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Abstract
Motivated by a Möbius invariant subdivision scheme for polygons, we study a curvature 
notion for discrete curves where the cross-ratio plays an important role in all our key defini-
tions. Using a particular Möbius invariant point-insertion-rule, comparable to the classical 
four-point-scheme, we construct circles along discrete curves. Asymptotic analysis shows 
that these circles defined on a sampled curve converge to the smooth curvature circles as 
the sampling density increases. We express our discrete torsion for space curves, which is 
not a Möbius invariant notion, using the cross-ratio and show its asymptotic behavior in 
analogy to the curvature.
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Mathematics Subject Classification  41A60 · 52Cxx · 53A40

1  Introduction

Many topics in applied geometry like computer graphics, computer vision, and geometry 
processing in general, cover tasks like the acquisition and analysis of geometric data, its 
reconstruction, and further its manipulation and simulation. Numerically stable approxima-
tions of 3D-geometric notions play a crucial part in creating algorithms that can handle 
such tasks. In particular the estimation of curvatures of curves and surfaces is needed in 
these geometric algorithms [3, 10, 12]. A good understanding of estimating curvatures of 
curves often serves as an important first step for estimating curvatures of surfaces.

A different approach to discrete curvatures comes from discrete differential geometry [2]; 
the motivation behind any discretization is to apply the ideas and methods from classical dif-
ferential geometry instead of “simply” discretizing equations or using classical differential 
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calculus. Discrete curvatures defined via this approach are thus connected to a sensible notion 
of a curvature circle [9], a consistent definition of a Frenet-frame [5], or geometric ideas that 
appear in geometric knot theory [14]. Sometimes discrete definitions of “differential” notions 
of curves are justified to be sensible via asymptotic analysis and convergence behavior [11, 
13].

In the present paper, we combine both strategies in a way. For example, we show the invari-
ance of our discrete curvature circle with respect to Möbius transformations or characterize 
classes of discrete curves that are Möbius equivalent to an arc length parametrization. On the 
other hand, and therein lies our focus, we use asymptotic analysis to justify the definitions of 
our discrete notions. For example, in analogy to Sauer [13], we discretize/sample a smooth 
curve s(t) by constructing the inscribed polygon s(k�) with k ∈ ℤ as depicted in Fig. 2 (right). 
Using this discrete curve, we prove that our discrete curvature �k , which is defined at the poly-
gon edge k, k + 1 , is a second-order approximation of the curvature � of s, i.e., �k = � + O(�2) 
as � → 0 (see Theorem 2). Our definition of �k will use four consecutive points as input. From 
our definition of the curvature circle we immediately obtain a discrete Frenet-frame in Theo-
rem 3 and Sect. 5.2.

In our definition of the discrete curvature circle appears the cross-ratio of four points as 
main ingredient of its definition. The Möbius invariance of the cross-ratio thus implies the 
same for the curvature circle, analogous to smooth curves. The cross-ratio are also used in our 
definition for the torsion, a geometric quantity that is not Möbius invariant.

Our exposition starts with setting the scene in the preliminaries (Sec. 2). Then we investi-
gate a notion of discrete curvatures notion for planar curves (Sec. 3) which we generalize to 
space curves in Sect. 4. In Sect. 5 we examine a discrete notion of torsion for three-dimen-
sional curves. In Sect. 6 we consider some special cases and geometric properties of a particu-
lar ‘point-insertion-rule’ (Eqn. (3)) that plays an important rule in our definition of the discrete 
curvature. Finally, in Sect. 7 we perform numerical experiments to convince the robustness 
our discrete notions of curvature and torsion.

2 � Preliminaries

2.1 � Quaternions

The Hamiltonian quaternions ℍ are very well suited for expressing geometry in three dimen-
sional space and in particular for three dimensional Möbius geometry (Sec. 2.2). The quater-
nions constitute a skew field whose elements can be identified with ℝ ×ℝ

3 . In this paper we 
write quaternions in the following way:

The first component r = Req of a quaternion q = [r, v] is called the real part, 
and the second component v = Imq the imaginary part. Consequently, we 
write Imℍ = {q ∈ ℍ ∣ q = [0, v], with v ∈ ℝ

3} . The addition in this nota-
tion of ℍ reads [r, v] + [s,w] = [r + s, v + w] , while the multiplication reads 
[r, v] ⋅ [s,w] = [rs − ⟨v,w⟩, rw + sv + v × w] , where ⟨⋅, ⋅⟩ is the Euclidean scalar product in 
ℝ

3 and where × is the cross product. The conjugation of q = [r, v] is defined by q = [r,−v] , 
and the square root of the real number qq̄ is called norm of q, denoted by �q� = √

qq̄ . For 
every q ∈ ℍ ⧵ {0} its inverse is given by q−1 = q∕|q|2.

ℍ = {[r, v] ∣ r ∈ ℝ, v ∈ ℝ
3}.
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Any quaternion q ∈ ℍ can be represented via its polar representation 
q = |q|[cos�, v sin�] with ‖v‖ = 1 and � ∈ [0,�] . In that case we can define the square 
root of q by 

√
q =

√�q�[cos �

2
, v sin

�

2
] . Also when computing the square root of a com-

plex number we will always choose the principal square root 
√
z =

√�z� exp(i�∕2) for 
z = |z| exp(i�) with � ∈ (−�,�] . The case of z ∈ ℝ<0 will not play any role in what follows 
(as explained in Sec. 3.1 and Sec. 4.2).

Finally, to express points and vectors in ℝ3 with quaternions, we identify ℝ3 with Imℍ 
via v ↔ [0, v].

2.2 � Möbius geometry

A Möbius transformation is a concatenation of a finite number of reflections � in spheres 
(center c, radius r); hence, � ∶ ℝ

n ∪ {∞} → ℝ
n ∪ {∞} with �(x) = (x − c)∕‖x − c‖2 + c , 

�(∞) = c , �(c) = ∞ . Invariants in Möbius geometry are consequently notions and objects 
that stay invariant under Möbius transformations. An important example of an invariant of 
planar Möbius geometry is the complex cross-ratio.

2.3 � Cross‑ratio

The cross-ratio is a fundamental notion in geometry, in particular Möbius geometry. For 
four quaternionic numbers a, b, c, d ∈ ℍ the cross-ratio is defined as

and it is therefore a quaternion itself. The complex numbers ℂ constitute a subfield in ℍ . 
In our notation ℂ can be embedded in ℍ as ℂ ≅ {q ∈ ℍ ∣ q = [r, (x, 0, 0)], with r, x ∈ ℝ} . 
Consequently, the cross-ratio for complex numbers can be written in the form

as ℂ is commutative.
It is well known that the cross-ratio of four points in ℝ3 or in ℂ is real if and only if the 

four points are concyclic (see e.g. [1]).

2.4 � Smooth curves

Our goal is to define a notion of curvature and torsion for discrete curves (Sec. 2.5). We 
will compare our discrete notions to those of the classical (smooth) differential geometry 
and as such to parametrized curves s ∶ ℝ → ℝ

3 . We will always assume s to be sufficiently 
differentiable. The curvature � and torsion � of s are given by (see e.g. [7])

The torsion vanishes if and only if the curve is planar. For a planar curve s ∶ ℝ → ℝ
2 the 

curvature is the oriented quantity

cr(a, b, c, d) ∶= (a − b)(b − c)−1(c − d)(d − a)−1,

cr(a, b, c, d) =
(a − b)(c − d)

(b − c)(d − a)
,

(1)� =
‖s� × s��‖
‖s�‖3 , and � = −

⟨s� × s��, s���⟩
‖s� × s��‖2 .
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2.5 � Discrete curves

By a discrete curve, we refer to a polygonal curve in ℝ2 or ℝ3 which is given by its vertices 
via a map � ∶ ℤ → ℝ

3 . For visual analogy to the notion of a smooth curve we connect 
for all i ∈ ℤ consecutive vertices �(i)�(i + 1) by a straight line segment, which we call the 
edges. However, connecting by line segments is not crucial in this paper except for bet-
ter visualizations in our illustrations. To shorten the notation we will write �i for �(i) . We 
call the discrete curve planar if it is contained in a plane, i.e., in a two dimensional affine 
subspace.

