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Abstract
We show that the Hodge numbers of Sasakian manifolds are invariant under arbitrary 
deformations of the Sasakian structure. We also present an upper semi-continuity theo-
rem for the dimensions of kernels of a smooth family of transversely elliptic operators on 
manifolds with homologically orientable transversely Riemannian foliations. We use this 
to prove that the 𝜕𝜕̄-lemma and being transversely Kähler are rigid properties under small 
deformations of the transversely holomorphic structure which preserve the foliation. We 
study an example which shows that this is not the case for arbitrary deformations of the 
transversely holomorphic foliation. Finally we point out an application of the upper-semi 
continuity theorem to K-contact manifolds.
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Mathematics Subject Classification  53C12 · 53C25

1  Introduction

In this short paper, we study certain properties of deformations of transversely holomor-
phic foliations. In [13] the authors pose the question whether the basic Hodge numbers of 
Sasakian manifolds are rigid under arbitrary deformations of Sasakian manifolds. This is 
motivated by their results on the invariance of such numbers under type I and type II defor-
mations as well as the fact that basic Hodge numbers can be used to distinguish different 
Sasaki structures on a given manifold. We give a positive answer to the question, i.e. we 
prove the following theorem:

Theorem 1.1  Given a smooth family {(Ms, �s, �s, gs,�s)}s∈[0,1] of compact Sasakian mani-
folds and fixed integers p and q the function associating to each point s ∈ [0, 1] the basic 
Hodge number hp,qs  of (Ms, �s, �s, gs,�s) is constant.
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We split the proof of this result into two theorems which are of independent inter-
est. First we prove Theorem 3.1 which states that the basic Hodge numbers are con-
stant for any smooth family (over the interval [0, 1]) of manifolds with homologically 
orientable transverse Kähler foliations for which the spaces of complex-valued basic 
harmonic forms constitute a bundle over the interval. Since a family of Sasakian mani-
folds is in particular a family of homologically orientable transversely Kähler folia-
tions all that is left to prove is that in this case the spaces of complex-valued basic 
harmonic forms give in fact a bundle over the interval. This is precisely the content of 
Theorem 3.4 which allows us to bypass the key difficulty of this and related problems 
(such as in [13]) meaning the fact that the spaces of basic forms over each manifold do 
not in general form a bundle over the interval. The idea of the proof of this theorem 
is to first treat transverse forms following [13] (the difference being that our focus is 
on the standard Laplace operator and not the Dolbeault-Laplace operator) and then 
describe basic forms as the kernel of the Lie derivative. On the way we correct a slight 
inaccuracy in [13] (see Remark 3.3). This theorem strongly relies on the Sasaki struc-
ture (and not only on the transverse Kähler structure) and so the following question 
remains open:

Question 1.2  Are the basic Hodge numbers rigid under deformations of (homologically 
orientable) transversely Kähler foliations on compact manifolds?

We feel that Theorem  3.1 might be helpful in solving this more general problem. 
Moreover, an answer to this question would have some further use to the theory of 
S-structures which were developed in [3] and are the higher-dimensional (meaning the 
dimension of the characteristic foliation) analogue of Sasakian structures.

In Sect. 4 we develop some of the Theorems from [16] for smooth families of trans-
versely elliptic operators on manifolds with TP foliations. We apply them to prove the 
upper semi-continuity Theorem of the dimensions of kernels of such operators. The 
key difficulty here is finding the way to bypass the TP condition required in previous 
theorems in this section (which can be bypassed by using the frame bundle construc-
tion). This in turn is applied to achieve our results in Sects. 5 and 7.

We devote the fifth and sixth section to the study of the behaviour of the basic 𝜕𝜕̄
-lemma under deformations of transversely holomorphic foliations. We show that if 
the basic 𝜕𝜕̄-lemma holds for a foliated manifold (M,F) , then it also holds for appro-
priately small deformations of the transverse holomorphic structure (provided that 
we do not deform the foliation itself) as well as a similar rigidity theorem for being 
transversely Kähler. These results aside from the upper semi-continuity theorem for 
the Bott–Chern and Aeppli cohomology use the Frölicher-type inequality for foliations 
which was proven in [19]. In Sect.   6 we show that the restriction on deforming the 
foliation is necessary by studying an example from [13, 15].

