when d is at least 7. By Proposition 4.1, the modified small diagonal Γ3(S,

1

d
c1(O(1))2) 

does not vanish. However, since the cycle Γ3(S,
1

d
c1(O(1))2) is defined universally for all 

smooth degree d surfaces, its non-vanishing on one member, namely S, implies that it 
is non-trivial for a very general member by an argument using Hilbert schemes (cf. [72, 
Lemma 3.2]).   ◻

4.2  On the tautological ring of powers of regular surfaces

The following proposition due to Yin [74], which is the analogue of Proposition  3.5, 
gives yet another characterization of regular surfaces admitting an MCK decomposition.

Proposition 4.5 Let S be a smooth projective complex surface. Let R∗(Sm) ⊂ CH∗(Sm) 
denote the subring generated by pullbacks of divisors, Chern classes and diagonals ΔS . 
Assume that S is regular and that pg ∶= H0(S,Ω2

S
) > 0. Then S admits an MCK decomposi-

tion of the form (3) if and only if the cycle class map induces injections

for all m ≤ 2b2,tr(S) + 1 and all i. Here, b2,tr(S) is the dimension of the transcendental coho-
mology of S, i.e., the smallest Hodge substructure of H2(S) whose complexification contains 
H0(S,Ω2

S
). Moreover, S admits an MCK decomposition and is Kimura–O’Sullivan finite-

dimensional if and only if Ri(Sm) → H2i(Sm) is injective for all  m and all  i.

Proof This is simply an application of Yin’s theorem [74] (which works for any regular 
surface with pg > 0 , see also [74, Remark 3.8(iii)]), via reinterpreting the vanishing of the 
modified small diagonal as providing an MCK decomposition.   ◻

dim Im
(
CH1(S)⊗ CH1(S)

⋅

����→ CH2(S)
)
≥
[
d − 1

3

]
.

Ri(Sm) ↪ H2i(Sm)
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5  Cubic hypersurfaces

Smooth cubic fourfolds are the most well-known examples of Fano varieties of K3 type. 
They have the following Hodge diamond:

Although our main aim is the case of smooth cubic hypersurfaces of dimension 4, it 
turns out that the results of this section hold for smooth cubic hypersurfaces of any dimen-
sion ≥ 3.

5.1  Statement of the main result

We start with the following general definition:

Definition 5.1 (Generically defined cycle classes and the Franchetta property) Let 
X → B be a smooth projective morphism to a smooth quasi-projective complex variety B. 
For any fiber X of X → B over a closed point of B, we define

the image of the Gysin restriction map. The elements of GDCH∗
B
(X) , which by abuse we 

will denote GDCH∗(X) when B is clear from the context, are called the generically defined 
cycles (with respect to the deformation family B) on X.

We say that X → B has the Franchetta property  if the restriction of the cycle class map

is injective for all fibers X of X → B (equivalently, for a very general fiber X; see [16, §2]).

This property is studied in [51, 55] for the universal family of K3 surfaces of low genus. 
This is extended to certain families of hyper-Kähler varieties in [16] (cf. also [6]), and most 
notably for the square of the Fano variety of lines on a smooth cubic fourfold. The aim of 
this section is to generalize the latter to the Fano variety of lines on a smooth cubic hyper-
surface of any dimension. Recall that if X is a smooth cubic hypersurface in ℙn+1 , then its 
Fano variety of lines, denoted F, is known to be connected smooth projective of dimension 
2n − 4.

Theorem 5.2 Let B be the open subset of ℙH0(ℙn+1,O(3)) parameterizing smooth cubic 
hypersurfaces, and let F → B be the universal family of their Fano varieties of lines. Then 

GDCH∗
B
(X) ∶= Im(CH∗(X) → CH∗(X)),

GDCH∗
B
(X) ↪ CH∗(X) → H∗(X)
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the families F → B and F ×B F → B have the Franchetta property. Moreover, if F is the 
Fano variety of lines on a very general cubic hypersurface X ⊆ ℙn+1 of dimension n > 2, 
then the cycle class map induces isomorphisms

where Hdg(H∗(−)) denotes the subalgebra generated by Hodge classes in H∗(−).

A direct consequence of Theorem 5.2 is the following:

Corollary 5.3 Let Y ⊂ ℙn+1 be a smooth cubic hypersurface, and F = F(Y) its Fano vari-
ety of lines. Then F verifies the standard conjectures.

Proof First we note that the corollary follows from the motivic relation in [36]; we provide 
here, however, a new and self-contained proof. The statement is clearly true if n ≤ 2 , as 
then F has dimension ≤ 0 . We thus assume that n > 2 . From Theorem 5.2, the cycle class 
map induces, for the very general Y, a surjection

Hence, for the very general Y the Hodge class on F × F occurring in the standard conjec-
ture of Lefschetz type for F is algebraic and generically defined. A standard spread argu-
ment [72, Lemma 3.2] then allows to conclude the same is true for any  smooth Y.   ◻

5.2  MCK decomposition for cubic hypersurfaces

Let X → B be the universal family of smooth cubic hypersurfaces as above, and let 
e ∶ X → ℙn+1 be the natural evaluation map. Set H ∶= e∗(c1(O(1))) ∈ CH1(X) , the relative 
hyperplane section class. Then

defines a relative Chow–Künneth decomposition, in the sense that its specialization to any 
fiber Xb over a closed point b ∈ B gives a Chow–Künneth decomposition of Xb . A direct 
consequence of Theorem  5.2, together with the fact proved in Proposition  5.10 that the 
motive of a cubic hypersurface X and of its symmetric square are (generically defined) 
direct factors of the motive of the Fano variety of lines F, is the following:

Theorem 5.4 [13] The relative Chow–Künneth decomposition (4) is fiberwise multipli-
cative. In particular, a smooth cubic hypersurface admits a multiplicative Chow–Künneth 
decomposition.

The above theorem is not stated in this form in [13]; it can, however, be deduced from 
[13, Corollary 3.3.9], as is explained in Sect. 4.6. In this section, we obtain Theorem 5.4 
as a consequence of the stronger result Theorem 5.2, which will play a crucial role in our 
subsequent work [17] where we determine, among other things, the Chow motive of F in 
terms of the Chow motive of X. Moreover, contrary to the approach employed in [13], our 

GDCH∗(F)
∼

⟶Hdg(H∗(F)) and GDCH∗(F × F)
∼

⟶Hdg(H∗(F × F)),

GDCH∗(F × F)↠ Hdg(H∗(F × F)).

(4)�2i
X
∶=

1

3
Hn−i ×B H

i for 2i ≠ n, and �n
X
∶= ΔX∕B −

∑
2i≠n

�2i
X
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proof is independent of [36]; in fact, in [17] we strengthen and obtain a new independent 
and more conceptual proof of, the main result of [36]. The reader only interested in the 
case of cubic fourfolds can skip the proof of Theorem 5.2 given in Sect. 5.5 and rely on 
[16, Theorem 1.10].

5.3  The Franchetta property for cubic hypersurfaces and their squares

Before proceeding to the main proposition of this paragraph, we first introduce some 
notation. Given H a pure Hodge structure of pure weight w, we denote T∙H the tensor 
algebra on H, Sym∙H the symmetric algebra on H with the commutativity constraint 
imposed by the parity of the weight w of H, and hdg(H) the dimension of the space of 
Hodge classes Hdg(H) in H.

Lemma 5.5 Let X ⊆ ℙn+1 be a very general cubic hypersurface of dimension ≠ 2. Denote 
HX ∶= Hn

prim
(X)(1) the primitive cohomology of X Tate twisted by 1; it is a pure Hodge 

structure of weight n − 2. Then we have

Proof Given any very general hypersurface X ⊆ ℙn+1 with cohomology ring not generated 
by Hodge classes, a theorem of Deligne states that the Mumford–Tate group of HX coin-
cides with the Zariski closure G of the monodromy group of a general Lefschetz pencil act-
ing on Hn(X)prim and is the full orthogonal group if n is even and the full symplectic group 
if n is odd; see, e.g., [50]. Since the subspace of Hodge classes in tensor powers of HX is 
given by G-invariants, it follows from the invariant theory of the orthogonal and symplec-
tic groups that the subalgebra of Hodge classes in the tensor algebra T∙HX is generated by 
the quadratic form q ∈ Sym2HX ⊂ H⊗2

X
 on HX in the case n is even, and by the symplectic 

form, q ∈ Sym2HX ⊂ H⊗2

X
 on HX in the case n is odd. The lemma is then straightforward.  

 ◻

Proposition 5.6 Let B be the open subset of ℙH0(ℙn+1,O(3)) parameterizing smooth 
cubic hypersurfaces, and let X → B be the universal family. Then the families X → B and 
X ×B X → B have the Franchetta property. Moreover, when n ≠ 2, for a very general fiber 
X, the cycle class map induces isomorphisms

Proof First, let us determine generators for the rings GDCH∗(X) and GDCH∗(X × X) 
(which were defined in Definition 5.1). It follows from [16, Proposition 5.2], since X → B 
and X ×B X → B are “stratified projective bundles” in the sense of loc. cit., that

(5)hdg(HX) = hdg(HX ⊗ Sym2HX) = 0,

(6)hdg(HX ⊗ HX) = hdg(Sym2HX) = 1,

(7)hdg(Sym2HX ⊗ Sym2HX) = 2.