3 � Curvature of planar discrete curves

We first begin our investigation with a discrete curvature notion for planar curves and 
extend it in Sect. 4 to curves in ℝ3 . We identify the two dimensional plane in which our 
curves live with the plane of complex numbers ℂ . Before we proceed to the definition of 
the curvature (Sec.  3.2) we will consider a ‘point-insertion-rule’ in Sect.  3.1. We have 
also considered this point-insertion-rule in the context of a Möbius invariant subdivision 
method in [16].

3.1 � Point‑insertion‑rule in ℂ

The square root is not uniquely defined in our formulation (see Sec. 2.1) for negative real 
numbers. So we must exclude that case in the following which is not a significant restric-
tion as this case (i.e., cr(c, a, b, d) ∈ ℝ<0) corresponds to a concyclic quadrilateral a, b, c, d 
with a separated from d by b and c on the circumcircle. We exclude such “zigzag” quadri-
laterals in the following and consider them as discrete singularities of our polygons.

Let a, b, c, d ∈ ℂ be four pairwise distinct points. We construct a new point 
f (a, b, c, d) ∈ ℂ in an, at a first glance, very unintuitive way:

We will explain more about special cases and the geometric relation of f with respect to 
a, b, c, d in Sect. 6.

Lemma 1  The newly inserted point f(a, b, c, d) fulfills

In particular the construction of f is Möbius invariant.

Proof  We expand the cross-ratio on the left hand side and obtain

(2)� =
det(s�, s��)

‖s�‖3 .

(3)f (a, b, c, d) ∶=
c(b − a)

√
cr(c, a, b, d) + b(c − a)

(b − a)
√
cr(c, a, b, d) + (c − a)

∈ ℂ ∪∞.

cr(c, a, b, f (a, b, c, d)) = −
√
cr(c, a, b, d).



1939Discrete curvature and torsion from cross‑ratios﻿	

1 3

Now simple manipulations of this equation yield  (3). The Möbius invariance follows 
immediately, as f can be expressed just in terms of cross-ratios. 	�  ◻

Theorem 1  Let a, b, c, d ∈ ℂ be four pairwise distinct points and consider the four new 
points obtained from f by cyclic permutation:

Then pab, pbc, pcd, pda are concyclic with cr(pab, pbc, pcd, pda) = −1 (see Fig. 1 left).

Proof  It is a well-known fact that the cross-ratio of four points is real if and only if the four 
points lie on a circle. Hence, we only have to show the second part; namely,

Another well known (and readily verifiable) fact about the cross-ratio is 
cr(b, a, d, c) = cr(a, b, c, d) . Consequently, the cross-ratios that appear in the definition of 
pab and pcd are the same as well as in pbc and pda . So, let us denote the cross-ratios by 
q ∶= cr(c, a, b, d) = cr(a, c, d, b) and start to collect the terms of the second equation of (4):

(c − a)(b − f )

(a − b)(f − c)
= −

√
cr(c, a, b, d).

pab = f (d, a, b, c), pbc = f (a, b, c, d), pcd = f (b, c, d, a), pda = f (c, d, a, b).

(4)

(pab − pbc)(pcd − pda)

(pbc − pcd)(pda − pab)
= −1, or equivalently 2pabpcd + 2pbcpda = (pab + pcd)(pbc + pda).

pbcpda =
c(b − a)

√
q + b(c − a)

(b − a)
√
q + (c − a)

⋅

a(d − c)
√
q + d(a − c)

(d − c)
√
q + (a − c)

= ⋯ =

=
(1 +

√
q)(abd − abc − bcd + acd)

(1 +
√
q)(a − b − c + d)

=
abd − abc − bcd + acd

a − b − c + d
.

Fig. 1   Left: A quadrilateral a, b, c, d ∈ ℂ with its newly inserted points pab, pbc, pcd , pda which have a cross-
ratio of −1 and therefore lie on a common circle. Center: The four points a, pab, b, pcd also have a cross-ratio 
of −1 and lie therefore also on a common circle k. Furthermore, cr(a, pab, b, pcd) = −1 implies that the pair 
(a, b) is separated by the pair (pab, pcd) . Consequently, a and b lie on different sides of k. Right: Two con-
cyclic quadrilaterals, convex (top) and non-convex with crossing edges (bottom)
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As pab and pcd result from pda and pbc , respectively, by a cyclic permutation of one step 
( a → b, b → c, c → d, d → a ), we immediately obtain by shifting from the last identity

Next we compute the factors of the right hand side:

and again the same permutation of one shift yields

Adding and multiplying these notions together yields Eq. (4). 	�  ◻

Lemma 1 immediately implies the following two important consequences:

Corollary 1 

	 (i)	 If a, b, c, d lie on a circle such that  cr(c, a, b, d) > 0 (which is the case for a con-
vex quadrilateral, i.e., non-crossing edges; see Fig. 1 right) then the four points 
pab, pbc, pcd, pda lie on the same circle.

	 (ii)	 The circle given by Theorem 1 is connected to a, b, c, d in a Möbius invariant way.

Lemma 2  For any four pairwise distinct points a, b, c, d ∈ ℂ , the harmonic conjugate 
of pab with respect to a,  b is pcd , which equivalently means cr(a, pab, b, pcd) = −1 (see 
also Fig. 1 center). Analogously, for the other quadruples we have cr(b, pbc, c, pda) = −1 , 
cr(c, pcd, d, pab) = −1 , and cr(d, pda, a, pbc) = −1.

Proof  We show

The product pabpcd has been computed before in Eq. (5), and the sum pab + pcd in Eq. (6). 
Multiplying these terms together as written above on the right hand side concludes the 
proof. 	�  ◻

Corollary 2  Let a, b, c, d ∈ ℂ be four pairwise distinct points and let k denote the circle 
through pab, pbc, pcd, pda . Then either all eight points lie on the same circle k, or a, c lie on 
one side of k and b, d on the other side (see Fig. 1 center).

Proof  The two points pab and pcd lie on the circle k. Suppose a lies outside of k as depicted 
in Fig. 1 (center). Then Lemma 2 implies that b lies on a circle through a, pab, pcd , and fur-
ther, cr(a, pab, b, pcd) = −1 which implies that the pair (pab, pcd) separates the pair (a, b) (cf. 
[6]). Consequently, b lies inside k. The same argument then implies that c lies outside again 
and further d inside. 	�  ◻

(5)pabpcd =
abc − bcd − acd + abd

a + b − c − d
.

pbc + pda =
c(b − a)

√
q + b(c − a)

(b − a)
√
q + (c − a)

+
a(d − c)

√
q + d(a − c)

(d − c)
√
q + (a − c)

= … =
2ad − 2bc

a − b − c + d
,

(6)pab + pcd =
2ab − 2cd

a + b − c − d
.

cr(a, pab, b, pcd) = −1, or equivalently, 2ab + 2pabpcd = (pab + pcd)(a + b).
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3.2 � Curvature for planar curves

Let us consider the planar discrete curve � ∶ ℤ → ℂ as illustrated in Fig.  2 (left). We 
assume that any four consecutive vertices of the curve are pairwise distinct. Then, 
Thm.  1 guarantees the existence of a circle ki passing through f (�i−1, �i, �i+1, �i+2) , 
f (�i, �i+1, �i+2, �i−1) , f (�i+1, �i+2, �i−1, �i) , f (�i+2, �i−1, �i, �i+1) . We use this circle ki in the 
following definition of our discrete curvature.

