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Abstract
We study the functional calculus associated with a hypoelliptic left-invariant differential
operator L on a connected and simply connected nilpotent Lie group G with the aid of the
corresponding Rockland operator L0 on the ‘local’ contraction G0 of G, as well as of the
corresponding Rockland operator L∞ on the ‘global’ contraction G∞ of G. We provide
asymptotic estimates of the Riesz potentials associated withL at 0 and at∞, as well as of the
kernels associated with functions of L satisfying Mihlin conditions of every order. We also
prove someMihlin–Hörmandermultiplier theorems forLwhich generalize analogous results
to the non-homogeneous case. Finally, we extend the asymptotic study of the density of the
‘Plancherel measure’ associated withL from the case of a quasi-homogeneous sub-Laplacian
to the case of a quasi-homogeneous sum of even powers.

Keywords Nilpotent Lie groups · Hypoelliptic differential operators · Multiplier theorem ·
Heat kernel · Riesz potentials

Mathematics Subject Classification 43A22 · 22E30

1 Introduction

This paper deals with functional calculus on non-homogeneous left-invariant hypoelliptic
self-adjoint differential operators on nilpotent Lie groups.

Functional calculus on self-adjoint Rockland operators (i.e., left-invariant, hypoelliptic
and homogeneous) has been widely studied in the literature, in particular on sub-Laplacians
(cf., for instance, [9,10,15,23–28]), but also in greater generality (cf., for instance, [7,8,16,17,
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20,22]). Also functional calculus on non-homogeneous sub-Laplacians has been considered
(cf., for instance, [2,20,22,34]).

The approach introduced in [30] indicates that it is possible to transfer information on
operators that are functions of a (positive) Rockland operator ˜L on a connected and simply
connected graded group G, or on its convolution kernel, to analogous information relative
to the projection of ˜L on a general connected and simply connected, but not necessarily
homogeneous, quotient group.

Let G = ˜G/I be the quotient group, where we assume that I is not dilation invariant
to avoid trivialities. The one-parameter family of isomorphic quotient groups Gs = ˜G/Is ,
where Is is I dilated by s ∈ R+, admits two limits G0 = ˜G/I0 and G∞ = ˜G/I∞ (no longer
isomorphic to G), where I0 and I∞ are dilation invariant, so that G0 and G∞ admit induced
gradations from ˜G.

Correspondingly, the operator ˜L induces a family (Ls)s∈[0,+∞], of projected operators on
the different quotients. The limit operators L0,L∞ are Rockland, while the other Ls lack
homogeneity, remaining, however, hypoelliptic. More precisely, they are weighted subcoer-
cive, according to the definition introduced in [37].1

The starting point in the analysis of [30] is a weighted generating family X1, . . . , Xn of
the Lie algebra g of G. The (Lie algebra of the) group G is then interpreted as the quotient
of the free nilpotent Lie algebra F of sufficiently high step with generators ˜X1, . . . , ˜Xn ; the
Lie algebra F is then endowed with the (unique) gradation obtained assigning to each ˜X j

a degree equal to the weight of X j . Thus, in the above notation, F is the Lie algebra of
˜G and the quotient map is uniquely determined by the condition that each ˜X j is mapped
onto X j . A non-commutative homogeneous polynomial P in n indeterminates (endowed
with the same weights of X1, . . . , Xn) is then considered under the assumption that the
operator ˜L = P(˜X1, . . . ˜Xn) is hypoelliptic (hence Rockland). In particular, also the operator
L = P(X1, . . . , Xn) is hypoelliptic; examples of such operators are the sums of even powers
of generating vector fields.

It was proved in [30] that there is a fundamental solution K of L satisfying the asymptotic
relations2

K (x) ∼ P(x) + K0(x) as x → 0 , K (x) ∼ K∞(x) as x → ∞ ,

where K0 and K∞ are fundamental solutions of L0 on G0 and of L∞ on G∞, respectively,
while P is a suitable polynomial on G0.

The results of the present paper can be divided into four parts. The first part concerns the
heat kernels associated with the operator L, i.e., the kernels of the operators e−tL. In Sect. 2,
we recall the basic constructions of [30] and thenwe introduce a (somewhat redundant) family
of left-invariant vector fields Xs, j on each group Gs , s ∈ [0,∞], which behaves nicely under
dilation (which can no longer be defined as automorphisms of the group Gs , but rather as
isomorphisms between different Gs). We then introduce two moduli | · |s and | · |s,∗ on each
Gs : the former behaves nicely under dilation and equals a homogeneous norm on G0 near the
identity e and a homogeneous norm on G∞ near ∞, under suitable identifications; the latter,
inspired by [20,22], is a compromise between the modulus | · |s and the Riemannian distance

1 Functional calculus on weighted subcoercive operators (or systems of operators) has been developed in
[20–22]. In these works, the homogeneous limit G0 mentioned above is used, at least for comparison with the
homogeneous setting by a contraction argument.
2 These formulas assume identifications, as manifolds, of G with G0 and G∞, respectively. This will be
explained in the next section. More precisely, it is proved in [30] that K (x) admits two infinite asymptotic
expansions at 0 and ∞, with terms which are homogeneous of increasing and decreasing orders, respectively,
relative to the dilations of the corresponding limit group.
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Functional calculus on non-homogeneous operators on nilpotent groups 1519

from e associated with the vectors Xs, j . The importance of | · |s,∗ lies in the fact that it grows
much faster than | · |s at∞, in general, so that it leads to better multiplier theorems. In Sect. 3,
we then make use of the vector fields Xs, j and the moduli | · |s,∗ to prove uniform ‘Gaussian’
estimates for the kernels hs,t of the e−tLs (Theorem 3.1); we also consider estimates of the
derivatives in s of the hs,t , appropriately defined.

In the second part (Sect. 4), we extend the asymptotic estimates in [30] to general complex
powers of L (Theorem 4.4), defined by analytic continuation in the same fashion of the
Euclidean case. Even though it would be possible to use the same techniques employed in
[30], we shall rely as much as possible on the estimates on hs,t provided in Theorem 3.1; in
this way, we are able to describe more precisely also the higher-order terms of the obtained
developments, in some specific situations (Theorem 4.7).

In the third part (Sect. 5)we give asymptotic estimates to kernels ofmore generalmultiplier
operators (Theorem 5.12) and prove some multiplier theorems of Mihlin–Hörmander type
(Theorems 5.15, 5.17). For what concerns the asymptotic estimates, here we consider more
general functions of the operatorL—namely, functions satisfyingMihlin conditions of every
order up to the multiplication by a fractional power. Even though these functions include the
complex powers ofL, Theorem3.1 is not completely contained inTheorem5.12, since several
terms of the developments obtained in the latter are only defined up to polynomials. We then
pass to somemultiplier theorems, which are generalization of some of the results presented in
[22] to the non-homogeneous case. While Theorem 5.15 is stated in full generality and gives
non-homogeneous Mihlin–Hörmander conditions on the multipliers in the fashion of [2,34],
Theorem 5.17 makes use, in a quite more specific situation, of the techniques introduced in
[15,16] and then systematically developed in [20,22] to lower the regularity threshold up to
half the topological dimension of G (instead of half the growth of the volume of G as in
Theorem 5.15). Optimality is achieved when G is a product of Métivier and abelian groups,
and L is (any) hypoelliptic sub-Laplacian thereon.

The fourth part (Sect. 6) deals with the spectral Plancherel measure βL and its comparison
with βL0 and βL∞ (Theorem 6.4), when L is ‘quasi-homogeneous’, following [34]. Here,
we both extend the results of [34] to sums of even powers of generating homogeneous vector
fields (instead of quasi-homogeneous sub-Laplacians), and we also observe that the estimates
on the density of βL with respect to the Lebesgue measure on R+ automatically improve to
asymptotic expansions at 0 and at ∞.

2 General setting

In this section, we shall present the general framework in which we shall work in the sequel.
It is basically the same as that of [30], except for the fact that we shall not require that the
graded group ˜G be a free nilpotent Lie group. We shall briefly repeat the basic constructions
for the ease of the reader.

2.1 Contractions

Let ˜G be a graded, connected, and simply connected Lie group with Lie algebra g̃, with
gradation (̃g j ); let pr j be the projection of g̃ onto g̃ j with kernel

⊕

j ′ �= j g̃ j ′ , and define

n := max
{

j > 0 : g̃ j �= 0
}

.
On ˜G we introduce the dilations x 	→ r · x , r ∈ R+ = (0,∞), adapted to the given

gradation, i.e., such that r · x = r j x if x ∈ g̃ j . We shall sometimes denote by ρr the dilation
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1520 M. Calzi, F. Ricci

by r . A linear subspace v of g̃ is graded, i.e., v = ⊕

j v∩ g̃ j , if and only if it is homogeneous,
i.e., invariant under dilations. We say that a linear map from a graded subspace v of g̃ to g̃ is

– homogeneous if it maps v ∩ g̃ j into g̃ j for every j ;
– strictly subhomogeneous if it maps v ∩ g̃ j into

⊕

j ′< j g̃ j ′ for every j ;
– strictly super-homogeneous if it maps v ∩ g̃ j into

⊕

j ′> j g̃ j ′ for every j .

Now, let G be the quotient of ˜G by a (not necessarily homogeneous) normal subgroup,
and denote by π the corresponding projection; we shall assume that G is simply connected.
Let i be the kernel of dπ , and observe that ker π = exp

˜G i since G is simply connected.
Then, define

i0 :=
n
⊕

j=1

pr j

(

i ∩
(

⊕

j ′≤ j

g̃ j ′

))

, and i∞ :=
n
⊕

j=1

pr j

(

i ∩
(

⊕

j ′≥ j

g̃ j ′

))

.

For s ∈ (0,∞), we define is := s−1 · i.
The following result is basically a generalization of [30, Proposition 2, Lemma, andCorol-

lary of § 2].

Proposition 2.1 The vector spaces i0 and i∞ are graded ideals of g̃ and have the same
dimension as i. In addition, there are two linear mappings ψ0,1 : i0 → g̃ and ψ∞,1 : i∞ → g̃

such that

– ψ0,1 is strictly subhomogeneous and I + ψ0,1 is a bijection of i0 onto i;
– ψ∞,1 is strictly super-homogeneous and I + ψ∞,1 is a bijection of i∞ onto i;
– defining, for s ∈ R+, ψ0,s and ψ∞,s as ψ0,s = s−1·ψ0,1(s · ) and ψ∞,s = s−1·ψ∞,1(s · ),

respectively, these maps are strictly sub- (resp. super-)homogeneous and

lim
s→0+ ψ0,s = 0, lim

s→∞ ψ∞,s = 0 ;
– if h0 and h∞ are graded complements of i0 and i∞ in g̃, respectively, then they are also

algebraic complements of is for every s ∈ R+.

Proof It is clear that i0 is a graded subspace of g̃; let (i0, j = i0 ∩ g̃ j ) be its gradation. Take
x ∈ g̃ j1 for some j1 and y ∈ i0, j2 for some j2; let us prove that [x, y] ∈ i0, j1+ j2 . Now, there

is y′ ∈ i such that y − y′ ∈ ⊕ j ′< j2 g̃ j ′ , so that [x, y] ∈ [x, y′] +
(

⊕

j ′< j2 g̃ j1+ j ′
)

, whence

[x, y] = pr j1+ j2([x, y′]) ∈ i0, j1+ j2 . By the arbitrariness of x and y, it follows that i0 is a
graded ideal. In the same way, one proves that i∞ is a graded ideal.

Now, let us define ψ0,1. Observe that, by induction, we may define a basis (ek) of i and

an increasing sequence (k j ) such that (ek)k≤k j is a basis of i ∩
(

⊕

j ′≤ j g̃ j ′
)

for every j .

Let us prove that, for every j , (pr j (ek))k j−1<k≤k j is a basis of i0, j . Clearly, it will suffice
to prove linear independence. Now, if (λk)k j−1<k≤k j is a family of real numbers such that
∑

k λk pr j (ek) = 0, then
∑

k j−1<k≤k j
λkek ∈ i ∩

(

⊕

j ′< j g̃ j ′
)

. Hence, there is a family

(λk)k≤k j−1 of real numbers such that
∑

k j−1<k≤k j

λkek =
∑

k≤k j−1

λkek,

whence λk = 0 for every k = 1, . . . , k j . Then, we may simply define ψ0,1 as the linear map
such that

ψ0,1
(

pr j (ek)
) = ek − pr j (ek) =

∑

j ′< j

pr j ′(ek),
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Functional calculus on non-homogeneous operators on nilpotent groups 1521

for every j = 1, . . . , n and for every k = k j−1 + 1, . . . , k j . Then ψ0,1 is strictly subhomo-
geneous and

(I + ψ0,1)
(

pr j (ek)
) = ek ,

showing that I + ψ0,1 maps i0 onto i bijectively. It is also clear that

ψ0,s(pr j (ek)) =
∑

j ′< j

s j− j ′ pr j ′(ek), (1)

which tends to 0 as s → 0+.
In a similar way, one constructs ψ∞,1 and proves the corresponding properties. In partic-

ular, we see that i, i0, and i∞ have the same dimension.
Let h0 be a graded complement of i0 in g̃. Since the mapping s 	→ is is continuous on

[0,∞] (with values in the Grassmannian of (dim i)-dimensional subspaces of g̃), it follows
that h0 is an algebraic complement of ir for some r > 0. Therefore, h0 = (s−1r) · h0 is an
algebraic complement of is = (s−1r) · ir for every s ∈ (0,∞).

The assertions concerning h∞ are proved in a similar way. �

Observe that, by (1) and its analogue forψ∞,s , the linear mappingsψ0,s andψ∞,1/s depend
polynomially on s.

For s ∈ [0,∞], consider the quotient Lie algebras gs = g̃/is . Dilation of g̃ by r > 0
induces an isomorphism between gs and gr−1s ; in particular, gs is isomorphic to g1 for every
s ∈ (0,∞), while g0 and g∞ need not be isomorphic with any other gs . We call g0 and g∞
the local and the global contractions of g1, respectively.

We fix once and for all two graded algebraic complements h0 and h∞ of i0 and i∞,
respectively. By Proposition 2.1, both h0 and h∞ are complementary to is for all s ∈ R+.

Definition 2.2 For s ∈ [0,∞), let P0,s be the projection of g̃ onto h0 with kernel is and, for
s ∈ (0,∞], let P∞,s be the projection of g̃ onto h∞ with kernel is .

Lemma 2.3 P0,0 is homogeneous and, for every s ∈ R+, P0,s − P0,0 is strictly subhomoge-
neous; in addition, P0,rs = r−1 · P0,s(r · ) for every r , s ∈ R+.

Analogously, P∞,∞ is homogeneous and, for every s ∈ R+, P∞,s − P∞,∞ is strictly
super-homogeneous; in addition, P∞,rs = r−1 · P∞,s(r · ) for every r , s ∈ R+.

Proof The homogeneity of P0,0 and P∞,∞ is obvious, as well as the scaling properties of the
projections. Thus, we may reduce ourselves to proving sub- (resp. super-)homogeneity of
P0,1 and P∞,1. Then, take x ∈ g̃k for some k, and let us prove that prh(P0,1(x)− P0,0(x)) =
0 for h ≥ k. Indeed, assume that prh(P0,1(x)) �= 0 for some h ≥ k, and let h′ be the
maximum of such h. Then, prh(x − P0,1(x)) = prh(P0,1(x)) = 0 for every h > h′, so that
prh′(x−P0,1(x)) ∈ i0 since x−P0,1(x) ∈ i by the definition of P0,1. Since prh′(P0,1(x)) ∈ h0
and h0 ∩ i0 = { 0 }, we then deduce that h′ = k and that x − prk(P0,1(x)) ∈ i0, so that
prk(P0,1(x)) = P0,0(x).

One proves analogously that P∞,1 − P∞,∞ is strictly super-homogeneous. �

Each map P0,s (resp. P∞,s) induces a Lie algebra structure on h0 (resp. h∞); we denote
by [ · , · ]0,s (resp. [ · , · ]∞,s) the corresponding Lie bracket. In other words,

[x, y]0,s = P0,s[x, y], ∀ x, y ∈ h0, [x, y]∞,s = P∞,s[x, y], ∀ x, y ∈ h∞. (2)
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1522 M. Calzi, F. Ricci

Notice that, for r , s ∈ R+,

r · [x, y]0,s = [r · x, r · y]0,r−1s,∀ x, y ∈ h0, r · [x, y]∞,s

= [r · x, r · y]∞,r−1s,∀ x, y ∈ h∞. (3)

We use the Baker–Campbell–Hausdorff products induced by the Lie brackets in (2) to
realize either h0, if s ∈ [0,∞), or h∞, if s ∈ (0,∞], as the underlying manifold3 of the
group Gs := ˜G/ exp

˜G is . We call G0 and G∞ the local and the global contractions of G1,
respectively.

Notice that

[x, y]0,s = [x, y]0,0 + O(s), s → 0, uniformly for x, y bounded in h0,

[x, y]∞,s = [x, y]∞,∞ + O(1/s), s → ∞, uniformly for x, y bounded in h∞,
(4)

and the analogous formulae for products in Gs .
We denote by πs , s ∈ [0,∞], the canonical projection of ˜G onto Gs and by dπs : g̃ → gs

its differential. By an abuse of language, we shall keep the same notation whenever Gs , or
gs , is identified with either h0 or h∞.

Since the ideals i0 and i∞ are graded, the corresponding quotients g0 and g∞ inherit a
gradation and the corresponding dilations. These dilations coincide with the restriction to h0
and h∞, respectively, of the dilations of g̃.

For s, r ∈ R+, it follows from (3) that dilation by r on either h0 or h∞ induces an
isomorphism ofGs ontoGr−1s for every s. Notice that the so-inducedmappingsGs → Gr−1s
do not depend on the chosen identifications (cf. (ii) and (iv) of Proposition 2.4).

We denote by ˜Q, Q0, and Q∞ the homogeneous dimensions of ˜G, G0, and G∞, respec-
tively.

The following result generalizes [30, Proposition 3 and p. 264].

Proposition 2.4 For every s ∈ R+, define λs := (P∞,s)|h0 : h0 → h∞; let N be a homoge-
neous norm on g̃. Then,

(i) λs is the unique linear mapping such that x − λs(x) ∈ is for every x ∈ h0; in addition,
λs is invertible and its inverse λ−1

s = (P0,s)|h∞ is the unique linear mapping such that

x − λ−1
s (x) ∈ is for every x ∈ h∞;

(ii) λs intertwines the two identifications of gs with h0, resp. h∞, i.e.,

λs[x, y]0,s = [λs x, λs y]∞,s

for all x, y ∈ h0;
(iii) λs − I is strictly super-homogeneous and λ−1

s − I is strictly subhomogeneous;
(iv) λrs = r−1 · λs(r · ) for every r > 0.
(v) Q∞ ≥ Q0;
(vi) N (λs(x)) = O(N (x)) for x → ∞ in h0 and N (λ−1

s (x)) = O(N (x)) for x → 0 in
h∞.

Proof By the definition of P0,s, P∞,s , the two cosets x +is and λs(x)+is coincide for x ∈ h0.
This gives (i) and (ii); (iii) and (iv) follow directly from Lemma 2.3.

3 In principle, we shall privilege the realization of Gs on h0 for s close to 0 and that on h∞ for s close to ∞.
We prefer anyhow to keep the double realization for every s ∈ R+ in order to avoid apparent discontinuities
in s at some finite point, on the one hand, and a priori quantifications of ‘closeness’ to 0 or ∞, on the other.
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Functional calculus on non-homogeneous operators on nilpotent groups 1523

To prove (v), we argue as in the proof of [30, Proposition 3]. Define h0, j := g̃ j ∩ h0 and
h∞, j := g̃ j ∩ h∞, and set s = 1. Since λ1 is super-homogeneous, we see that, for every
k = 1, . . . , n,

⊕

j<k

λ1(h0, j ) +
⊕

j≥k

h∞, j = h∞,

so that
∑

j<k

dim(h0, j ) +
∑

j≥k

dim(h∞, j ) ≥ dim(h∞).

Summing up all these inequalities, we see that

n dim(h0) − Q0 + Q∞ ≥ n dim(h∞),

whence Q∞ ≥ Q0.
For what concerns (vi), fix a norm ‖ · ‖ on g̃ and observe that there is a constant C ≥ 1

such that

1

C
max

k
‖prk(x)‖1/k ≤ N (x) ≤ C max

k
‖prk(x)‖1/k

for every x ∈ g̃. Further, by [10, Proposition 1.6] we see that there is a constant C ′ > 0 such
that, for x ∈ h0,

N (λs(x)) ≤ C ′∑

k

N (λs(prk(x)))

≤ CC ′∑

k

max
{‖λs(prk(x))‖1/k, ‖λs(prk(x))‖1/n

}

.

Therefore, there is a constant C ′′ > 0 such that

N (λs(x)) ≤ C ′′∑

k

max
{‖prk(x)‖1/k, ‖prk(x)‖1/n

} ≤ nC ′′ + C ′′∑

k

‖prk(x)‖1/k,

so that N (λs(x)) = O(N (x)) for x → ∞ in h0.
The second part is proved similarly. �

2.2 Invariant vector fields

We now pass to the approximation of differential operators, following [30, § 4].

Definition 2.5 Let V be a homogeneous vector space, with dilations ρr , r ∈ R+. If T is a
distribution on V , we define ρ∗

r T and T ◦ ρr by

〈

ρ∗
r T , ϕ

〉 := 〈

T , ϕ ◦ ρ−1
r

〉

and 〈T ◦ ρr , ϕ〉 :=
〈

T , r−Qϕ ◦ ρ−1
r

〉

for every ϕ ∈ C∞
c (V ), where Q is the homogeneous dimension of V . We also define

(ρr )∗T := (ρ−1
r )∗T .

We say that a function (or a distribution) f is homogeneous of degree d ∈ C if f ◦ρr = rd f
for all r ∈ R+.We say that f is log-homogeneous of degree d ∈ N if there are a homogeneous
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1524 M. Calzi, F. Ricci

polynomial P of degree d on V and a homogeneous norm N such that f − P log N is
homogeneous of degree d .4

We say that a continuous linear operator X : C∞(V ) → C∞(V ) (for example a (linear)
differential operator) is homogeneous of order d if X( f ◦ ρr ) = rd(X f ) ◦ ρr for all r > 0.

Notice that, if X is a left-invariant differential operator under a homogeneous Lie group
structure on V , then X f = f ∗ (Xδ0) and X is homogeneous of order d if and only if the
distribution Xδ0 is homogeneous of degree −Q − d .

In addition, if f is a function of class C∞ on V and M f is the operator of multiplication
by f , then f is homogeneous of degree d if and only if M f is homogeneous of order −d .