GDCH∗(X)
∼

⟶Hdg(H∗(X)) and GDCH∗(X × X)
∼

⟶Hdg(H∗(X × X)).

GDCH∗(X) = ⟨h⟩ and GDCH∗(X × X) = ⟨p∗
i
h,ΔX⟩,
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where h ∈ CH1(X) denotes the hyperplane section class and pi ∶ X × X → X is the projec-
tion on the ith factor.

It is then clear that the cycle class map GDCH∗(X) ↪ H∗(X) is injective. The injectivity 
of the cycle class map GDCH∗(X × X) → H∗(X × X) is deduced easily from the following 
relation in CHn+1(X × X):

To show (8), we consider the following Cartesian diagram whose excess normal bundle is 
OX(3):

The excess intersection formula [21, Theorem 6.3] yields that

As Δℙn+1 =
∑n+1

i=0
hi × hn+1−i in CHn+1(ℙn+1 × ℙn+1) , where with an abuse of notation h 

denotes also the hyperplane section class in ℙn+1 , we obtain that in CH(X × X),

which is nothing else but (8).
Suppose now that X is very general of dimension ≠ 2 . That GDCH∗(X) → Hdg(H∗(X)) 

is surjective then follows directly from Lemma 5.5 and from the decomposition

where each summand ℚ(−i) is spanned by hi . By Lemma 5.5 again, in order to see that 
GDCH∗(X × X) → Hdg(H∗(X × X)) is surjective, it suffices to note that the diagonal ΔX 
accounts for the Hodge class appearing in Sym2HX .   ◻

5.4  Cubic hypersurfaces and their Fano varieties of lines

If X is a smooth cubic hypersurface in ℙn+1 , we denote F its Fano variety of lines. We 
first give a corrected proof of a result of Diaz [13, Proposition  3.2.6]. Let g = −c1(E)|F 
be the Plücker polarization and c = c2(E)|F , where E is the tautological rank-2 bundle on 
G ∶= Gr(2, n + 2).

(8)
ΔX ⋅ p∗

1
h = ΔX ⋅ p∗

2
h =

1

3

∑
i+j=n+1
i,j>0

p∗
1
hi ⋅ p∗

2
hj.

ΔX,∗(c1(OX(3))) = Δℙn+1 |X×X .

ΔX,∗(3h) =

n+1∑
i=0

hi × hn+1−i,

H∗(X) = HX ⊕

n⨁
i=0

ℚ(−i),
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Lemma 5.7 In CHn−1(F) , gn−1 is a linear combination of gn−3c, gn−5c2,….

Proof In the case where n ≤ 4 the result is already contained in [71]. We thus assume that 
n ≥ 5 . Recall that G ∶= Gr(2, n + 2) denotes the Grassmannian variety parameterizing pro-
jective lines in ℙn+1 ; as such, � ∶ F ↪ G is a codimension 4 closed subscheme. As in [13], 
for dimension reasons there exists a nonzero polynomial P(x, y) ∈ ℚ[x, y] homogeneous of 
weighted degree n − 1 , where x has degree 1 and y has degree 2, such that the push-forward 
of P(g, c) ∈ CHn−1(F) to CHn+3(G) is zero, i.e.,

Let us define R∗(F) ∶= 𝜄∗CH∗(G) ⊂ CH∗(F) . Since homological and numerical equiva-
lence agree on F (Proposition  5.11), the push-forward map �∗ ∶ R∗(F) → CH∗+4(G) is 
injective. It follows that P(g, c) gives a linear relation between gn−1, gn−3c,… in CHn−1(F) . 
To prove the lemma, it suffices to show that the polynomial P(x, y) is not divisible by y.

We know that [F] = 18g2c + 9c2 in CH4(G) [21, Example 14.7.13]. We also know that 
the ideal of relations in CH∗(G) is generated by the following two polynomials

(In the proof of [13, Proposition 3.2.6], it is wrongly claimed that the ideal of relations 
in CH∗(G) is generated by two homogeneous polynomials of degree n and n + 1 , respec-
tively.) It thus follows from (9) that there is equality of polynomials (of degree n + 3)

for some mj ∈ ℚ . Let us assume, by contradiction, that the polynomial P(x, y) is divisible 
by y, i.e., that we can write

where pj ∈ ℚ and m ∶= ⌊ n−1

2
⌋ ≥ 2 . Comparing the xn+3 terms on both sides of (10), 

we find that m3 = −m1 . Comparing the xn+1y terms on both sides of (10), we find that 
m2 = −m1 . The polynomial P(x, y) being nonzero, we may assume that m1 is nonzero. Up 
to rescaling P(x, y), we may thus assume that m1 = 1 . Let us now develop equality (10) 
with m1 = 1 and m2 = m3 = −1 . The right-hand side of (10) can be written

where the coefficient aj is

The equality of polynomials (10) implies the equalities of coefficients

(9)P(g, c) ⋅ [F] = 0 in CHn+3(G).

Rn+1(g, c) = gn+1 −

(
n

1

)
gn−1c +

(
n − 1

2

)
gn−3c2 −⋯

Rn+2(g, c) = gn+2 −

(
n + 1

1

)
gnc +

(
n

2

)
gn−2c2 −⋯ .

(10)P(x, y) ⋅ (2x2y + y2) = (m1x
2 + m2y)Rn+1(x, y) + m3xRn+2(x, y),

P(x, y) = p1x
n−3y + p2x

n−5y2 +⋯ + pmx
n−1−2mym,

m+2∑
j=2

ajx
n+3−2jyj,

aj = (−1)j+1
((

n + 2 − j

j

)
−

(
n + 1 − j

j

)
−

(
n + 2 − j

j − 1

))
= (−1)j

(
n + 1 − j

j − 1

)
.
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Note that the aj are integers. On the other hand, we observe that p2 is not an integer. 
(Indeed, from (11) we find that p1 =

n−1

2
 , and p2 =

1

2
(a3 − p1) = −

1

4
(n2 − 4n + 5) , which 

is not an integer.) It follows inductively that pj is not an integer for any j ≥ 2 (indeed, from 
(11) we find that 2pj = aj+1 − pj−1 is not integer). But this contradicts the last line of (11), 
and so P(x, y) is not divisible by y.   ◻

We now generalize to arbitrary dimension a result of Beauville–Donagi [2, Proposition 
6] for cubic fourfolds.

Proposition 5.8 Let X be a very general cubic hypersurface of dimension n > 2. Let F be 
its Fano variety of lines and g ∈ CH1(F) be the first Chern class of the Plücker polariza-
tion. Let p ∶ P → F be the universal ℙ1-bundle and q ∶ P → X be the natural evaluation 
morphism. Then 

(i)  the morphism of Hodge structures p∗q∗ ∶ Hn(X,ℚ)(1) → Hn−2(F,ℚ) is injective, 
and it is an isomorphism if n is odd;

(ii)  there exists a nonzero rational number � such that for any �, �� ∈ Hn
prim

(X,ℚ), we 
have 

 where ⟨−,−⟩X is the intersection pairing on X, while ⟨�, ��⟩F ∶= ∫
F
� ⋅ �� ⋅ gn−2 for any 

�, �� ∈ Hn−2(F,ℚ);

(iii)  The morphism p∗q∗ respects the primitive parts: p∗q∗(Hn
prim

(X,ℚ)(1)) ⊂ Hn−2
prim

(F,ℚ). It is  
an equality if n is odd or divisible by 4; when 4 ∣ n − 2, the complement is one-
dimensional, generated by c

n−2

4 ;
(iv)  The morphism p∗q∗induces an isomorphism of transcendental cohomology groups:

(v)  When n is even, Hn−2(F,ℚ) ≅ Hn
prim

(X,ℚ)(1)⊕ℚ(−
n−2

2
)⊕⌊ n+2

4
⌋, where the isomor-

phism is given by p∗q∗ on the summand Hn
prim

(X,ℚ)(1), and by g
n

2
+1−2i

ci−1 on the ith 
copy of ℚ(−

n−2

2
), for 1 ≤ i ≤ ⌊ n+2

4
⌋.

Proof We adapt the argument of [2]. For (i), by Shimada [62, 63] (see [27, Theorem 4] 
for an alternative proof), the cylinder map q∗p∗ ∶ H3n−6(F,ℚ) → Hn(X,ℚ) is surjective. 

(11)

2p1 = a2,

2p2 + p1 = a3,

2p3 + p2 = a4,

⋮

2pm + pm−1 = am+1,

pm = am+2.

�⟨�, ��⟩X = ⟨p∗q∗(�), p∗q∗(��)⟩F ,

p∗q
∗ ∶ Hn

tr
(X,ℚ)(1)

≃
�������→ Hn−2

tr
(F,ℚ).
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Hence, the transposed morphism p∗q∗ ∶ Hn(X,ℚ) → Hn−2(F,ℚ) is injective. When n is 
odd, we know that dimHn(X,ℚ) = dimHn−2(F,ℚ) (see, for example, [22, Theorem 6.1]); 
hence, p∗q∗ must be an isomorphism.