The final section of this paper treats the applications of the results from Sect. 4 to 
the transverse symplectic setting. The most notable consequence is the rigidity of the 
K-contact hard Lefschetz property under deformations which preserve the Reeb folia-
tion. Due to the fact that here we leave the transversely holomorphic setting we try to 
make this section as much self-contained as possible.
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2 � Preliminaries

2.1 � Foliations

We provide a quick review of transverse structures on foliations.

Definition 2.1  A codimension q foliation F  on a smooth n-manifold M is given by the fol-
lowing data:

•	 An open cover U ∶= {Ui}i∈I of M.
•	 A q-dimensional smooth manifold T0.
•	 For each Ui ∈ U a submersion fi ∶ Ui → T0 with connected fibers (these fibers are 

called plaques).
•	 For all intersections Ui ∩ Uj ≠ � a local diffeomorphism �ij of T0 such that fj = �ij◦fi

The last condition ensures that plaques glue nicely to form a partition of M consisting of 
submanifolds of M of codimension q. This partition is called a foliation F  of M and the 
elements of this partition are called leaves of F .

We call T =
∐
Ui∈U

fi(Ui) the transverse manifold of F  . The local diffeomorphisms �ij gen-

erate a pseudogroup Γ of transformations on T (called the holonomy pseudogroup).The 
space of leaves M∕F  of the foliation F  can be identified with T∕Γ.

Definition 2.2  A smooth form � on M is called basic if for any vector field X tangent to 
the leaves of F  the following equality holds:

Basic 0-forms will be called basic functions henceforth.

Basic forms are in one to one correspondence with Γ-invariant smooth forms on T. It 
is clear that d� is basic for any basic form � . Hence, the set of basic forms of F  (denoted 
Ω∙(M∕F) ) is a subcomplex of the de Rham complex of M. We define the basic cohomology 
of F  to be the cohomology of this subcomplex and denote it by H∙(M∕F) . A transverse 
structure to F  is a Γ-invariant structure on T. For example:

Definition 2.3  F  is said to be transversely symplectic if T admits a Γ-invariant closed 
2-form � of maximal rank. � is then called a transverse symplectic form. As we noted ear-
lier � corresponds to a closed basic form of rank q on M (also denoted �).

Definition 2.4  F  is said to be transversely holomorphic if T admits a complex structure 
that makes all the �ij holomorphic. This is equivalent to the existence of an almost complex 
structure J on the normal bundle NF ∶= TM∕TF  (where TF  is the bundle tangent to the 
leaves) satisfying:

•	 LXJ = 0 for any vector field X tangent to the leaves.
•	 if Y1 and Y2 are sections of the normal bundle, then: 

iX� = iXd� = 0.

NJ(Y1,Y2) ∶= [JY1, JY2] − J[Y1, JY2] − J[JY1,Y2] + J2[Y1,Y2] = 0
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 where [ , ] is the bracket induced on the sections of the normal bundle.

Remark 2.5  If F  is transversely holomorphic, we have the standard decomposition of the 
space of complex valued forms Ω∙(M∕F,ℂ) into forms of type (p,q) and d decomposes into 
the sum of operators � and 𝜕̄ of order (1,0) and (0,1), respectively. Hence, one can define 
the Dolbeault double complex (Ω∙,∙(M∕F,ℂ), 𝜕, 𝜕̄) , the Frölicher spectral sequence and the 
Dolbeault cohomology as in the manifold case.

Definition 2.6  F  is said to be transversely orientable if T is orientable and all the �ij are 
orientation preserving. This is equivalent to the orientability of NF .

Definition 2.7  F  is said to be Riemannian if T has a Γ-invariant Riemannian metric. This 
is equivalent to the existence of a Riemannian metric g on NF  with LXg = 0 for all vector 
fields X tangent to the leaves.

Definition 2.8  F  is said to be transversely parallelizable (TP for short) if there exist q lin-
early independent Γ-invariant vector fields.