As a consequence, if X is a homogeneous differential operator of order d and f is a
homogeneous function of degree d ′ and of class C∞, then f X is a homogeneous differential
operator of order d − d ′.

Finally, observe that, if an element X of the enveloping algebra of ˜G is homogeneous of
degree d , then the corresponding left-invariant differential operator is homogeneous of order
d , and conversely. Similar statements hold for ˜G, G0, and G∞.

Now, observe that h0 and h∞ are graded subspaces of g̃, so that also h0 ∩ h∞ is a graded
subspace of g̃. Hence, we may complete a homogeneous basis of h0 ∩ h∞ to homogeneous
bases of h0 and h∞, and then complete the union of the two (which is a homogeneous basis of
h0 + h∞) to a homogeneous basis of g̃. Consequently, we may state the following definition.

Definition 2.6 We denote by (˜X j ) j∈J a homogeneous basis of g̃ such that there are two
subsets J0 and J∞ of J such that (˜X j ) j∈J0 is a basis of h0, while (˜X j ) j∈J∞ is a basis of h∞.
We denote by d j the degree of ˜X j (as an element of the graded Lie algebra g̃, so that ˜X j is
homogeneous of order d j as a differential operator). Fixing coordinates on g̃ associated with
the basis (˜X j ) j∈J , we denote by (∂ j ) j∈J the corresponding partial derivatives.

Define Xs, j := dπs(˜X j ) for every j ∈ J and for every s ∈ [0,∞], so that

(r · )∗ Xs, j = rd j Xr−1s, j

for every s ∈ [0,∞], for every r > 0, and for every j ∈ J .
Finally, fix a total ordering on J and define, for every γ ∈ NJ ,

˜X
γ =

∏

j∈J

˜X
γ j
j ,

˜Xγ =
∏

j∈J

˜X
γ j
j ,

so that ˜Xγ is homogeneous of order dγ := ∑

j∈J γ jd j . Define ∂γ and Xγ
s , for every

s ∈ [0,∞], in a similar way. To simplify the notation, we shall identify NJ0 and NJ∞ with
subsets ofNJ ; when γ ∈ NJ0 (resp. γ ∈ NJ∞ ), we shall also write ∂

γ
0 (resp. ∂γ∞) instead of

∂γ .

The following result is a simple generalization of [30, Propositions 4 and 5]. Observe
that, even though in [30, Propositions 4 and 5] the polynomials p0,γ,γ ′ and p∞,γ,γ ′ were
constructed comparing the products on G0, G∞, and G1, if one tries to define the matrix

4 If N ′ is another homogeneous norm, then f − P log N ′ = f − P log N + P log(N/N ′) is still homogeneous
of degree d.
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(δγ,γ ′ + p′
0,γ,γ ′) as the inverse of (δγ,γ ′ + p0,γ,γ ′), then one would only prove that the p′

0,γ,γ ′
are (everywhere defined) rational functions. Consequently, we shall present a different proof.

Proposition 2.7 For every γ ∈ NJ , there are two unique finite families

(p0,γ,γ ′)γ ′∈NJ0 and (p′
0,γ,γ ′)γ ′∈NJ0

of polynomials on h0 such that, identifying Gs and G0 with h0 for every s ∈ [0,∞),

Xγ
s = Xγ

0 +
∑

γ ′
sdγ −dγ ′ p0,γ,γ ′(s · )Xγ ′

0 , Xγ
0 = Xγ

s +
∑

γ ′
sdγ −dγ ′ p′

0,γ,γ ′(s · )Xγ ′
s .

In addition, p0,γ,γ ′ and p′
0,γ,γ ′ are sums of homogeneous polynomials of degrees strictly

greater than dγ ′ − dγ .
Analogously, there are two unique finite families

(p∞,γ,γ ′)γ ′∈NJ∞ ,dγ ′>dγ
and (p′

∞,γ,γ ′)γ ′∈NJ∞ ,dγ ′>dγ

of polynomials on h∞ such that, identifying Gs and G∞ with h∞ for every s ∈ (0,∞],

Xγ
s = Xγ∞ +

∑

γ ′
sdγ −dγ ′ p∞,γ,γ ′(s · )Xγ ′

∞, Xγ∞ = Xγ
s +

∑

γ ′
sdγ −dγ ′ p′

∞,γ,γ ′(s · )Xγ ′
s .

In addition, p∞,γ,γ ′ and p′
∞,γ,γ ′ are sums of homogeneous polynomials of degrees strictly

smaller than dγ ′ − dγ .5

In particular,

lim
s→0

Xγ
s = Xγ

0 , lim
s→∞Xγ

s = Xγ∞ .

Notice that, when γ ∈ NJ0 , it may happen that p0,γ,γ �= 0 and p′
0,γ,γ �= 0. Nonetheless,

it is always true that both p0,γ,γ and p′
0,γ,γ vanish at 0.

For example, consider the case in which ˜G is the free two-step nilpotent Lie group on
three generators ˜X1, ˜X2, and ˜X3 (and the standard dilations), and define i as the vector space
generated by [˜X1, ˜X2] − ˜X1 − ˜X3, [˜X1, ˜X3], and [˜X2, ˜X3] − ˜X1 − ˜X3. Then, i0 = [̃g, g̃]
and G1 is isomorphic to the three-dimensional Heisenberg group, while G0 is isomorphic to
R3. Fix coordinates (x1, x2, x3) on G1 corresponding to the basis (X1,1, X1,2, X1,3), so that
X0, j = ∂x j under the identification of G0 and G1 with h0. Then, simple computations show
that

X1,1 = X0,1 − x2
2

X0,1 − x2
2

X0,3

X1,2 = X0,2 + x1 − x3
2

X0,1 + x1 − x3
2

X0,3

X1,3 = X0,3 + x2
2

X0,1 + x2
2

X0,3,

5 By the general theory, it is also clear that
∑

j γ ′
j ≤ ∑

j γ j if p0,γ,γ ′ �= 0, p′
0,γ,γ ′ �= 0, p∞,γ,γ ′ �= 0, or

p′
∞,γ,γ ′ �= 0.
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while

X0,1 = X1,1 + x2
2

X1,1 + x2
2

X1,3

X0,2 = X1,2 − x1 − x3
2

X1,1 − x1 − x3
2

X1,3

X0,3 = X1,3 − x2
2

X1,1 − x2
2

X1,3,

whence our assertion.

Proof Observe first that [40, Theorem 1.1.2] shows that there are two (unique) finite families
(p0,γ,γ ′) and (p′

0,γ,γ ′) of C∞ functions on h0 such that

Xγ
1 − Xγ

0 =
∑

γ ′
p0,γ,γ ′Xγ ′

0 = −
∑

γ ′
p′
0,γ,γ ′X

γ ′
1 .

Applying the dilation by s−1, we then get

Xγ
s − Xγ

0 =
∑

γ ′
sdγ −dγ ′ p0,γ,γ ′(s · )Xγ ′

0 = −
∑

γ ′
sdγ −dγ ′ p′

0,γ,γ ′(s · )Xγ ′
s

for every s ∈ (0,∞). Now, let us prove that the p0,γ,γ ′ and the p′
0,γ,γ ′ are polynomials.

Observe that ((Xγ ′
s )0)γ ′∈NJ0 ,

∑

j γ ′
j ≤k is a basis of the space of distributions on h0 supported

at 0 and of order at most k, for every k ∈ N and for every s ∈ [0,∞). Therefore, there are

two families (S0,γ ′) and (S′
0,γ ′) of polynomials on h0 such that (Xγ ′′

0 S0,γ ′)(0) = δγ ′,γ ′′ and

(Xγ ′′
1 S′

0,γ ′)(0) = δγ ′,γ ′′ for every γ ′′ ∈ NJ0 . Then, define Sx,γ ′(y) := S0,γ ′(x−1 ·G0 y) and

S′
x,γ ′(y) := S′

0,γ ′(x−1 ·G1 y) for every x, y ∈ h0, so that

(Xγ ′′
0 Sx,γ ′)(x) = (Xγ ′′

1 S′
x,γ ′)(x) = δγ ′,γ ′′

for every γ ′, γ ′′ ∈ NJ0 . Therefore,

p0,γ,γ ′(x) = (Xγ
1 − Xγ

0 )(Sx,γ ′)(x) = (Xγ
1 Sx,γ ′)(x) − δγ,γ ′

p′
0,γ,γ ′(x) = (Xγ

0 − Xγ
1 )(S′

x,γ ′)(x) = (Xγ
0 S′

x,γ ′)(x) − δγ,γ ′

for every γ ′ ∈ NJ0 and for every x ∈ h0. Now, it is clear that the mappings h∞ � (x, y) 	→
Sx,γ ′(x ·G1 y) = S0,γ (x−1 ·G0 (x ·G1 y)) and h∞ � (x, y) 	→ S′

x,γ ′(x ·G0 y) = S′
0,γ (x−1 ·G1

(x ·G0 y)) are polynomials; therefore, it is easily seen that p0,γ,γ ′ and p′
0,γ,γ ′ are polynomials.

Finally, let us prove that p0,γ,γ ′ and p′
0,γ,γ ′ are sums of homogeneous polynomials of

degrees strictly greater than dγ ′ −dγ . Indeed, observe that the continuity of P0,s and [ · , · ]0,s
in s at 0 shows that

0 = lim
s→0+(Xγ

0 − Xγ
s ) = lim

s→0+

∑

γ ′
sdγ −dγ ′ p0,γ,γ ′(s · )Xγ ′

0

= lim
s→0+

∑

γ ′
sdγ −dγ ′ p′

0,γ,γ ′(s · )Xγ ′
s .

Since the Xγ ′
s are pointwise linearly independent for every s and converge to the Xγ ′

0 , we
must have p0,γ,γ ′(s · x), p′

0,γ,γ ′(s · x) = o(sdγ ′−dγ ) for s → 0+, for every x ∈ h0. The
assertion follows in this case.
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The properties of the families (p∞,γ,γ ′) and (p′
∞,γ,γ ′) are proved even more easily. �

2.3 Moduli

Here, we construct some control moduli on ˜G and the Gs , following [21, § 2.3]. Cf. also
[31,37] for more details on ‘weighted’ control distances.

Definition 2.8 For every x ∈ ˜G, we define |x | (resp. |x |∗) as the greatest lower bound of the
set of ε > 0 such that there are an absolutely continuous curve γ : [0, 1] → ˜G and some
measurable functions a j : [0, 1] → R such that ‖a j‖∞ ≤ εd j (resp. ‖a j‖∞ ≤ min(ε, εd j ))
for every j ∈ J , such that γ (0) = e and γ (1) = x , and such that

γ ′(t) =
∑

j∈J

a j (t)(˜X j )γ (t)

for almost every t ∈ [0, 1]. We define B(r) (resp. B∗(r)) as the set of x ∈ ˜G such that |x | < r
(resp. |x |∗ < r ), for every r > 0.

Proposition 2.9 The following hold:

– | · | and | · |∗ are finite, symmetric, and proper maps which vanish only at e;
– |z1z2| ≤ |z1| + |z2| and |z1z2|∗ ≤ |z1|∗ + |z2|∗ for every z1, z2 ∈ ˜G;
– |z| = |z|∗ for every z ∈ ˜G such that |z|∗ ≤ 1 (or, equivalently, |z| ≤ 1); in addition,

|z| ≤ |z|∗ ≤ |z|n for every z ∈ ˜G such that |z|∗ ≥ 1;
– B∗(1)h ⊆ B∗(r) ⊆ B∗(1)h+1 for every r ∈ [h, h + 1] and for every h ∈ N;
– | · | is a homogeneous norm.

Recall that a continuous function f between two topological spaces X and Y is said
to be proper if it maps closed subsets of X onto closed subsets of Y and if its fibres are
quasi-compact. In this case, saying that | · | and | · |∗ are proper is equivalent to saying
that | · | and | · |∗ are continuous and that the associated closed balls

{

z ∈ ˜G : |z| ≤ r
}

and
{

z ∈ ˜G : |z|∗ ≤ r
}

are compact for every r > 0.
The proof is simple and is omitted.
In order to provide some more insight into the moduli | · | and | · |∗, let us introduce some

more notation. First, we define |x |′R as the greatest lower bound of the set of ε > 0 such
that there are an absolutely continuous curve γ : [0, 1] → ˜G and some measurable functions
a j : [0, 1] → R such that ‖a j‖∞ ≤ ε for every j ∈ J , such that γ (0) = e and γ (1) = x ,
and such that

γ ′(t) =
∑

j∈J

a j (t)(˜X j )γ (t)

for almost every t ∈ [0, 1]. Then, it is not hard to see that the following hold:

– |x |∗ = |x |′R for every x ∈ ˜G such that |x |∗ ≥ 1 or, equivalently, |x |′R ≥ 1;
– |x |n∗ ≤ |x |′R ≤ |x |∗ for every x ∈ ˜G such that |x |∗ ≤ 1 or, equivalently, |x |′R ≤ 1;
– |x |∗ = max(|x |, |x |′R) for every x ∈ ˜G.

In addition, if we denote by dR the (left-invariant) Riemannian distance associatedwith the
(left-invariant) Riemannian metric for which (˜X j ) j∈J is an orthonormal basis, then |x |′R ≤
dR(0, x) ≤ dim ˜G |x |′R for every x ∈ ˜G. Consequently, | · |∗ is a reasonable compromise
between a homogeneous norm (locally) and a Riemannian distance (globally).
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Definition 2.10 For every s ∈ [0,∞] and for every x ∈ Gs , we define

|x |s := inf
πs (z)=x

|z| and |x |s,∗ := inf
πs (z)=x

|z|∗.

We define Bs(r) (resp. Bs,∗(r)) as the set of x ∈ ˜Gs such that |x |s < r (resp. |x |s,∗ < r ), for
every r > 0.

One may prove that the moduli | · |s and | · |s,∗ can be defined in the same fashion of the
moduli | · | and | · |∗. We leave the details to the reader.

Proposition 2.11 The following hold:

1. | · |s and | · |s,∗ are symmetric, subadditive, and proper maps which vanish only at e;
2. |x |s = |x |s,∗ for every s ∈ [0,∞] and for every x ∈ Gs such that |x |s,∗ ≤ 1; in addition,

|x |s ≤ |x |s,∗ ≤ |x |ns for every x ∈ Gs such that |x |s,∗ ≥ 1;
3. Bs,∗(1)h ⊆ Bs,∗(r) ⊆ Bs,∗(1)h+1 for every s ∈ [0,∞], for every r ∈ [h, h + 1], and for

every h ∈ N;
4. |r · x |s = r |x |rs for every s ∈ [0,∞], for every r > 0, and for every x ∈ Grs;
5. the mappings [0,∞] × ˜G � (s, z) 	→ |πs(z)|s and [0,∞] × ˜G � (s, z) 	→ |πs(z)|s,∗

are continuous;
6. there is a constant C > 0 such that

1

C
min(|P0,s(z)|, |P∞,s(z)|) ≤ |πs(z)|s ≤ C min(|P0,s(z)|, |P∞,s(z)|)

for every s ∈ (0,∞) and for every z ∈ g̃.

Proof 1–4. These assertions follow from the corresponding ones of Proposition 2.9.
5. Fix z ∈ g̃ and observe that, since | · | is proper, for every s ∈ [0,∞] there is ys ∈ is

such that |z + ys | = |πs(z)|s . In particular, |z + ys | ≤ |z|, so that the set { ys : s ∈ [0,∞] }
is relatively compact in g̃. Then, fix s′ ∈ [0,∞] and observe that there is a sequence (sk) of
elements of [0,∞] converging to s′ such that lim

k→∞|πsk (z)|sk
= lim inf

s→s′ |πs(z)|s . Notice that
we may assume that (ysk ) converges to some y′ in g̃, so that y′ ∈ is′ . Therefore,

|πs′(z)|s′ ≤ |z + y′| = lim
k→∞|z + ysk | = lim

k→∞|πsk (z)|sk
= lim inf

s→s′ |πs(z)|s .

Conversely, take a sequence (s′
k) of elements of [0,∞] converging to s′ such that

lim
k→∞|πs′

k
(z)|s′

k
= lim sup

s→s′
|πs(z)|s , and observe that we may take y′

s′
k

∈ is′
k
, for every k ∈ N,

in such a way that the sequence (y′
s′
k
) converges to ys′ . Therefore,

|πs′(z)|s′ = |z + ys′ | = lim
k→∞|z + y′

s′
k
| ≥ lim

k→∞|πs′
k
(z)|s′

k
= lim sup

s→s′
|πs(z)|z,

whence the first assertion. The second assertion is proved similarly.
6. The assertion follows from Proposition 2.4 and from 4 and 5. �

Definition 2.12 For every s ∈ [0,∞], we define νGs as the unique Haar measure on Gs

such that νGs (Bs(1)) = 1. We define Ds , the volume growth of Gs , in such a way that
νGs (U

k) � k Ds for k → ∞ for every compact neighbourhood U of e (cf., for instance, [14,
Theorem II.1]).

Notice that νGs (Bs,∗(r)) � r Ds as r → +∞, for every s ∈ [0,∞], thanks to 3 of
Proposition 2.11.
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Corollary 2.13 The following hold:

1. Ds = D1 ≥ max(D0, D∞) for every s ∈ (0,∞);
2. D1 ≤ Q∞;
3. D0 ≤ Q0 (resp. D∞ ≤ Q∞), with equality if and only if G0 (resp. G∞) is stratified.

Notice that it may happen that either D0 > D∞, or D0 < D∞, or D1 > max(D0, D∞).
Indeed, consider the case ˜G = H1 × R, G = H1, where H1 is the three-dimensional
Heisenberg group; denote by X , Y , T , U a basis of g̃ such that [X , Y ] = T , while the
other commutators vanish, and endow ˜G with coordinates such that ((z, t), u) corresponds to
exp(Re zX +Im zY +tT +uU ); endow G with similar coordinates and defineπ((z, t), u) :=
(z, t +u). Define dilations on ˜G so that X , Y , T , U have degrees 1, 1, 2, 3, respectively. Then,
i = (T − U )R, i0 = UR, and i∞ = TR, so that G0 ∼= H1, and G∞ ∼= R3. Hence, in this
case, D0 = 4 > 3 = D∞.

If, in the same example considered above, we choose dilations on ˜G in such a way that
X , Y , T , U have degrees 1, 1, 2, 1, respectively, then i0 = TR and i∞ = UR. Consequently,
D0 = 3 < 4 = D∞.

Finally, if we consider ˜G, π , and G as the products of the ones in the preceding examples,
then clearly D1 = 8 > 7 = D0 = D∞.

Proof 1. Since Gs is isomorphic to G1, for s ∈ (0,∞), it is clear that Ds = D1. In
addition, denote by gs the Lie algebra of Gs , and define inductively gs,[1] := gs and
gs,[ j+1] := [gs, gs,[ j]] for every j ≥ 1. Then, Ds = ∑

j≥1 dim gs,[ j] (cf., for example,
[14, Theorem II.1]). Now, since lim

s→0+[x, y]s = [x, y]0 for every x, y ∈ h0, it is easily

seen that dim g0,[ j] ≤ dim g1,[ j] for every j ∈ N, whence D0 ≤ D1. In the same way
one proves that D∞ ≤ D1.

2. Indeed, Proposition 2.11 and the above remarks imply that

r D1 � νG1(B1,∗(r)) ≤ νG1(B1(r)) � r Q∞

as r → +∞. The assertion follows.
3. This follows easily from the formula for Ds used in 1. �
Here is a simple result which will be useful later on. The proof, which is a simple modi-

fication of that of [41, VIII.1.1], is omitted.

Lemma 2.14 For every s ∈ [0,∞], for every p ∈ [1,∞], for every f ∈ C1(Gs), and for
every x ∈ Gs,

‖ f ( · x) − f ‖p ≤
∑

j∈J

|x |d j
s ‖Xs, j f ‖p.

We conclude this subsection with some uniform estimates on the growth of the volume
of the balls associated with the | · |s,∗. Indeed, observe that the preceding facts prove that for
every s ∈ [0,∞] there is a constantCs > 0 such that νGs

(

Bs,∗(r)
) ≤ Csr Ds for every r ≥ 1;

however, we shall need to know that one may take the Cs to be independent of s. Actually,
we shall prove a finer result, showing how the growth of the volume of balls decreases as s
approaches 0 or ∞.

Proposition 2.15 There are constant C > 0 and two integers N0, N∞ ≥ 1 such that

νGs

(

Bs,∗(r)
) ≤ C

{

max(r D0 , s N0r D1) if s ∈ [0, 1]
max(r D∞ , s−N∞r D1) if s ∈ [1,∞]
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for every s ∈ [0,∞] and for every r ≥ 1. In addition, when ˜G is stratified, so that Q0 = D0

and Q∞ = D∞ = D1 by Corollary 2.13, one may take N0 = Q∞ − Q0.
In particular, for every ε > 0 there is a constant Cε > 0, independent of s, such that

‖min((1 + | · |s,∗)−D0−ε, s−N0(1 + | · |s,∗)−D1−ε)‖1 ≤ Cε

for every s ∈ [0, 1], while

‖min((1 + | · |s,∗)−D∞−ε, s N∞(1 + | · |s,∗)−D1−ε)‖1 ≤ Cε

for every s ∈ [1,∞].
Notice that, when ˜G is not stratified, then (the optimal) N0 and N∞ may be smaller or larger
than D1 − D0 and D1 − D∞, respectively.

Let Fk be the Lie group whose Lie algebra has a basis X , Y1, . . . , Yk such that Y j+1 =
[X , Y j ] for every j = 1, . . . , k − 1, while the other commutators vanish. Consider ˜G :=
R × Fk , with basis of the corresponding Lie algebra U , X , Y1, . . . , Yk . Fix d, d ′ ∈ N∗
such that d < k + d ′ − 1. Give degree 1 to X , degree j + d ′ − 1 to Y j ( j = 1, . . . , k),

and degree d to U . Define i1 := 〈Yk − U 〉, so that is =
〈

Yk − sk+d ′−1−dU
〉

for every

s ∈ [0,∞). Then, define h0 = 〈X , Y1, . . . , Yk−1, U 〉 and fix a neighbourhood of the identity
Q := [−1, 1]k+1 (in the coordinates associated with the basis X , Y1, . . . , Yk−1, U ). Then,
the Baker–Campbell–Hausdorff formula shows that, for every s ∈ [0,∞],

(x1, y1, u1) ·Gs · · · ·Gs (xh, yh, uh)

= (Ph(x1, y1; . . . ; xh, yh), u1 + · · · + uh + sk+d ′−1−d Rh(x1, y1; . . . ; xh, yh))

for every (x j , y j , u j ) ∈ Q (with y j ∈ [−1, 1]k−1), j = 1, . . . , h, where Ph and Rh are
suitable polynomial mappings (independent of s). Integrating in (x, y) first and then in u, we
see that

νh0(Q·Gs h) = (1 − sk+d ′−1−d)νh0(Q·G0h) + sk+d ′−1−dνh0(Q·G1h)

� h D0 + sk+d ′−1−d h D1

for h → ∞, uniformly for s ∈ [0, 1], where νh0 denotes Lebesgue measure on h0. Now, it is
not hard to see that this quantity is comparable with νGs

(

Bs,∗(h)
)

(uniformly for s ∈ [0, 1]
and h ≥ 1), so that N0 = k + d ′ − 1 − d , which may be either smaller or larger than
k − 1 = D1 − D0.