For (ii), given �, �� ∈ Hn
prim

(X,ℚ) , using the projective bundle formula, there exist 
�1, �

�
1
∈ Hn(F,ℚ) and �2, ��2 ∈ Hn−2(F,ℚ) such that

where � ∶= c1(Op(1)) = q∗(H) with H denoting the hyperplane section class on X. Apply-
ing p∗ to (12), we find that

Denote E the tautological rank-2 bundle on Gr(ℙ1,ℙn+1) and set g ∶= −c1(E)|F to be the 
Plücker polarization and c = c2(E)|F . Multiplying (12) by � = q∗(H) and using the equality 
�2 = p∗(g)� − p∗(c) , we obtain

Therefore,

and similarly for �′
1
 and �′

2
 . The identities (12) thus become

Taking the product of the equations in (13), using again �2 = p∗(g)� − p∗(c) and 
�2 ⋅ c = ��

2
⋅ c = 0 , one obtains

Multiplying with p∗(gn−3) and then applying q∗ , we find

Since q∗p∗(gn−3) is a nonzero multiple of the fundamental class of X, taking the degree of 
both sides yields that

for some � ≠ 0 . This is nothing else but the desired formula in (ii).
For (iii), let us first show that �2 = p∗q

∗(�) is in the primitive part, i.e., �2 ⋅ gn−1 = 0 . 
However, gn−1 is a linear combination of gn−3c, gn−5c2,… (see, for example, 
Lemma 5.7); hence, the desired vanishing follows from the vanishing �2 ⋅ c = 0 . 
The inclusion is proved. When n is odd or divisible by 4, by [22, Theorem  6.1], 
dimHn

prim
(X,ℚ)(1)) = dimHn−2

prim
(F,ℚ) ; hence, the inclusion must be an equality. When 

4 ∣ n − 2 , again by [22, Theorem 6.1], the complement is one-dimensional. It suffices to see 
that c

n−2

4  is not in p∗q∗(H
n
prim

(X,ℚ)(1)) . Indeed, one checks easily that c
n−2

4  is orthogonal to 
p∗q

∗(Hn
prim

(X,ℚ)(1)) with respect to ⟨−,−⟩F.

(12)q∗(�) = p∗(�2) ⋅ � − p∗(�1) and q∗(��) = p∗(��
2
) ⋅ � − p∗(��

1
),

p∗q
∗(�) = �2.

0 = q∗(� ⋅ H) = p∗(�2) ⋅ �
2 − p∗(�1) ⋅ � = p∗(�2 ⋅ g) ⋅ � − p∗(�2 ⋅ c) − p∗(�1) ⋅ �.

�1 = �2 ⋅ g and �2 ⋅ c = 0,

(13)q∗(�) = p∗(�2) ⋅ � − p∗(�2 ⋅ g) and q∗(��) = p∗(��
2
) ⋅ � − p∗(��

2
⋅ g).

q∗(� ⋅ ��) = p∗(�2 ⋅ �
�
2
⋅ g2) − p∗(�2 ⋅ �

�
2
⋅ g) ⋅ �.

� ⋅ ��
⋅ q∗p

∗(gn−3) = −q∗p
∗(�2 ⋅ �

�
2
⋅ gn−2).

�⟨�, ��⟩X = deg(�2 ⋅ �
�
2
⋅ gn−2),
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For (iv), it is clear that p∗q∗ induces a morphism between Hn
tr
(X,ℚ) and Hn−2

tr
(F,ℚ) , 

which is injective by (i). To see its surjectivity, it suffices to observe that Hn
tr
(X,ℚ) and 

Hn−2
tr

(F,ℚ) have the same dimension (see, for example, [22, Theorem 6.1]).
For (v), by the dimension count in [22, Theorem 6.1], it suffices to show that Hn−2(F,ℚ) 

is spanned by p∗q∗(H
n
prim

(X,ℚ)(1)) and g
n

2
+1−2i

ci−1 , for 1 ≤ i ≤ ⌊ n+2

4
⌋ , but this follows 

from the description of Hn−2
prim

(F,ℚ) in (iii) and the fact that Hn−4(F,ℚ) is of Tate type and 
is generated by g

n

2
−2i

ci−1 , for 1 ≤ i ≤ ⌊ n−2

4
⌋ .   ◻

Corollary 5.9 The composition of the following chain of isomorphisms is a nonzero mul-
tiple of the identity map:

Proof This is actually a general fact in linear algebra. Let Λ1 , Λ2 be two ℚ-quadratic 
spaces. If there is a linear isomorphism � ∶ Λ1

≅
�������→ Λ2 and a nonzero rational number � , 

such that �⟨x, y⟩Λ1
= ⟨�(x),�(y)⟩Λ2

 , then the composition of the following chain of isomor-
phisms is � ⋅ id.

Thanks to Proposition  5.8, we can apply this general fact to the case when 
Λ1 ∶= Hn

prim
(X,ℚ) , Λ2 ∶= Hn−2

prim
(F,ℚ) , and � ∶= p∗q

∗ .   ◻

We denote F → B the relative Fano variety of lines for the universal family X → B of 
cubic hypersurfaces. The relative Chow motives of X  and F  over B can be related thanks 
to the following construction, performed for smooth cubic hypersurfaces of any dimension, 
due to Galkin–Shinder [22] and Voisin [73]. Let X be a smooth cubic hypersurface, and let 
F be its Fano variety of lines. Galkin–Shinder [22, Proof of Theorem 5.1] constructed a 
birational map � ∶ X[2]

⤏ PX from the Hilbert scheme of length-2 subschemes X[2] of X, 
where PX ∶= ℙ(Tℙn+1 |X) is some ℙn-bundle over X. Moreover, Voisin [73, Proposition 2.9] 
constructed an explicit resolution of indeterminacies 

Hn
prim

(X,ℚ)
p∗q

∗

����������������→ Hn−2
prim

(F,ℚ)
⋅gn−2

�����������������→ H3n−6
prim

(F,ℚ)
q∗p

∗

����������������→ Hn
prim

(X,ℚ).
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with the property that the morphism �2 ∶ V → PX is a blow-up along a smooth center 
P ⊂ PX of codimension 3, where P is the universal ℙ1-bundle over F, and the morphism 
�1 ∶ V → X[2] is a blow-up along a smooth center P2 ⊂ X[2] of codimension 2, where P2 
is the relative symmetric square of P → F , and thus has the structure of a ℙ2-bundle over 
F. Since the above construction of Galkin–Shinder and Voisin can be performed family-
wise, we obtain thanks to the projective bundle formula and the blow-up formula for Chow 
motives an isomorphism of relative motives over B

 From the above isomorphism, we can derive the following proposition that will be used in 
our new proof of Theorem 5.4. It will also be used in the proof of Theorem 5.2 to establish 
the Franchetta property of the family F → B.

Proposition 5.10 Let X → B denote the universal smooth cubic hypersurface in ℙn+1 
with n > 2 , X(2)

→ B its relative symmetric square, and let F → B denote the universal 
Fano variety of lines in a cubic hypersurface. There exist relative morphisms of Chow 
motives over B

and

which are fiberwise split injective. Here, 
⨁

�B(∗) means a direct sum of relative Lefschetz 
motives and 

⨁
�(F)(∗) means a direct sum of Tate twists of �(F).

Proof Let P ⊂ F ×B X  be the relative universal line, also seen as a relative morphism of 
motives

Let �j

X
 be the relative Chow–Künneth decomposition (4), and let �n,prim(X) denote the 

motive defined by the projector

(16)
�(V) ≃

n⨁
i=0

�(X)(−i)⊕ �(F)(−3)⊕ �(F)(−2)⊕2 ⊕ �(F)(−1)

≃ �(X[2])⊕ �(F)(−3)⊕ �(F)(−2)⊕ �(F)(−1).

Φ ∶ �(X) ⟶ �(F)(1)⊕
⨁

�B(∗),

Ψ ∶ �(X(2)) ⟶
⨁

�(F)(∗)⊕
⨁

�B(∗)

P ∶ �(X) ⟶ �(F)(1).
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where H ∈ CH1(X) denotes the relative hyperplane section. Corollary 5.9 implies that the 
composition

where g denotes the relative Plücker polarization, induces fiberwise on Hn
prim

(X) a nonzero 
multiple of the identity. The Franchetta property for X ×B X → B , proved in Proposi-

tion 5.6, shows that �n, prim

X
◦ tP◦(⋅gn−2)◦P◦�

n, prim

X
 is equal to a nonzero multiple of �n, prim

X
 . 

It follows that P◦�n, prim

X
∶ �n

prim
(X) → �(F)(1) is fiberwise split injective, from which we 

deduce the existence of a morphism Φ as in the statement of the proposition.
Let us now turn to the existence of the morphism Ψ as in the statement. First, recall that 

for any smooth projective variety X, the Hilbert scheme X[2] is the blow-up of the symmet-
ric square X(2) along the diagonal. Therefore, in our relative situation, we have an isomor-
phism of relative Chow motives

Combining the above isomorphism with the isomorphism (16) and with the morphism of 
relative motives Φ constructed above, we obtain the desired, fiberwise split injective, mor-
phism Ψ .   ◻

Let us also mention the following direct consequence of the isomorphism (16).

Proposition 5.11 Let F be the Fano variety of lines on a smooth cubic hypersurface X. 
Then homological and numerical equivalence agree on F.