Definition 1  Let � ∶ ℤ → ℂ be a planar discrete curve. We call the circle ki (discrete) 
curvature circle at the edge �i�i+1 , the inverse of its radius (discrete) curvature �i at the 
edge �i�i+1 , and its center mi (discrete) curvature center. For an illustration see Fig. 2 (left).

A ‘good’ discrete definition ‘mimics’ its smooth counterparts. Along these lines we note 
that our discrete curvature circle is Möbius invariant (Corollary 1  (ii)) as in the smooth 
case. Furthermore, the curvature circle of a discrete curve with vertices on a circle—we 
could call it a discrete circle—is the circumcircle itself, as expected. And Corollary  2 
implies that the curvature circle separates the first and the last point of the four points that 
are involved in its definition (see Fig. 2 left). This resembles the local behavior of smooth 
curves at non-vertex points where the curvature circle locally separates the curve into an 
‘inner’ and an ‘outer’ curve.

In the following we continue our justification of this definition of the discrete curva-
ture circle using asymptotic analysis. We will show that the discrete curvature circle (its 
radius and center) of a sampled curve s converges to the smooth curvature circle as the 
sampling gets denser and denser. For an illustration of the setting of the following theorem, 
see Figs. 2 and 3.

Theorem 2  Let s ∶ ℝ → ℂ be a sufficiently smooth planar curve and let u, � ∈ ℝ . Further 
let � ∶ ℤ → ℂ be the planar discrete curve that samples the smooth curve s in the following 
way:

Then the discrete curvature �0 of � at the edge �0�1 is a second-order approximation of the 
smooth curvature � of s at u:

�k = �(k) ∶= s(u + (2k − 1)�) k ∈ ℤ.

Fig. 2   Left: A planar discrete curve � ∶ ℤ → ℂ with the discrete curvature circle ki at edge �i�i+1 (the points 
pab correspond to p�i−1�i etc). Right: Sampling a smooth curve s ∶ ℝ → ℝ

2 at u + (2k − 1)� to obtain the 
discrete curve � ∶ ℤ → ℝ

2 with �k = s(u + (2k − 1)�) . For our asymptotic analysis we let the real number � 
go to zero
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The center m0 of the discrete curvature circle k0 of � converges to the center of the smooth 
curvature circle of s at the same rate,

where N denotes the unit normal vector along s. Furthermore, p�0�1 = f (�−1, �0, �1, �2) is 
even a third-order approximation of s(u), i.e.,

Before we give a proof of this theorem,we need a couple of preparatory lemmas. 
We consider without loss of generality the approximation point at u = 0 . To study the 
asymptotic behavior of the curvature notions based on our sampled curve, we need its 
Taylor expansion at 0:

For the sake of brevity we will just write s instead of s(0), s′ instead of s�(0) , etc. And until 
the end of this section we will use the following abbreviations for those four points on 
which the curvature circle depends:

We will very frequently encounter rational functions depending on � for which we need 
its Taylor expansion. So at first, we prepare a general technical lemma that can easily be 
verified.

Lemma 3  Let xi, yi ∈ ℂ with y0 ≠ 0 , then

(7)�0 = |�(u)| + O(�2).

(8)m0 = s(u) +
1

�(u)
N(u) + O(�2),

(9)p�0�1 = s(u) + O(�3).

s(u) = s(0) + us�(0) +
u2

2
s��(0) +

u3

6
s���(0) + O(u4).

(10)a ∶= �−1 = s(−3�), b ∶= �0 = s(−�), c ∶= �1 = s(�), d ∶= �2 = s(3�).

∑2

k=0
xi�

i

∑2

k=0
yi�

i
=

x0

y0
+

x1y0 − x0y1

y2
0

� +
x2y

2
0
− x1y0y1 + x0y

2
1
− x0y0y2

y3
0

�2 + O(�3).

Fig. 3   The white points mark four sampled points which move closer and closer to a common point from 
left to right. The associated discrete curvature circle (exactly passing through the black points) converges at 
the same time to the smooth curvature circle
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Our first task is to compute the Taylor expansion of the cross-ratio which appears in 
the ‘inserting’ construction (3). The following formula illustrates also the close connec-
tion between the cross-ratio and the Schwarzian derivative of s which reads 2s

�s���−3f ��2

2f �2
 , cf. 

[4].

Lemma 4  Let a, b, c, d be the four consecutive points of the sampled curve as defined 
in (10). Then

Proof  We start by computing the factors of

in terms of the Taylor expansion:

And similarly we obtain

Now the numerator of the cross-ratio becomes

while the denominator becomes

Consequently, after canceling −4�2 the cross-ratio reads

which, using Lemma 3, simplifies to

the Taylor expansion of the first cross-ratio. The computations for the second one is simi-
lar. 	�  ◻

cr(c, a, b, d) = 4 +
12s��2 − 8s�s���

s�2
�2 + O(�4), cr(b, d, a, c) =

4

3
+

−12s��2 + 8s�s���

9s�2
�2 + O(�4).

cr(c, a, b, d) =
(c − a)(b − d)

(a − b)(d − c)

c − a = s(�) − s(−3�) = �s� +
�2

2
s�� +

�3

6
s��� + O(�4) −

(
− 3�s� +

9�2

2
s�� −

9�3

2
s��� + O(�4)

)

= 4�s� − 4�2s�� +
14

3
�3s��� + O(�4).

(11)

a − b = −2�s� + 4�2s�� −
13

3
�3s��� + O(�4),

b − d = −4�s� − 4�2s�� −
14

3
�3s��� + O(�4),

d − c = 2�s� + 4�2s�� +
13

3
�3s��� + O(�4).

(c − a)(b − d) = −16s�2�2 +
(
16s��2 −

112s�s���

3

)
�4 + O(�6),

(a − b)(d − c) = −4s�2�2 +
(
16s��2 −

52s�s���

3

)
�4 + O(�6).

cr(c, a, b, d) =
4s�2 − (4s��2 −

28

3
s�s���)�2 + O(�4)

s�2 − (4s��2 −
13

3
s�s���)�2 + O(�4)

,

cr(c, a, b, d) = 4 +
12s��2 − 8s�s���

s�2
�2 + O(�4),
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Lemma 5  Let a, b, c, d be as in Lemma 4. Then

Proof  This equation follows immediately from the general Taylor expansion for

and from Lemma 4. 	�  ◻

Now we are in the position to show the important lemma that guarantees that 
p�0�1 = pbc is a third-order approximation of s.

Lemma 6  Let a, b, c, d be as in Lemma 4. Then

Proof  We have to compute

and start with its components:

and analogously

Putting numerator and denominator together also using Lemma 5 we obtain

and after canceling � , applying Lemma 3 concludes the proof. 	�  ◻

Note that Lemma 6 proves Eq. (9) in Theorem 2 which says that = pbc converges to s 
at third-order. The following lemma can be verified analogously to Lemma 6.

Lemma 7  Let a, b, c, d be as in (10). Then

√
cr(c, a, b, d) = 2 +

3s��2 − 2s�s���

s�2
�2 + O(�3).

�
x0 + x2�

2 + O(�3) =
√
x0 +

x2

2
√
x0
�2 + O(�3),

pbc = s + O(�3).

pbc = f (a, b, c, d) =
c(b − a)

√
cr(c, a, b, d) + b(c − a)

(b − a)
√
cr(c, a, b, d) + (c − a)

,

c(b − a)
(11)
=

(
s + �s� +

�2

2
s�� +

�3

6
+ O(�4)

)(
2�s� − 4�2s�� +

13

3
�3s��� + O(�4)

)

= 2�ss� + (2s�2 − 4ss��)�2 +
(
13

3
s�s��� − 3s�s��

)
�3 + O(�4),

b(c − a) = 4ss�� − 4(s�2 + ss��)�2 +

(
6s�s�� +

14ss���

3

)
�3 + O(�4).

pbc =
8ss�� − 12ss���2 +

(
6s��2

s�
+

28s���

3

)
s�3 + O(�4)

8s�� − 12s���2 +
(
6s��2

s�
+

28s���

3

)
�3 + O(�4)

,
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Lemma  7 implies that pda = p�i+2�i−1 is a second-order approximation of s − 2s�2

s��
 . This 

point s − 2s�2

s��
 has an interesting geometric interpretation which we detail in Proposition 1.