Regarding TP foliation we state the following important result from [11]:

Theorem  2.9  Given a Riemannian TP foliation F  on a compact manifold M the clo-
sures of the leaves of F  are submanifolds as well as fibers of a locally trivial fibration 
� ∶ M → W with W a compact manifold. In particular they provide another foliation on M 
for which the leaf space is a compact manifold.

Definition 2.10  A foliation is said to be Hermitian if it is both transversely holomorphic 
and Riemannian.

Throughout the rest of this chapter F  will denote a transversely orientable Riemannian 
foliation on a compact manifold M. Under these assumptions we shall construct a scalar 
product on the space of basic forms following [9]. We start with the principal SO(q)-bundle 
p ∶ M#

→ M of orthonormal frames transverse to F  . The foliation F  lifts to a transversely 
parallelizable, Riemannian foliation F# on M# of the same dimension as F  . Furthermore, 
this foliation is SO(q)-invariant (i.e. for any element a ∈ SO(q) and any leaf L of F# , a(L) 
is also a leaf of F# ) and the transverse metric can be chosen in such a way that it is invari-
ant with respect to the SO(q)-action and the fibers of p ∶ M#

→ M are of measure 1. By 
Theorem 2.9 there exists a compact manifold W and a fiber bundle � ∶ M#

→ W with fib-
ers equal to the closures of leaves of F# (one can now extend the transverse metric to a Rie-
mannian metric on M# in such a way that the fibers of this bundle have measure 1 as well). 
The manifold W is called the basic manifold of F  . The SO(q)-action on M# descends to an 
SO(q)-action on W. It is apparent that the SO(q)-invariant smooth functions on W and basic 
functions on M are in one to one correspondence. In particular, for basic k-forms � and � 
the basic function gx(�x, �x) induces a SO(q)-invariant function Φ(�, �)(w) on W (where gx 
is the scalar product induced on ∧kT∗

x
M by the Riemannian structure). With this we can 

define the scalar product on basic forms:

< 𝛼, 𝛽 >∶= ∫W

Φ(𝛼, 𝛽)(w)d𝜇(w),
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where � is the measure associated to the metric on W. The transverse ∗-operator can be 
defined fiberwise on the orthogonal complements of the spaces tangent to the leaves in the 
standard way. This construction can be repeated for complex valued basic forms on Hermi-
tian foliations. We use this scalar product to define � as the operator adjoint to d (i.e. such 
that < d𝛼, 𝛽 >=< 𝛼, 𝛿𝛽 > for any forms � and �).

Definition 2.11  A basic differential operator of order m is a linear map 
D ∶ Ω∙(M∕F) → Ω∙(M∕F) such that in local coordinates (x1,… , xp, y1,… , yq) (where xi 
are leaf-wise coordinates and yj are transverse ones) it has the form:

where as are matrices of appropriate size with basic functions as coefficients. A basic dif-
ferential operator is called transversely elliptic if its principal symbol is an isomorphism at 
all points x ∈ M and all non-zero, transverse, cotangent vectors at x.

Due to the correspondence between basic forms of F  and Γ-invariant forms on the 
transverse manifold T, a basic differential operator induces a Γ-invariant differential opera-
tor on T. Furthermore, transverse ellipticity of a basic differential operator is equivalent to 
the ellipticity of its Γ-invariant counterpart (this is apparent since the principal symbol is 
defined pointwise).

Theorem 2.12  (cf. [9]) Under the above assumptions the kernel of a transversely elliptic 
differential operator is finitely dimensional.