Proof The statement is clearly true if dimX ≤ 2 since then dimF ≤ 0 . We thus assume that 
dimX > 2 . By specializing the relative isomorphism (16) to the fiber corresponding to X, 
we obtain an isomorphism of motives

where M =
⨁n

i=0
�(X)(−i),N = �(X[2]),P1 = �(F)(−3)⊕ �(F)(−2)⊕ �(F)(−1) and P2 = �(F)(−2) .  

Since the standard conjectures hold for smooth hypersurfaces, and since X[2] is the blow-up of X(2)  
along the diagonal, homological and numerical equivalence agree  on M and also on N. Now, com-
paring the dimension of the kernels of CH∗(M ⊕ P1 ⊕ P2)∕hom → CH∗(M ⊕ P1 ⊕ P2)∕num 
and of CH∗(N ⊕ P1)∕hom → CH∗(N ⊕ P1)∕num , we find that ker(CH∗(P

2
)∕hom →

CH
∗(P

2
)∕num) = 0 , i.e., that homological and numerical equivalence agree on F.   ◻

5.5  Proof of Theorem 5.2

The case of cubic fourfolds is one of the main results of [16]. The point we want to make 
here is that, with the input of the isomorphism of Galkin–Shinder–Voisin (16), the original 
proof in [16] actually works in any dimension with minor adaptation. Let F be the Fano 

�
n, prim

X
= �n

X
in case n is odd, and �

n, prim

X
= �n

X
−

1

3
Hn∕2 ×B H

n∕2 in case n is even,

�n
prim

(X) ↪ �(X)
P

⟶�(F)(1)
⋅gn−2

⟶�(F)(−1)
tP

⟶�(X) ↠ �n
prim

(X),

�(X[2]) ≃ �(X(2))⊕

n−1⨁
i=1

�(X)(−i).

M ⊕ P1 ⊕ P2 ≃ N ⊕ P1,
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variety of lines on a smooth cubic hypersurface X. As before, let us denote GDCH∗(F) and 
GDCH∗(F × F) the subrings of CH∗(F) and CH∗(F × F), respectively, generated by cycles 
that are restrictions of cycles on the universal families F → B and F ×B F → B.

Our previous results [16, Lemma  3.1 and Proposition  6.3] work without change and 
give us generators for GDCH∗(F) and GDCH∗(F × F) . More precisely, it is shown that 
these generically defined cycles are “tautological”:

where ⟨−⟩ means the generated subalgebra, pi ∶ F × F → F is the projection on the ith 
factor, g = −c1(E)|F is the Plücker polarization, c = c2(E)|F , E is the tautological rank-2 
bundle on G ∶= Gr(2, n + 2) and I = {(�1,�2) ∈ F × F ∶ �1 ∩ �2 ≠ �} is the incidence 
correspondence.

Let us first show the Franchetta property for F → B . Since GDCH∗(X) , GDCH∗(X × X) 
and GDCH∗(F) are finitely generated, we may use the isomorphism (16) and proceed as 
in the proof of Proposition 5.11; thanks to Proposition 5.6, rational and numerical equiv-
alence agree  on GDCH∗(X) and on GDCH∗(X × X) ; therefore, the argument in Proposi-
tion 5.11 shows that rational and numerical equivalence agree on GDCH∗(F) , i.e., that the 
family F → B has the Franchetta property.

As a consequence, R∗(F) is a Gorenstein algebra1 of socle degree 2n − 4 . We can there-
fore bound the dimensions of the Ri(F) (we will see shortly that the following are actually 
equalities):

(We note that for i = n − 1 , the above dimension estimate takes the more precise form of 
Lemma 5.7).

In the system of generators (17) for R∗(F × F) , we first observe that the generator ΔF 
is redundant, thanks to the following Voisin’s relation [71] which holds in any dimension 
with the same proof:

where Γ1 , Γ2 are polynomials and � is a nonzero rational number.
Next, we have the following relations, where �, � are nonzero rational numbers and 

P, Q, R are polynomials. Note that their proof, originally for cubic fourfolds, works without 
change in any dimension. 

 (i) In [61, Proposition 17.5], one finds 

 (ii) In [61, Lemma 17.6], there is a polynomial P such that 

(17)
GDCH∗(F) = R∗(F) ∶= ⟨g, c⟩ and GDCH∗(F × F) = R∗(F × F) ∶= ⟨p∗

i
g, p∗

j
c,ΔF , I⟩,

(18)dimRi(F) ≤ ri ∶=

�
⌊ i+2

2
⌋, if i ≤ n − 2

⌊ 2n−2−i

2
⌋, if i > n − 2.

(19)I2 = �ΔF + I ⋅ Γ1(g1, g2) + Γ2(g1, g2, c1, c2),

ΔF ⋅ I = �c1 ⋅ ΔF − �g2
1
⋅ ΔF .

c1 ⋅ I = P(g1, g2, c1, c2);

c2 ⋅ I = P(g2, g1, c2, c1).

1 A finite-dimensional graded algebra A∗ =
⨁d

i=0
A
i is called Gorenstein of socle degree d, if Ad is one-

dimensional and the multiplication Ai × A
d−i → A

d is a perfect pairing for all 0 ≤ i ≤ d.
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 (iii) In [16, Appendix], we proved there exists a polynomial Q such that 

By Voisin’s relation (19), we can eliminate the usage of ΔF in previous relations (i) and (iii) 
to obtain the following relations, where P, Q, R are some polynomials and � is a nonzero 
rational number. 

(i�)  I3 = �I ⋅ gn−2
1

gn−2
2

+ R(g1, g2, c1, c2);
(iii�)  I2 ⋅ g1 = I ⋅ P(g1, g2) + Q(g1, g2, c1, c2).

 Using Lemma 5.7, and relations (19), (i�) , (ii) and (iii�) , we get a system of linear genera-
tors for R∗(F × F) , namely

Combining with (18), we can bound the dimensions of R∗(F × F) as follows, where the 
numbers ri are defined in (18). We will see that these are equalities in the end.

To show the injectivity of the cycle class map R∗(F × F) → H2∗(F × F) , we bound from 
below the dimension of the image in each degree by computing the dimension of Hodge 
classes on F × F for X very general.

Lemma 5.12 Let F be the Fano variety of lines on a very general cubic hypersurface 
X ⊆ ℙn+1. Then

Moreover, if n ≠ 2, the cycle class map induces surjective morphisms

In particular, (18) is an equality.

Proof The Hodge structure H∗(F,ℚ) was computed, for the Fano variety of lines on 
any smooth cubic hypersurface, in terms of HX ∶= Hn

prim
(X)(1) by Galkin–Shinder [22, 

Theorem 6.1]:

ΔF,∗(g) + R(g1, g2) ⋅ I = Q(g1, g2, c1, c2).

(20)
R∗(F × F) = R∗(F)⊠ R∗(F) + I ⋅

(
Span ℚ{1, g,… , gn−2}⊠ Span ℚ{1, g,… , gn−2}

)
+ℚ ⋅ I2.

(21)dimRk(F × F) ≤

⎧⎪⎪⎨⎪⎪⎩

∑k

i=0
rirk−i, if 0 ≤ k < n − 2;∑k

i=0
rirk−i + (k − (n − 2) + 1), if n − 2 ≤ k < 2n − 4;∑2n−4

i=0
rirk−i + (n − 1) + 1, if k = 2n − 4;∑k

i=0
rirk−i + (3n − 6 − k + 1), if 2n − 4 < k ≤ 3n − 6;∑k

i=0
rirk−i, if 0 ≤ k < n − 2.

(22)

hdg(H2i(F)) = ri, for any i and

hdg(H2k(F × F)) =

⎧⎪⎪⎨⎪⎪⎩

∑k

i=0
rirk−i, if 0 ≤ k < n − 2;∑k

i=0
rirk−i + (k − (n − 2) + 1), if n − 2 ≤ k < 2n − 4;∑2n−4

i=0
rirk−i + (n − 1) + 1, if k = 2n − 4;∑k

i=0
rirk−i + (3n − 6 − k + 1), if 2n − 4 < k ≤ 3n − 6;∑k

i=0
rirk−i, if 0 ≤ k < n − 2.

GDCH∗(F)⟶Hdg(H∗(F)) and GDCH∗(F × F)⟶Hdg(H∗(F × F)).
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where ai = ri except for an−2 = rn−2 − 1 . (This can be seen by applying H∗ to the isomor-
phism (16) and using the semi-simplicity of the category of polarizable Hodge structures). 
The computation of hdg(H2∗(F)) and hdg(H2∗(F × F)) is then straightforward from Lemma 
5.5.

We now show that for X very general of dimension ≠ 2 , the cycle class map 
GDCH∗(F) → Hdg(H∗(F)) is surjective. The proof is similar to that of Proposition 5.11. 
With the notation therein, we know that the cokernels of GDCH∗(M) → H∗(M) and 
GDCH∗(N) → H∗(N) are trivial by Proposition  5.6. It follows for dimension rea-
sons that the cokernel of GDCH∗(P2) → H∗(P2) is trivial, i.e., that the cycle class map 
GDCH∗(F) → Hdg(H∗(F)) is surjective.