After putting these preparatory lemmas in place we can finally turn to the proof of our 
result on the limit of the curvature circle.

Proof of Theorem 2  Let us first compute the center m0 of the discrete curvature circle k0 . 
Generally, the circumcenter of a triangle a, b, c ∈ ℂ

2 is given by

In our case we want to compute the circumcenter of the four concyclic points pab, pbc, pcd, 
pda from which we choose the three points pbc, pcd, pda to insert them in the formula above. 
Let us start with the denominator D:

We compute the numerator N  in the same way. After a lengthy computation we get

Now, Lemma 3 yields for the center m0 of the discrete curvature circle k0

We need to relate the discrete curvature circle to its smooth counterpart. In order to do that, 
we rewrite the curvature (2) in terms of complex functions: The determinant of a matrix 
consisting of two column vectors a, b ∈ ℝ

2 is the same as i
2
(ab̄ − āb) when a and b are 

expressed as complex numbers. Consequently, the curvature for a curve s ∶ ℝ → ℂ and its 
unit normal vector N can be written in the form

as multiplication with i corresponds to a rotation about the angle �∕2 . So, we use these 
notions to rewrite (12):

pab = s −
√
3s�� +

3s��

2
�2 + O(�3),

pcd = s +
√
3s�� +

3s��

2
�2 + O(�3),

pda = s −
2s�2

s��
+
�
5s�� −

20s�s���

3s��

�
�2 + O(�3).

a(‖b‖2 − ‖c‖2) + b(‖c‖2 − ‖a‖2) + c(‖a‖2 − ‖b‖2)
(a − c)(b − c) − (a − c)(b − c)

.

D =(pda − pcd)(pbc − pcd) − (pda − pcd)(pbc − pcd)

=
�
−

2s�2

s��
−
√
3s�𝜀 + O(𝜀2)

��
−
√
3s̄�𝜀 −

3s̄��

2
𝜀2 + O(𝜀3)

�
− (…)(…)

=
2
√
3�s��2(s�s̄�� − s̄�s��)

�s���2 𝜀 +
3(s�s̄�� − s̄�s��)(s�s̄�� + s̄�s��)

�s���2 𝜀2 + O(𝜀3).

N =
4
√
3�s��2(�s��2s� − 1

2
s(s��s̄� − s̄��s�))

�s���2 𝜀 +
6(s�s̄��+s̄�s��)(�s��2s� − 1

2
s(s��s̄� − s̄��s�))

�s���2 𝜀2

+O(𝜀3).

(12)m0 =
N

D
= s +

2s�2s̄�

s�s̄�� − s̄�s��
+ O(𝜀2).

(13)𝜅 =
i(s�s̄�� − s̄�s��)

2|s�|3 , and N = i
s�

|s�| ,
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Consequently, the distance between the center m0 of the discrete curvature circle k0 and the 
center s + 1

�
N of the smooth curvature circle is of magnitude O(�2).

Let us now compute the radius of the discrete curvature circle k0 by computing the dis-
tance of its center m0 to a point on the circle, e.g., pbc:

which implies Eq. (7). Equation (9) follows from Lemma 6. 	�  ◻

In Lemma 7 we saw that the point pda = p�i+2�i−1 is a second-order approximation of 
s(u) −

2s�2(u)

s��(u)
 . In the following proposition we study the geometric meaning of that spe-

cial point.

Proposition 1  Let s ∶ ℝ → ℂ be a smooth curve. Then for all u ∈ ℝ the point

is a point on the curvature circle at s(u) (see Fig. 4 top-left). The curve s̃ is Möbius-invar-
iantly connected to the parametrization of s. Furthermore, the normal vector N of s is the 
angle bisector of s̃ − s and the second derivative vector s′′ (see Fig. 4 top-left).

m0 = s +
|s�|2s�i

i

2
(s�s̄�� − s̄�s��)

+ O(𝜀2) = s +
|s�|3

det(s�, s��)
i
s�

|s�| + O(𝜀2) = s +
1

𝜅
N + O(𝜀2).

1

�0
= |pbc − m0| = ||| pbc −

(
s

⏟⏟⏟
O(�3)

+
1

�
N
)
+
(
s +

1

�
N
)
− m0

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
O(�2)

||| =
|||
1

�
N + O(�2)

||| =
1

|�| + O(�2),

s̃(u) ∶= s(u) −
2s�2(u)

s��(u)

Fig. 4   Top-left: Smooth curve s with curvature circle. The point s̃ = s −
2s�2

s��
 on the curvature circle is 

Möbius invariantly connected to the parametrization of the curve. The vectors s̃ − s and s′′ are symmetric, 
up to length, with respect to the normal vector N. Bottom-left: Reflection. A complex point z gets reflected 
to a

ā
z̄ along an axis through the origin and a. Right: Illustration of a curve s together with a family of circles 

which are orthogonal to s and which pass through s̃ . All these circles pass through a fixed point which 
implies that the parametrization s is Möbius equivalent to an arc-length parametrization ŝ . The circles enve-
lope the Möbius transformation of the evolute e of ŝ
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Proof  To show that s̃ lies on the curvature circle we show ||s̃ − (s +
1

𝜅
N)|| = 1

|𝜅|:

Next we show the Möbius invariant property of s̃ . For that, let M be a Möbius transforma-
tion. We have to show

This equation holds trivially for translations, rotations and scalings. So the only thing left 
to show is that it is also true for inversions M(z) = 1∕z . We start with the right hand side:

Now we show the symmetry property. We have to show that s̃−s|s̃−s| gets reflected to s
′′

|s′′| at the 
symmetry axis N. The reflection of a complex number z on an axis with direction a (see 
Fig. 4 bottom-left) is expressible in complex numbers by a

ā
z̄ . So we have to show

This equation is equivalent to

which is true and therefore implies the symmetry property. 	�  ◻

Remark 1  If s is parametrized proportionally to arc length, then ss̃ is a diameter of the cur-
vature circle.

Corollary 3  A parametrized curve is Möbius equivalent to an arc-length parametrized 
curve if and only if for all u ∈ ℝ the circles orthogonal to the curvature circle and passing 
through s and s̃ intersect in one common point (see Fig. 4 right).

The commonly used characterization of arclength parametrizations of discrete curves 
is by a polygon with constant edgelengths. However, Corollary 3 implies an immediate 
alternative:

Definition 2  We call a discrete curve parametrized proportionally to arclength if p�i�i+1 
and p�i+2�i−1 are opposite points on the discrete curvature circle.

|||s̃ −
(
s +

1

𝜅
N
)||| =

|||
2s�2

s��
+

1

𝜅
N
||| =

|||
2s�2

s��
+

|s�|3
i

2
(s�s̄�� − s̄�s��)

i
s�

|s�|
|||

=
|||
2s�3s̄�� − 2s�2s̄�s�� + 2s�2s̄�s��

s��(s�s̄�� − s̄�s��)

||| =
|s̄��|
|s��|

|s�|3
| i
2
(s�s̄�� − s̄�s��)| =

1

|𝜅| .

M◦s̃ = M◦s −
2(M◦s)�2

(M◦s)��
.