2.2 � Basic Bott–Chern and Aeppli cohomology theories

In this subsection we provide some of the results from [19] which will be used in this 
paper. Let M be a manifold of dimension n = p + 2q , endowed with a Hermitian foliation 
F  of complex codimension q. Recall that a foliation satisfies the 𝜕𝜕̄-lemma if:

This property is thoroughly studied in the classical case in [1, 6, 8] and in the foliated case 
in [19]. Suffice to say that in our case it induces many important cohomological properties 
found in transversely Kähler foliations such as the decomposition of the basic cohomology 
induced by the bigrading and the degenerating of the Frölicher spectral sequence on the 
first page. Using the basic Dolbeault double complex, we can define the basic Bott–Chern 
cohomology of F :

where the operators � and 𝜕̄ are defined as the components of order (1,0) and (0,1) of the 
operator d restricted to the basic forms (as mentioned earlier). Our main goal in this sub-
section is to present a decomposition theorem for basic Bott–Chern cohomology. To that 
purpose, we define the operator:

D =
∑

|s|≤m
as(y)

�|s|

�s1y1 … �sqyq

Ker(𝜕) ∩ Im(𝜕̄) = Ker(𝜕̄) ∩ Im(𝜕) = Im(𝜕𝜕̄).

H
∙,∙

BC
(M∕F) ∶=

Ker(𝜕) ∩ Ker(𝜕̄)

Im(𝜕𝜕̄)
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where by �∗ and 𝜕̄∗ , we mean the operators adjoint to � and 𝜕̄ , with respect to the Hermitian 
product, defined by the transverse Hermitian structure.

Proposition 2.13  The operator ΔBC is transversely elliptic and self-adjoint.

Theorem  2.14  (Decomposition of the basic Bott–Chern cohomology) If M is a com-
pact manifold, endowed with a Hermitian foliation F  , then we have the following 
decomposition:

In particular,

and the dimension of H∙,∙

BC
(M∕F) is finite.

We also define the basic Aeppli cohomology of F  to be:

We define a basic differential operator, needed for the decomposition theorem for the basic 
Aeppli cohomology of F :

Proposition 2.15  ΔA is a self-adjoint, transversely elliptic operator.

Theorem  2.16  (Decomposition of the basic Aeppli cohomology) Let M be a com-
pact manifold, endowed with a Hermitian foliation F  . Then we have the following 
decomposition:

In particular, there is an isomorphism,

and the dimension of H∙,∙

A
(M∕F) is finite.

Finally, we give a duality theorem for basic Bott–Chern and Aeppli cohomology. 
However, for the theorem to work, we need an additional condition on our foliation:

Definition 2.17  A foliation F  on M is called homologically orientable if H2q(M∕F) = ℝ.

Remark 2.18  The above condition guaranties that the following equalities hold for basic 
r-forms:

ΔBC ∶= (𝜕𝜕̄)(𝜕𝜕̄)∗ + (𝜕𝜕̄)∗(𝜕𝜕̄) + (𝜕̄∗𝜕)(𝜕̄∗𝜕)∗ + (𝜕̄∗𝜕)∗(𝜕̄∗𝜕) + 𝜕̄∗𝜕̄ + 𝜕∗𝜕

Ω∙,∙(M∕F,ℂ) = Ker(ΔBC)⊕ Im(𝜕𝜕̄)⊕ (Im(𝜕∗) + Im(𝜕̄∗)).

H
∙,∙
BC
(M∕F) ≅ Ker(ΔBC).

H
∙,∙

A
(M∕F) ∶=

Ker(𝜕𝜕̄)

Im(𝜕) + Im(𝜕̄)
.

ΔA ∶= 𝜕𝜕∗ + 𝜕̄𝜕̄∗ + (𝜕𝜕̄)∗(𝜕𝜕̄) + (𝜕𝜕̄)(𝜕𝜕̄)∗ + (𝜕̄𝜕∗)∗(𝜕̄𝜕∗) + (𝜕̄𝜕∗)(𝜕̄𝜕∗)∗.

Ω∙,∙(M∕F,ℂ) = Ker(ΔA)⊕ (Im(𝜕) + Im(𝜕̄))⊕ Im((𝜕𝜕̄)∗).

H
∙,∙

A
(M∕F) ≅ Ker(ΔA)
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where ∗b is the transverse Hodge star operator. For general foliations this does not have to 
be true (c.f. [18], appendix B, example 2.3 and [9]).