Choosing d > k + d ′ − 1, one may then obtain examples with N∞ either smaller or
larger than D1 − D∞. Taking products, examples with both N0 − (D1 − D0) �= 0 and
N∞ − (D1 − D∞) �= 0 (with all combinations of signs) may be produced.

Proof We shall divide the proof into several steps.
1.We consider only the case s ∈ [0, 1], since the case s ∈ [1,∞] is completely analogous

(or almost trivial when ˜G is stratified, see 4). Define g̃[1] := g̃ and, by induction, g̃[k+1] :=
[̃g, g̃[k]], so that (̃g[k]) is a decreasing sequence of graded ideals of g̃ (the lower central series).
Notice that, arguing as in the proof of Proposition 2.1, one may prove that is ∩ g̃[k] converges
to some limit i0,[k] ⊆ i0 ∩ g̃[k] as s → 0+, for every k ∈ N∗. Then, for every k ∈ N∗ choose
a graded complement Vk of (i0 ∩ g̃[k])+ g̃[k+1] in g̃[k] and a graded complement Wk of i0,k in
i0∩ g̃[k]. Observe that

⊕

k′≥k Vk′ is a graded complement of i0∩ g̃[k] in g̃[k] for every k ∈ N∗,
so that we may assume that h0 = ⊕

k Vk . Analogously, observe that Wk ⊕ (
⊕

k′≥k Vk′) is
a graded complement of i0,k in g̃[k]; arguing as in the Proof of Proposition 2.1, we then see
that Wk ⊕ (

⊕

k′≥k Vk′) is a graded complement of is ∩ g̃[k] in g̃[k] for every s ∈ (0,∞).
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Then,wemayfind a family (k j ) j∈J0 of positive integers and a homogeneous basis (˜Y j ) j∈J0
of h0 such that (˜Y j )k j = k is a basis of Vk , for every k ∈ N∗, and such that ˜Y j has degree
d j for every j ∈ J0. Choose, in addition, a homogeneous basis (˜Y j ) j∈Jk of Wk for every
k ∈ N∗ (to make the notation consistent, we assume that the Jk , for k ∈ N, are mutually
disjoint); we define k j := k and we denote by d j the degree of ˜Y j for every j ∈ Jk . Define
˜Y (s)

j := P0,s(˜Y j ) for every j ∈ ˜J := ⋃

k∈N Jk ; observe that ˜Y (s)
j = ˜Y j for some (hence

every) s ∈ [0, 1] if and only if j ∈ J0, and that ˜Y
(0)
j = 0 if and only if j ∈ ˜J \ J0.

2. Observe that 5 of Proposition 2.11 shows that there is a constant C1 > 0 such that,
under the identification of Gs with h0,

Bs,∗(1) ⊆
∑

j∈J0

[−C1, C1]˜Y j =: Qs

for every s ∈ [0, 1]. In addition, denoting by νh0 the (fixed) Lebesgue measure on h0, again
by 5 of Proposition 2.11 we see that there is a constant C2 > 0 such that

νGs ≤ C2νh0

under the identification of Gs with h0. Thanks to 3 of Proposition 2.11, it will then suffice to
estimate νh0(Q

·Gs h
s ) for every h ∈ N∗ and for every s ∈ [0, 1].

3. Now, observe that, arguing as in the proof of [6, Theorem 2 of Chapter II, § 6, No. 4],
we see that, for every j1, . . . , jh ∈ J0,

˜Y j1 · · ·˜Y jh =
∞
∑

m=1

(−1)m−1

m

∑

|1|,...,|m |≥1

1

1! · · · m ! [˜Y
1,1
j1

· · ·˜Y m,h
jh

],

where

[˜Y ′
1,1

j1
· · ·˜Y ′

m,h
jh

] = (ad(˜Y j1)
′
1,1 · · · ad(˜Y jh )

′
1,h ) · · · (ad(˜Y ′

m,1
j1

) · · · ad(˜Y jh )
′

m,h )˜Y jh̄ ,

where h̄ := max
{

h′ : m,h′ �= 0
}

, ′
m′ := m′ for every m′ = 1, . . . , m − 1, and ′

m =
m − (δh′,h̄)h′ . Then, taking 1 into account, we see that

[Y 1,1
j1

· · · Y
m,h
jh

] ∈
〈

(˜Y j )k j ≥|1+···+m |, d j ≤1,1d j1+···+m,hd jh

〉

+ i1

for every 1, . . . , m with |1|, . . . , |m | ≥ 1 and for every m ∈ N∗. Therefore, there is a
constant C3 > 0 such that

Q
·Gs h
s ⊆

∑

j∈˜J
[−C3hk j , C3hk j ]˜Y (s)

j

for every s ∈ [0, 1] and for every h ∈ N∗. Now, arguing by induction onCard(˜J ) ≥ Card(J0),
we see that

∑

j∈˜J
[−C3hk j , C3hk j ]˜Y (s)

j =
⋃

J ′,J ′′⊆˜J
J ′∩J ′′=∅

Card(J ′′)=Card(J0)

⋃

ε′∈{ −1,1 }J ′

ε′′∈{ −1,1 }J ′′

(

∑

j ′∈J ′
C3hk j ′ ε′

j ′˜Y
(s)
j ′

+
∑

j ′′∈J ′′
[0, 1]C3ε

′′
j ′′h

k j ′′˜Y (s)
j ′′

)

.
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Therefore,

νh0(Q
·Gs h
s ) ≤ 22Card(

˜J )−Card(J0)
∑

J ′⊆˜J ,Card(J ′)=Card(J0)

νh0

⎛

⎝

∑

j∈J ′
[0, 1]C3hk j

˜Y (s)
j

⎞

⎠

= 22Card(
˜J )

(

C3

2

)Card(J0)
∑

J ′⊆˜J ,Card(J ′)=Card(J0)

hkJ ′ det
(

˜Y (s)
J ′
)

,

where kJ ′ := ∑

j∈J ′ k j and det
(

˜Y (s)
J ′
)

is the determinant of the basis
(

˜Y (s)
j

)

j∈J ′ of h0 with

respect to the measure νh0 (that is, with respect to any basis whose fundamental parallelotope
has measure 1).

Now, take J ′ ⊆ ˜J such that Card(J ′) = Card(J0) and det
(

˜Y (s)
J ′
)

�= 0 for some (hence

every) s ∈ (0, 1]. Observe that, since det
(

˜Y (s)
J ′
)

= det
(

˜Y (0)
J ′
)

+ O(s), the first assertion

will be established if we prove that kJ ′ ≤ D1 for every such J ′, and that kJ ′ = D0 if

det
(

˜Y (0)
J ′
)

�= 0. Then, for every k ∈ N∗ define J ′
k as the set of j ∈ J ′ such that k j = k, and

observe that (˜Y j ) j∈⋃k′≥k J ′
k′ is the basis of a graded subspace of g̃[k] whose intersection with

is ∩ g̃[k] is 0 for every s ∈ (0, 1], since (˜Y (s)
j ) j∈⋃k′≥k J ′

k′ is the basis of a subspace of g̃[k] + is

whose intersection with is is 0 and ˜Y j − ˜Y (s)
j ∈ is for every s ∈ (0, 1] and for every j ∈ J ′.

Therefore,
∑

k′≥k Card(J ′
k′) ≤ dim[(g[k] + is)/is] so that, summing over k ∈ N∗,

kJ ′ =
∑

k∈N∗
k Card(J ′

k) ≤
∑

k∈N∗
dim[(g[k] + is)/is] = Ds

for every s ∈ (0, 1], where the last equality follows from [14, Theorem II.1].

Finally, assume that det
(

˜Y (0)
J ′
)

�= 0. Then, by 1 we see that J ′ = J0, so that the assertion

follows by the same argument used above.
4. Now, assume that ˜G is stratified. Then, it is clear that g̃[k] = ⊕

q≥k g̃q , so that the
assertion for s ∈ [1,∞] is trivial. Then, consider the preceding construction for s ∈ [0, 1]
and observe that k j ≤ d j for every j ∈ ˜J , with equality when j ∈ J0. Take J ′ as in 3.

Observe that we may construct, by induction on k = 1, . . . , n, mutually disjoint subsets
J ′

k of J ′ such that J ′ ∩ J0 ⊆ J ′
k and such that (˜Y (s)

j ) j∈⋃k′≥k J ′
k′ is the basis of a graded

complement of
(

⊕

q<k g̃q

)

∩ h0 in h0, for every k = 1, . . . , n. Define k′
j := k for every

j ∈ J ′
k and for every k = 1, . . . , n, and observe that d j ≥ k′

j for every j ∈ J ′ thanks to
Proposition 2.7. Furthermore, define ˜Y J ′

j as the homogeneous component of degree k′
j of

˜Y (1)
j for every j ∈ J ′, and observe that (˜Y J ′

j ) j∈J ′ is a basis of h0. In addition, arguing as
in 3 above we see that

∑n
k=1 k Card(J ′

k) = ∑n
k=1 k dim(h0 ∩ g̃k) = Q0 = D0 since G0 is a

stratified group, so that

hkJ ′ det
(

˜Y (s)
J ′
)

= h D0(hs)kJ ′−D0s
∑

j∈J ′ d j −kJ ′ det
(

(sk′
j −d j

˜Y (s)
j ) j∈J ′

)

.

Now, observe that
∑

j∈J ′ d j − kJ ′ ≥ 0, so that our assertion will be established if we prove

that det
(

(sk′
j −δ j

˜Y (s)
j ) j∈J ′

)

is independent of s ∈ [0, 1], and hence equal to det
(

(˜Y J ′
j ) j∈J ′

)

.

To prove this fact, one may use Gauss elimination to the family (sk′
j −δ j

˜Y (s)
j ) (more precisely,
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to the matrix of the coordinates of the vectors ˜Y (s)
j with respect to the basis (˜Y j ) j∈J0 ) and

observe that, by homogeneity arguments, the resulting family is (linearly independent and)
independent of s. �

3 Estimates of the heat kernel

We now introduce the operators in which we shall be mainly interested. Fix a homogeneous
left-invariant differential operator ˜L on ˜G such that ˜L + ˜L∗ is a positive Rockland operator
of degree δ; then, we define Ls := dπs(˜L) for every s ∈ [0,∞]. We shall sometimes write
L instead of L1 to simplify the notation.6 Then, the operators ˜L, L, and Ls are weighted
subcoercive, hence hypoelliptic (cf. [21, Theorem 2.3]).

Denote by (˜ht )t>0 the heat kernel of ˜L, which we shall consider as a semi-group of
measures on ˜G. In addition, for every s ∈ [0,∞] and for every t > 0, we shall define
hs,t := (πs)∗(˜ht ), so that (hs,t )t>0 is the heat kernel of Ls . Observe that

hrs,t = (r−1 · )∗hs,rδ t

for every r > 0, for every s ∈ [0,∞], and for every t > 0.
We fix a Lebesgue measure on g̃ and identify ˜ht with its density. With the hs,t we shall

be more careful, though. Indeed, for s ∈ (0,∞) the group Gs can be identified with both
h0 and h∞, and it is not possible to find Lebesgue measures on h0 and h∞ which induce the
same measure on Gs for all s ∈ (0,∞). Therefore, we shall fix two Lebesgue measures on
h0 and h∞ and define two densities h0,s,t and h∞,s,t of hs,t accordingly.

Precisely, for s ∈ [0,∞), we define h0,s,t as the density of (P0,s)∗(˜ht ) with respect to the
fixed Lebesgue measure on h0; in this way, h0,s,t becomes the (density of) hs,t , under the
identification of gs (hence of Gs) with h0 given in Definition 2.2. Observe that, with these
choices (and with a suitable Lebesgue measure on i0, independent of s),

h0,s,t (x) =
∫

i0

˜ht (x + y + ψ0,s(y)) dy

for every s ∈ [0,∞), for every t > 0, and for every x ∈ h0.
Analogously, for s ∈ (0,∞] we shall define h∞,s,t as the density of (P∞,s)∗(˜ht ) with

respect to the fixed Lebesgue measure on h∞. Similar remarks apply.
We now prove some uniform estimates on h0,s,t and h∞,s,t and their derivatives which

cannot be derived from the general estimates for weighted subcoercive operators.

Theorem 3.1 Fix c > 0 and d ∈ R, and let X0 and X∞ be two homogeneous differential
operators with continuous coefficients on h0 and h∞, respectively, of order d. Then, for every
k ∈ N there are two constants C, b > 0 (independent of s) such that the following hold:

1. for every s ∈ [0,∞), for every x ∈ h∞, and for every t > csδ ,

|X∞∂k
s h∞,1/s,t (x)| ≤ C

t
Q∞+d+k

δ

e−b|π1/s(t−1/δ ·x)|
δ

δ−1
1/s,∗ ≤ C

t
Q∞+d+k

δ

e
−b

( |π1/s (x)|1/s

t
1/δ

) δ
δ−1

;

6 Notice that in [30] the operator ˜L is only required to be Rockland; nonetheless, since we are interested in
the corresponding heat kernels, additional restrictions have to be imposed.
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2. for every s ∈ [0,∞), for every x ∈ h0, and for every t ∈ (0, cs−δ],

|X0∂
k
s h0,s,t (x)| ≤ C

t
Q0+d−k

δ

e−b
∣

∣πs (t−1/δ ·x)
∣

∣

δ
δ−1
s,∗ ≤ C

t
Q0+d−k

δ

e
−b
( |πs (x)|s

t
1/δ

) δ
δ−1

.

Proof 1. Consider the first assertion; notice that we may reduce to the case in which
X∞ = f ∂α∞, where f is a continuous homogeneous function on h∞ of degree dα − d;
notice that dα − d > 0 since f is continuous. Now, observe that, with a change of variables,

h∞,1/s,t (x) =
∫

i∞
˜ht (x + y + ψ∞,1/s(y)) dy

= t−
Q∞

δ

∫

i∞
˜h1(t

−1/δ · x + y + ψ∞,(t−1/δs)−1(y)) dy

for every x ∈ h∞, for every s ∈ [0,∞), and for every t > 0. Therefore, Faà di Bruno’s
formula shows that

X∞∂k
s h∞,1/s,t (x) = f (x)

t
Q∞+dα+k

δ

∑

∑k
=1 |γ|=k

k!
γ !
∫

i∞
∂α∞∂γ1+···+γk

˜h1(t
−1/δ · x + y

+ ψ∞,(t−1/δs)−1(y))

k
∏

=1

(

1

!∂

s′
∣

∣

s′=t−1/δsψ∞,1/s′(y)

)γ

dy

for every s ∈ [0,∞), for every t > 0, for every k ∈ N, and for every x ∈ h∞. In addition,
observe that ∂

s′
(

pr j ◦ψ∞,1/s′
)

is a (linear) polynomial of degree at most j −  for every
j = 2, . . . , n and for every  = 1, . . . , j − 1, and is 0 otherwise. Therefore, there are
C1,˜b > 0 such that |X∞∂k

s h∞,1/s,t (x)| is less than

C1

t
Q∞+dα+k

δ

|x |dα−d
∑

∑k
=1 |γ|=k

e−˜b|t−1/δ ·x+y+ψ∞,(t−1/δs)−1 (y))|
δ

δ−1∗ (1 + |y|)dγ −k

for every (x, y) ∈ h∞ ⊕ i∞, for every s ∈ [0,∞), and for every t > csδ (cf. [21, Theo-
rem 2.3 (e)]). Now,

|t−1/δ · (x + y + ψ∞,1/s(y))|∗ ≥ 1

2
|π1/s(t

−1/δ · x)|1/s,∗ + 1

2
|t−1/δ · (x + y + ψ∞,1/s(y))|

for every (x, y) ∈ h∞ ⊕ is , for every t > 0, and for every s ∈ (0,∞], with some abuses of
notation. Therefore,

|X∞∂k
s h∞,1/s,t (x)| ≤ C1

t
Q∞+d+k

δ

e−2
δ

1−δ˜b|π1/s(t−1/δ ·x)|
δ

δ−1
1/s,∗ |t−1/δ · x |dα−d×

×
∑

∑k
=1 |γ|=k

∫

i∞
e
−2

δ
1−δ˜b

∣

∣

∣t−1/δ ·x+y+ψ∞,(t−1/δs)−1 (y)

∣

∣

∣

δ
δ−1

(1 + |y|)dγ −k dy.
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Now, fix a norm ‖ · ‖ on g̃, and recall that ψ∞,1/s′ is strictly super-homogeneous, so that
there are two constants C2, C ′

2 > 0 such that

∣

∣ψ∞,1/s′(y)
∣

∣ ≤ C2

n
∑

j=2

∥

∥

(

pr j ◦ψ∞,1/s′
)

(y1 + · · · + y j−1)
∥

∥

1
j

≤ C2

n
∑

j=2

∥

∥pr j ◦ψ∞,1/s′

∥

∥

(‖y1‖ + . . . + ∥

∥y j−1
∥

∥

) 1
j

≤ C ′
2 max

(

|y| n−1
n , |y| 1n

)

,

for every y ∈ i∞ with homogeneous components y1, . . . , yn , and for every s′ ∈ [0, c1/δ].
In addition, observe that all homogeneous norms on ˜G are equivalent and that both h∞
and i∞ are homogeneous subspaces of g̃, so that there is a constant C3 > 0 such that
|z1 + z2| ≤ C3(|z1| + |z2|) for every z1, z2 ∈ g̃, and such that |x + y| ≥ 1

C3
(|x | + |y|) for

every (x, y) ∈ h∞ ⊕ i∞. In addition, since δ
δ−1 ≥ 1, there is a constant C4 ≥ 1 such that

a
δ

δ−1
1 + a

δ
δ−1
2 ≤ (a1 + a2)

δ
δ−1 ≤ C4

(

a
δ

δ−1
1 + a

δ
δ−1
2

)

.

Then, for every x ∈ h∞, for every y ∈ i∞ and for every t > csδ ,

∣

∣t−1/δ · x + y + ψ∞,(t−1/δs)−1(y)
∣

∣

δ
δ−1

≥ 1

C
δ

δ−1
3 C4

∣

∣t−1/δ · x + y
∣

∣

δ
δ−1 − ∣

∣ψ∞,(t−1/δs)−1(y)
∣

∣

δ
δ−1

≥ 1

C
2δ

δ−1
3 C4

(

|t−1/δ · x | δ
δ−1 + |y| δ

δ−1

)

− C ′
2 max

(

|y| n−1
n , |y| 1n

)

.

Therefore, there is a constants C5 > 0 such that

2
δ

1−δ˜b
∣

∣t−1/δ · x + y + ψ∞,(t−1/δs)−1(y)
∣

∣

δ
δ−1 ≥ 1

C5

(

|t−1/δ · x | δ
δ−1 + |y| δ

δ−1

)

− C5

for every (x, y) ∈ h∞ ⊕ i∞, for every s ∈ [0,∞), and for every t > csδ .
Hence, there is a constant C6 > 0 which is greater than

|t−1/δ · x |dα−d
∑

∑k
=1 |γ|=k

∫

i∞
e
−2

δ
1−δ˜b

∣

∣

∣t−1/δ ·x+y+ψ∞,(t−1/δs)−1 (y)

∣

∣

∣

δ
δ−1

(1 + |y|)dγ −k dy

for every x ∈ h∞, for every s ∈ [0,∞), and for every t > csδ , so that

|X∞∂k
s h∞,1/s,t (x)| ≤ C1C6

t
Q∞+d+k

δ

e−2
δ

1−δ˜b|π1/s(t−1/δ ·x)|
δ

δ−1
1/s,∗ .

2. Consider, now, the second assertion. Observe that we may assume that X0 = f ∂α
h0

for
some α and some continuous homogeneous function f on h0 with degree dα − d . Notice

123



1536 M. Calzi, F. Ricci

that dα − d > 0 since f is continuous. Then, Faà di Bruno’s formula shows that

X0∂
k
s h0,s,t (x) = f (x)

t
Q0+dα−k

δ

∑

∑k
=1 |γ|=k

k!
γ !
∫

i0

∂α
0 ∂γ

˜h1(t
−1/δ · x + y + ψ0,t 1/δs(y))·

·
k
∏

=1

(

1

!∂

s′
∣

∣

s′=t 1/δsψ0,s′(y)

)γ

dy

for every s ∈ [0, 1], for every t > 0, for every k ∈ N, and for every x ∈ h0. In addition,
observe that ∂

s′
(

pr j ◦ψ0,s′
)

is a (linear) polynomial of degree at most n and of homogeneous
order at least j +  for every j = 1, . . . , n − 1 and for every  = 1, . . . , n − j , and is 0
otherwise. Therefore, there are C1,˜b > 0 such that |X0∂

k
s h0,s,t (x)| is less than

C1

t
Q0+dα−k

δ

|x |dα−d
∑

∑k
=1 |γ|=k

e−˜b|t−1/δ ·x+y+ψ0,t
1/δs (y)|

δ
δ−1∗ |y|dγ +k(1 + |y|)n|γ |−dγ −k

for every (x, y) ∈ h0 ⊕ i0, for every s ∈ [0,∞), and for every t > 0 (cf. [21, Theorem 2.3]).
Therefore, arguing as in 1 we see that

|X0∂
k
s h0,s,t (x)| ≤ e−2

δ
1−δ˜b|πs (t−1/δ ·x)|

δ
δ−1
s,∗

t
Q0+d−k

δ

C1|t−1/δ · x |dα−d×

×
∑

∑k
=1 |γ|=k

∫

i0

e−2
δ

1−δ˜b|t−1/δ ·x+y+ψ0,t
1/δs (y)| δ

δ−1 |y|dγ +k(1 + |y|)n|γ |−dγ −k dy

for every x ∈ h0, for every s ∈ [0,∞), and for every t > 0.
Now, observe that there is a constant C2 ≥ 1 such that

1

C2
min(‖z‖, ‖z‖1/n) ≤ |z| ≤ C2 max(‖z‖, ‖z‖1/n)

for every z ∈ g̃. In addition, observe that the linearmapping Ls′ : x+y 	→ x+y+ψ0,s′(y) is an
automorphism of g̃ for every s′ ∈ [0,∞), and that the mapping [0,∞) � s′ 	→ Ls′ ∈ L(̃g)

is continuous. Therefore, there is a constant C3 > 0 such that ‖L−1
s′ ‖ ≤ C3 for every

s′ ∈ [0, c1/δ]. In particular, assuming that ‖x + y‖ = ‖x‖ + ‖y‖ for every (x, y) ∈ h0 ⊕ i0
for simplicity,

2

C2C
1/n

3

+ |t−1/δ · x + y + ψ0,t 1/δs(y)| ≥ 1

C2

(

C−1/n

3 + ‖t−1/δ · x + y + ψ0,t 1/δs(y)‖1/n

)

≥ 1

2C2C
1/n

3

(

2 + ‖t−1/δ · x‖1/n + ‖y‖1/n
)

≥ 1

2C
n+1

n
2 C

1/n

3

(|t−1/δ · x |1/n + |y|1/n
)

for every (x, y) ∈ h0 ⊕ i0, for every s ∈ [0,∞), and for every t ∈ (0, cs−δ]. Hence, there is
a constant C4 > 0 such that

|t−1/δ · x |dα−d
∑

∑k
=1 |γ|=k

∫

i0

e−2
δ

1−δ˜b|t−1/δ ·x+y+tψ0,t
1/δ s (y)| δ

δ−1 ×

× |y|dγ +k(1 + |y|)n|γ |−dγ −k dy ≤ C4
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for every (x, y) ∈ h0 ⊕ i0, for every s ∈ [0, 1], and for every t ∈ (0, cs−δ], so that

|X0∂
k
s h0,s,t (x)| ≤ C1C4

e−2
δ

1−δ˜b|πs (t−1/δ ·x)|
δ

δ−1
s,∗

t
Q0+d−k

δ

(x, y) ∈ h0 ⊕ i0, for every s ∈ [0,∞), and for every t ∈ (0, cs−δ]. The proof is complete. �
Proposition 3.2 For every c > 0 and for every γ , there are C > 0 and ω > 0 such that for
every s ∈ [0,∞] and for every t > 0,

∥

∥

∥Xγ
s hs,te

c| · |s,∗
∥

∥

∥

1
≤ C

t
dγ
δ

eωt .