1

s
−

2(
1

s
)�2

(
1

s
)��

=
1

s
+

2
s�2

s4

s��s2−2ss�2

s4

=
s��

s��s − 2s�2
=

1

s −
2s�2

s��

=
1

s̃
= M◦s̃.

N

N

s̃ − s

|s̃ − s| =
s��

|s��| .

−is�

−is̄�

−
2s�2

s��

| 2s�2
s��

|
=

s��

|s��| ⇔
s�

s̄�
s̄�2|s��|
s̄��|s�2| =

s��

|s��| ⇔
s�

s̄�
s̄�2

s̄��s�s̄�
=

s��

s��s̄��
,
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Theorem 3  The unit tangent vector Ti and unit normal vector Ni of the discrete curvature 
circle ki at p�i�i+1 are second-order approximations of the unit tangent vector T and unit 
normal vector N of the smooth curve (after appropriate orientation), i.e.,

Proof  The approximation quality of T and N is the same so we just have to prove it for one 
of them:

After appropriate orientation N and Ni differ only about O(�2) . 	�  ◻

4 � Curvature for three dimensional curves

Before we generalize discrete curvature from discrete planar curves to space curves we 
need some more results on the quaternionic cross-ratio for points in three dimensional 
space. We will use the imaginary quaternions Imℍ to describe points in three dimensional 
space ℝ3 (see Sec. 2.1).

4.1 � Cross‑ratio and geometry

The authors used the quaternionic algebra and the cross-ratio extensively in [15, 16] for 
applications in regular mesh design and for Möbius invariant subdivision algorithms. The 
results of this paragraph can also be found there. To prove some technical Lemmas we first 
consider the following geometric property, which can easily be verified.

Lemma 8  Let a, b, c ∈ ℝ
n be three points. Then (a − b)‖a − c‖2 − (a − c)‖a − b‖2 is the 

direction of the tangent of the circumcircle to the triangle abc at a.

Definition 3  Let a, b, c ∈ Imℍ be pairwise distinct points. Then we call the imaginary 
quaternion

corner tangent.

Note that the identity a−1 + b−1 = a−1(a + b)b−1 immediately implies

Lemma 9  Consider the circumcircle of a, b, c ∈ ℍ , oriented according to this defining 
triangle. Then the vector t[c, a, b], placed at a, is in oriented tangential contact with the 
circle (see Fig. 5 left).

Ti = T + O(�2) and Ni = N + O(�2).

Ni =
p�i�i+1 − mi

|p�i�i+1 − mi| =
s + O(�3) −

(
s −

1

�
N + O(�2)

)

|s + O(�3) −
(
s −

1

�
N + O(�2)

)| =
|�|
�

N + O(�2).

t[a, b, c] ∶= (a − b)−1 + (b − c)−1,

(14)t[a, b, c] = (a − b)−1(a − c)(b − c)−1.
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Proof  Note that q∈ Imℍ implies q−1=−q∕|q|2 . Using the definition of the corner tangent 
yields

Consequently, Lemma 8 concludes the proof. 	�  ◻

Lemma 10  Let a, b, c, d ∈ Imℍ be four points not lying on a common circle. Then, the 
imaginary part of the cross-ratio is the normal of the circumsphere (or plane) at a, i.e., for 
a proper circumsphere with center m, we have Imcr(a, b, c, d) ∥ (m − a) (see Fig. 5 center).

Proof  We compute the cross-ratio in terms of corner tangents abbreviated by t1 = t[c, a, b] 
and t2 = t[d, a, c]:

Since t1 and t2 are both imaginary we can write the cross-ratio as

Lemma 9 implies that t−1
1

 and t2 are tangent vectors to the circumcircles of the triangles 
(abc) and (cda), respectively, both at a. Consequently, the imaginary part of the above 
cross-ratio is the cross product of tangent vectors to circles on the circumsphere of a, b, c, d 
at a, hence orthogonal to the tangent plane of the circumsphere at a. 	�  ◻

Proposition 2  Let a, b, c, d ∈ Imℍ be four non-concyclic points with cr(a, b, c, d) = [r, v] . 
Further, let f ∈ ℍ be the quaternion that solves

t[c, a, b] = (c − a)−1 + (a − b)−1 = −(c − a)∕|c − a|2 − (a − b)∕|a − b|2.

cr(a, b, c, d) = (a − b)−1 (b − c)−1 (c − d)−1 (d − a)−1

= (a − b)−1 (b − c)−1[(a − c)−1 (a − c)−1](c − d)−1 (d − a)−1

= [(a − c)−1 (b − c)−1 (a − b)−1]−1[(a − c)−1 (c − d)−1 (d − a)−1]

= [(a − c)−1 (b − c)−1 (b − a)−1]−1[(a − c)−1 (d − c)−1 (d − a)−1]

(14)
= t−1

1
t−1
2
.

cr(a, b, c, d) = [⟨t−1
1
, t−1
2
⟩,−t−1

1
× t−1

2
].

cr(a, b, c, f ) = [�r,�v],

Fig. 5   Left: The corner tangent t[c, a, b] is a vector in tangential contact with the circumcircle of a triangle 
(abc) at a. Center: Circumsphere of a, b, c, d. The imaginary part of the cross-ratio cr(a, b, c, d) is a vector 
that is orthogonal to the circumsphere at a. Right: A discrete space curve with a curvature circle. The four 
points pab, pbc, pcd , pda are concyclic also in the 3-space case
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for some �,� ∈ ℝ . Then f ∈ Imℍ , i.e., f is an imaginary quaternion representing a point 
in ℝ3 . Furthermore, f lies on the circumsphere of a, b, c, d. In particular f (�,�) is a para-
metrization of the circumsphere.

Proof  The two occurring cross-ratios can be expressed as (see the proof of Lemma 10)

where t1 ∶= t[c, a, b]−1 , t2 ∶= t[d, a, c] , and t3 ∶= t[f , a, c] . Consequently, as all ti ∈ Imℍ , 
we have

Since all t1, t2, t3 are orthogonal to v and therefore linearly dependent, we can express t3 in 
the form t3 = �t1 + �t2 . The two vectors t1 and t2 are linearly independent since otherwise 
t1 × t2 would be zero implying cr(a, b, c, d) = [r, v] = [−⟨t1, t2⟩, 0] ∈ ℝ which is a contra-
diction to the four points a, b, c, d not being concyclic.

After inserting t3 = �t1 + �t2 into the above equations we obtain

Consequently, � = � and � = (� − �)⟨t1, t2⟩∕�t1�2 , which determines t3 uniquely. From the 
definition of t3 = t[f , a, c] = (f − a)−1 + (a − c)−1 , we then immediately get

Furthermore, the circumsphere of a, b, c,  f is the same as the circumsphere of a, b, c, d 
since both pass through a, b, c and both have parallel normal vectors ( �v and v, resp.) at a, 
and there is only one such sphere. 	�  ◻

4.2 � Point‑insertion‑rule in ℍ

Let us now consider the analogous construction of  (3) by inserting a new point to given 
four points a, b, c, d ∈ Imℍ in three dimensional space. The quaternionic square root is not 
uniquely defined in our formulation (see Sec. 2.1) for negative real numbers. So we must 
exclude that case in the following which is not a significant restriction as this case (i.e., 
cr(c, a, b, d) ∈ ℝ<0) corresponds to a concyclic quadrilateral a,  b,  c,  d with a separated 
from d by b and c on the circumcircle. We exclude such “zigzag” quadrilaterals in the fol-
lowing and consider them as discrete singularities of our polygons.