Finally, by Lemma 5.5, to see that the cycle class map GDCH∗(F × F) → Hdg(H∗(F × F)) 
is surjective for X very general of dimension ≠ 2 , it suffices to observe that the extra class 
appearing in Sym2HX ⊗ Sym2HX is accounted for by the diagonal ΔF .   ◻

Now we can conclude the proof of Theorem 5.2. The surjectivity of the restriction of the 
cycle class maps to generically defined cycles on F or F × F was treated in Lemma 5.12. 
We note that the Franchetta property for F and F × F in case dimX ≤ 2 is trivial; since 
then, F is either empty or zero-dimensional. Assume now that dimX > 2 . For a very gen-
eral cubic hypersurface X and any integer k, consider the cycle class map

On the one hand, by (17), Rk(F × F) consists of the generically defined cycles 
GDCHk(F × F) , and hence, the cycle class map is onto the space of algebraic classes in 
H2k(F × F) ; on the other hand, by comparing (21) and Lemma 5.12, we see that the upper 
bound for the dimension of Rk(F × F) coincides with the dimension of space of algebraic 
classes in H2k(F × F) . Therefore, (21) are equalities and the cycle class map is injective. 
A specialization argument then shows that the Franchetta property holds for F ×B F → B , 
thereby concluding the proof of Theorem 5.2.  ◻

5.6  Proof of Theorem 5.4

Let �i
X
∈ CHn(X ×B X) be the relative Chow–Künneth projectors of (4). We have to show 

that the cycle

vanishes fiberwise for all k ≠ i + j . Let � be the relative morphism X ×B X → X ×B X  that 
permutes the factors. Then, by commutativity of the algebra structure on the motive of a 
variety, we have

as cycles in CH2n(X ×B X ×B X) . It follows that the pull–push of (23) along 
X ×B X ×B X → X(2) ×B X  is the cycle

H∗(F) ≃ Sym2HX ⊕

n−2⨁
i=0

HX(−i)⊕

2n−4⨁
i=0

ℚ(−i)ai ,

Rk(F × F) → H2k(F × F).

(23)𝜋k
X
◦𝛿X∕B◦(𝜋

i
X
⊗ 𝜋

j

X
) ∈ CH2n(X ×B X ×B X)

𝜋k
X
◦𝛿X∕B◦(𝜋

i
X
⊗ 𝜋

j

X
)◦𝜎 = 𝜋k

X
◦𝛿X∕B◦𝜎◦(𝜋

j

X
⊗ 𝜋i

X
) = 𝜋k

X
◦𝛿X∕B◦(𝜋

j

X
⊗ 𝜋i

X
)



2112 L. Fu et al.

1 3

Since the cycles (23) vanish cohomologically fiberwise for all k ≠ i + j , the same holds for 
the cycles (24) for all k ≠ i + j . Combining Proposition 5.10 with Theorem 5.2, we find 
that the cycles (24) vanish in the Chow group fiberwise for all k ≠ i + j . Composing on the 
right with 𝜋i

X
⊗ 𝜋

j

X
 proves the theorem.  ◻

Remark 5.13 (Proof of Theorem  5.4 using [13, Corollary  3.3.9]) Let X be a fiber of 
X → B . Using (8), one can see that the cycle 𝜋k

X
◦𝛿X◦(𝜋

i
X
⊗ 𝜋

j

X
) ∈ CH2n(X × X × X) 

belongs to the subring R∗(X × X × X) ∶= ⟨p∗
i
h, p∗

jk
ΔX⟩ , where h is the restriction of H 

to the fiber X and where pi and pjk are the natural projections. It follows that the cycle 
𝜋k
X
◦𝛿X◦(𝜋

i
X
⊗ 𝜋

j

X
) + 𝜋k

X
◦𝛿X◦(𝜋

j

X
⊗ 𝜋i

X
) belongs to R∗(X(2) × X) ∶= R∗(X × X × X)�2 , 

where �2 is the symmetric group acting by permuting the first two factors. Diaz shows 
in [13, Corollary 3.3.9] that the latter subring injects in cohomology. This yields that the 
cycle (24) vanishes fiberwise for all k ≠ i + j and one concludes as before, by composing 
on the right with 𝜋i

X
⊗ 𝜋

j

X
 , that the cycle (23) vanishes fiberwise for all k ≠ i + j , thereby 

establishing Theorem 5.4.

Remark 5.14 (Chern classes) By definition of �2
X

 , we have for a smooth cubic fourfold X 
that CH1(X)(0) = CH1(X) = ℚh . Since the Chern classes of X are powers of h, we get by 
multiplicativity that

for all i. This is especially useful in view of Proposition 2.9.

Remark 5.15 (Uniqueness of the MCK decomposition) Let X be a smooth cubic fourfold 
whose Chow motive is finite-dimensional, in the sense of Kimura [29]. Then X admits a 
unique MCK decomposition. Indeed, let {�i

X
, 0 ≤ i ≤ 8} be a Chow–Künneth decom-

position for X. By Kimura finite-dimensionality, since X has vanishing odd cohomol-
ogy, we must have �i

X
= 0 for all i odd. Since CH0(X) = ℚh4 , we have by Remark  2.2 

that �0
X
=

1

3
h4 × 1X . Since H2(X) = ℚ(−1) = ℚh , we have �2(X) ≃ �(−1) . In other 

words, �2
X
 factors as �(X) → �(−1) → �(X) . Since CH1(X) = ℚh , we see that necessar-

ily �2
X
=

1

3
(h3 + �) × h , where � is a homologically trivial 1-cycle on X. Suppose now that 

{�i
X
, 0 ≤ i ≤ 8} is an MCK decomposition. Then by Proposition 2.7 we know it must be 

self-dual. In particular, we get �8
X
=

1

3
1X × h4 and �6

X
=

1

3
h × (h3 + �) . By multiplicativ-

ity, we must have CH3(X)(0) = (CH1(X)(0))
⋅3 = ℚh3 ; this implies that � = 0 , and therefore 

establishes the uniqueness claim.
Let now X be a cubic threefold. It is known that CH0(X) = ℚh3 and consequently that 

�(X) is finite-dimensional in the sense of Kimura. The above arguments then establish 
unconditionally that X admits a unique MCK decomposition. Likewise, if X is a cubic five-
fold, then it is known that CH0(X) = ℚh5 and CH1(X) = ℚh4 (see [54]) and consequently 
[67, Example 4.12] that �(X) is finite-dimensional in the sense of Kimura. The reader will 
have no trouble adapting the above arguments to show unconditionally that cubic three-
folds and cubic fivefolds admit a unique MCK decomposition.

(24)𝜋k
X
◦𝛿X∕B◦(𝜋

i
X
⊗ 𝜋

j

X
+ 𝜋

j

X
⊗ 𝜋i

X
) ∈ CH2n(X ×B X ×B X).

ci(X) ∈ CHi(X)(0)
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6  Küchle fourfolds of type c7

As a first step towards the construction of Fano fourfolds, Küchle classified in [30] all Fano 
fourfolds of index 1 that can be obtained as zero loci of generic sections of homogenous 
vector bundles on Grassmannian varieties. Among those Küchle fourfolds, those with type 
c5, c7, d3 are of cohomological K3 type. The aim of this section is to establish the exist-
ence of an MCK decomposition for Küchle fourfolds of type c7. Those of type d3 were 
dealt with in [38], while the case of those of type c5 is still open and certainly worth fur-
ther study; see [33]. Let us first recall the definition.

Definition 6.1 [30, Theorem  3.1] A Küchle fourfold of type c7 is the zero locus of a 
generic section of the vector bundle

on the Grassmannian Gr(3, 8) , where Q is the tautological rank-5 quotient bundle and 
O(1) ∶= detQ is the Plücker line bundle.

Küchle fourfolds of type c7 are of cohomological K3 type; their Hodge diamonds are as 
follows:

The main result of this section is the following.

Theorem 6.2 A Küchle fourfold X of type c7 has an MCK decomposition. Moreover, the 
Chern classes cj(X) are in CH∗(X)(0).

We need an alternative description, due to Kuznetsov [32, Section 4], of Küchle four-
folds of type c7 as blow-ups of (special) cubic fourfolds along the Veronese surface. Let 
M be the blow-up of ℙ5 along the Veronese surface S ∶= v2(ℙ

2) , where v2 ∶ ℙ2 → ℙ5 is 
the embedding induced by the linear system |Oℙ2 (2)|.2 Let � ∶ M → ℙ5 be the blow-up 
morphism. It was shown in [32, Corollary 4.11] that a generic Küchle fourfold X of type 
c7 arises as a member of the linear system |3H − E| on M, where H is the pullback of 
the hyperplane section class on ℙ5 and E is the exceptional divisor. Therefore, its image 
Y ∶= �(X) is a cubic fourfold containing S. Set B̄ ∶= ℙH0(M,OM(3H − E)) , and set B to 
be the Zariski open subset of B̄ parameterizing smooth fourfolds Xb ⊂ M such that the 

∧2Q(1)⊕O(1)

2 In [32, Section 4], M was defined to be the zero locus of a generic section of the vector bundle ∧3Q on 
Gr(3, 8) . But according to [32, Theorem 4.10], this is equivalent to the definition by blow-up.
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cubic fourfold Yb = �(Xb) is also smooth. Let X ⊂ M × B and Y ⊂ ℙ5 × B denote the uni-
versal families of Küchle fourfolds of type c7 and cubic fourfolds, respectively.

As a first step of the proof, we establish the Franchetta property for these two families, 
which is of independent interest. Note that Y → B is the universal family of Hassett’s spe-
cial cubic fourfolds C20.