Proof Observe that [21, Theorem 2.3 (f)] implies that there are C and ω such that
∥

∥

∥

˜Xγ
˜hte

c| · |∗
∥

∥

∥

1
≤ C

t
dγ
δ

eωt

for every t > 0. Therefore,
∥

∥

∥Xγ
s hs,t e

c| · |s,∗
∥

∥

∥

1
=
∥

∥

∥(πs)∗
(

˜Xγ
˜ht e

c(| · |s,∗◦πs)
)∥

∥

∥

1
≤
∥

∥

∥

˜Xγ
˜ht e

c| · |∗
∥

∥

∥

1
≤ C

t
dγ
δ

eωt

for every t > 0 and for every s ∈ [0,∞]. �

4 Riesz potentials

We keep the notation of the preceding section. Here, we generalize the asymptotic study of
the fundamental solutions made in [30] to the complex powers of Ls . Notice first that, while

the convolution kernels of L− α
δ

s (the Riesz potentials) are easily defined when Re α < Q∞,
in order to define them also for Re α ≥ Q∞ we shall need to argue by analytic continuation.

4.1 Definition and (log-)homogeneity of Riesz potentials

In the following statement, functions on h0 (resp. h∞) are identified with distributions by
means of the fixed Lebesgue measure on h0 (resp. h∞).

Proposition 4.1 For every s ∈ (0,∞] there is a unique meromorphicS ′(Gs)-valued mapping
α 	→ Is,α on C, with poles of order at most 1 at the elements of Q∞ + N, such that the
following hold:

1. if α ∈ C, −δk1 < Re α < Q∞ + k2 for some k1, k2 ∈ N, and α /∈ Q∞ + N, then

I∞,s,α = 1

Γ (α
δ
)

∫ 1

0
t

α
δ

⎛

⎝h∞,s,t −
∑

j<k1

(−Ls)
jδ0

t j

j !

⎞

⎠

dt

t

+
∑

j<k1

1

j !( α
δ

+ j)Γ (α
δ
)
(−Ls)

jδ0

+ 1

Γ (α
δ
)

∫ +∞

1
t

α
δ

⎛

⎝h∞,s,t −
∑

dγ <k2

∂
γ∞h∞,s,t (0)

( · )γ
γ !

⎞

⎠

dt

t
+ Ps,α,k2 ,
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where Ps,α,k2 is a sum of homogeneous polynomials on h∞ of degree at most k2 − 1;
2. I∞,s,α ∈ L1

loc(h∞) when Reα > 0;
3. the restriction of I∞,s,α to h∞ \ { 0 } has a density of class C∞;
4. I∞,s,−δk = Lk

s δ0 for every k ∈ N.

Similar assertions hold for s = 0, replacing h∞ with h0, ∂∞ with ∂0, and Q∞ with Q0.

Proof Fix s ∈ (0,∞]. In addition, fix k1, k2 ∈ N and observe that, if 0 < Re α <
Q∞
δ
, then

I∞,s,α = 1

Γ
(

α
δ

)

∫ ∞

0
t

α
δ h∞,s,t

dt

t

= 1

Γ (α
δ
)

∫ 1

0
t

α
δ

⎛

⎝h∞,s,t −
∑

j<k1

(−Ls)
jδ0

t j

j !

⎞

⎠

dt

t

+
∑

j<k1

1

j !( α
δ

+ j)Γ (α
δ
)
(−Ls)

jδ0

+ 1

Γ (α
δ
)

∫ +∞

1
t

α
δ

⎛

⎝h∞,s,t −
∑

dγ <k2

∂
γ∞h∞,s,t (0)

( · )γ
γ !

⎞

⎠

dt

t
+ Ps,α,k2 ,

where

Ps,α,k2(x) := 1

Γ (α
δ
)

∑

dγ <k2

xγ

γ !
∫ +∞

1
t

α
δ ∂

γ∞h∞,s,t (0)
dt

t

for every x ∈ h∞. Taking into account Lemmas 7.5, 7.6, and 7.7, it suffices to prove that the
mapping α 	→ Ps,α,k2 extends to a meromorphic mapping on C with poles of order at most
1 at the elements of Q∞ + N. Indeed,

∂
γ∞h∞,s,t−δ (0) =

∫

i∞
∂

γ∞˜ht−δ

(

y + ψ∞,s(y)
)

dy

= t Q∞+dγ

∫

i∞
∂

γ∞˜h1
(

y + t · ψ∞,s(t
−1 · y)

)

dy

for every x ∈ G and for every t > 0. In addition, since ψ∞,s is linear and strictly super-
homogeneous,

t · ψ∞,s(t
−1 · y) =

∑

< j

t j− pr j (ψ∞,s(y))

for every t > 0 and y ∈ i∞. As a consequence, the mapping t 	→ ∂
γ∞h∞,s,t−δ (0) extends

to a mapping of class C∞ on R. Let
∑

j≥Q∞+dγ
bs,γ, j t j be its Taylor development at the

origin.
Now, fix N ∈ N and observe that, for Re α < N + 1,
∫ +∞

1
t

α
δ ∂

γ∞h∞,s,t (0)
dt

t
= δ

∫ 1

0
t−α∂

γ∞h∞,t−δ (0)
dt

t

= δ
∑

Q∞+dγ ≤ j≤N

bs,γ, j

∫ 1

0
t−α+ j dt

t
+
∫ 1

0
t−α O

(

t N+1
) dt

t

= δ
∑

Q∞+dγ ≤ j≤N

bs,γ, j

j − α
+
∫ 1

0
O
(

t−Re α+N
)

dt .
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By the arbitrariness of N , it follows that the mapping α 	→ ∫ +∞
1 t

α
δ ∂

γ

h∞h∞,s,t (0) dt
t extends

to ameromorphicmappingonCwith poles of order atmost 1 at every element of Q∞+dγ +N.
Summing up all these facts, it follows that themappingα 	→ I∞,s,α extends to ameromorphic
mapping on C, with poles of order at most 1 at every element of Q∞ +N. Finally, it is clear
that I∞,s,−k = Lk

s δ0.
The case s = 0 is treated similarly. �

Definition 4.2 Fix s ∈ (0,∞]. For every α ∈ C such that α /∈ Q∞ + N, we define Is,α

as the distribution on Gs induced by the distribution I∞,s,α of Proposition 4.1 under the
identification of Gs with h∞ (in other words, Is,α = (πs)∗(I∞,s,α) by an abuse of notation).
We define Is,α , for α ∈ Q∞ + N, as the zeroth-order term of the Laurent expansion of the
mapping α′ 	→ Is,α′ at α.7

We denote by I0,s,α the distribution on h0 induced by Is,α under the identification of Gs

with h0, for every s ∈ (0,∞); I0,0,α is defined as in Proposition 4.1. We define I0,α :=
(π0)∗(I0,0,α), with the same abuse of notation used above.

Proposition 4.3 For every s ∈ (0,∞], for every r > 0, and for every α ∈ C, the following
hold:

1. (r · )∗ Is,α = r−α Ir−1s,α if Is, · is regular at α (in which case also Ir−1s, · is regular at α);
2. (r · )∗ Is,α = r−α Ir−1s,α + r−α log r Pr−1s,α , where Pr−1s,α is a polynomial such that

Pr−1s,α(x) = O(|x |−Q∞+α

r−1s
) for x → ∞, if Is, · has a pole at α (in which case also

Ir−1s, · has a pole at α). In addition, P∞,α is homogeneous of degree −Q∞ + α.

Analogous assertions hold for s = 0, replacing h∞ with h0 and Q∞ with Q0.

In particular, I∞,α is homogeneous of degree −Q∞ + α when I∞, · regular at α, while
I∞,α is log-homogeneous of degree −Q∞ + α otherwise (cf. Definition 2.2).

Analogous statements hold for I0,α , with the obvious modifications.

Proof The first assertion for 0 < Re α < Q∞ follows easily from the equality (r · )∗hs,t =
hr−1s,rδ t , which holds for every r > 0, for every s ∈ [0,∞], and for every t > 0. The general
statement then holds by holomorphy.

For what concerns the second assertion, take s ∈ (0,∞] and a pole α of Is, · , so that, in
particular, α ∈ Q∞ + N. Then, for every α′ �= α in a neighbourhood of α, and for every
r > 0

(r · )∗ Is,α′ = r−α′
Ir−1s,α′ ,

so that, taking the zeroth-order term of the Laurent expansions of both sides of the equality
at α,

(r · )∗ Is,α = r−α Ir−1s,α − r−α log r lim
α′→α

(α′ − α)Ir−1s,α′ .

Now, with the notation of Proposition 4.1, it is easily seen that, chosen k1 = 0 and k2 =
−Q∞ + α + 1,

lim
α′→α

(α′ − α)I∞,r−1s,α(x) = lim
α′→α

(α′ − α)Pr−1s,α,k2(x).

By inspection of the Proof of Proposition 4.1, we see that lim
α′→α

(α′ − α)P∞,α′,k2 is a homo-

geneous polynomial of degree −Q∞ + α, whence the result. �
7 Notice that the mapping α′ 	→ Is,α′ may be regular at α.
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4.2 Asymptotic expansions

We keep the notation of the preceding sections. We prove some asymptotic developments
of the Iα generalizing those proved in [30] for the fundamental solutions. Even though the
procedure of [30] may be generalized to the present setting, we prefer to give a different
proof, which is shorter and gives a little more insight into the meaning of the further terms of
the development. We then present, under rather restrictive assumptions, another proof which
describes quite explicitly the terms of the development.

Theorem 4.4 Take and α ∈ C and s ∈ R+. Then, the following hold:

1. there is a sequence of log-homogeneous functions (I (k)∞,α) of class C∞ on h∞ \ { 0 } such

that I (0)∞,α = I∞,∞,α , such that I (k)∞,α has degree −Q∞ + α − k, and such that for every
N ∈ N and for every γ there is a constant CN ,γ > 0 such that, for every s ∈ [1,∞),

∣

∣

∣

∣

∣

∂
γ∞

(

I∞,s,α −
∑

k<N

s−k I (k)∞,α

)

(x)

∣

∣

∣

∣

∣

≤ CN ,γ s−N

|x |Q∞−Re α+dγ +N
(1 + |log|s · x ||)

for every x ∈ h∞ such that |x | ≥ s−1; the factor 1 + |log|s · x || may be omitted if
α /∈ Q∞ + dγ + N + N;

2. there are a sequence (Pα,k) of homogeneous polynomials on h0 and a sequence (I (k)
0,α) of

log-homogeneous functions of class C∞ on h0 \ { 0 } such that I (0)
0,α = I0,0,α , such that

I (k)
0,α has degree −Q0 + α + k, such that P0,α,k has degree k, and such that for every

N ∈ N and for every γ there is a constant C ′
N ,γ > 0 such that, for every s ∈ (0, 1],

∣

∣

∣

∣

∣

∣

∂
γ
0

⎛

⎝I0,s,α −
∑

k<N

sk I (k)
0,α −

∑

k<−Q0+Re α+N

sk−Q0+α Pα,k

⎞

⎠ (x)

∣

∣

∣

∣

∣

∣

≤ C ′
N ,γ s N

|x |Q0−Re α+dγ −N
(1 + |log|s · x ||)

for every x ∈ h0 such that 0 �= |x | ≤ s−1; the factor 1 + |log|s · x || may be omitted if
α /∈ Q0 + dγ − N + N.

Proof 1. Define H∞(s′, t, x) := h∞,1/s′,t (x) for every s′ ∈ [0,∞), for every t > 0, and for
every x ∈ h∞, to simplify the notation. Take α ∈ C such that 0 < Re α < Q∞, and observe
that a Taylor expansion of H∞ in the first variable gives

I∞,s,α = 1

Γ (α
δ
)

∫ 1

0
t

α
δ h∞,s,t

dt

t
+
∑

k<N

s−k

k!Γ (α
δ
)

∫ +∞

1
∂k
1 H∞(0, t, · ) dt

t
+ s−N Rs,α,N ,

where

Rs,α,N = 1

(N − 1)!Γ (α
δ
)

∫ +∞

1
t

α
δ

∫ 1

0
∂ N
1 H∞

(

θ

s
, t, ·

)

(1 − θ)N−1 dθ
dt

t
.

Now, Lemma 7.6 implies that the mapping α 	→ 1
Γ ( α

δ
)

∫ 1
0 t

α
δ h∞,s,t

dt
t extends to an entire

function with values in E ′(h∞) + S(h∞). Next, observe that

H∞(s′, t, x) = t−
Q∞

δ H∞(t−1/δs′, 1, t−1/δ · x)
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for every s′ ∈ [0,∞), for every t > 0, and for every x ∈ h∞, so that

∂k
1 H∞(0, t, x) = t−

Q∞+k
δ ∂k

1 H∞(0, 1, t−1/δ · x)

for every x ∈ h∞ and for every t > 0.
Therefore, Lemma 7.6 and the estimates of ∂k

1 H∞(0, t, · ) provided in Theorem 3.1 show
that, for 0 < Re α < Q∞ + k,

1

k!Γ (α
δ
)

∫ +∞

1
t

α
δ ∂k

1 H∞(0, t, · ) dt

t
= 1

k!Γ (α
δ
)

∫ +∞

0
t

α
δ ∂k

1 H∞(0, t, · ) dt

t
+ R′

α,k,

where R′
α,k is an entire function of α with values in E ′(h∞) + S(h∞). In addition, we also

see that the mapping, initially defined for 0 < Re α < Q∞ + k,

α 	→ I (k)∞,α := 1

k!Γ (α
δ
)

∫ +∞

0
t

α
δ ∂k

1 H∞(0, t, · ) dt

t

extends to ameromorphic function onC such that I (k)∞,α is homogeneous of degree−Q∞+α−
k for every α in the domain of holomorphy of I (k)∞, · (argue as in the proof of Propositions 4.1
and 4.3). Log-homogeneity holds at poles, where I (k)∞,α denotes the zeroth-order term of the

Laurent expansion of I (k)∞, · (argue as in the Proof of Proposition 4.3).
Finally, assume that Re α < Q∞ + N . Observe that there is a constant C > 0 such that

|πs′(x)|s′ ≥ C(|x | − 1)

for every s′ ∈ [1,∞] and for every x ∈ h∞, thanks to Proposition 2.11. Therefore, Theo-
rem 3.1 and the preceding computations imply that Rs,α,N (x) is well defined for x �= 0 and
that there are there are two constants C ′ > 0 and b > 0 such that, for every γ ,

|∂γ∞ Rs,α,N (x)| ≤ C ′
∫ +∞

1
t
Re α−Q∞−dγ −N

δ e
−b
( |x |

t
1/δ

) δ
δ−1 dt

t
.

Hence,

|∂γ∞ Rs,α,N (x)| ≤ C ′|x |Re α−Q∞−dγ −N
∫ +∞

0
t

−Re α+Q∞+dγ +N
δ e−bt

1
δ−1 dt

t
.

The assertion follows for s fixed. In order to get uniform estimates for s ∈ [1,∞), reduce
to the case s = 1 by means of Proposition 4.3. Let us give some more details in the case in
which Is, · has a pole at α. Indeed, for every s ∈ [1,∞], I∞,s,α −∑

k<N s−k I (k)∞,α equals

s−α(s−1 · )∗
(

I∞,1,α −
∑

k<N

I (k)∞,α

)

+ s−α log s (s−1 · )∗
(

P1,α ◦ π1 −
∑

k<N

P ′
α,k

)

,

where P1,α is defined in Proposition 4.3, while P ′
α,k is a suitable homogeneous polynomial

on h∞ of degree −Q∞ + α − k. Since the term

s−α(s−1 · )∗
(

I∞,1,α −
∑

k<N

I (k)∞,α

)

satisfies the estimates of the statement, all we need to prove is that P1,α ◦ π1 −∑

k<N P ′
α,k

has degree at most −Q∞ + α − N . One may prove this by expressing P1,α and the P ′
α,k

in terms of hs,t and its derivatives in s−1. Nonetheless, since the above proof shows that
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I∞,s,α −∑

k<N s−k I (k)∞,α satisfies the estimates of the statement (with constants depending

on s), the same necessarily applies to s−α log s(s−1)∗
(

P1,α ◦ π1 −∑

k<N P ′
α,k

)

, whence

our claim.
2. Define H0(s, t, x) := h0,s,t (x) for every s ∈ [0,∞), for every t > 0, and for every

x ∈ h0, to simplify the notation. Take α ∈ C such that 0 < Re α < Q0, and observe that a
Taylor expansion of H0 in the first variable gives

I0,s,α =
∑

k<N

sk 1

k!Γ (α
δ
)

∫ 1

0
t

α
δ ∂k

1 H0(0, t, · ) dt

t
+ s N Rs,α,N + 1

Γ (α
δ
)

∫ +∞

1
t

α
δ h0,s,t

dt

t
,

where

Rs,α,N = 1

Γ (α
δ
)(N − 1)!

∫ 1

0
t

α
δ

∫ 1

0
∂ N
1 H0(θs, t, · )(1 − θ)N−1 dθ

dt

t
.

Now, by means of Lemma 7.7 we see that the mapping α 	→ 1
Γ ( α

δ
)

∫ +∞
1 t

α
δ h0,s,t

dt
t extends

to a meromorphic function onCwith values in E(G). In addition, as in 1 one may prove that

∂k
1 H0(0, t, x) = t−

Q0−k
δ ∂k

1 H0(0, 1, t−1/δ · x)

for every x ∈ h0 and for every t > 0. Therefore, making use of the estimates of ∂k
1 H0(0, t, · )

provided in Theorem 3.1, we see that

R′
s,α,k := 1

k!Γ (α
δ
)

∫ +∞

1
t

α
δ ∂k

1 H0(0, t, · )dt

t
∈ C∞(Gs),

initially defined for Re α < Q0 − k, extends to a meromorphic function on C. In addition,
we also see that the mapping, initially defined for −k < Re α < Q0 − k,

α 	→ I (k)
0,α := 1

k!Γ (α
δ
)

∫ 1

0
t

α
δ ∂k

1 H0(0, t, · ) dt

t
+ R′

s,α,k

extends to a meromorphic mapping on C.8 Let us prove that I (k)
0,α is homogeneous of degree

−Q0 + α + k for α in the domain of holomorphy of I (k)
0,α . By analyticity, we may reduce to

prove this fact for −k < Re α < Q0 − k, in which case

I (k)
0,α = 1

k!Γ (α
δ
)

∫ ∞

0
t

α
δ ∂k

1 H0(0, t, · ) dt

t
,

so that the assertion is easily established. Log-homogeneity holds at the poles of I (k)
0, · , where

I (k)
0,α denote the zeroth-order term of the Laurent expansion of I (k)

0, · at α.
Finally, take γ and assume that Re α > Q0 + dγ − N ; in addition, define |x |′ :=

inf
s∈[0,1]|πs(x)|s for every x ∈ h0, and observe that |x |′ > 0 for every nonzero x ∈ h0,

and that there is a constant C > 0 such that

1

C
|x | ≤ |x |′ ≤ C |x |

8 Using the estimates of H0 provided in Theorem 3.1, it is not hard to see that
∫ 1
0 t

α
δ ∂k

1 H0(0, t, · ) dt
t ∈

L1(Gs ) for Re α > −k.
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for every x ∈ h0 such that |x | ≤ 1 (cf. Proposition 2.11). In addition, Theorem 3.1 and the
preceding computations imply that there are there are two constants C ′ > 0 and b > 0 such
that

|∂γ
0 Rs,α,N (x)| ≤ C ′

∫ 1

0
t
Re α−Q0−dγ +N

δ e
−b
( |x |′

t
1/δ

)
δ

δ−1 dt

t
,

so that Rs,α,N (x) is well defined for x �= 0. In addition,

|∂γ
0 Rα,N (x)| ≤ C ′|x |′Re α−Q0−dγ +N

∫ +∞

0
t

Q0+dγ −N−Re α

δ ebt
1

δ−1 dt

t
.

The assertion follows for s fixed. In order to get uniform estimates for s ∈ (0, 1], reduce to
the case s = 1 by means of Proposition 4.3 (argue as in 1). �

Observe that, with the same techniques used to prove [30, Theorem 2], one may prove the
following result.

Corollary 4.5 Take s ∈ (0,∞), γ ∈ NJ , and α ∈ C such that Re α ≥ dγ . Then, for every

p, q ∈ (1,∞) such that
Re α−dγ

Q∞ ≤ 1
p − 1

q ≤ Re α−dγ

Q0
, convolution on the right with Xγ

s Is,α

induces a bounded operator from L p(Gs) into Lq(Gs).