The quaternionic formula analogous to (3) reads:

The notation of this formula is less flexible than in the complex case due to the noncom-
mutativity of ℍ . As it will turn out, f(a, b, c, d) is purely imaginary and thus in three space, 
but note that a priori f is a quaternion. In analogy to Lemma 1 f is also the solution to a 
cross-ratio equation:

Lemma 11  The newly inserted point f(a, b, c, d) fulfills

cr(a, b, c, d) = t1 ⋅ t2, and cr(a, b, c, f ) = t1 ⋅ t3,

[r, v] = [⟨t1, t2⟩,−t1 × t2], and [�r,�v] = [⟨t1, t3⟩,−t1 × t3].

�⟨t1, t2⟩ = �r = ⟨t1, t3⟩ = �⟨t1, t1⟩ + �⟨t1, t2⟩,
�t1 × t2 = −�v = t1 × t3 = �t1 × t1 + �t1 × t2.

f = (t3 − (a − c)−1)−1 + a ∈ Imℍ.

f (a, b, c, d) ∶=
�
(b − a)(c − a)−1

√
cr(c, a, b, d) + 1

�−1
⋅

�
(b − a)(c − a)−1

√
cr(c, a, b, d)c + b

�
.
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Corollary 4  f is a point in three dimensional space, i.e., f ∈ Imℍ . Even more, f lies on the 
circumsphere of a, b, c, d.

Proof  The square root of a quaternion q = [r, v] (see Sec. 2.1) is a quaternion with imagi-
nary part parallel to v, i.e., parallel to the imaginary part of q. Consequently, Proposition 2 
implies that f is in Imℍ and in particular on the circumsphere of a, b, c, d. 	�  ◻

4.3 � Curvature for discrete space curves

In this section we will relate the curvature and curvature circle of discrete curves in three 
dimensional space to the planar case (Sec. 3.2). But first let us recall some properties of 
smooth curves s ∶ ℝ → ℝ

3.
Consider a sequence of four points on the curve s which converge to one point s(0). At 

any time the four points are assumed to uniquely determine a sphere. Consequently, as the 
four points converge to one point the sequence of spheres defined that way converges to the 
so called osculating sphere (see e.g., [7]). The osculating sphere passes through s(0) and 
has its center at

where N is the unit normal vector, B the binormal unit vector, � the curvature, and � the 
torsion of the curve. The curvature circle at s(0) is the intersection of the osculating plane 
with the osculating sphere and thus lies on the osculating sphere.

Lemma 12  The osculating sphere has contact of order ≥ 3 with the curve s which implies 
that there is a curve ŝ on the osculating sphere such that,

This immediately implies the following lemma.

Lemma 13  The curvature and the curvature circle of a space curve s(u) at u = 0 is the 
same as the curvature and the curvature circle of ŝ on the osculating sphere at u = 0.

Any Möbius transformation that maps the osculating sphere to a plane also transforms 
the curvature circle to that plane.

Let us now define a curvature circle for discrete space curves. So let us start with a dis-
crete curve � ∶ ℤ → ℝ

3 and set a = �i−1, b = �i, c = �i+1, d = �i+2. In analogy to Theorem 1 
we define

but now for the ‘quaternionic’ f. Lemma 11 implies that pab, pbc, pcd, pda lie on the circum-
sphere of a, b, c, d which we consider as the discrete osculating sphere.

Let us now consider a Möbius transformation that maps the osculating sphere to the 
[yz]-plane of a Cartesian xyz-coordinate system. This Möbius transformation (as any 
Möbius transformation does) keeps the real part as well as the length of the imaginary 

cr(c, a, b, f (a, b, c, d)) = −
√
cr(c, a, b, d).

(15)s(0) +
1

�
N +

��

�2�
B,

s(0) = ŝ(0), s�(0) = ŝ�(0), s��(0) = ŝ��(0), s���(0) = ŝ���(0),

pab = f (d, a, b, c), pbc = f (a, b, c, d), pcd = f (b, c, d, a), pda = f (c, d, a, b),
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part of the cross-ratio of four points invariant. The transformed cross-ratios have imaginary 
parts that are orthogonal to the circumsphere of the new points (Lemma 10). Therefore the 
transformed cross-ratios have imaginary parts that are parallel to the x-axis of the coor-
dinate system. Consequently, the cross-ratios are complex numbers [r,  (x, 0, 0)], and we 
arrive at the case of planar curves (Sec. 3).

So, after the Möbius transformation we can apply Theorem 1 which implies that pab, 
pbc, pcd, pda lie on a common circle k̃i and have a cross-ratio of −1 . Furthermore, the inverse 
Möbius transformation maps the circle k̃i to a circle ki on the osculating sphere. And since 
Möbius transformations map the curvature circle of a curve to the curvature circle of the 
transformed curve, the following definition is sensible.

Definition 4  For a discrete space curve � ∶ ℤ → ℝ
3 we call the circle ki (discrete) curva-

ture circle and the inverse of its radius curvature �i at the edge �i�i+1 . For an illustration see 
Fig. 5 (right).

Theorem 4  Let s ∶ ℝ → ℝ
3 be a sufficiently smooth planar curve and let u, � ∈ ℝ . Fur-

ther let � ∶ ℤ → ℝ
3 be the discrete curve �k = �(k) = s(u + (2k − 1)�) . All the approxima-

tion results from Theorem 2 apply to space curves in ℝ3.

Proof  At first we convince ourselves that it is sufficient to replace the curve s by the curve 
ŝ on the osculating sphere (Lemma 12). Thus instead of �k we use 𝛾̂k = ŝ(u + (2k − 1)𝜀) for 
the computation of the discrete curvature circle. We have 𝛾̂k = 𝛾k + O(𝜀4) , and therefore

i.e., the four points for which we construct the discrete curvature circle are O(�4)-close to 
the points on the actual discrete curvature circle. Hence, the center of the replacing curva-
ture circle is also O(�4)-close to the actual circle since the center of the circumcircle of a 
triangle a, b, c ∈ ℝ

3 is

Now we know that it is sufficient to show the 3-space version of Theorem 2 for ŝ instead 
of s. After a stereographic projection from the osculating sphere to the complex plane we 
arrive at the case of planar curves (Sec. 3) for which Theorem 2 holds. The only thing left 
to prove is that the stereographic projection does not change the approximation order of the 
center of the curvature circle.

Let m, r denote the center and radius of the smooth curvature circle of the planar curve, 
and let m0(�), r0(�) denote the curvature circle of � . From Theorem 2 we know that

After mapping a circle in ℂ with center m = m1 + im2 and radius r stereographically to the 
sphere we obtain

f (𝛾̂i−1, 𝛾̂i, 𝛾̂i+1, 𝛾̂i+2) = f (𝛾i−1, 𝛾i, 𝛾i+1, 𝛾i+2) + O(𝜀4),

(‖a − c‖2(b − c) − ‖b − c‖2(a − c)) × ((a − c) × (b − c))

2‖(a − c) × (b − c)‖2 + c.

m = m0(�) + O(�2) and r = r0(�
2) + O(�2).

�(m, r) ∶=
1

r2 − 2r2(�m�2 − 1) + (�m�2 + 1)2

⎛⎜⎜⎝

2m1(1 − r2 + �m�2)
2m2(1 − r2 + �m�2)

(r2 − 1 − �m�2)(r2 + 1 − �m�2)

⎞⎟⎟⎠
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for the new center. Therefore

i.e., the centers are O(�2)-close. 	�  ◻

5 � Torsion

We define the torsion for discrete curves where the cross-ratio plays a role. However, we 
first have to consider the right formulation of the torsion of smooth curves.

5.1 � Torsion for smooth curves

Let us reformulate the common notation of the torsion � (see Eq. (1)):

The normal unit vector N is the cross product of the binormal unit vector B and the tangent 
unit vector T and therefore reads

Consequently,

We will come back to such formulation of � in the proof of Theorem 5.