Lemma 6.3 The families X → B and Y → B have the Franchetta property, in the sense of 
Definition 5.1.

Proof Let X → B denote the family of possibly singular hypersurfaces. Since the linear 
system |3H − E| is base point-free, p ∶ X → M has the structure of a projective bundle. We 
first show the following equality:

Indeed, for any � ∈ CHi(X) , the projective bundle formula yields

where � ∈ CH1(X) is relatively ample with respect to p and aj ∈ CHj(M) . Let 
h ∈ CH1(B) be a hyperplane section, and let q ∶ X → B denote the projection. We have 
q∗(h) = � � + p∗(z) , for some � ∈ ℚ and z ∈ CH1(M) . It is readily checked that � is nonzero. 
(Indeed, assume for a moment � were zero. Then we would have q∗(hdimB) = p∗(zdimB) in 
CHdimB(X) . But the right-hand side is zero, since dimB > dimM = 5 , while the left-hand 
side is nonzero.)

The constant � being nonzero, we can write

where z ∈ CH1(M) and c ∈ CH1(B) are nonzero elements. The restriction of q∗(c) to a fiber 
Xb is zero, and so, we find that

for some a�
i
∈ CHi(M) . This proves the equality (25).

Second, we claim that for any b ∈ B , we have the following equality:

where �b ∶ S → Yb is the natural inclusion and the other morphisms are natural restriction 
maps. The right-hand side of (26) is clearly contained in its left-hand side. Let us show the 
reverse inclusion. Denote by �b ∶ Xb → Yb the restriction of � to Xb , which fits into the fol-
lowing Cartesian commutative diagram:

(25)Im
(
CH∗(X) → CH∗(Xb)

)
= Im

(
CH∗(M) → CH∗(Xb)

)
, ∀b ∈ B.

� =

i∑
j=0

p∗(ai−j) ⋅ �
j in CHi(X),

� = p∗(z) + q∗(c) in CH1(X),

�|Xb
= a�

i
|Xb

in CHi(Xb),

(26)
Im

(
CH∗(Y → Yb)

)
= Im

(
CH∗(ℙ5) → CH∗(Yb)

)
+ Im

(
�b,∗ ∶ CH∗(S) → CH∗(Yb)

)
,
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For any z ∈ Im(CH∗(Y → Yb)) , z = �b,∗(�
∗
b
(z)) = �b,∗(i

∗
X
(�)) for some � ∈ CH∗(M) . 

Here, we used (25) and the fact that �∗
b
(z) ∈ CH∗(Xb) is the restriction of a cycle of X  . By 

the base change formula, we obtain

where the first term on the right-hand side is z. The equality (26) is proved.
Denote as before GDCH∗(Yb) ∶= Im(CH∗(Y → Yb)) , the “generically defined cycles.” 

Thanks to (26), GDCH∗(Yb) is generated, as a ℚ-subalgebra of CH∗(Yb) , by the hyper-
plane class h, the fundamental class of the Veronese surface S and the class of a line l 
in the surface S. We need to show that the cycle class map restricted to this subalgebra 
GDCH∗(Yb) = ⟨h, S, l⟩ is injective.

To this end, we first observe that the generator l is redundant:

Hence, GDCH∗(Yb) = ⟨h, S⟩ . The cohomology classes [S] and [h]2 being independent, we 
only need to establish the following two relations in CH∗(Yb):

• S2 is proportional to h4;
• S ⋅ h is proportional to h3.

The first one follows immediately from the fact that CH0(Yb) ≃ ℚ . For the second one, 
using the fact that the class of the Veronese surface in ℙ5 is 4c1(Oℙ5 (1))3 , we have

where iY ∶ Yb → ℙ5 is the natural inclusion.
The Franchetta property for X → B now follows from the commutative diagram

plus the fact that the Veronese surface S ≅ ℙ2 ⊂ Yb has trivial Chow groups.   ◻

Proof (Proof of Theorem  6.2) To prove that Küchle fourfolds of type c7 have an MCK 
decomposition, it suffices, by specialization, to show that the generic Küchle fourfold of 

i∗
Y
�∗(�) = �b,∗(i

∗
X
(�)) + �b,∗(�|E)∗(i∗E(�)),

l ∶= �∗(c1(OS(1))) = �∗(
1

2
�∗(h)) =

1

2
h ⋅ S.

S ⋅ h =
1

3
i∗
Y
(iY ,∗(S)) =

4

3
h3,
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type c7 has an MCK decomposition with universally defined projectors. The generic four-
fold of type c7 is a blow-up of a cubic fourfold as above, and so to establish an MCK, it 
suffices to check that the hypotheses of the “blow-up” part of Proposition 2.9 are met with. 
The second, third and fourth hypotheses follow from Theorem 5.4, Remark 5.14, and the 
fact that S ≅ ℙ2 . The only thing that needs checking is the first hypothesis, i.e., that the 
graph of the inclusion morphism � ∶ S → Y  lies in CH∗(S × Y)(0).

Clearly, the inclusion morphism is universally defined (i.e., it exists as a relative mor-
phism � over the base B). Since

and since the MCK decomposition for S × Yb is universally defined over the base B, it fol-
lows from Lemma 6.3 that

i.e., Γ�b
∈ CH4(S × Yb)(0) , as desired.

Finally, the statement about the Chern classes cj(X) follows from Lemma 6.3, in view 
of the fact that the Chern classes of X and the MCK decomposition of X are universally 
defined.   ◻

Remark 6.4 The link between Küchle c7 and cubic fourfolds is interesting also on the 
cubic fourfolds side. Indeed, thanks to the relation with Küchle c7 we were able to show 
(Lemma  6.3) the Franchetta property for the Hassett divisor C20 (parameterizing cubic 
fourfolds containing a Veronese surface). More generally, one can ask whether all Hassett 
divisors Cd have the Franchetta property. For those values of d where there is an associated 
K3 surface, this is equivalent to O’Grady’s generalized Franchetta conjecture for K3 sur-
faces. For other values of d (such as d = 20 ), the expected answer is not so clear.

7  Todorov surfaces

We exhibit examples of regular surfaces with ample canonical class and with cohomol-
ogy of K3 type that admit a multiplicative Chow–Künneth decomposition, namely Todorov 
surfaces of type (0, 9) and (1, 10). For that purpose, we first state a general criterion for 
lifting MCK decompositions along dominant morphisms of regular surfaces. (Criteria for 
descending an MCK decomposition along a generically finite morphism were given and 
used in [60, 61] to show that MCK decompositions were stable under the operation of tak-
ing the Hilbert scheme of length-2 or 3 subschemes.) We then define Todorov surfaces and 
check that for those of type (0, 9) and (1, 10) all the hypotheses of the general criterion are 
met with. As a by-product, we obtain a Franchetta-type result for those Todorov surfaces.

7.1  A general criterion for lifting MCK decompositions on regular surfaces

Let p ∶ S → T  be a dominant morphism between regular surfaces. In Remark 4.3, we saw 
that an MCK decomposition on S descends to give an MCK decomposition on T. In gen-
eral, one cannot infer an MCK decomposition on S from an MCK decomposition on T. 

Γ�b
∈ CH4(S × Yb) ≅

4⨁
j=2

CHj(Yb)

(�
j

S×Yb
)∗(Γ�b

) = 0 in CH4(S × Yb) ∀j ≠ 8,
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(Consider indeed the blow-up of a K3 surface at a very general point.) The following prop-
osition provides sufficient conditions for an MCK decomposition on T to lift to an MCK 
decomposition on S and will be used to construct such a decomposition on certain Todorov 
surfaces.

Proposition 7.1 (Lifting MCK decompositions) Let T → B and S → B be relatively flat 
and projective surfaces over a smooth quasi-projective complex variety B. For any b ∈ B, 
denote by Tb and Sb the respective fibers. Assume that for all b ∈ B , Sb and Tb are regular 
surfaces which are smooth or finite group quotients of smooth surfaces. Let p ∶ S → T  be 
a dominant morphism over B. Assume the following conditions: 

 (i) (Franchetta property for T∕B) There exists a cycle c ∈ CH2(T) which is fiberwise of 
degree 1 such that for any � ∈ CH2(T) and for any b ∈ B, we have �b ∈ ℚcb;

 (ii) The relative CK decomposition �0
T
= c ×B T  , �4

T
= T ×B c , �2

T
= ΔT∕B − �0

T
− �4

T
 is 

fiberwise an MCK decomposition; in other words, the modified small diagonal van-
ishes Γ3(Tb, cb) = 0 for any b ∈ B (see Proposition 4.1).

 (iii) For any b ∈ B, the pushforward p∗ ∶ CH2(Sb) → CH2(Tb) is an isomorphism.