Notice that, if convolution on the right with Xγ
s Is,α induces a bounded operator Ts from

L p(Gs) into Lq(Gs) for some p, q ∈ (1,∞) and for some s ∈ (0,∞), then Re α−dγ

Q∞ ≤
1
p − 1

q ≤ Re α−dγ

Q0
. Indeed, take r > 0 and f ∈ L p(Gr−1s), and define ρr (x) := r · x for

every x ∈ Gr−1s . Then,

Ts( f ◦ ρr ) = ( f ◦ ρr ) ∗ (Xγ
s Is,α) = [ f ∗ (ρr )∗(Xγ

s Is,α)] ◦ ρr = r−α+dγ (Tr−1s f ) ◦ ρr ,

where Tr−1s is given by convolution on the right with Xγ

r−1s
Ir−1s,α . Now, identify Gs′ with

h0 for every s′ ∈ [0, s]. Observe that, denoting by νh0 the fixed Lebesgue measure on h0, we
have νGs′ = a0,s′νh0 for some a0,s′ > 0; in addition, the mapping s′ 	→ a0,s′ is continuous
on [0, s] thanks to 5 of Proposition 2.11. Therefore, there is a constant C > 0 such that

Cr−Q0/p‖ f ‖L p(h0)
= C‖ f ◦ ρr‖L p(h0)

≥ r−Re α+dγ ‖(Tr−1s f ) ◦ ρr‖Lq (h0)

= r−Re α+dγ −Q0/q‖Tr−1s f ‖Lq (h0)
.

for every f ∈ L p(h0) and for every r ≥ 1. Now, Tr−1s f converges pointwise to T0 f as
r → +∞ for every f ∈ S(h0) with vanishing moments of all orders,9 so that

‖T0 f ‖Lq (h0)
≤ C‖ f ‖L p(h0)

lim inf
r→∞ r

Re α−dγ +Q0

(

1
q − 1

p

)

for every such f . Since T0 �= 0, it follows that Re α−dγ ≥ Q0

(

1
p − 1

q

)

. The other inequality

is proved similarly.

Proof We shall briefly indicate the procedure employed in [30], for the sake of completeness.
When p �= q , observe that Xγ

s Is,α belongs to weak Lr for every r ∈ (1,∞) such that
Re α−dγ

Q∞ ≤ 1
r ′ ≤ Re α−dγ

Q0
thanks to Theorem 4.4. Then, arguing as in the Proof of [10,

Proposition 1.19], we see that weak Lr convolves L p(Gs) into Lq(Gs) for 1
p − 1

q = 1
r ′ and

p, q, r ∈ (1,∞).

9 Notice that the set of such f is dense in L p(h0), since p ∈ (1, ∞).
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When p = q , take τ ∈ C∞
c (Gs) so that τ equals 1 in a neighbourhood of e. We shall prove

that τXγ
s Is,α convolves L p(Gs) into itself; onemay prove analogously that also (1−τ)Xγ

s Is,α

convolves L p(Gs) into itself and conclude the proof. Now, Proposition 2.7 and Theorem 4.4
show that τXγ

s Is,α equals τXγ
0 I0,α up to an integrable function, under the identification of

Gs with G0 through h0; consequently, it will suffice to show that τXγ
0 I0,α convolves L p(Gs)

into itself (with respect to the convolution of Gs). Now, it is clear that there is a constant
C > 0 such that

|Xγ ′
0 (τXγ

0 I0,α)(x)| ≤ C |x |−Q0−dγ ′
s

for every x ∈ Gs and for every γ ′ with length at most 1, thanks to 6 of Proposition 2.11. By
Lemma 2.14, we then see that we may take C in such a way that

|(τXγ
0 I0,α)(xy−1) − (τXγ

0 I0,α)(x)| ≤ C
|y|s

|x |Q0+1
s

for every x, y ∈ Gs such that |x |s > 2|y|s > 0. In addition, since Xγ
0 I0,α is a homogeneous

distribution of degree −Q0 + α − dγ , it is clear that Xγ
0 I0,α has zero mean on the unit

sphere (relative to | · |0) when Im α = 0. Similar remarks apply to (Xγ
0 I0,α)∗. Taking into

account [12, Lemma of Chapter III, § 3.1], it is not hard to see that we may apply [12,
Theorem of Chapter III, § 4.3], so that τXγ

0 I0,α convolves L p(Gs) into itself for every
p ∈ (1,∞). �
Remark 4.6 Observe that, if G = Rn and L = Δ2 − Δ, then it is not hard to prove that
I1,α = I Δ

α ∗ Jα , where Jα = ((1 − Δ)− α
2 )δ0 and I Δ

α is the kernel of (−Δ)− α
2 defined by

analytic continuation, for every α ∈ C. Then, observe that, for α ∈ (0,∞) \ (n + N), I Δ
α

and Jα keep a constant sign (in particular, they vanish nowhere), so that

I1,α(0) = (Jα ∗ I Δ
α )(0) =

∫

Rn
Jα(x)I Δ

α (−x) dx �= 0

when α > n. Hence, the polynomials appearing in the local expansion of Iα in Theorem 4.4
cannot be omitted, in general.

Theorem 4.7 Take α ∈ C and s ∈ R+. Then, the following hold:

1. assume that G1 = G∞ (under the identification through h∞) as Lie groups and that
[L1,L∞] = 0. Let d∞ be the least degree of the nonzero homogeneous components of
L1 − L∞. Then, for every N ∈ N and for every γ there is a constant CN ,γ > 0 such
that, for every s ∈ [1,∞),

∣

∣

∣

∣

∣

Xγ∞

(

Is,α −
∑

k<N

(−α/δ

k

)

(Ls − L∞)k I∞,α+δk

)

(x)

∣

∣

∣

∣

∣

≤ s−N CN ,γ

|x |Q∞−Re α+dγ +N (d∞−δ)
(1 + |log|s · x ||)

for every x ∈ h∞ such that |x | ≥ s−1; the factor 1 + log|s · x | may be omitted if
α /∈ Q∞ + dγ + N (d∞ − δ) + N;

2. assume that G1 = G0 (under the identification through h0) as Lie groups and that
[L1,L0] = 0. Let d0 be the greatest degree of the nonzero homogeneous components of
L1 −L0. Then, there is a sequence (Pα,k) of homogeneous polynomials on G0 such that
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Pα,k has degree k for every k ∈ N, and such that for every N ∈ N and for every γ there
is a constant CN ,γ > 0 such that, for every s ∈ (0, 1],

∣

∣

∣

∣

Xγ
0

(

Is,α −
∑

k<N

(−α/δ

k

)

(Ls − L0)
k I0,α+δk

−
∑

k<−Q0+Re α+N (δ−d0)

sk−Q0+α Pα,k

)

(x)

∣

∣

∣

∣

≤ s N CN ,γ (1 + |log|s · x ||)
|x |Q0−Re α+dγ −N (δ−d0)

for every x ∈ h0 such that 0 �= |x | ≤ s−1; the factor 1 + log|s · x | may be omitted if
α /∈ Q0 + dγ − N (δ − d0) + N.

Let us describe some examples. Take a two-step nilpotent Lie group G and a hypoelliptic
sub-Laplacian L thereon. Then, we may endow G with the structure of a stratified group
in such a way that L = L∞ + L′, where L∞ and L′ are homogeneous sums of squares of
degrees 2 and 4, respectively. By means of the construction described in Introduction, we
may choose a two-step stratified group ˜G and a sub-Laplacian ˜L in such a way that Gs = G∞
as Lie groups10 and Ls = L∞ + s−2L′ for every s ∈ (0,∞]. Thus, in this case the first part
of Theorem 4.7 applies.

If, in the preceding example, we define L1 = Lk∞ +L′ for some k ≥ 3, then, applying an
analogous construction, we get Gs = G0 as Lie groups and Ls = Lk∞ + s2(k−1)L′ for every
s ∈ [0,∞), so that the second part of Theorem 4.7 applies.

Proof Assume that G1 = G∞ as Lie groups and that [L1,L∞] = 0. Define, for every t > 0,
for every s ∈ (0,∞], and for every θ ∈ [0, 1],

h(θ)
s,t := h∞,(1−θ)t ∗ hs,θ t ;

observe that (h(θ)
s,t )t is a semi-group under convolution and that the mapping θ 	→ h(θ)

s,t ∈
S ′(G) is of class C∞ on [0, 1], with

dk

dθk
h(θ)

s,t = (−t)k(Ls − L∞)kh(θ)
s,t

for every t > 0, for every s ∈ (0,∞], and for every θ ∈ [0, 1]. Now, Proposition 2.11 and
Theorem 3.1 imply that for every γ and for every k ∈ N there are two constants C, b > 0
such that

|Xγ∞(Ls − L∞)kh(θ)
s,t (x)| ≤ C

t
Q∞+dγ +kd∞

δ

e
−b
( |x |s

t
1/δ

) δ
δ−1

for every s ∈ [1,∞], for every t ≥ 1, for every θ ∈ [0, 1], and for every x ∈ Gs . Now, take
α ∈ C such that 0 < Re α < Q∞, and observe that a Taylor expansion of h(θ)

s,t in θ gives

Is,α = 1

Γ (α
δ
)

∫ 1

0
t

α
δ hs,t

dt

t
+
∑

k<N

(−1)k

k!Γ (α
δ
)

∫ +∞

1
t

α
δ
+k(Ls − L∞)kh∞,t

dt

t
+ Rs,α,N ,

where

Rs,α,N = (−1)N

Γ (α
δ
)(N − 1)!

∫ +∞

1
t

α
δ
+N

∫ 1

0
(Ls − L∞)N h(θ)

s,t (1 − θ)N−1 dθ
dt

t
.

10 This is a general fact when ˜G is a two-step stratified group, cf. the Proof of Theorem 5.17
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The proof then proceeds as that of Theorem 4.4.
The case in which Gs = G0 and [Ls,L0] = 0 is treated similarly. �

5 Spectral measures andmultipliers

In this section, we assume that ˜L is Rockland and formally self-adjoint, but not necessarily
positive. Then L2

s is weighted subcoercive, so that (Ls) is a weighted subcoercive system in
the sense of [20,21]. Then, the operator Ls , considered as an unbounded operator on L2(Gs)

with initial domain C∞
c (Gs), is essentially self-adjoint (cf. [21, Proposition 3.2]). We shall

then denote by σ(Ls) the corresponding spectrum.
Now, if m : σ(Ls) → C is bounded and Borel measurable, then there is a unique distri-

bution KLs (m) on Gs such that

m(Ls)ϕ = ϕ ∗ KLs (m)

for every ϕ ∈ C∞
c (Gs) (cf. [21, Subsection 3.2]). In addition, there is a unique positive

Radon measure βLs on σ(Ls) such that KLs extends to an isometry of L2(βLs ) into L2(Gs)

(cf. [21, Theorem 3.10]).

Lemma 5.1 There is a constant C > 0 such that

βLs ([−r , r ]) ≤ C
min

(

(s−1r
1/δ)Q0 , (s−1r

1/δ)Q∞)

min(s−Q0 , s−Q∞)

for every s ∈ [0,∞] and for every r > 0. In particular, βLs ({ 0 }) = 0 for every s ∈ [0,∞].

For the proof, argue as in [34, § 2], using the estimates for the heat kernel associated with
L2

s provided in Theorem 3.1.

Proposition 5.2 The following hold:

1. for every bounded Borel measurable function m : R → C, for every s ∈ [0,∞], and for
every r > 0,

KLrs (m) = (r−1 · )∗KLs (m(r δ · ));
2. βLrs = νGs (Bs(r))(r δ · )∗(βLs );
3. the mapping [0,∞] � s′ 	→ βLs′ is vaguely continuous.

Proof Fix s ∈ [0,∞], r > 0, and m ∈ S(R), so that K
˜L(m) ∈ S(˜G), where K

˜L(m) denotes
the right convolution kernel of m(˜L) (cf. [20, Proposition 4.2.1]). Now, [21, Proposition 3.7],
applied to the quasi-regular representation of ˜G in L2(Gs), implies that

(πs)∗(K˜L(m)) = KLs (m).

Now, πrs = (r−1 · ) ◦ πs ◦ (r · ); in addition, since (r · )∗˜L = r δ
˜L by homogeneity, we have

KLrs (m) = (r−1 · )∗(πs)∗(K˜L(m(r δ · ))) = (r−1 · )∗KLs (m(r δ · )).
The spectral calculus then shows that KLrs (m) = (r−1 · )∗KLs (m(r δ · )) for every bounded
Borel measurable function m : R → C. In addition, if m ∈ S(R), then, identifying KLrs (m)
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and KLs (m) with their densities with respect to νGrs and νGs , respectively,
∫

R

m dβLrs (λ) = KLrs (m)(e)

= νGs (Bs(r))KLs (m(r δ · ))(e)
= νGs (Bs(r))

∫

R

m d(r δ · )∗βLs (λ),

so thatβLrs = νGs (Bs(r))(r δ · )∗βLs by the arbitrariness ofm. In addition, it is easily seen that
KLs′ (m)(e) converges to KLs (m)(e) as s′ → s (see also Lemma 5.4). Thanks to Lemma 5.1
and the preceding remarks, this is sufficient to prove that βLs′ converges vaguely to βLs as
s′ → s. �

5.1 Asymptotic developments

Definition 5.3 For every m ∈ S(R) and for every s ∈ [0,∞], we denote by K0,s(m) (for
s �= ∞) andK∞,s(m) (for s �= 0) the densities of the measures corresponding toKLs (m) on
h0 and h∞, respectively, under the usual identifications.

Lemma 5.4 The mappings

[0,∞) � s 	→ K0,s ∈ L(S(R);S(h0)) and [0,∞) � s 	→ K∞,1/s ∈ L(S(R);S(h∞))

are of class C∞.

Proof We prove only the first assertion. Observe that KLs = (πs)∗ ◦ K
˜L; since K

˜L ∈
L(S(R);S(˜G)) by [20, Proposition 4.2.1], it will suffice to prove that the mapping [0,∞) �
s 	→ (P0,s)∗ ∈ L(S (̃g);S(h0)) is of class C∞. Now, for every s ∈ [0,∞), denote by Ls the
automorphism x + y 	→ x + y + ψ0,s(y) of (the vector space) g̃ ∼= h0 ⊕ i0, and observe
that Ls depends polynomially on s, so that we may define Ls for every s ∈ R. With this
modification, it is readily verified that Ls is still a measure-preserving automorphism of g̃ for
every s ∈ R, since ψ0,s is strictly subhomogeneous. Then, observe that P0,s = P0,0 ◦ L−1

s
for every s ∈ [0,∞); since (P0,0)∗ ∈ L(S (̃g);S(h0)), it will suffice to prove that the
mappingR � s 	→ (L−1

s )∗ ∈ L(S (̃g)) is of class C∞. However, this last assertion is an easy
consequence of the fact that the mapping R � s 	→ Ls ∈ L(̃g) is of class C∞. �
Definition 5.5 For every k ∈ N, for every s ∈ [0,∞), and for every m ∈ S(R), define

K(k)
0,s(m) = dk

ds′k

∣

∣

∣

∣

s′=s
K0,s′(m),

and

K(k)
∞,1/s

(m) = dk

ds′k

∣

∣

∣

∣

s′=s
K∞,1/s′(m).

Lemma 5.6 Take k ∈ N and m ∈ S(R). Then, for every s ∈ [0,∞) and for every r > 0,

K(k)
0,s(m(r δ · )) = rk(r · )∗K(k)

0,rs(m)

K(k)
∞,1/s

(m(r δ · )) = r−k(r · )∗K(k)
∞,r/s

(m)

Proof The assertion follows from Proposition 5.2 by differentiation. �
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Definition 5.7 Take r ∈ R, and define Mr (R
∗) as the set of m ∈ C∞(R∗) such that for

every k ∈ N there is a constant Ck > 0
∣

∣

∣

∣

dk

dλk
m(λ)

∣

∣

∣

∣

≤ Ck |λ|r−k

for every λ ∈ R∗. We endow Mr (R
∗) with the corresponding semi-norms.

Definition 5.8 Take r ∈ R ∪ { ∞ } and s ∈ [0,∞]. We define S ′
r (Gs) as the dual of the

set Sr (Gs) of ϕ ∈ S(Gs) such that
∫

Gs
ϕ(x)P(x) dx = 0 for every polynomial P such that

P(x) = O(|x |rs ) for x → ∞; we thus identify S ′
r (Gs) with the quotient of S ′(Gs) by the set

of the polynomials as above. Similar definitions replacing Gs with h0 or h∞ and | · |s with
| · |.

Observe that, if s ∈ (0,∞], then Sr (Gs) = Sr (h∞) under the identification of Gs with
h∞ (cf. 6 of Proposition 2.11).

Definition 5.9 Take r ∈ R, and define CZr (h0) as the set of K ∈ S ′−Q0−r (h0), such that the
following hold:

– for every α such that dα > −Q0 − r , ∂α
0 K has a density of class C∞ on h0 \ { 0 } and

there is a constant Cα > 0 such that

∣

∣∂α
0 K

∣

∣ ≤ Cα

|x |Q0+r+dα

for every nonzero x ∈ h0;
– there is a constant C > 0 such that

|〈K , ϕ(θ · )〉| ≤ Cθr

for every ϕ ∈ S−Q0−r (h0) such that Suppϕ ⊆ B(1), and ‖∂α
0 ϕ‖∞ ≤ 1 for every α with

length at most ([r ] + 1)+.

We endow CZr (h0) with the corresponding semi-norms.
We define CZr (h∞) in a similar way. For every s ∈ (0,∞), we define CZr (Gs) as the

set of K ∈ S ′−Q∞−r (Gs) such that there are K0 ∈ E ′(Gs) + S(Gs) and K∞ ∈ C∞(Gs) ∩
S ′−Q∞−r (Gs) such that K = K0 + K∞, and such that the distributions on h0 and h∞
corresponding to K0 and K∞ belong to CZr (h0) and CZr (h∞), respectively. We endow
CZr (Gs) with the corresponding topology.

Finally, we denote by νR+ the Haar measure on (R+, · ) such that
∫∞
0 f dνR+ =

∫∞
0 f (x) dx

x for every f ∈ Cc(R+).

Proposition 5.10 Take r ∈ R, a set B and a bounded family (ϕt,b)t∈(0,∞),b∈B of elements of
Sr (h0). Then, the mapping t 	→ t−r (t · )∗ϕt,b ∈ S ′−Q0−r (h0) is νR+ -integrable and the set
of

Kb :=
∫ +∞

0
t−r (t · )∗ϕt,b

dt

t
,

as b runs through B, is bounded in CZr (h0). In addition, Kb has a representative ˜Kb, for
every b ∈ B, such that for every α there is a constant Cα > 0 such that

|∂α
0
˜Kb(x)| ≤ Cα

|x |Q0+r+dα
(1 + |log|x ||)
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for every x ∈ h0 \ { 0 }, and for every b ∈ B; the factor 1 + |log|x || may be omitted if

−Q0 − r − dα /∈ N. In addition, if L is a bounded subset of C ([r ]+1)+
c (h0), then there is a

constant C ′ > 0 such that
∣

∣

〈

˜Kb, ψ(θ · )〉∣∣ ≤ C ′θr (1 + |log θ |)
for every θ > 0, for every ψ ∈ L, and for every b ∈ B; the factor 1+ |log θ | may be omitted
if −Q0 − r /∈ N.

Notice that, arguing in the spirit of [32, Theorem 2.2.1], where the case r = 0 is
essentially considered, one may prove that for every bounded family (Kb)b∈B of ele-
ments of CZr (h0) there is a bounded family (ϕt,b)t>0,b∈B of elements of S∞(h0) such that
Kb = ∫ +∞

0 t−r (t · )∗ϕt,b
dt
t for every b ∈ B.

Analogous statements hold for h∞.

Proof We shall divide the proof into several steps.
1. Let L be a subset of S−Q0−r (h0) which is bounded in C ([r ]+1)+

c (h0). For every ψ ∈ L ,
denote by Pψ the Taylor polynomial of ψ of degree [r ] about 0. Then, there is a constant
C1 > 0 such that

|(ψ − Pψ)(x)| ≤ C1|x |([r ]+1)+

for every x ∈ h0. Since ϕt,b ∈ Sr (h0) for every t > 0 and for every b ∈ B,
∫ 1/θ

0
t−r |〈(t · )∗ϕt,b, ψ(θ · )〉| dt

t
=
∫ 1/θ

0
t−r |〈ϕt,b, (ψ − Pψ)(tθ · )〉| dt

t

≤ θr C1

∫ 1

0
t ([r ]+1)+−r

∥

∥

∥| · |([r ]+1)+ϕt,b

∥

∥

∥

1

dt

t

for every θ > 0, for every ψ ∈ L , and for every b ∈ B. On the other hand, denote by Pt,b

the Taylor polynomial of ϕt,b of degree −Q0 + [−r ] about 0, for every t > 0 and for every
b ∈ B, and observe that there is a constant C2 > 0 such that

|(ϕt,b − Pt,b)(x)| ≤ C2|x |(−Q0+[−r ]+1)+ ,

for every t > 0 and for every b ∈ B. Then, since ψ ∈ S−Q0−r (h0),
∫ +∞

1/θ

t−r |〈(t · )∗ϕt,b, ψ(θ · )〉| dt

t
=
∫ +∞

1/θ

t−r |〈(tθ)∗(ϕt,b − Pt,b), ψ〉| dt

t

≤ θr C2

∥

∥

∥| · |(−Q0+[−r ]+1)+ψ

∥

∥

∥

1

∫ +∞

1
t−Q0−r−(−Q0+[−r ]+1)+ dt

t
.

Next, take α such that dα > −Q0 − r , and observe that there is a constant C3,α > 0 such
that

|∂α
0 ϕt,b(x)| ≤ C3,α

(1 + |x |)Q0+r+dα+1

for every x ∈ h0, for every t > 0, and for every b ∈ B. Then, fix a nonzero x ∈ h0, and
observe that

∫ +∞

0
t−r
∣

∣∂α
0 (t · )∗ϕt,b(x)

∣

∣

dt

t
=
∫ +∞

0

(

t

|x |
)Q0+r+dα

∣

∣

∣

∣

∂α
0 ϕ |x |

t ,b

(

t

|x | · x

)∣

∣

∣

∣

dt

t

≤ C3,α|x |−Q0−r−dα

∫ +∞

0

t Q0+r+dα

(1 + t)Q0+r+dα+1

dt

t
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for every b ∈ B.
Taking into account all the preceding inequalities, we see that the mapping t 	→

t−r (t · )∗ϕt,b ∈ S ′−Q0−r (h0) is νR+ -integrable and that the set of Kb, as b runs through
B, is bounded in CZr (h0).