5.2 � Discrete Frenet frame

There is a natural way to define a discrete Frenet frame in our setting. Theorem 2 implies 
that pbc = p�i�i+1 is a good discrete candidate for a point where the curvature circle should 
be in tangential contact with the curve as pbc is a third-order approximation of s(u). Thus it 
is sensible to choose the discrete unit tangent vector Ti to be in tangential contact with the 
curvature circle at pbc . It is therefore equally natural to define the normal unit vector Ni to 
be the normal of the curvature circle at pbc . Consequently, the binormal vector Bi should be 
orthogonal to Ni and Ti (see Fig. 6).

Lemma 14  Let s ∶ ℝ → ℝ
3 be a sufficiently smooth curve and let u, � ∈ ℝ . Further let 

� ∶ ℤ → ℂ be the discrete curve �k = �(k) = s(u + (2k − 1)�) . Then the discrete unit nor-
mal Ni is a second-order approximation of the smooth normal N, i.e.,

�(m0, r0) = �(m, r) + O(�2),

� = −
⟨s� × s��, s���⟩
‖s� × s��‖2 = −

det(s�, s��, s���)

‖s� × s��‖2 = −
det(s���, s�, s��)

‖s� × s��‖2 =
⟨s� × s���, s��⟩
‖s� × s��‖2 =

⟨s� × s���, s��⟩
�2‖s�‖6 .

N = B × T =
s� × s��

‖s� × s��‖ ×
s�

‖s�‖ =
s��⟨s�, s�⟩ − s�⟨s�, s��⟩

‖s�‖‖s� × s��‖ =
1

‖s�‖2� s
�� −

⟨s�, s��⟩
‖s�‖‖s� × s��‖ s

�.

(16)� =
⟨s� × s���, s��⟩
�2‖s�‖6 =

⟨s� × s���, ‖s�‖2�N⟩
�2‖s�‖6 =

⟨s� × s���,N⟩
�‖s�‖4 .

Ni = N + O(�2).
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Proof 
where we used Theorem 4 at (∗) . 	�  ◻

Lemma 15  With the same assumptions as in Lemma 14 we obtain

Proof  Theorem 3 implies Ti = T + O(�2) for the planar case. What remains to verify is that 
a Möbius transformation does not change this order.

Any vector v attached at a point p can be represented as the derivative of a straight line:

Consequently, an inversion maps that vector to

In our case the vector Ti is attached at point pbc . Since Ti = T + O(�2) and pbc = s + O(�3) 
for planar curves, we obtain for the tangent vector after inversion

Therefore, Möbius transformations map �2-close vectors attached at �3-close points to �2
-close vectors. 	�  ◻

Corollary 5  With the same assumptions as in Lemma  14 the discrete Frenet frame 
(Ti,Ni,Bi) is a second-order approximation of the smooth Frenet frame (T, N, B).

Ni =
pbc − m0

‖pbc − m0‖
(∗)
=

s + O(�3) − m + O(�2)

‖s + O(�3) − m + O(�2)‖ =
s − m

‖s − m‖ + O(�2) = N + O(�2),

Ti = T + O(�2).

[p + tv]t=0.

�
d

dt

p + tv

‖p + tv‖2
�

t=0

=
‖p‖2v − 2⟨p, v⟩p

‖p‖4 .

‖pbc‖2Ti − 2⟨pbc, Ti⟩pbc
‖pbc‖4

=
‖s + O(�3)‖2(T + O(�2)) − 2⟨s + O(�3),T + O(�2)⟩(s + O(�3))

‖s + O(�3)‖4

=
‖s‖2T − 2⟨s, T⟩s

‖s‖4 + O(�2).

Fig. 6   A discrete space curve 
with discrete curvature circle 
ki . The discrete tangent vector T 
of the curve is defined to be the 
tangent vector of the curvature 
circle at pbc . The discrete normal 
vector N lies in the plane of the 
circle and orthogonal to T and 
the binormal vector B is orthogo-
nal to both
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5.3 � Torsion for discrete curves

In this section we relate the torsion of a discrete curve to the cross-ratio of four successive 
vertices of the curve. The real part and the length of the imaginary part of the quaterni-
onic cross-ratio are Möbius invariant but the torsion is not; hence the definition must also 
include other quantities that are not Möbius invariant: curvature and length. In Theorem 5 
we again use asymptotic analysis to justify our definition of the discrete torsion.

Definition 5  Let � ∶ ℤ → ℝ
3 ≅ Imℍ be a discrete curve, let �i be the discrete curvature 

at the edge �i�i+1 , and let Ni denote the discrete normal unit vector. Then, we call

the (discrete) torsion of � at the edge �i�i+1.

Proposition 3  The discrete torsion vanishes for planar discrete curves.

Proof  Planarity of the discrete curve and Lemma 10 imply that the imaginary part of the 
cross-ratio in the definition of the torsion is perpendicular to that plane. The normal vector 
Ni on the other hand is contained in the plane. Therefore the two vectors are orthogonal and 
the discrete torsion vanishes. 	�  ◻

Theorem 5  Let s ∶ ℝ → ℝ
3 denote a sufficiently smooth curve, let u, � ∈ ℝ and let the 

discrete curve � ∶ ℤ → ℂ with �k = �(k) = s(u + (2k − 1)�) be a sampling of s. Then

However, before we prove this theorem we need a preparatory lemma.

Lemma 16  Let s ∶ ℝ → ℂ denote a sufficiently smooth curve, let u, � ∈ ℝ and let the dis-
crete curve � ∶ ℤ → ℂ with �k = �(k) = s(u + (2k − 1)�) be a sampling of s. Further let q0 
denote the cross-ratio of four consecutive vertices q0 ∶= cr(�−1, �0, �1, �2) . Then

Proof  We compute

by first expressing each factor in terms of its Taylor expansion:

and now the inverted factors

�i ∶= −
9⟨Imcr(�i−1, �i, �i+1, �i+2),Ni⟩

2�i‖�i−�i+1‖2

�0 = � + O(�2).

Req0 = −
1

3
−

−24⟨s�, s��⟩2 + 8‖s�‖2⟨s�, s���⟩ + 12‖s�‖2‖s��‖2
9‖s�‖4 �2 + O(�3),

Imq0 = −
8‖s�‖2s� × s��� − 24⟨s�, s��⟩s� × s��

9‖s�‖4 �2 + O(�3).

cr(�−1, �0, �1, �2) = (�−1 − �0)(�0 − �1)
−1(�1 − �2)(�2 − �−1)

−1

�−1 − �0 = −2s�� + 4s���2 −
13s���

3
�3 + O(�4),

�1 − �2 = −2s�� − 4s���2 −
13s���

3
�3 + O(�4),
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where the last equality holds since x0+x2�
2+O(�3)

y1�+y3�
3+O(�4)

=
x0

y1�
+

x2y2−x0y3

y2
1

� + O(�2) . Analogously, 
we obtain

The above four factors are all purely imaginary quaternions. Multiplying these factors 
together in the right order yields the proposed real and imaginary part of the cross-ratio. 	
� ◻

So, let us now turn to our approximation result for the torsion:

Proof of Theorem 5  We show the formula at u = 0 and therefore i = 0:

where we used

at (∗) and ⟨s� × s��,N⟩ = 0 at (§) . 	�  ◻

Remark 2  We have now a curvature and torsion for a discrete space curve as well as an 
osculating sphere and osculating circle. In the setting of smooth curves the oriented dis-
tance between the center of the osculating circle and the osculating sphere is

as follows immediately from the formula for the center of the osculating sphere, Eq. (15). 
We can therefore define a discrete version of �′ as that value that fulfills the equation above 
by replacing smooth notions by their discrete counterparts.