Then, denoting c� = 1

deg(p)
p∗c, the set {�0

S
= c� ×B S,�

4
S
= S ×B c

�,�2
S
= ΔS∕B − �0

S
− �4

S
} 

defines a relative CK decomposition for S which is fiberwise an MCK decomposition. 
Moreover, the Franchetta property holds for the family S → B.
Proof Intersection theory with rational coefficients extends naturally to quotients of 
smooth varieties by finite groups. Denote by d ∶= deg(p) . First of all, note that the inverse 
of the isomorphism in (iii) is obviously 1

d
p∗ by the projection formula. Then we can estab-

lish the Franchetta property for the family S∕B : for any � ∈ CH2(S) and any b ∈ B , by (i), 
p∗(�b) = mcb in CH0(Tb) for some m ∈ ℚ . Therefore,

To show the multiplicativity of the Chow–Künneth decomposition for the fibers of S , we 
need to reinterpret it as follows. The relative Chow motive of S∕B splits as

where �(S)inv = 1

d
p∗p∗�(S) and �(S)coinv =

(
ΔS∕B −

1

d
p∗p∗

)
�(S) . For any b ∈ B , �(Sb)inv  

forms a subalgebra object of �(Sb) , because 1

d
p∗p∗◦𝛿Sb◦(

1

d
p∗p∗ ⊗

1

d
p∗p∗) =

𝛿Sb◦(
1

d
p∗p∗ ⊗

1

d
p∗p∗) . Moreover, p∗ induces an isomorphism of algebra objects:

In particular, p∗ ∶ CH2(�(Sb)
inv) → CH2(�(Tb)) is an isomorphism. The assumption (iii) 

implies that for any b ∈ B , CH2(�(Sb)
coinv) = 0 . It is also clear that CH0(�(Sb)

coinv) = 0 . By 
Lemma 7.2, �(Sb)coinv is isomorphic to �(−1)r for some r ∈ ℕ . Note that the number r may 
vary with b, but the minimal value is attained by a very general point b.

Now it is easy to see that fiberwise the relative Chow–Künneth decomposition 
for S∕B is given as �i(Sb) = �i(Tb) for i = 0 and 4, via the isomorphism (28), while 
�2(Sb) = �2(Tb)⊕ �(Sb)

coinv . Let us show that it is multiplicative. Let b be a very general 
point of B.

�b =
1

d
p∗(p∗(�b)) =

1

d
p∗(mcb) = mc�

b
∈ ℚc�

b
.

�(S) = �(S)inv ⊕ �(S)coinv,

(28)�(Tb) ≃ �(Sb)
inv.
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• By the isomorphism (28) and the assumption (ii), this decomposition is multiplica-
tive on the subalgebra summand �(Sb)inv.

• By construction, the intersection product sends �(Sb)coinv ⊗ �(Sb)
coinv to �(Sb)inv and 

we need to show that this map lands in �4(Sb) . As �(Sb)coinv ≃ �(−1)r , the morphism 
�(Sb)

coinv ⊗ �(Sb)
coinv → �(Sb)

inv is given by r2 elements of CH2(�(Sb)
inv) . Clearly 

each of these 0-cycles is the restriction to the fiber of an element of CH2(S) . By the 
Franchetta property established in the beginning of the proof, this element is fiber-
wise a multiple of c′

b
 . We conclude by the definition of �4(Sb).

• Similarly, the intersection product sends �(Sb)inv ⊗ �(Sb)
coinv to �(Sb)coinv . From the 

fact that �(Sb)coinv is a direct sum of Lefschetz motives, one sees immediately that the 
intersection product sends �0(Sb)⊗ �(Sb)

coinv to �(Sb)coinv (the fundamental class is a 
unit for the algebra structure on the motive of a variety) and sends �4(Sb)⊗ �(Sb)

coinv 
to zero. It remains to show that the intersection product sends �2(Sb)inv ⊗ �(Sb)

coinv 
to zero. To this end, we use again that �(Sb)coinv ≃ �(−1)r to see that the morphism 
�2(Sb)

inv ⊗ �(Sb)
coinv → �(Sb)

coinv is given by r2 elements of Hom (�2(Sb)
inv, �) , 

which is a subspace of CH2(Sb)deg=0 . Similarly as in the previous item, each of these 
0-cycles is the restriction to the fiber of an element of CH2(S) and the Franchetta 
property for S∕B tells us that these elements are zero.   ◻

The following easy lemma, which is a special case of [69, Cor. 2.2] in the case � = t� , 
is used in the proof of the previous proposition. We provide a proof for the sake of 
completeness.

Lemma 7.2 Let S be a smooth projective regular surface and � ∈ CH2(S × S) be a pro-
jector. If the Chow motive M ∶= (S,�) has vanishing CH2 and CH0, then M is isomorphic 
to a direct sum of copies of the Lefschetz motive �(−1).

Proof The condition CH2(M) = 0 implies that for any x ∈ S , the restriction of � to the 
fiber {x} × S is zero in CH2(S) . By the Bloch–Srinivas decomposition of diagonal theorem 
[7], there exists a divisor D of S, such that � is supported in D × S . As S is assumed to be 
regular, � must be of the form

for some divisors Di,D
′
i
 in S and some 0-cycle � on S. Using the fact that � is a projector, it 

is of the form

Now the hypothesis that CH0(M) = 0 implies that deg(�) = 0 ; hence, � =
∑

i Di × D�
i
 ; that 

is, M is a direct sum of copies of �(−1) .   ◻

7.2  Todorov surfaces

Definition 7.3 [46, 66] A Todorov surface  is a canonical surface S (i.e., a projective 
surface with only rational double points as singularities and with KS ample) with pg(S) = 1 , 
q = 0 , and such that the bicanonical map �2KS

∶ S ⤏ ℙr fits into a commutative diagram

� =
∑
i

Di × D�
i
+ � × S,

� =
∑
i

Di × D�
i
+ deg(�)� × S.
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where � ∶ S → S is an involution for which S∕� is birational to a K3 surface. The K3 surface 
obtained by resolving the singularities of S∕� will be called the K3 surface associated with S.

Definition 7.4 [46] The fundamental invariants  of a Todorov surface S are (�, k) , where 
� is such that the 2-torsion subgroup of Pic(S) has order 2� , and k = K2

S
+ 8 . (The definition 

of k is explained as the number of rational double points on a so-called distinguished par-
tial desingularization of S∕� ; see [46, Theorem 5.2(ii)].)

Remark 7.5 By Morrison [46, p. 335], there are exactly 11 irreducible families of Todorov 
surfaces, corresponding to the 11 possible values of the fundamental invariants:

For most of these families (in particular for types (0, 9) and (1, 10) which are of interest to 
us), examples of smooth members are given in [66].

7.3  The Franchetta property for Todorov surfaces of type (0, 9) and (1, 10)

7.3.1  Explicit descriptions

We now restrict attention to Todorov surfaces S with fundamental invariants (0,  9) and 
(1, 10). This means that either K2

S
= 1 or K2

S
= 2 and the fundamental group of S is ℤ∕2ℤ 

[9, Theorem 2.11]. In these two cases, there happens to be a nice explicit description of S 
in terms of complete intersections in weighted projective spaces.

Theorem 7.6 [8, Theorem 3; 65, Theorem 6] Let S be a Todorov surface with fundamental 
invariants (0, 9). Then S is isomorphic to a complete intersection of two degree 6 hypersur-
faces in the weighted projective space ℙ ∶= ℙ(1, 2, 2, 3, 3), invariant under the involution

(�, k) ∈
{
(0, 9), (0, 10),(0, 11), (1, 10), (1, 11),

(1, 12), (2, 12), (2, 13), (3, 14), (4, 15), (5, 16)
}
.

� ∶ ℙ → ℙ

[x0, x1,… , x4] ↦ [−x0, x1,… , x4].
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Moreover, the involution � of ℙ restricts to the involution of Definition 7.3 on S.
Conversely, a weighted complete intersection as above with only rational double points 

as singularities is isomorphic to a Todorov surface with fundamental invariants (0, 9).

Theorem 7.7 [9, Theorems 2.8, 2.9] Let S be a Todorov surface with fundamental invari-
ants (1, 10). Then S is isomorphic to the quotient V∕�, where V is a complete intersection 
in the weighted projective space ℙ ∶= ℙ(1, 1, 1, 2, 2) having only rational double points as 
singularities, given by the system of degree 4 equations

Here, [w ∶ x1 ∶ x2 ∶ z3 ∶ z4] are coordinates for ℙ, and q, q′ are quadratic forms, Q,Q′ are 
quartic forms without common factor, and c, c′ are constants not both 0. The involution 
� ∶ ℙ → ℙ is defined as

Moreover, the involution � of ℙ defined as

induces the involution of Definition 7.3 on S.
Conversely, given a weighted complete intersection V ⊂ ℙ as above, the quotient 

S ∶= V∕� is isomorphic to a Todorov surface with fundamental invariants (1, 10).

Remark 7.8 As is shown in [8] (resp. [9]), the Todorov surfaces with fundamental invari-
ants (0,  9) (resp. (1,  10)) form a 12-dimensional subfamily of a larger 18-dimensional 
(resp. 16-dimensional) family of surfaces of general type with pg = 1 , q = 0 and K2 = 1 
(resp. K2 = 2 and �1 = ℤ∕2ℤ ), where the above explicit description using complete inter-
sections in the weighted projective space is true. We do not know how to establish an MCK 
decomposition for these larger families of regular surfaces with pg = 1 . Note that for any 
surface S in these larger families, there is still a Hodge isometry H2

tr
(S,ℚ) ≅ H2

tr
(T̃ ,ℚ) with 

T̃  a K3 surface [47], but it is not clear whether this isometry is induced by an algebraic 
correspondence.

7.3.2  Universal families

In view of Theorems 7.6 and 7.7, let us construct universal families, which will play a crucial 
role in establishing the Franchetta property.