2. Keep the notation of 1, and denote by Pt,b, j the homogeneous component of Pt,b of
degree j , for every j = 0, . . . ,−Q0 + [−r ]; define P ′

t,b := ∑

j<−Q0−r Pt,b, j . Then, the
arguments of 1 show that

˜Kb :=
∫ 1

0
t−r (t · )∗(ϕt,b − P ′

t,b)
dt

t
+
∫ +∞

1
t−r (t · )∗(ϕt,b − Pt,b)

dt

t

defines a representative of Kb in S ′(h0) (treat
∫ 1
0 t−r (t · )∗ P ′

t,b
dt
t separately). In addition,

arguing as in 1 we see that, for every α,

|x |Q0+r+dα

[∫ |x |

0
t−r∂α

0 (t · )∗ϕt,b(x)
dt

t
+
∫ +∞

|x |
t−r∂α

0 (t · )∗(ϕt,b − Pt,b)(x)
dt

t

]

is uniformly bounded as x runs through h0 \ { 0 }, and b runs through B. Now, take j ∈ N

such that j ≤ −Q0 + [−r ]. If j < −Q0 − r , then clearly

|x |r+Q0+dα

∣

∣

∣

∣

∫ |x |

0
t−r∂α

0 (t · )∗ Pt,b, j (x)
dt

t

∣

∣

∣

∣

is bounded as x runs through h0 \ { 0 }, and b runs through B. Finally, if j = −Q0 − r , then
clearly

|x |r+Q0+dα

1 + |log|x ||
∣

∣

∣

∣

∫ |x |

1
t−r∂α

0 (t · )∗ Pt,b, j (x)
dt

t

∣

∣

∣

∣

is bounded as x runs through h0 \ { 0 }, and b runs through B. The other estimates are proved
in a similar way. Thus, ˜Kb is the required representative of Kb. �
Corollary 5.11 Take s ∈ (0,∞), r ∈ R, a set B, and a family (ϕt,b)t>0,b∈B such that
ϕt,b ∈ Sr (Gst ) for every t > 0 and for every b ∈ B, and such that for every k ∈ N there is
a constant Ck > 0 such that

|Xγ
stϕt,b(x)| ≤ Ck

(1 + |x |st )
k

for every γ such that dγ ≤ k, for every b ∈ B, for every t > 0, and for every x ∈ Gst . Then,
the mapping t 	→ t−r (t · )∗ϕt,b ∈ S ′−Q∞−r (Gs) is νR+ -integrable for every b ∈ B, and the
set of

Kb :=
∫ +∞

0
t−r (t · )∗(ϕt,bνGst )

dt

t
,

as b runs through B, is bounded in CZr (Gs).

Proof By an abuse of notation, we shall identify Gs′ with h0 if s′ ∈ (0, 1) and with h∞ if
s′ ∈ (1,∞). In addition, we shall identify the measures ϕt,bνGst with its density ϕ̃t,b with
respect to the fixed Lebesgue measure of h0, for t < s−1, or to the fixed Lebesgue measure
of h∞, for t > s−1. Then, ϕ̃t,b differs from ϕt,b ◦πst by a multiplicative constant which stays
bounded as t runs through R+.
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Observe first that, using Proposition 2.4 and 6 of Proposition 2.11, it is not difficult to
show that there is a constant C > 0 such that

1 + |x |s′ ≥ C(1 + |x |1/n)

for every x ∈ h0 and for every s′ ∈ (0, 1), while

1 + |x |s′ ≥ C(1 + |x |)
for every x ∈ h∞ and for every s′ ∈ (1,∞).

Hence, the set of ϕ̃t,b, as t runs through (0, s−1) and b runs through B, is bounded in
S(h0), while the set of ϕ̃t,b, as t runs through (s−1,∞) and b runs through B, is bounded in
S(h∞). Consequently, Proposition 5.10 and its proof imply that the

Kb,0 :=
∫ s−1

0
t−r (t · )∗ϕt,b

dt

t

are well-defined elements of S ′(Gs) and stay bounded in CZr (h0); analogously, the

Kb,∞ :=
∫ +∞

s−1
t−r (t · )∗ϕt,b

dt

t

are well-defined elements of S ′−Q0−r (Gs), and stay bounded in CZr (h∞).
It will then suffice to prove that Kb,0 equals a Schwartz function in a neighbourhood of

∞, and that (every representative of) Kb,∞ is of class C∞ on the whole of Gs (with the
required boundedness).

On the one hand, take k ≥ 1 and α, and observe that there is a constant Ck,α > 0 such
that

|∂α
0 ϕ̃t,b(x)| ≤ Ck,α

(1 + |x |)k+Q0+r+dα

for every x ∈ h0, for every t ∈ (0, s−1), and for every b ∈ B. Then,

|∂α
0 Kb,0(x)| ≤ Ck,α

∫ s−1

0

t−Q0−r−dα

(1 + |t−1 · x |)k+Q0+r+dα

dt

t
≤ Ck,αs−k

k|x |k+Q0+r+dα

for every nonzero x ∈ h0 and for every b ∈ B. By the arbitrariness of k and α, it follows
that the (1 − τ)Kb,0 stay in a bounded subset of S(h0) as b runs through B, where τ is an
element of C∞

c (h0) which equals 1 on a neighbourhood of 0.
On the other hand, denote by Pt,b, j the homogeneous component of degree j of the Taylor

series of ϕ̃t,b ∈ S(h∞) about 0, for every t > 0, for every b ∈ B, and for every j ∈ N. If
k > −Q∞ − r , then

∫ +∞

s−1
t−r (t · )∗ Pt,b,k

dt

t

is a well-defined homogeneous polynomial of degree k, while for every α there is a constant
C ′

k,α > 0 such that

∣

∣

∣

∣

∣

∣

∫ +∞

s−1
t−r∂α∞(t · )∗

⎛

⎝ϕ̃t,b −
∑

j<k

Pt,b, j

⎞

⎠ (x)
dt

t

∣

∣

∣

∣

∣

∣

≤ C ′
k,α|x |(k−dα)+
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for every x ∈ h∞, and for every b ∈ B. Define

˜K∞,b :=
∫ +∞

s−1
t−r (t · )∗

⎛

⎝ϕ̃t,b −
∑

j≤−Q∞−r

Pt,b, j

⎞

⎠

dt

t
,

so that ˜Kb,∞ is a well-defined representative of Kb,∞ (under the identification of Gs with
h∞) by the Proof of Proposition 5.10. Then, for every k ∈ N, the

˜K∞,b =
∫ +∞

s−1
t−r (t · )∗

⎛

⎝ϕ̃t,b −
∑

j≤k

Pt,b, j

⎞

⎠

dt

t
+

∑

−Q∞−r< j≤k

∫ +∞

1
t−r (t · )∗ Pt,b, j

dt

t

stay bounded in Ck(h∞). By the arbitrariness of k, it follows that the ˜K∞,b stay bounded in
C∞(h∞). �
Theorem 5.12 Take r ∈ R. Then, the following hold:

– for every k ∈ N, the continuous linear map K(k)
0,0 : C∞

c (R∗) → CZrδ−k(h0) induces a

unique continuous linear mapK(k)
0,0 : Mr (R

∗) → CZrδ−k(h0) such that, ifF is a bounded

filter on Mr (R
∗) which converges pointwise to some m in Mr (R

∗), then K(k)
0,0(F) con-

verges to K(k)
0,0(m) in S ′−Q0−rδ+k(h0);

– for every k ∈ N, the continuous linear map K(k)∞,∞ : C∞
c (R∗) → CZrδ+k(h∞) induces

a unique continuous linear map K(k)∞,∞ : Mr (R
∗) → CZrδ+k(h∞) such that, if F is

a bounded filter on Mr (R
∗) which converges pointwise to some m in Mr (R

∗), then
K(k)∞,∞(F) converges to K(k)∞,∞(m) in S ′−Q∞−rδ−k(h∞);

– for every s ∈ (0,∞), the continuous linear map KLs : C∞
c (R∗) → CZrδ(Gs) induces a

unique continuous linear map KLs : Mr (R
∗) → CZrδ(Gs) such that, if F is a bounded

filter on Mr (R
∗) which converges pointwise to some m in Mr (R

∗), then KLs (F) con-
verges to KLs (m) in S ′−Q∞−rδ(Gs).

In addition, let M be a bounded subset ofMr (R
∗), and take τ0 ∈ C∞

c (h0) and τ∞ ∈ C∞
c (h∞)

such that τ0 and τ∞ equal 1 in a neighbourhood of 0. Then, the following hold:11

– for every N ∈ N, there is a bounded family (K0,m,N ,s)m∈M,s∈(0,1] of elements of
CZrδ−N (h0) such that

τ0

(

K0,s(m) −
∑

k<N

skK(k)
0,0(m)

)

= s N τ0K0,m,N ,s

in S ′−Q0−δr+N (h0), for every m ∈ M and for every s ∈ (0, 1];
– for every N ∈ N, there is a bounded family (K∞,m,N ,s)m∈M,s∈[1,∞) of elements of

CZrδ+N (h∞) such that

(1 − τ∞)

(

K∞,s(m) −
∑

k<N

s−kK(k)∞,∞(m)

)

= s−N (1 − τ∞)K∞,m,N ,s

in S ′−Q∞−δr (h0), for every m ∈ M and for every s ∈ [1,∞).

11 We denote by K0,s (m) and K∞,s (m) the distributions on h0 and h∞, respectively, corresponding to
KLs (m) under the usual identifications.
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Proof Let M be a bounded subset of Mr (R
∗) and fix a positive function ϕ ∈ C∞

c (R∗)
such that

∫∞
0 ϕ(yδλ)

dy
y = 1 for every λ ∈ R∗. Let us prove that the family

(yδr m(y−δ · )ϕ)y>0,m∈M is bounded in S(R). Indeed, take h and observe that there is a
constant Ch > 0 such that

∣

∣

∣

∣

dp

dλp
m(λ)

∣

∣

∣

∣

≤ Ch |λ|r−p

for every λ ∈ R∗, for every m ∈ M , and for every p = 0, . . . , h. Then,

yδr
∣

∣

∣

∣

dh

dλh

[

m(y−δ · )ϕ] (λ)

∣

∣

∣

∣

≤
∑

h1+h2=h

h!
h1!h2!Ch1 |λ|r−h1‖ϕ‖W h2,∞(R)χSupp(ϕ)(λ)

for every λ ∈ R∗, for every y > 0, and for every m ∈ M , whence the assertion. Next,
let us prove that K(k)

0,s(m
′) (and analogously K(k)∞,s(m′)) has all vanishing moments for m′ ∈

C∞
c (R∗). It will suffice to prove our assertion for k = 0, hence for KLs (m

′). Now, for
every h ∈ N we have m′

h := ( · )−hm′ ∈ C∞
c (R), so that KLs (m

′) = Lh
s KLs (m

′
h). Since

every polynomial is Lh
s -harmonic for sufficiently large h (use Proposition 2.7 or observe

that a similar property applies to ˜L by homogeneity arguments), the assertion follows by
(sesquilinear) transposition.

Therefore, for every k ∈ N, the family (yδrK(k)
0,s(m(y−δ · )ϕ))y>0,s∈[0,1],m∈M is bounded

in S∞(h0), while the family (yδrK(k)∞,s(m(y−δ · )ϕ))y>0,s∈[1,∞],m∈M is bounded in S∞(h∞).
Hence, Propositions 5.10 and 5.11 show that the

K(k)
0,0(m) :=

∫ +∞

0
y−rδ+k(y · )∗K(k)

0,0(m(y−δ · )ϕ)
dy

y

are well defined and stay in a bounded subset of Krδ−k(h0) for every k ∈ N, that the

K(k)∞,∞(m) :=
∫ +∞

0
y−rδ−k(y · )∗K(k)∞,∞(m(y−δ · )ϕ)

dy

y

are well defined and stay in a bounded subset of Krδ+k(h∞) for every k ∈ N, and that the

KLs (m) :=
∫ +∞

0
y−rδ(y · )∗KLsy (m(y−δ · )ϕ)

dy

y

are well defined and stay in a bounded subset of Krδ(Gs). Therefore, the so-defined lin-
ear mappings K(k)

0,0, K(k)∞,∞, and KLs are continuous; in addition, by Proposition 5.2 and
Lemma 5.6 and the choice of ϕ, they agree with their previous definition on S(R), S(R),
and Mr (R

∗) ∩ ∞(R∗), respectively.
Now, if F is a filter on M which converges to some m0 pointwise on R∗, then

yδrF(y−δ · )ϕ converges pointwise to yδr m0(y−δ · )ϕ, hence in S(R). As a consequence, also
K(k)
0,0(yδrF(y−δ · )ϕ) converges to K(k)

0,0(yδr m0(y−δ · )ϕ) in S(h0) for every k ∈ N. Hence,

K(k)
0,0(F) converges toK(k)

0,0(m0) in S ′−Q0−rδ+k(h0) for every k ∈ N. The analogous assertions

concerning KLs , for s ∈ (0,∞), and K(k)∞,∞, for k ∈ N, are proved similarly. The first three
assertions of the statement are therefore established.
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Now, observe that, for every N ∈ N,

K0,sy(m(y−δ · )ϕ) =
∑

k<N

K(k)
0,0(m(y−δ · )ϕ)

(sy)k

k!

+ (sy)N
∫ 1

0
K(N )
0,syθ (m(y−δ · )ϕ)

(1 − θ)N−1

(N − 1)! dθ

for y ∈ (0, s−1), while

K∞,sy(m(y−δ · )ϕ) =
∑

k<N

K(k)∞,∞(m(y−δ · )ϕ)
(sy)−k

k!

+ (sy)−N
∫ 1

0
K(N )

∞,sy/θ
(m(y−δ · )ϕ)

(1 − θ)N−1

(N − 1)! dθ

for y ∈ (s−1,∞). In addition, the
∫ 1
0 K(N )

0,ysθ (m(y−δ · )ϕ)
(1−θ)N−1

(N−1)! dθ are bounded in S∞(h0)

as y run through (0, s−1), while the
∫ 1
0 K(N )

∞,sy/θ
(m(y−δ · )ϕ)

(1−θ)N−1

(N−1)! dθ are bounded in

S∞(h∞) as y runs through (s−1,∞). In addition, observe that, if V is a finite-dimensional
vector space, F is a closed subset of V with non-empty interior, and P is a linearly indepen-
dent finite set of polynomials on V , then the mapping S(F) � ϕ 	→ (

∫

ϕ(x)P(x) dx) ∈ CP

is onto, where S(F) is the set of ϕ ∈ S(V ) supported in F , with the topology induced by
S(V ). Applying [4, Proposition 12 of Chapter II, § 4, No. 7], we see that, if B0 and B∞ are
bounded subsets of C∞(h0) and S(h∞), respectively, then there are bounded subsets B ′

0 and
B ′∞ of Srδ−N (h0) and Srδ+N (h∞) such that τ0B0 = τ0B ′

0 and (1− τ∞)B∞ = (1− τ∞)B ′∞.
Hence, Corollary 5.11 (and its proof) again implies that the

τ0

(

K0,s(m) −
∑

k<N

skK(k)
0,0(m)

)

stay bounded in τ0Krδ−N (h0) as m runs through M and s is fixed, while the

(1 − τ∞)

(

K∞,s(m) −
∑

k<N

s−kK(k)∞,∞(m)

)

stay bounded in (1−τ∞)Krδ+N (h∞) asm runs through M and s is fixed. In order to establish
uniform boundedness for general s as in the statement, it suffices to reduce to the case s = 1,
taking into account Proposition 5.2 and Lemma 5.6. The proof is therefore complete. �

5.2 Multiplier theorems

Here, we shall repeat the arguments of [20, § 4.1] in order to provide a multiplier theorem
for the operators Ls , which will imply some sort of continuity for the mapping s 	→ KLs (m)

for more general m. Even though the following results hold when ˜L is self-adjoint, in order
to avoid some technical issues we shall assume that ˜L is positive.

In this section, when μ is a measure on Gs which is absolutely continuous with respect
to the Haar measure, we shall write ‖μ‖L p(νGs ) to denote the L p norm of its density with
respect to νGs , p ∈ [1,∞].

We recall the definition of some Besov spaces on R (cf. [39, Theorem of Section 2.6.1]
and [3, Section 5]).
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Definition 5.13 Take α > 0. Then, Bα∞,∞(R) is the space of f ∈ L∞(R) such that

sup
x �=0

‖Δ([α]+1)
x f ‖∞

|x |α < ∞,

where Δ
([α]+1)
x f := ∑[α]+1

j=0 (−1)[α]+1− j
([α]+1

j

)

f ( · + j x) for every x ∈ R, endowed with

the corresponding topology. We denote by bα∞,∞(R) the closure of Bα+1∞,∞(R) in Bα∞,∞(R).
We also denote by Hα(R) the classical Sobolev space of f ∈ L2(R) such that F−1((1+

| · |2)α/2F f ) ∈ L2, where F denotes the Fourier transform.

Recall that νR+ is a Haar measure on the multiplicative group R+.

Proposition 5.14 For every r > 0, for every γ , and for every α1, α2 ≥ 0 such that α2 > α1

there is a constant C > 0 such that

‖Xγ
s KLs (m)(1 + | · |s,∗)α1‖L2(νGs ) ≤ C‖m‖B

α2∞,∞(R)

for every m ∈ Bα2∞,∞(R) with Suppm ⊆ [−r , r ], and for every s ∈ [0,∞].
If βL1 has a density with respect to νR+ bounded by min[( · )Q0/δ, ( · )Q∞/δ], then we may

take C in such a way that

‖Xγ
s KLs (m)(1 + | · |s,∗)α1‖L2(νGs ) ≤ C‖m‖Hα2 (R)

for every m ∈ Hα2(R) with Suppm ⊆ [−r , r ], and for every s ∈ [0,∞].
Proof Proceed as in the proofs of [20, Lemma 4.1.1 to Theorem 4.1.6], taking into account
the following modifications and remarks:

– define

E = eie−1−( · ) − 1 =
∞
∑

k=1

(i)k

k! e−k−k( · ),

for every  ∈ Z;
– replace the references to [21, 2.3 (e) and (f)] with Theorem 3.1 and Proposition 3.2;
– sup

s∈[0,∞]
βLs ([−r , r ]) is finite for every r > 0 thanks to Lemma 5.1;

– if βL1 ≤ C ′ min[( · )Q0/δ, ( · )Q∞/δ] · νR+ for some C ′ > 0, then there is a constant C ′′ > 0
such that βLs ≤ C ′′ max[( · )Q0/δ, ( · )Q∞/δ] · νR+ for every s ∈ [0,∞]. �
Here, L1,∞(νGs ) denotes the weak-L

1 space on the space Gs , endowed with the measure
νGs .

Theorem 5.15 Take N0 and N∞ as in Proposition 2.15. In addition, take a nonzero ψ ∈
C∞

c (R+) and α > 0, and for every s ∈ [0,∞] denote by Mα,s the space of m ∈ L1
loc(R+)

such that

‖m‖Mα,s
:= sup

t>sδ

(

‖ψ m(t · )‖
B

(D0+α)/2
∞,∞ (R)

+ (t/sδ)−N0/2δ‖ψ m(t · )‖
B

(D1+α)/2
∞,∞ (R)

)

+ sup
0<t≤sδ

(

‖ψ m(t · )‖
B(D∞+α)/2∞,∞ (R)

+ (t/sδ)N∞/2δ‖ψ m(t · )‖
B

(D1+α)/2
∞,∞ (R)

)

is finite. Then, for every p ∈ [1,∞) there is a constant C p > 0 such that

‖m(Ls)‖L(L1(νGs );L1,∞(νGs )) ≤ C1‖m‖Mα,s
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and such that, if p > 1,

‖m(Ls)‖L(L p(νGs )) ≤ C p‖m‖Mα,s
,

for every m ∈ Mα,s and for every s ∈ [0,∞].
In addition, take s0 ∈ (0,∞), two functions m0, m∞ such that

sup
0<s<s0

‖m0‖Mα,s
, sup

s>s0
‖m∞‖Mα,s

< ∞,

and fs ∈ L p(Gs), for every s ∈ [0,∞], such that fs converges to f0 in L p(h0) as s → 0+,
and such that fs converges to f∞ in L p(h∞) as s → +∞; then,

lim
s→0+( fs ∗ KLs (m0)) = f0 ∗ KL0(m0) and lim

s→+∞( fs ∗ KLs (m∞)) = f∞ ∗ KL∞(m∞),

in L p(h0) and in L p(h∞), respectively.
Finally, assume βL1 has a density with respect to νR+ which is bounded by min[( · )Q0/δ,

( · )Q∞/δ]; define M′
α,s as the space of m ∈ L1

loc(R+) such that

‖m‖M′
α,s

:= sup
t>sδ

(

‖ψ m(t · )‖H (D0+α)/2(R) + (t/sδ)−N0/δ‖ψ m(t · )‖H (D1+α)/2(R)

)

+ sup
0<t≤sδ

(

‖ψ m(t · )‖H (D∞+α)/2(R) + (t/sδ)
N∞/δ‖ψ m(t · )‖H (D1+α)/2(R)

)

is finite. Then, Mα,s may be replaced by M′
α,s in the previous assertions.

Taking into account Theorem 6.4, this generalizes [2] for higher-order operators, and also
[34, Theorem 2] for quasi-homogeneous sums of even powers of left-invariant vector fields
on a homogeneous group, with N0 = D1 − D0 at least when these powers are all equal.
Notice that the proofs of [2, Theorem] and [34, Theorem 2], which are based on the property
of finite speed of propagation of the wave equation, cannot be extended to the present setting.

Observe that multiplier theorems for higher-order positive operators, based on the prop-
erties of the associated heat kernels, have also been considered in the literature (cf., e.g.,
[11,35]). In [11], multiplier theorems for higher-order positive differential operators on dou-
bling Riemannian manifolds, based on suitable Gaussian estimates, are developed using
techniques which are essentially similar to those of [20,22]. In [35], multiplier theorems for
positive operators in a very general setting, based on suitable Gaussian and Stein–Tomas
restriction estimates, are developed with different techniques.

Let us now compare Theorem 5.15 with [35, Theorem 5.2]. Using the estimates provided
in Theorem 3.1 and [35, Theorem 5.2], one finds the following result: ‘if p ∈]1,∞[, α >

Q∞
∣

∣

∣

1
2 − 1

p

∣

∣

∣, and ψ is a nonzero element of C∞
c (R+), then there is a constant C > 0 such

that, for every m ∈ L∞(R),

‖m(L1)‖L(L p(νG1 )) ≤ C sup
t>0

‖ψ m(t · )‖Wα,∞(R).’