(�0 − �1)
−1 =

�
− 2s�� −

s���

3
�3 + O(�4)

�−1

=
2s�� +

s���

3
�3 + O(�4)

4‖s�‖2�2 + 4⟨s�,s���⟩
3

�4 + O(�5)

=
s�

2‖s�‖2� +
‖s�‖2s��� − 2⟨s�, s���⟩s�

12‖s�‖4 � + O(�2),

(�2 − �−1)
−1 = −

s�

6‖s�‖2� +
−‖s�‖2s��� + 2⟨s�, s���⟩s�

4‖s�‖4 � + O(�2).

�0 = −
9

2

⟨Imq0,N0⟩
�0‖�0 − �1‖2

(∗)
= −

9

2

⟨(−8‖s�‖2s� × s��� + 24⟨s�, s��⟩s� × s��)�2 + O(�3),N + O(�2)⟩
9‖s�‖4(� + O(�2))‖2�s� + O(�3)‖2

(§)
=

⟨‖s�‖2s� × s����2,N⟩ + O(�3)

‖s�‖6��2 + O(�2)
=

⟨s� × s���,N⟩
‖s�‖4� + O(�2)

(16)
= � + O(�2),

‖�0 − �1‖ = ‖s(−�) − s(�)‖ = ‖s − �s� +
�2

2
+ O(�3) − (s + �s� +

�2

2
+ O(�3))‖

= ‖2�s� + O(�3)‖

�′

�2�
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6 � Geometric properties

Any quadrilateral is Möbius equivalent to a parallelogram, and especially Möbius equiva-
lent to a parallelogram a, b, c, d with a = 0 , b = 1 and b − a = d − c . See Fig. 7 (left). Its 
cross-ratio is

If f denotes the intersection point of the diagonals then we obtain

and therefore

This together with Lemma 1 immediately implies the following Lemma.

Lemma 17  Let a, b, c, d be a parallelogram with b − a = d − c . Then the insertion point 
f(a, b, c, d) corresponds to the intersection point of the diagonals.

Furthermore, in the case of a parallelogram the circumcircles of a, b, c and b, d, c are 
congruent. Therefore, one of their two bisector circles is the straight line containing the 
diagonal bc (see Fig. 7 right). The same holds for the other pair of circumcircles a, b, d and 
a, d, c. Since Möbius transformations do not change the intersection angles of curves we 
obtain the following lemma.

Lemma 18  The insertion point f(a, b, c, d) is one of the intersection points of the bisector 
circles of the pairs of circumcircles mentioned above.

Consequently, the discrete curvature circle can be constructed with a compass and a 
straight edge. In the following lemma we mention three special cases:

Lemma 19 

	 (i)	 Let a,  b,  c,  d be a parallelogram with b − a = c − d . Then the four points 
pab, pbc, pcd, pda form a square (see Fig. 8 left).

	 (ii)	 Let a, b, c, d be a parallelogram with b − a = d − c . Then pda = ∞ and the curvature 
circle degenerates to a straight line (see Fig. 8 center).

cr(c, a, b, d) = c2.

cr(c, a, b, f ) = −c,

cr(c, a, b, f ) = −
√
cr(c, a, b, d).

Fig. 7   Left: Any quadrilateral 
a, b, c, d is Möbius equiva-
lent to a parallelogram with 
b − a = d − c . In case of 
such a parallelogram we have 
cr(c, a, b, f ) = −

√
cr(c, a, b, d) . 

Right: The circumcircles of 
a, b, c and b, d, c are congruent. 
One of their two bisector circles 
is a straight line, the diagonal cb 



1958	 C. Müller, A. Vaxman 

1 3

	 (iii)	 Let a, b, c, d be symmetric as in Fig. 8 (right). Then pab = ∞ and the curvature 
circle degenerates to a straight line. Thus, this arrangement of points can be seen as 
a discrete analogue of a cusp on a curve.

Proof  ad (i): The rotational symmetry by an angle of � of the parallelogram implies that 
the points pab and pcd are opposite of the center of rotation as well as pbc and pda . A quad-
rilateral with this property and with a cross-ratio of −1 (Theorem 1) must be a square.

ad (ii) and (iii): It follows from simple computations that pda and pab , respectively, van-
ish to ∞ . Circles containing this point are straight lines. 	� ◻

7 � Experimental results

We conducted convergence tests which empirically verify our claims. For this, we used the 
following seven curves (see Fig. 9 for their depiction):

	 (i)	 The epitrochoid c1(t) = (6 cos(t) − 3 cos(6t), 6 sin(t) − 3 sin(6t)) (the curve is planar).
	 (ii)	 A planar logarithmic spiral c2(t) = eat(cos(t), sin(t)) , where we use a = 0.5.
	 (iii)	 A helix c3(t) = (cos(at), sin(at), bt) where we use a = 4 and b = 0.5.
	 (iv)	 A helical spiral c4(t) = (eat cos(4t), eat(sin(4t), bt) where we use a = 0.4 and b = 4.
	 (v)	 A toroidal “coil” c5(t) = ((a + sin(bt)) cos(t), (a + sin(bt)) sin(t), cos(bt)) where we 

use a = 2.5 and b = 20.
	 (vi)	 The trefoil knot c6(t) = (sin(t) + 2 sin(2t), cos(t) − 2 cos(2t),− sin(3t)).
	 (vii)	 Viviani’s curve [8] c7(t) = (a(1 + cos(2t)), a sin(2t), 2a sin(t)) with a = 5.

For all examples, we used t ∈ [0, 2�] . For simplicity, we assumed all curves are open, and 
disregarded boundaries, that is, we do not compute edge midpoint and consequent quan-
tities for edges adjacent to boundary vertices. The curves are not assumed to be arc-length 
parametrized.

Fig. 8   Special cases of four points together with their curvature circle: Left: The points pab, pbc, pcd , pda 
form a square. Center: The curvature circle degenerates to a straight line. Right: Symmetric curve with a 
“loop” that can be interpreted as discrete cusp of the curve. Consistently, the curvature circle degenerates to 
a straight line

Fig. 9   Illustration of the list of curves used for our numerical convergence verification
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For any given resolution step � , we created a discrete curve by sampling every curve 
ci(t) , as explained in Theorem 4. Then, we compute the discrete curvature � , the discrete 
torsion � , and the discrete Frenet frame {T ,N,B} for every midedge point. We measure the 
approximation error to the corresponding quantities of the smooth curve at the sampled 
points by the l∞ norm. This produces the maximum absolute deviation of every discrete 
quantity from the ground truth. In case of vector quantities (like the Frenet frame), we do 
so per component. We use � = 0.1 × 1.1l , where l ∈ ℕ runs between 0 and −15 in steps 
of −1 , which creates gradual refinement. To measure convergence rate, we perform linear 
regression on the logarithmic scale of � vs. l∞ error per curve. The graphs of errors can be 
seen in Fig. 10, and the convergence rates are in Table 1. It is evident that we are able to 
reproduce the quadratic convergence rates that we prove in this paper. Note that we do not 
measure torsion for c1(t) and c2(t) as they are planar. Another outlier is the normal error for 
c3(t) which is already initially very low (due to the high regularity of the helix), and thus 
we only see the effect of numerical noise.

Acknowledgements  The first author gratefully acknowledges the support of the Austrian Science Fund 
(FWF) through projects P 29981 and I 4868-N.

Fig. 10   l∞ errors versus sampling step �

Table 1   Error convergence 
rates with refinement. Note that 
there is no torsion or non-trivial 
binormal for the planar curves 
c
1
(t) and c

2
(t)

Curve � � T N B

(i) 1.9589 – 1.9858 1.9858 –
(ii) 1.9745 – 2.0005 2.0005 –
(iii) 2.0010 2.0212 2.0122 – 2.0122
(iv) 1.9947 1.9934 2.0003 1.9742 2.0002
(v) 1.9096 2.5707 2.3352 2.0647 2.3414
(vi) 1.9772 1.9936 1.9888 1.9864 1.9980
(vii) 1.9986 2.0102 2.0000 1.9996 2.0002
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