Notation 7.9 (i) (Case (0, 9)): Let ℙ be the weighted projective space ℙ(1, 2, 2, 3, 3) . Let 
B ⊂ ℙ

(
H0(ℙ,Oℙ(6))

⊕2
)
 be the linear subspace parameterizing pairs of (weighted) homo-

geneous polynomials of degree 6

where x0 only occurs in even degree. Let B be the Zariski open subset of B consisting of 
b ∈ B such that

{
F = z2

3
+ cw4 + w2q(x1, x2) + Q(x1, x2) = 0

G = z2
4
+ c�w4 + w2q�(x1, x2) + Q�(x1, x2) = 0.

[w ∶ x1 ∶ x2 ∶ z3 ∶ z4] ↦ [−w ∶ x1 ∶ x2 ∶ z3 ∶ z4].

[w ∶ x1 ∶ x2 ∶ z3 ∶ z4] ↦ [w ∶ x1 ∶ x2 ∶ −z3 ∶ z4]

Fb(x0,… , x4), Gb(x0,… , x4),
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is a non-singular surface.
Let S → B denote the total space of the family over B (i.e., by Theorem 7.6, the fiber 

Sb over b ∈ B is a smooth Todorov surface of type (0, 9)), and let S̄ → B denote the total 
space of the family over B . We have a diagram of families

where T̄  (resp.  T  ) is the quotient of S̄ (resp.  S ) under the involution � induced by 
[x0, x1,… , x4] ↦ [−x0, x1,… , x4] . That is, the fiber Tb over b ∈ B is a “singular K3 sur-
face,” and its minimal resolution is the K3 surface associated with Sb.

(ii) (Case (1, 10)): Let ℙ be the weighted projective space ℙ(1, 1, 1, 2, 2) with coordi-
nates [w, x1, x2, z3, z4] . Let B be the linear subspace of ℙ

(
H0(ℙ,Oℙ(4))

⊕2
)
 parameterizing 

pairs of weighted homogeneous equations of the form

Let B be the Zariski open subset of B consisting of points b ∈ B such that

is a smooth surface and Fb,Gb are as in Theorem 7.7 (in particular aa′ ≠ 0 and c, c′ not 
both 0).

Let V → B denote the total space of the family over B, and let S ∶= V∕⟨�⟩ → B denote 
the family obtained by applying the fixed point-free involution � × idB to V ⊂ ℙ × B (i.e., 
by Theorem  7.7, the fiber Sb over b ∈ B is a smooth Todorov surface of type (1,  10)). 
Denote similarly V̄ and S̄ ∶= V̄∕⟨𝜏⟩ the total spaces of the corresponding families over B . 
We have a diagram of families

where T̄  (resp. T  ) is the quotient of S̄ (resp. S ) under the involution � induced by 
[w, x1, x2, z3, z4] ↦ [w, x1, x2,−z3, z4] . That is, the fiber Tb over b ∈ B is a “singular K3 sur-
face,” and its minimal resolution is the K3 surface associated with Sb.

Remark 7.10 In both cases of Notation 7.9, it can be checked (cf. [8, 9]) that the parameter 
space B is non-empty, i.e., the general Todorov surface of type (0, 9) or (1, 10) is smooth. 
See also Remark 7.5.

Sb ∶=
{
x ∈ ℙ | Fb(x) = Gb(x) = 0

}

S ⊂ S̄

↓ ↓

T ⊂ T̄

{
Fb = az2

3
+ cw4 + w2q(x1, x2) + Q(x1, x2),

Gb = a�z2
4
+ c�w4 + w2q�(x1, x2) + Q�(x1, x2).

Vb ∶=
{
x ∈ ℙ | Fb(x) = Gb(x) = 0

}

V ⊂ V̄

↓ ↓

S ⊂ S̄

↓ ↓

T ⊂ T̄
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7.3.3  The Franchetta property

Proposition 7.11 (Franchetta property for T) Let T → B be the universal family as 
above. Let � ∈ CH2(T) be a cycle that has degree 0 on the general fiber. Then

Proof For the case (0, 9), the family T → B is constructed as the quotient

where S → B is as in Notation 7.9(i) , and � is as in Theorem 7.6. The quotient ℙ∕⟨�⟩ can 
be identified with the weighted projective space ℙ� ∶= ℙ(2, 2, 2, 3, 3) , and quotients of the 
form Tb = Sb∕⟨�b⟩ can be identified with weighted complete intersections of degree (6, 6) 
in ℙ′ . It follows that T̄ → B̄ is the same as the universal family of weighted complete inter-
sections of degree (6, 6) in ℙ′ . As such, T̄ → ℙ′ has the structure of a projective bundle.

Once we have a projective bundle structure, the argument proving (25) shows the fol-
lowing equality:

But CH2(ℙ�) is one-dimensional, generated by the square of a hyperplane h ⊂ ℙ′ . It follows 
that for any � ∈ CH2(T),

where m ∈ ℚ and hb ∶= h|Tb ∈ CH1(Tb) is a hyperplane section. This implies the Fran-
chetta property.

For the case (1, 10), the family T → B is constructed as the quotient

where V → B and � and � are as in (ii) of Notation 7.9. We note that for any b ∈ B the sur-
face Vb ⊂ ℙ is contained in ℙ− ∶= ℙ ⧵ {[0, 0, 0, 1, 0], [0, 0, 0, 0, 1]} . This means that V is a 
Zariski open subset of V̄− , which is defined by the fiber diagram

It is proved in [37, Lemma 2.12] that V̄−
→ ℙ− is a ℙr-bundle. The argument proving (25) 

then shows that there is equality

But CH2(ℙ−) is one-dimensional, generated by the square of a hyperplane h. It follows that

and we conclude as before.   ◻

�|Tb = 0 in CH2(Tb) ∀b ∈ B.

� ∶ S → S∕⟨�⟩ =∶ T

Im
(
CH∗(T̄) → CH∗(Tb)

)
= Im

(
CH∗(ℙ�) → CH∗(Tb)

)
, ∀b ∈ B.

�|Tb = mh2|Tb in CH2(Tb)

� ∶ V → V∕⟨�, �⟩ =∶ T,

V̄
−

⊂ V̄

↓ ↓

ℙ− ⊂ ℙ.

Im
(
CH∗(V̄

−
) → CH∗(Vb)

)
= Im

(
CH∗(ℙ−) → CH∗(Vb)

)
∀b ∈ B.

(�b)
∗(�|Tb ) = (�∗�)|Vb

= h2|Vb
in CH2(Vb),
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Remark 7.12 The link between Todorov surfaces and K3 surfaces is interesting also from 
the K3 side. Indeed, Proposition 7.11 says that the Franchetta property holds for the uni-
versal K3 surface obtained as a double cover of the projective plane branched along two 
cubics. (The fact that the quotient T is of this type is proved in [57]. The fact that a gen-
eral such K3 is quotient of a Todorov surface of type (0, 9) is because the period map for 
Todorov surfaces of type (0, 9) is known to have two-dimensional fibers [65].) This cor-
responds to a ten-dimensional locus inside F2 , the moduli stack of K3 surfaces of degree 2, 
and it is not a priori clear that the Franchetta property should be true over this locus. This is 
similar to Remark 6.4 about special cubic fourfolds related to Küchle fourfolds of type c7.

7.4  Constructing an MCK decomposition

We prove Theorem 2. First, we recall the following result concerning the Chow group of 
0-cycles of Todorov surfaces of type (0, 9) and (1, 10). It can be seen as a special case of 
the Bloch conjecture.

Theorem 7.13 [35, 37] Let S be a smooth Todorov surface with fundamental invariants 
(0, 9) or (1, 10). Let T̃  be its associated K3 surface, and let Γ ∈ CH2(S × T̃) be the cor-
respondence induced by the quotient morphism S → T ∶= S∕� and the resolution of singu-
larities T̃ → T . Then Γ induces an isomorphism

Proof (Sketch of proof) The (0, 9) case is [35, Proposition 30], while the (1, 10) case is 
[37, Theorem 5.2]. In both cases, the crux in proving an isomorphism of Chow groups is 
that there is an explicit description of the surfaces S in terms of (quotients of) complete 
intersections. This ensures that Voisin’s method of “spread” [72] applies. This method 
exploits the fact that the total space of the universal family of complete intersections of 
a certain type has a very simple structure. Thanks to this simple structure, one can prove 
the Franchetta property for self-correspondences of degree zero that exist universally. This 
applies in particular to (a modification of) the graph of the involution � .   ◻

Proof (Proof of Theorem 2) This is an application of Proposition 7.1, with S → B the fam-
ily of smooth Todorov surfaces, and T → B the family of quotients under the involution � . Let 
us ascertain that the hypotheses of Proposition 7.1 are met with. The Franchetta property for 
T → B is Proposition 7.11. The MCK decomposition for the “singular K3 surface” T follows 
from the MCK decomposition for its minimal resolution of singularities T̃ (which is a K3 sur-
face and hence admits an MCK decomposition by Example 4.2) via Remark 4.3 (which still 
makes sense for surfaces with quotient singularities). Finally, hypothesis (iii) is Theorem 7.13.  
 ◻

Remark 7.14 Theorem  7.13 has recently been proved in [75] for Todorov surfaces with 
fundamental invariants (2, 12). As such, it seems likely that the present approach also 
works to establish an MCK decomposition for this third family of Todorov surfaces.
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