Notice that the difference between using Bα∞,∞(R) or W α,∞(R) is immaterial, since

Bα′
∞,∞(R) ⊆ W α,∞(R) ⊆ Bα∞,∞(R) for every α′ > α.
The preceding result is weaker than Theorem 5.15 in at least three aspects. Firstly, the

regularity threshold is Q∞
∣

∣

∣

1
2 − 1

p

∣

∣

∣ instead of D1

∣

∣

∣

1
2 − 1

p

∣

∣

∣, as one gets interpolating the result

of Theorem 5.15 with the case p = 2. Secondly, no endpoint estimates are provided in [35,
Theorem 5.2], while Theorem 5.15 provides uniform weak type (1, 1) estimates. Finally, it
is not clear if [35, Theorem 5.2] provides results which are uniform in s.
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Proof We shall divide the proof into two steps.
1.We shall denote by Ms the spaceMα,s under the first set of assumptions, and the space

M′
α,s under the second set of assumptions. Notice that we may assume that ψ is positive

and chosen in such a way that
∑

j∈Z ψ(2−δ jλ) = 1 for every λ > 0. Fix ε ∈ (0, α). Then,
Propositions 5.14 and 2.15 imply that there is p0 > 1 such that for every γ there is a constant
˜Cγ > 0 such that

∫

G2− j s

|Xγ

2− j s
KL2− j s

(ψ m(2δ j · ))(x)|p(1 + |x |2− j s)
ε dx

≤
∫

G2− j s

|Xγ

2− j s
KL2− j s

(ψ m(2δ j · ))(x)|p(1 + |x |2− j s,∗)ε dx ≤ ˜Cγ ‖m‖Ms

for every p ∈ [1, p0], for every s ∈ [0,∞], for every m ∈ Ms , and for every j ∈ Z. In
addition,

∫

Gs

KLs (ψ m(2δ j · ))(x) dx = 0

for every s ∈ [0,∞], for every m ∈ Ms , and for every j ∈ Z. Observe that, since D0, D∞ ≥
1, the space Ms embeds in L∞(R) (cf. [20, Propositions 2.3.2 and 2.3.6]). On the other hand,
observe that

KLs (ψ(2−δ j · ) m) = (2− j · )∗KL2− j s
(ψ m(2δ j · ))

for every s ∈ [0,∞], for every m ∈ Ms , for every γ , and for every j ∈ Z.
Now, since m is the sum of the series

∑

j∈Z ψ(2−δ j · )m pointwise on (0,∞), and since
the partial sums of that series are uniformly bounded, we see that

KLs (m) =
∑

j∈Z
KLs (ψ(2−δ j · ) m)

in the space of (right) convolutors of L2(Gs), for every s ∈ [0,∞] and for every m ∈ Ms ;
in particular, in S ′(Gs).

Let us first prove that the sum converges in L1
loc(Gs \ { e }). Indeed, take a compact subset

L of Gs \ { e }, and observe that
∑

j∈Z
‖χLKLs (ψ(2−δ j · )m)‖1 ≤

∑

j∈Z
‖χ2 j ·LKL2− j s

(ψ m(2δ j · ))‖1

≤
∑

j≤0

˜C
1
p0
0 νG2− j s

(2 j · L)
1
p′
0 +

∑

j>0

˜C0 sup
2 j ·L

| · |−ε

2− j s

= ˜C
1
p0
0 νGs (L)

1
p′
0
∑

j≤0

νG2− j s

(

B2− j s(2
j )
) 1

p′
0 + ˜C0 sup

L
| · |−ε

s

∑

j>0

2−ε j ,

which is finite for every s ∈ [0,∞] and for every m ∈ Ms with ‖m‖Ms
≤ 1, since

νG2− j s

(

B2− j s(2
j )
) � 2 j Q∞ as j → −∞ for fixed s �= 0 thanks to 6 of Proposition 2.11,

while νG0

(

B0(2 j )
) = 2 j Q0 for every j ∈ Z.

Next, let us prove that

sup
s∈[0,∞]
‖m‖Ms ≤1

y �=e

∑

j∈Z

∫

|x |s≥2|y|s
|KLs (ψ(2−δ j · ) m)(y−1x) − KLs (ψ(2−δ j · )m)(x)| dx < +∞.
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Indeed,

∑

2 j |y|s≥1

∫

|x |s≥2|y|s
|KLs (ψ(2−δ j · ) m)(y−1x) − KLs (ψ(2−δ j · ) m)(x)| dx

=
∑

2 j |y|s≥1

∫

|x |2− j s≥2|2 j ·y|2− j s

|KL2− j s
(ψ m(2δ j · ))((2 j · y)−1x)

− KL2− j s
(ψ m(2δ j · ))(x)| dx

≤ 2
∑

2 j |y|s≥1

∫

|x |2− j s≥2 j |y|s
|KL2− j s

(ψ m(2δ j · ))(x)| dx

≤ 2˜C0

∑

2 j |y|s≥1

sup
|x |2− j s≥2 j |y|s

|x |−ε

2− j s

= 2˜C0

∑

2 j |y|s≥1

(2 j |y|)−ε,

which is uniformly bounded for s ∈ [0,∞], ‖m‖Ms
≤ 1, and y ∈ Gs \ { e }.

Finally,

∑

2 j |y|s<1

∫

|x |s≥2|y|s
|KLs (ψ(2−δ j · )m)(y−1x) − KLs (ψ(2−δ j · )m)(x)| dx

=
∑

2 j |y|s<1

∫

|x |2− j s≥2|2 j ·y|2− j s

|KL2− j s
(ψ m(2δ j · ))((2 j · y)−1x)

− KL2− j s
(ψ m(2δ j · ))(x)| dx

≤
∑

j ′∈J

˜Ce j ′
∑

2 j |y|s<1

|2 j · y|d j ′
s ,

which is uniformly bounded for s ∈ [0,∞], ‖m‖Ms
≤ 1, and y ∈ Gs\{ e } (here, Lemma2.14

is applied to KL2− j s
(ψm(2δ j · )) = KL2− j s

(ψm(2δ j · ))∗).
Observe, now, that, for every s ∈ [0,∞] and for every t > 0,

νGs (Bs(2t))

νGs (Bs(t))
= νGt−1s

(Bt−1s(2))

νGt−1s
(Bt−1s(1))

= νGt−1s
(Bt−1s(2)),

which is a bounded function of t−1s on [0,∞]. Therefore, thanks to [36, Theorem 3 of
Chapter 1] we see that for every p ∈ [1, 2] there is a constant C p > 0 such that

‖m(Ls)‖L(L1(νGs );L1,∞(νGs )) ≤ C1‖m‖Mα,s

and such that, if p > 1,

‖m(Ls)‖L(L p(νGs )) ≤ C p‖m‖Ms

for every s ∈ [0,∞] and for every m ∈ Ms . A similar assertion holds, by duality, also for
p ∈ (2,∞).

2. Now, identify Gs with h0 for every s ∈ [0, s0], and observe that

lim
s→0+ m(Ls) = m(L0)
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in L(L p(h0)) for every m ∈ S(R). Define ˜Mα,s replacing the Besov spaces B∞,∞ with the
little Besov spaces b∞,∞, and define ˜Ms as ˜Mα/2,s and M′

α,s under the first and second
set of assumptions, respectively. Observe that Ms embeds continuously into ˜Ms (cf. [20,
Proposition 2.3.2]), so that we may replace Ms with ˜Ms in the assumptions. Then, by means
of [20, Corollaries 2.3.10 and 2.3.7, and Proposition 2.3.13] we see that τS(R) is dense in
τ ˜Ms for every τ ∈ C∞

c (R∗), so that

lim
s→0+(τm0)(Ls) = (τm0)(L0)

inL(L p(h0)), since the (τm0)(Ls) are equicontinuous on L p(h0) thanks to 1 and the assump-
tions on m0. Therefore, for every finite subset J of Z,

lim
s→0+

∑

j∈J

(ψ(2−δ j · )m0)(Ls) =
∑

j∈J

(ψ(2−δ j · )m0)(L0)

in L(L p(h0)). Now, define Km0,s,k := ∑

−k< j≤k KLs (ψ(2−δ j · )m0) and ˜ψ ∈ C∞
c (R) so

that ˜ψ = ∑

j≤0 ψ(2−δ j · ) on R∗. Then,

Km0,s,k = KLs (
˜ψ(2δk · ) − ˜ψ(2−δk · )) ∗ KLs (m0)

for every s ∈ [0, s0] and for every k ∈ N. Therefore, for every ϕ ∈ C∞
c (h0) we have, with

some abuses of notation,

lim sup
s→0+

‖ϕ ∗Gs KLs (m0) − ϕ ∗G0 KL0(m0)‖p

≤ lim sup
s→0+

(‖ϕ ∗Gs KLs (m) − ϕ ∗Gs Km0,s,k‖p

+ ‖ϕ ∗Gs Km0,s,k − ϕ ∗G0 Km0,0,k‖p + ‖ϕ ∗G0 Km0,0,k − ϕ ∗G0 KL0(m0)‖p
)

≤ 2C ′′ sup
s∈[0,s0]

‖ϕ − ϕ ∗Gs KLs (
˜ψ(2δk · ) − ˜ψ(2−δk · ))‖p

where C ′′ = sup
s∈[0,s0]

‖m0(Ls)‖L(L p(Gs ))
. Now, since ϕ ∈ C∞

c (h0) and since the KLs (
˜ψ), as s

runs through [0, s0], stay in a bounded subset of S(h0), it is easily seen that

lim
k→∞ sup

s∈[0,s0]
‖ϕ − ϕ ∗Gs KLs (

˜ψ(2δk · ) − ˜ψ(2−δk · ))‖p = 0,

whence

lim
s→0+ ϕ ∗Gs KLs (m0) = ϕ ∗G0 KL0(m0)

in L p(h0). Since them0(Ls), as s runs through [0, s0], induce equicontinuous endomorphisms
of L p(h0), the assertion in the statement follows. The case s → +∞ is treated similarly. �

Notice that the regularity threshold in Theorem 5.15 is not optimal, in general. We shall
now present an improvement of Theorem 5.15, under more restrictive hypotheses, in the
spirit of [15,16,22]. Let us briefly recall the notion of capacity introduced in [20,22]; we shall
present it in a slightly simpler way in the setting of two-step stratified groups.

Definition 5.16 Let G ′ be a two-step stratified group with Lie algebra g′; let (g′
1, g

′
2) be the

stratification of g′ and take h ∈ { 0, . . . , dim g′
2

}

. Endow g′ with a scalar product. Then, we
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say that G ′ is h-capacious if there is a linearly independent family X1, . . . , Xh of elements
of g′

1 and a linearly independent family T1, . . . , Th of elements of g′
2 such that

|〈T |[X , · ]〉|g∗ ≥
h
∑

j=1

|〈X |X j 〉〈T |Tj 〉|

for every X ∈ g′
1 and for every T ∈ g′

2.

For instance, if G ′ is the product of a finite family of Métivier or abelian groups, then G ′
is dim[G ′, G ′]-capacious (cf. [22, Proposition 3.9]), so that the following result applies (with
a suitable choice of ˜G) when L1 has the form

∑

j∈J1(i X j )
α , where α ∈ 2N∗ and (X j ) is a

family of left-invariant vector fields on G1 which generates its Lie algebra.
Notice that, when G ′ is an H -type group and L1 = L′

1 −∑ j T 2
j , where L′

1 is the standard
(homogeneous) sub-Laplacian and the Tj stay in the centre of g1, then Theorem 5.17 is a
consequence of [29, Corollary 2.4].

Theorem 5.17 Assume that ˜G is a two-step stratified group and that G∞ is h-capacious for
some h ∈ N. Then, there is h′ ≥ (h − Q∞ + Q0)+ such that G0 is h′-capacious. In addition,
take a nonzero ψ ∈ C∞

c (R+) and α > 0, and for every s ∈ [0,∞] denote by Mα,s the space
of m ∈ L1

loc(R+) such that

‖m‖Mα,s
:= sup

t>0

(

‖ψm(t · )‖
B

(Q0−h′+α)/2
∞,∞ (R)

+ (1 + t/sδ)(Q0−h′−Q∞+h)/(2δ)‖ψm(t · )‖
B(Q∞−h+α)/2∞,∞ (R)

)

is finite. Then, for every p ∈ [1,∞) there is a constant C p > 0 such that

‖m(Ls)‖L(L1(νGs );L1,∞(νGs )) ≤ C1‖m‖Mα,s

and such that, if p > 1,

‖m(Ls)‖L(L p(νGs )) ≤ C p‖m‖Mα,s
,

for every m ∈ Mα,s and for every s ∈ [0,∞].
An analogue of the convergence results for s → 0+ and s → +∞ of Theorem 5.15 can

be proved, with the same techniques, also under the assumptions of Theorem 5.17. We leave
the details to the reader.

Notice that, when G is a product of Métivier group (so that one may take h =
dim[G∞, G∞]), then Q0 − h′ and Q∞ − h both equal the Euclidean dimension dim G1

of G1, so that

‖m‖Mα,s
= sup

t>0
‖ψ m(t · )‖

B
(dim G1+α)/2
∞,∞ (R)

.

Therefore, at least whenL1 is a sub-Laplacian, the regularity threshold of this result is optimal
(cf. [19,25]). Cf. [1,15,16,20,22–25,28] and the references therein for other results in this
direction.

Proof We shall divide the proof into two steps.
1.Observe first that Gs = G∞ as Lie groups for every s ∈ (0,∞], under the identification

with h∞. Indeed, it suffices to observe that, if X , Y ∈ h∞, then [X , Y ] ∈ g̃2, so that [X , Y ]s =
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P∞,s[X , Y ] = P∞,∞[X , Y ] = [X , Y ]∞ thanks to Lemma 2.3. Fix scalar products on h∞ and
h0 such that the bases (˜X j ) j∈J∞ and (˜X j ) j∈J0 are orthonormal. Observe that, since G∞ is
h-capacious, there are two linearly independent families (Y j ) j=1,...,h of elements of h∞ ∩ g̃1
and (Tj ) j=1,...,h of elements of h∞ ∩ g̃2 such that

|〈T |[X , · ]∞〉|h∗∞ ≥
h
∑

j=1

|〈X |Y j 〉〈T |Tj 〉|

for every X ∈ h∞ ∩ g̃1 and for every T ∈ h∞ ∩ g̃2. By the preceding remarks, we also have

|〈T |[X , · ]s〉|h∗∞ ≥
h
∑

j=1

|〈X |Y j 〉〈T |Tj 〉|

for every s ∈ (0,∞], for every X ∈ h∞ ∩ g̃1, and for every T ∈ h∞ ∩ g̃2. Then, repeating the
arguments of [22, Section 3] with minor modifications, we see that for every α1, α2, α3 > 0
such that α2 < 1

2 and α3 > α1 there is a constant C1 > 0 such that
∥

∥

∥

∥

∥

∥

Xγ
s KLs (m)(1 + | · |s)α1

h
∏

j=1

(1 + |〈 · |Y j 〉|)α2
∥

∥

∥

∥

∥

∥

L2(Gs )

≤ C1‖m‖B
α3∞,∞(R)

for every s ∈ (0,∞], for every γ with length at most 1, and for every m ∈ Bα3∞,∞(R) with
support in [−1, 1]. Then, arguing as in the proof of [22, Theorem 3.11], we see that for every
α >

Q∞−h
2 there are ε > 0, p0 > 1, and a constant C2 > 0 such that

∥

∥Xγ
s KLs (m)(1 + | · |s)ε

∥

∥

L p(Gs )
≤ C2‖m‖Bα∞,∞(R)

for every p ∈ [1, p0], for every s ∈ [1,∞], for every γ with length at most 1, and for every
m ∈ Bα∞,∞(R) with support in [−1, 1].

2.Take (Y j ) and (Tj ) as in 1, and observe that (Y j ) is the basis of an algebraic complement
of pr1 i1 in g̃1; in particular, 〈(Y j )〉 ∩ (i1 ∩ g̃1) = 0. Since i1 ∩ g̃1 = i0 ∩ g̃1 by definition, we
may assume that Y j ∈ h0 for every j = 1, . . . , h. Now, define h′ := dim[(〈(Tj )〉 + i0)/i0],
so that h′ ≥ h − Q∞ + Q0; then, we may assume that T1, . . . , Th′ belong to h0, so that
P0,0Tj ∈ 〈(Tj ′) j ′=1,...,h′ 〉 for every j = h′ + 1, . . . , h. Since the P0,1Tj , j = 1, . . . , h, are
linearly independent, and since pr1(P0,1Tj ) = (P0,1 − P0,0)Tj , we see that the pr1(P0,1Tj ),
for j = h′ + 1, . . . , h, are linearly independent. More precisely, we see that the Y j , j =
1, . . . , h, and the pr1(P0,1Tj ′), j ′ = h′ + 1, . . . , h, are linearly independent.

Therefore, there is a constant C1 > 0 such that

|〈T |[X , · ]1〉|h∗
0

≥ C1

h
∑

j=1

|〈X |Y j 〉〈T |P0,1Tj 〉|

for every X ∈ h0 ∩ g̃1 and for every T ∈ h0 ∩ g̃2. Observe that the dilations are self-adjoint
with respect to the chosen scalar product on h0, so that

|〈T |[X , · ]s〉|h∗
0

≥ C1

h
∑

j=1

|〈X |Y j 〉〈T |P0,s Tj 〉|

for every s ∈ [0,∞), for every X ∈ h0 ∩ g̃1, and for every T ∈ h0 ∩ g̃2. In particular, for
s = 0 we infer that G0 is h′-capacious. Then, repeating the arguments of [22, Section 3] with
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minor modifications, we see that for every α1, α2, α3 > 0 such that α2 < 1
2 and α3 > α1

there is a constant C2 > 0 such that
∥

∥

∥

∥

∥

∥

Xγ
s KLs (m)(1 + | · |s)α1

h
∏

j=1

(1 + |P0,s Tj ||〈 · |Y j 〉|)α2
∥

∥

∥

∥

∥

∥

L2(Gs )

≤ C2‖m‖B
α3∞,∞(R)

for every s ∈ [0,∞), for every γ with length at most 1, and for every m ∈ Bα3∞,∞(R) with
support in [−1, 1]. Therefore, we need to prove that

sup
s∈[0,1]

∫

h0

(1 + |X |α′
1

s + sα1−α′
1 |X |α1s )−1

h
∏

j=1

(1 + |P0,s Tj ||〈X |Y j 〉|)−α2 dX < ∞

whenever 0 < α2 < 1, α′
1 + h′α2 > Q0, and α1 + hα2 > Q∞. Notice that it will suffice to

prove the preceding assertion when α2 is sufficiently close to 1, so that we shall also assume
that α′

1 > Q0 − h′α2 + (1 − α2)(h − h′).
Notice that the preceding arguments imply that there are a homogeneous basis (Z j ) j∈J0

of h0, a partition (J0,1, J0,2, J0,3) of J0, and two maps κ, κ ′ : { 1, . . . , h } → J0 such that
the following hold:

– (Z j ) j∈J0,1 is a basis of g̃2 ∩ h0 and Zκ( j) = Tj for every j = 1, . . . , h′;
– (Z j ) j∈J0,2 is the basis of pr1(P0,1(V )), where V is an algebraic complement of g̃2∩(h0+

i∞) = (̃g2∩h0)⊕ (̃g2∩ i∞) in g̃2 and Zκ( j) = pr1(P0,1(Tj )) for every j = h′+1, . . . , h;
– (Z j ) j∈J0,3 is the basis of an algebraic complement pr1(P0,1(V )) + (̃g1 ∩ i0) in g̃1 and

Zκ ′( j) = Y j for every j = 1, . . . , h.

Now, take j ∈ {

h′ + 1, . . . , h
}

and observe that 〈pr1(P0,1Tj )| pr2(P0,1Tj )〉 = 0, so that
|P0,s Tj | ≥ s|Zγ ( j)| for every s ∈ [0,∞). In addition, using 6 of Lemma 2.14, it is not hard
to prove that there is C3 > 0 such that

|X |s ≥ C3

⎧

⎪

⎨

⎪

⎩

|〈X |Z j 〉|1/2 for every j ∈ J0,1
min(|〈X |Z j 〉|, |s−1〈X |Z j 〉|1/2) for every j ∈ J0,2
|〈X |Z j 〉| for every j ∈ J0,3

for every X ∈ h0. Denote by ps, j (X) the right-hand side of the preceding inequality.
Now, observe that our assumptions on α1 and α2 show that we may find β j > 0 and

β ′
j for every j ∈ J0 such that the following hold: α1 = ∑

j∈J0 β j and α′
1 = ∑

j∈J0 β ′
j ;

β j = β ′
j > 2 for every j ∈ J0,1 \ κ(

{

1, . . . , h′ }); β j > 2 and β ′
j > 1 for every j ∈

J0,2 \ κ(
{

h′ + 1, . . . , h
}

); β j = β ′
j > 2 − α2 for j ∈ κ({ 1, . . . , h }); β j = β ′

j > 1 for
every j ∈ J0,3. Therefore, it will suffice to prove that

sup
s∈[0,1]

∫

h0

∏

j∈J

(1 + ps, j (X)
β ′

j + sβ j −β ′
j ps, j (X)β j )−1

h′
∏

j=1

(

1 + ∣

∣

〈

X |Zκ( j)
〉∣

∣

)−α2 ×

×
h
∏

j=h′+1

(

1 + s
∣

∣

〈

X |Zκ( j)
〉∣

∣

)−α2 dX < ∞.

Now, use Tonelli’s theorem to integrate separately each coordinate with respect to the basis
(Z j ). We shall prove that the integrals of the factors corresponding to Zκ( j) for j = h′ +

123



Functional calculus on non-homogeneous operators on nilpotent groups 1563

1, . . . , h are uniformly bounded for s ∈ [0, 1]; the other factors are easier and left to the
reader. Then, we have to prove that

sup
s∈[0,1]

∫ ∞

0
(1 + min(x,

√

x/s))−β(1 + sx)α2 dx < ∞,

where β > 2 − α2(> 1). Now, on the one hand,
∫ 1/s

0
(1 + min(x,

√

x/s))−β(1 + sx)−α2 dx ≤
∫ 1/s

1
(1 + x)−β dx ≤ 1

β − 1
,

for every s ∈ [0, 1] since β > 1. On the other hand,
∫ +∞

1/s
(1 + min(x,

√

x/s))−β(1 + sx)−α2 dx ≤ sβ

∫ +∞

1
x− β

2 −α2 dx ≤ 1
β
2 + α2 − 1

,

for every s ∈ [0, 1] since β
2 + α2 > 1 + α2

2 > 1 and β > 1. The proof is then completed as
that of Theorem 5.15. �

6 Quasi-homogeneous operators

We shall now investigate further the properties of the Plancherel measures βLs in some
specific situations: following [34], we shall prove that, when Ls is ‘quasi-homogeneous’ in
a suitable sense, then βLs has a density of class C∞ with respect to νR+ , with complete and
almost explicit asymptotic expansions at 0 and at ∞.