Corollary 2.19  If M is a compact manifold endowed with a Hermitian, homologically 
orientable foliation F  , then the transverse star operator induces an isomorphism:

Let us continue with the main results from [19]:

Theorem 2.20  (Basic Frölicher-type inequality) Let F  be a Hermitian foliation of codi-
mension q on a closed manifold M. Then, for every k ∈ ℕ , the following inequality holds:

Furthermore, the equality holds for every k ∈ ℕ , iff F  satisfies the 𝜕𝜕̄-lemma.

2.3 � Sasakian manifolds

We provide a quick recollection of properties of Sasakian manifolds used in this paper:

Definition 2.21  A Sasakian manifold (M, g, �, �,�) is a (2n + 1)-dimensional manifold M 
together with a Riemannian metric g, a Killing vector field � a 1-form � , and a (1, 1) tensor 
field � satisfying for any point x ∈ M and X, Y ∈ TxM:

and additionally the Nijenhuis tensor [�,�] satisfies:

for any vector fields X and Y.

It is well known that for the homologically orientable foliation F  induced by � these 
tensors define a transverse Kähler structure by identifying NF  with �⟂.

Aside from the abundance of properties contained in the above definition and proper-
ties of homologically orientable transversely Kähler foliations, we need the following 
two results:

Proposition 2.22  For a Sasakian manifold the standard inner product on forms 
restricted to �⟂ induced by g can be written in terms of the basic star operator ∗b through 
the formula:

𝜕∗ = (−1)q(r+1)+1 ∗b 𝜕 ∗b 𝜕̄∗ = (−1)q(r+1)+1 ∗b 𝜕̄ ∗b

H
p,q

BC
(M∕F) → H

n−p,n−q

A
(M∕F).

∑

p+q=k

(dimℂ(H
p,q

BC
(M∕F)) + dimℂ(H

p,q

A
(M∕F))) ≥ 2dimℂ(H

k(M∕F,ℂ)).

�x ∧ (d�n)x ≠ 0 �2

x
(X) = −X + �x(X)�x �x(�x(X)) = 0

�x(X) = gx(�x,X) (d�x)(X, Y) = gx(�xX, Y) gx(�x, �x) = 1

gx(�x(X),�x(Y)) = gx(X, Y) − �x(X)�x(Y)

[�,�](X, Y) + 2d�(X, Y)� = 0
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Theorem 2.23  Given an odd dimensional manifold M any two Sasaki structures on M 
have the same basic Betti numbers.

The latter can be found in [4] (Theorem 7.4.14).

3 � Invariance of basic Hodge numbers under deformations of Sasakian 
manifolds

We start by reducing the problem to proving that the spaces of complex-valued basic har-
monic k-forms Hk

s
 of (Ms,Fs) form a bundle over [0, 1].

Theorem 3.1  Let {(Ms,Fs)}s∈[0,1] be a smooth family of homologically orientable trans-
versely Kähler foliations on compact manifolds such that Hk

s
 forms a smooth family of con-

stant dimension for any k ∈ ℕ . For a fixed pair of integers (p, q) the function associating to 
each point s ∈ [0, 1] the basic Hodge number hp,qs  of (Ms,Fs) is constant.

Proof  Using the fact that the kernels of the operators Δ and Δ𝜕̄ ∶= 𝜕̄𝜕̄∗ + 𝜕̄∗𝜕̄ are equal 
under our assumptions (see [9]), we get the equality:

where Hp,q
s

 denotes the kernel of (Δ𝜕̄)s on forms of type (p,  q) which is isomorphic to 
Hp,q(Ms∕Fs) . Hence, it is sufficient to restrict our attention to the bundle Hk

s
 . Consider the 

action of Js on basic forms given by:

for any k sections X1,… ,Xk ∈ Γ(NFs) (see, e.g. the Lie algebra action in [14] for motiva-
tion). The spaces Hp,q

s
 are precisely the i(p − q)-eigenspaces of the restriction of Js to har-

monic basic k-forms (note that this operation restricts to a linear operator on Hk
s
 due to the 

decomposition above). With this we can write:

Taking any s0 ∈ [0, 1] we know (via a standard rank argument) that we can choose a small 
neighbourhood Up,q of s0 such that the dimension of Ker(Js|Hk

s
− i(p − q)Id

H
k
s
) cannot be 

greater than the dimension of Ker(Js0 |Hk
s0

− i(p − q)Id
H

k
s0

) for s ∈ Up,q . On the other hand, 
by our assumptions the direct sum 

⨁
p+q=k

H
p,q
s

 has constant dimension which implies that the 

dimension of Hp,q
s

 cannot drop on 
⋂

p+q=k

Up,q (since then the dimension of Hp′ ,q′

s
 for some 

other pair (p�, q�) with p� + q� = k would have to increase to compensate for the loss). This 
proves that the basic Hodge numbers hp,qs  are locally constant with respect to s and so they 
are in fact constant. 	�  ◻

< 𝛼, 𝛽 >∶= ∫M

𝜂 ∧ 𝛼∧ ∗b 𝛽.

H
k
s
=

⨁

p+q=k

H
p,q
s
,

Js�(X1,… ,Xk) =

k∑

i=1

�(X1,… , JsXi,… ,Xk),

H
p,q
s

= Ker(Js|Hk
s
− i(p − q)Id

H
k
s
).
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As we already mentioned in the introduction, the main difficulty of the problem is to 
work around the fact that basic forms may not constitute a bundle over the interval. The 
first step of dealing with this problem is to consider transverse k-forms (i.e. forms � such 
that i�s� = 0 ) we denote the space of such forms by ΩT ,k

s
 (a similar approach was proposed 

in, e.g. [10, 13]). On such forms it is natural to consider the operator dT ∶= �(d) where � is 
the projection onto transverse forms given by the Riemannian metric. Its adjoint �T is given 
by the formula:

which due to homological orientability coincides on basic forms with the basic coderiva-
tive �b . This allows us to define the transverse Laplace operator in a fashion similar to [10, 
13]:

and similarly as in [13] we can prove the following lemma:

Lemma 3.2  The operator ΔT ∶ Ωk,T
→ Ωk,T is strongly elliptic and self-adjoint.

Proof  Around any point x0 take a local coordinate chart (t, x1, y1,… , xn, yn) where � =
�

�t
 

and (x1, y1,… , xn, yn) are transverse holomorphic coordinates such that ( �

�x1
,

�

�y1
,…

�

�xn
,

�

�yn
) 

are orthonormal over x0 and � = dt +
n∑
i=0

xidyi . In such coordinates the principal symbol 

�(�TdT + dT�T ) coincides with that of the Laplacian Δb on the planes t = 0 and so we have 
�(ΔT ) = �(

�2

�2t
− Δb) (to see this note that in these coordinates �(dt) = −

n∑
i=0

xidyi and so 

after writing the operator in local coordinates we see that aside from the part present in Δb 
the additional components coming from the projections are either of degree less than 2 or 
are multiplied by some xi and hence in either case do not contribute to the symbol over x0 ). 
For � ∶= �0dt +

n∑
i=1

�2i−1dxi + �2idyi ∈ T∗
x0
M let ��(ΔT ) be the principal symbol of ΔT at � 

over the point x0 . The principal symbol ��(
�2

�2t
) = �2

0
Id(Ωk,T )x0

 , while the principal symbol of 

Δb is given by �(Δb) = −(
2n∑
i=1

�2

i
)Id(Ωk,T )x0

 (see [20] Lemma 5.18). This shows that 

��(Δ
T ) = ||�||2Id(Ωk,T )x0

 and so the operator is in fact strongly elliptic.
Since �TdT + dT�T is self-adjoint it suffices to prove that L� is skew-symmetric. For 

�1, �2 ∈ Ωk,T we have:

since L�� = 0 and L� ∗b=∗b L� . Hence, we only need to prove that the left-hand side inte-
grates to zero over M. But we can write it as:

now it suffices to note that the right-hand side is exact and hence integrates to zero. 	�  ◻

Remark 3.3  In [13] it is claimed that the form d(�1∧ ∗b �2) is itself zero which would also 
imply our theorem as well as the corresponding theorem in [13]. This however is not true 
since the proof uses transverse forms and not basic ones. More concretely taking k even 