In addition to the assumptions of Sects. 2 and 4, we assume now that there is a finite
family (˜L)∈L of self-adjoint, positive, homogeneous, left-invariant differential operators
on ˜G with the same degree δ such that ˜L = ∑

∈L
˜L. We also assume that G1 is endowed

with the structure of a homogeneous group of homogeneous dimension Q, and that dπ1(˜L)

is homogeneous of degree δ for every  ∈ L .
Before proceeding further, let us describe an example.

Example 6.1 Let (X ′
)∈L be a (finite) generating family of homogeneous elements of the

Lie algebra of G1, and define L1 = ∑

∈L(i X ′
)

α , where α ∈ 2N∗ for every  ∈ L . In
addition, let ˜G be the free nilpotent group with L generators and the same step as G; denote
by (˜X ′

)∈L the generators of its Lie algebra. We endow ˜G with the unique gradation for
which ˜X ′

 is homogeneous of degree
∏

′ �= α′ for every  ∈ L . Let π1 : ˜G → G1 be the

unique homomorphism of Lie groups such that that dπ1(˜X ′
) = X ′

 for every  ∈ L . In this
context, wemay define ˜L := (i˜X ′

)
α , δ := ∏

∈L α, and δ := d′
α, where d′

 is the degree
of X ′

, for every  ∈ L .

Now, for every θ ∈ (0, π ] define Σθ := {

ex+iy : x ∈ R, y ∈] − θ, θ [ }, and for every
a ∈ CL define

˜La :=
∑

∈L

a˜L;

the reader may easily verify that ˜La + ˜L∗
a = ˜LRe a is a positive Rockland operator for every

a ∈ Σ L
π/2. We define Ls,a := dπs(˜La) for every a ∈ Σ L

π/2 and for every s ∈ [0,∞]; observe
that Ls,a is weighted subcoercive, so that we may denote by (hs,a,t )t>0 its heat kernel. In
addition, we define t · a := (tδa) for every a ∈ CL and for every t ∈ C \ R−; we still
denote by ra the multiplication of a by the scalar r for every a ∈ CL and for every r ∈ C.
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Proposition 6.2 Denote by Ω the set of (t, a) ∈ C × CL such that ta ∈ Σ L
π/2, and observe

that h1,t,a is defined for every (t, a) ∈ Ω . In addition, the following hold:

– the mapping Ω � (t, a) 	→ h1,t,a ∈ C∞(G1) is holomorphic;
– h1,t,ra = h1,r t,a whenever (t, ra), (r t, a) ∈ Ω;
– h1,t,r ·a(e) = r−Qh1,t,a(e) whenever (t, r · a), (t, a) ∈ Ω .

Proof Let us prove that, for every p ∈ N and for every (t, a) ∈ Ω , dom(Lp
1,ta) is the space

W p of f ∈ L2(G1) such that X
γ
1 f ∈ L2(G1) for every γ such that dγ ≤ δ p, endowed with

the topology induced by the Hilbertian norm f 	→
(

∑

dγ ≤δ p‖Xγ
1 f ‖22

)1/2

. On the one hand,

arguing as in the proof of Corollary 4.5, we see that Xγ
1 (I + Lp

1,ta)−1 induces a bounded

operator on L2(G1) for every such γ , so that dom(Lp
1,ta) embeds continuously into W p . On

the other hand, it is easily seen that C∞
c (G1), which is contained (and dense) in dom(Lp

1,ta),
is contained and dense in W p , whence the asserted equality.

Now, it is clear that, if f ∈ W 1, then the mapping Ω � (t, a) 	→ L1,ta f ∈ L2(G1)

is holomorphic, so that (L1,ta)(t,a)∈Ω is an analytic family of type (A) in the sense of [18]
(more precisely, the restriction of (L1,ta)(t,a)∈Ω to every complex line is an analytic family
of type (A)). In addition, L1,ta is weighted subcoercive thanks to the preceding remarks, so
that it is the generator of a holomorphic semi-group by [37, Theorem 8.2]. Therefore, [18,
Theorem and 2.6 of Chapter 9] implies that the mappingΩ � (t, a) 	→ e−L1,ta ∈ L(L2(G1))

is holomorphic.12 Therefore, taking the derivatives in t we see that, for every p ∈ N, the
mapping

Ω � (t, a) 	→ Lp
1,tae

−L1,ta ∈ L(L2(G1))

is holomorphic, so that the mapping

Ω � (t, a) 	→ e−L1,ta ∈ L(L2(G1); W p)

is holomorphic. By the arbitrariness of p, this implies that the mapping

Ω � (t, a) 	→ e−L1,ta ∈ L(L2(G1); W ∞)

is holomorphic, where W ∞ is the intersection of the W p , endowed with the correspond-
ing topology. Since L∗

1,ta = Lta , and since Ω is conjugate-symmetric, by (sesquilinear)
transposition we see that the mapping

Ω � (t, a) 	→ e−L1,ta ∈ L(W −∞; L2(G1))

is holomorphic, where W −∞ is the strong dual of W ∞.13 Finally, arguing again as above we
see that the mapping

Ω � (t, a) 	→ e−L1,ta ∈ L(W −∞; W ∞)

12 First apply [18, Theorem and 2.6 of Chapter 9] to the intersection of every complex line with Ω , and then,
recall that a mapping fromΩ into the Banach spaceL(L2(G1)) is holomorphic if and only if it is holomorphic
on every line.
13 In principle, we should endow L(W−∞; L2(G1)) with the topology of uniform convergence on the
equicontinuous subsets of W−∞, instead of the topology of bounded convergence. However, W∞ is a reflexive

Fréchet space since it is isomorphic to a closed subspace of the reflexive Fréchet space L2(G1)
Ndim G1 (cf.

[4, Propositions 14 and 15 of Chatper IV, § 1, No. 5 and Corollary to Theorem 1 of Chapter IV, § 2, No. 2]),
so that W−∞ is bornological by [4, Proposition 4 of Chapter IV, § 3, No. 4]; therefore, a subset of W−∞ is
bounded if and only if it is equicontinuous on W∞ by [4, Propositions 9 and 10 of Chapter III, § 3, No. 7].
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is holomorphic. Now, the Sobolev embeddings easily show that the inclusion W ∞ ⊆
C∞(G1) is continuous; consequently, also the canonical mapping L(W −∞; W ∞) →
L(E ′(G1); C∞(G1)) is continuous. Now, L(E ′(G1); C∞(G1)) is canonically isomorphic
to C∞(G1 × G1) by the Schwartz’s kernel theorem (cf. [38, Proposition 50.5]), so that the
mapping

Ω � (t, a) 	→ h1,t,a ∈ C∞(G1)

is holomorphic.
The second assertion is trivial, while, for what concerns the third one, just observe that

(ρ
G1
r )∗L1,ta = Lr ·(ta),1 for every (t, a) ∈ Ω and for every r > 0, where ρ

G1
r denotes the

dilation by r in G1 (not to be confused with the mapping r · : G1 → Gr−1 of the preceding
sections); the general assertion follows by holomorphy. �

Corollary 6.3 Take a ∈ RL+. Then, there is ε > 0 such that the mapping t 	→ h1,t,a(e) extends
to a holomorphic mapping Ha : Σπ/2+ε → C. In addition, for every k ∈ N there is a constant
Ck > 0 such that, for every t ∈ R∗,

∣

∣

∣

∣

dk

dtk
Ha(i t)

∣

∣

∣

∣

≤ Ck min
(

|t |− Q0
δ

−k, |t |− Q∞
δ

−k
)

.

The proof is similar to that of [34, Lemma 4] and is omitted.

Theorem 6.4 Take a ∈ RL+. Then, βL1,a has a density fa of class C∞ with respect to νR+ .
In addition, there are two constants C0, C∞ > 0 such that, for every k ∈ N,

f (k)
a (λ) ∼ C0

(

Q0

δ

)

k
λ

Q0
δ

−k

as λ → 0+, while

f (k)
a (λ) ∼ C∞

(

Q∞
δ

)

k
λ

Q∞
δ

−k

as λ → +∞, where xk := x(x − 1) · · · (x − k + 1) for every x ∈ R.

In particular, in this situation we may apply the second part of Theorem 5.15, thus extend-
ing [34, Theorem 2], which corresponds to the case α = 2 for every  ∈ L in the situation
of Example 6.1.

Proof Observe that, with the notation of Corollary 6.3,

Ha(t) =
∫

[0,∞)

e−tλ dβL1,a (λ)

for every t > 0, so that

F(e−ε · βL1,a )(t) = Ha(ε + i t)

for every ε > 0 and for every t ∈ R. Passing to the limit for ε → 0+, we see that the
restriction of F(βL1,a ) to R \ { 0 } has a density of class C∞, and that

F(βL1,a )(t) = Ha(i t)
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for every t �= 0. Then, Corollary 6.3 and [34, Proposition 1] show that βL1,a has a density fa

of class C∞ with respect to νR+ such that for every k ∈ N there is a constant Ck > 0 such
that

| f (k)
a (λ)| ≤ Ck min

(

λ
Q0
δ

−k, λ
Q∞

δ
−k
)

for every ξ > 0. Now, Proposition 5.2 shows that s Q0 fa(s−δ · )νR+ converges vaguely to
the measure βL0,a as s → 0+. In addition, by homogeneity it is easily seen that there is a

constant C0 > 0 such that βL0,a = C0( · ) Q0
δ νR+ . Finally, the preceding estimates show that

the s Q0 fa(s−δ · ) stay bounded in C∞(R+), so that they converge to C0λ
Q0
δ in C∞(R+).

The first assertion follows; the second one is proved similarly. �

7 Appendix: Technical lemmas

In this section, we consider a homogeneous vector space V , endowed with a homogeneous
basis ∂ of translation-invariant vector fields and a homogeneous norm | · |; for every γ , we
denote by dγ the degree of ∂γ . We fix ε > 0, η ∈ R and η′ ∈ RN.

Recall that S(V ) denotes the Schwartz space, S ′(V ) the space of tempered distributions,
D′(V ) the space of distributions, and E ′(V ) the space of distributions with compact support
on V . We denote by M1 the space of bounded (Radon) measures.

Definition 7.1 Define Hε,η(V ) as the space of H ∈ C(R+ × V ) such that the set of
t Qε+η H(t, tε · ), as t runs through R+, is bounded in S(V ).

We endow Hε,η(V ) with the topology induced by the norms

H 	→ sup
t>0

sup
x∈V

(1 + |x |)h
∑

dγ ≤h

t Qε+η+εdγ |∂γ
2 H(t, tε · x)|,

for h ∈ N, so that Hε,η(V ) becomes a metrizable locally convex space (actually, a Fréchet
space).

Lemma 7.2 Take H ∈ Hε,η(V ). Then, [t 	→ H(t, · )] ∈ C(R+;S(V )). In particular, the
function ∂

γ
2 H is continuous for every γ .

Proof Take t0 > 0, and observe that the set of H(t, · ), as t runs through [ t0
2 , 2t0], is bounded,

hence relatively compact, in S(V ). Therefore, H(t, · ) has at least one cluster point in S(V )

as t → t0. On the other hand, each cluster point of H(t, · ) in S(V ) as t → t0 is also a cluster
point of H(t, · ) in E0(V ) as t → t0, so that it must equal H(t0, · ) by the continuity of H .
The assertion follows. �
Lemma 7.3 Take H ∈ Hε,η′

0
(V ) such that ∂k

1 H ∈ Hε,η′
k
(V ) for every k ∈ N. Then, the

following conditions are equivalent:

1. the mapping R+ � t 	→ ∂k
1 H(t, · ) ∈ D′(V ) extends by continuity to [0,∞), for every

k ∈ N;
2. the mapping R+ � t 	→ ∂k

1 H(t, · ) ∈ E ′(V )+S(V ) extends by continuity to [0,∞), for
every k ∈ N;

3. there is τ ∈ C∞
c (V ) such that τ equals 1 on a neighbourhood of 0 and such that the

mapping R+ � t 	→ τ∂k
1 H(t, · ) ∈ E ′(V ) extends by continuity to [0,∞), for every

k ∈ N;
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4. for every τ ∈ C∞
c (V ) such that τ equals 1 on a neighbourhood of 0, the mapping

R+ � t 	→ τ∂k
1 H(t, · ) ∈ E ′(V ) extends by continuity to [0,∞), for every k ∈ N.

Proof It is clear that 1 implies 4, that 4 implies 3, and that 2 implies 1. Let us then prove
that 3 implies 2. Then, take τ as in 3, and observe that it will suffice to prove that the mapping
R+ � t 	→ (1 − τ)∂k

1 H(t, · ) ∈ S(V ) extends by continuity to [0,∞), for every k ∈ N.
Then, take h, k ∈ N, and observe that, since ∂k

1 H ∈ Hε,η′
k
(V ), for every N ∈ N there is a

constant CN > 0 such that

sup
dγ ≤h

|∂k
1∂

γ
2 H(t, x)| ≤ CN

(1 + |t−ε · x |)N t Qε+η′
k+εdγ

for every (t, x) ∈ R+ × V . Then, for every (t, x) ∈ R+ × V
∑

dγ ≤h

|∂k
1∂

γ
2 [((1 − τ) ◦ pr2)H ](t, x)|

≤ χSupp(1−τ)(x)
∑

dγ ≤h

∑

γ ′+γ ′′=γ

γ !
γ ′!γ ′′! ‖∂

γ ′
τ‖∞

CN

|x |N t Qε+η′
k+εdγ ′′−εN

;

therefore, there is C ′
N > 0 such that, for every (t, x) ∈ (0, 1] × V ,

∑

dγ ≤h

|∂k
1∂

γ
2 [((χV − τ) ◦ pr2)H ](t, x)| ≤ C ′

N
tεN−Qε−η′

k−εh

(1 + |x |)N
,

which tends to 0 as t → 0+ provided that N > Q + η′
k
ε

+ h. The assertion follows by the
arbitrariness of k, h, and N . �
Definition 7.4 We define ˜Hε,η′(V ) as the space of H satisfying the equivalent conditions
of Lemma 7.3. We endow ˜Hε,η′(V ) with the topology induced by the norms of Hε,η′

k
(V )

applied to ∂k
1 H (k ∈ N), and by the semi-norms

H 	→ sup
t∈(0,1]

sup
ϕ∈B

∣

∣

∣

〈

τ∂k
1 H(t, · ), ϕ

〉∣

∣

∣

as k runs through N, τ is an element of C∞
c (V ) which equals 1 on a neighbourhood of 0,

and B runs through the bounded subsets of C∞(V ).

Lemma 7.5 Take τ ∈ C∞
c (V ) such that τ − 1 vanishes of order ∞ at 0, and fix p ∈ N. In

addition, let Mp be the set of (Radon) measures μ on R+ such that
∫ 1
0 t pd|μ|(t) < +∞,

and such that
∫ +∞
1 tkd|μ|(t) < +∞ for every k ∈ N. Endow Mp with the corresponding

topology.
Then, for every μ ∈ Mp and for every H ∈ Hε,η(V ), the mapping t 	→ (1− τ)H(t, · ) ∈

S(V ) is μ-integrable. In addition, the bilinear mapping

Mp × Hε,η(V ) � μ 	→
∫ +∞

0
(1 − τ)H(t, · ) dμ(t) ∈ S(V )

is continuous.

Proof Indeed, take μ ∈ Mp and H ∈ Hε,η(V ). Observe that, for every N ∈ N, there is a
continuous semi-norm ρN on Hε,η(V ) such that

|∂γ
2 H(t, x)| ≤ ‖H‖ρN

tε(Q+dγ )+η(1 + |t−ε · x |)N
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for every x ∈ V and for every γ such that dγ ≤ N ; fix k ∈ N and γ . Then, apply Leibniz’s
rule and, for t ≤ 1, estimate the derivatives of 1 − τ with | · |N−k for some fixed N ≥
max(dγ , Q + dγ + p+η

ε
); we then see that there is a constant C ′ > 0 such that

|x |k |∂γ [(1 − τ)H(t, · )](x)| ≤ C ′tε(N−Q−dγ )−η‖H‖ρN
≤ C ′t p‖H‖ρN

for every x ∈ V . On the other hand, if t ≥ 1, then simply estimate the derivatives of 1 − τ

with χSupp(1−τ); we then see that there is a constant C ′′ > 0 such that

|x |k |∂γ [(1 − τ)H(t, · )](x)| ≤ C ′′tε(k−Q)−η‖H‖ρmax(k,dγ )

for every x ∈ V . Therefore,
∫ +∞

0
|x |k |∂γ [(χV − τ)H(t, · )](x)| d|μ|(t)

≤ C ′‖H‖ρN

∫

(0,1]
t p d|μ|(t) + C ′′‖H‖ρmax(k,dγ )

∫

[1,+∞)

tε(k−Q)−η d|μ|(t).

By the arbitrariness of k and γ , the assertion follows. �
Lemma 7.6 For every μ ∈ M1((0, 1]) and for every H ∈ ˜Hε,η′(V ), the mapping

t 	→ t−k

⎛

⎝H(t, · ) −
∑

j<k

∂
j
1 H(0, · ) t j

j !

⎞

⎠ ∈ E ′(V ) + S(V )

is scalarly μ-integrable and its integral belongs to E ′(V ) + S(V ). In addition, the bilinear
mapping

(μ, H) 	→
∫ 1

0
t−k

⎛

⎝H(t, · ) −
∑

j<k

∂
j
1 H(0, · ) t j

j !

⎞

⎠ dμ(t)

is continuous from M1((0, 1]) × ˜Hε,η′(V ) into E ′(V ) + S(V ).

Proof Take some τ ∈ C∞
c (V ) which equals 1 in a neighbourhood of 0, and let us prove that

the mapping t 	→ t−kτ
(

H(t, · ) −∑

j<k ∂
j
1 H(0, · ) t j

j !
)

∈ E ′(V ) is scalarly μ-integrable

and that its integral belongs to E ′(V ). Observe that, since E ′(V ) is quasi-complete, by
[5, Proposition 8 of Chapter VI, § 1, No. 2] it will suffice to prove that the mapping

t 	→ t−kτ
(

H(t, · ) −∑

j<k ∂
j
1 H(0, · ) t j

j !
)

∈ E ′(V ) is continuous and bounded. However,

Taylor’s formula implies that

t−kτ

⎛

⎝H(t, · ) −
∑

j<k

∂
j
1 H(0, · ) t j

j !

⎞

⎠ =
∫ 1

0
τ∂k

1 H(ts, · ) (1 − s)k−1

(k − 1)! ds.

Now, for every bounded subset B of C∞(V ) there is a continuous semi-norm ρB of ˜Hε,η′(V )

such that
∣

∣

∣

〈

τ∂k
1 H(t, · ), ϕ

〉∣

∣

∣ ≤ ‖H‖ρB

for every ϕ ∈ B and for every t ∈ (0, 1]. Hence,

t−k sup
ϕ∈B

∣

∣

∣

∣

∣

∣

〈

H(t, · ) −
∑

j<k

∂
j
1 H(0, · ) t j

j ! , τϕ

〉

∣

∣

∣

∣

∣

∣

≤ ‖H‖ρB

k! ,
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whence our claim (cf. also Lemma 7.3). The assertion then follows by means of Lemma 7.5.
�

Recall that OC (V ) is the set of f ∈ C∞(V ) such that there is k ∈ N such that ∂α f (x) =
O
(|x |k) as x → ∞ for every α; OC (V ) can then be identified with the dual of the space

O′
C (V ) of convolutors of S(V ) and carries the corresponding strong dual topology (cf. [33,

pp. 244 and 245] and [13, Chapter II, § 4, No. 4]).

Lemma 7.7 For every k ≥ 0, for every μ ∈ M1([1,+∞)), and for every H ∈ Hε,η(V ), the
mapping

t 	→ tε(Q+k)+η

⎛

⎝H(t, · ) −
∑

dγ <k

∂
γ
2 H(t, 0)

( · )γ
γ !

⎞

⎠ ∈ OC (V )

is scalarly μ-integrable, and its integral belongs toOC (V ). In addition, the bilinear mapping

(μ, H) 	→
∫ +∞

1
tε(Q+k)+η

⎛

⎝H(t, · ) −
∑

dγ <k

∂
γ
2 H(t, 0)

( · )γ
γ !

⎞

⎠ dμ(t)

is continuous from M1([1,+∞)) × Hε,η(V ) into OC (V ).

Proof Observe that [5, Proposition 8 of Chapter VI, § 1, No. 2] implies that it will suffice to
prove that the mapping

t 	→ tε(Q+k)+η

⎛

⎝H(t, · ) −
∑

dγ <k

∂
γ
2 H(t, 0)

( · )γ
γ !

⎞

⎠ ∈ OC (V )

is continuous on [1,+∞) and takes values in an equicontinuous subset ofOC (V ) (considered
as the strong dual of O′

C (V )). Now, continuity is clear. In addition, fix γ ′ and observe that
[10, Theorem 1.37] implies that there is a constant Cγ ′ > 0 such that

∣

∣

∣

∣

∣

∣

∂
γ ′
2 H(t, x) −

∑

dγ <k

∂
γ+γ ′
2 H(t, 0)

xγ

γ !

∣

∣

∣

∣

∣

∣

≤ Cγ ′
∑

∑

j γ j ≤
[

k
d

]

+1

dγ ≥k

|x |dγ sup
|x ′|≤Cγ ′ |x |

∣

∣

∣∂
γ+γ ′
2 H(t, x ′)

∣

∣

∣,

where d is the minimum degree of the nonzero homogeneous elements of V , for every x ∈ V
and for every t > 0. Therefore, there is a continuous semi-norm ργ ′ on Hε,η(V ) such that
∣

∣

∣

∣

∣

∣

∂
γ ′
2 H(t, x) −

∑

dγ <k

∂
γ+γ ′
2 H(t, 0)

xγ

γ !

∣

∣

∣

∣

∣

∣

≤ t−ε(Q+k+dγ ′ )−η
(1 + |x |)D

([

k
d

]

+1
)

‖H‖ργ ′ ,

where D is the maximum degree of the nonzero homogeneous elements of V , for every
x ∈ V and for every t ≥ 1. The assertion follows easily. �
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