𝛿T ∶= (−1)k ⋆−1
b

dT⋆b,

ΔT ∶= L�L� − �TdT − dT�T ,

L�(� ∧ �1∧ ∗b �2) = � ∧ L�(�1)∧ ∗b �2 + � ∧ �1∧ ∗b L��2,

di�(� ∧ �1∧ ∗b �2) = d(�1∧ ∗b �2),
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one can consider the forms �1 = (d�)
k

2 and �2 = f ⋅ (d�)
k

2 where f is any function on M 
which is non constant in the � direction. It is apparent that L�(� ∧ �1∧ ∗b �2) ≠ 0

One can alternatively prove this by computing the adjoint of L� (treated as an operator 
on Ωk(M,ℂ) ) using the formula L� = di� + i�d along with the fact that i∗

�
� = � ∧ � . By 

standard Hodge theory one arrives at the formula � ∧ � = (−1)k ∗−1 i� ∗ � and using the 
fact that L� ∗=∗ L� one finds that:

Now all that is left to prove is the fact that being an adjoint on Ωk(M,ℂ) implies being an 
adjoint on Ωk,T which readily follows from the equalities:

With this we can now finish the proof of Theorem 1.1 by proving the following result:

Theorem 3.4  Let {(Ms, �s, �s, gs,�s)}s∈[0,1] be a smooth family of compact Sasakian mani-
folds over an interval. Then the spaces Hk

s
 of complex-valued basic harmonic k-forms on 

Ms constitute a bundle over [0, 1].

Proof  We start by establishing some facts by using the findings of [16] similarly as in [13]. 
Using Theorem 1 of [16], for the family Δk,T

s
 we get a complete system of eigensections 

{esh}h∈ℕ,s∈[0,1] together with the corresponding eigenvalues �h(s) which form an ascending 
sequence in [0,∞) with a single accumulation point at infinity. Fix a point s0 ∈ [0, 1] and 
let k0 be the largest number such that for h ∈ {1,… , k0} we have �h(s0) = 0 . Consider the 
family of vector spaces Es = span{esh | h ∈ {1,… , k0}} . Since the only accumulation point 
of the sequence �h(s0) is infinity, we can find a small disc around 0 in ℂ such that the only 
eigenvalue of Δk,T

s0
 contained in this disc is zero. Using Theorem 2 of [16] we establish that 

for each h the eigenvalues �h(s) form a continuous function and hence in a small neigh-
bourhood U of s0 all s ∈ U are contained in this disc as well. This allows us to conclude by 
using Theorem 3 of [16] that PEs

(ẽsh) for h ∈ {1,… , k0} form smooth sections of Ωk,T over 
a small neighbourhood U′ ⊂ U of s0 which span Es (where PEs

 is the projection onto Es and 
ẽsh are the extensions of es0h with the use of some partition of unity over [0, 1]). Shrinking 
the neighbourhood is necessary to retain linear independence of ẽsh . Hence, we have shown 
that Es form a bundle over U′ with local trivialization given by PEs

(ẽsh).
Now consider the operator L�s

∶ Es → Ωk,T
s

 . Note that KerL�s0
= H

k
s0

 . Via a standard 
rank argument there is a small neighbourhood U′′ ⊂ U′ of s0 such that 
dim(KerL�s0

) ≥ dim(KerL�s
) . However, KerL𝜉s

⊃ H
k
s
 and since dim(Hk

s
) = dim(Hk

s0
) (by 

Theorem 2.23) we have the following:

Hence, all of the dimensions above are equal and KerL�s
= H

k
s
 . But this implies that Hk

s
 

can be described as a kernel of a morphism of bundles and since its dimension is constant 
we conclude that it is a bundle (over U′′ ). It immediately follows that Hk

s
 forms a bundle 

over [0, 1] since it is a family of subspaces of a bundle with local trivializations around any 
point. 	�  ◻

L
∗
�
= −L� .

∫M

� ∧ Lxi�1∧ ∗b �2 = ∫M

Lxi�1∧ ∗ �2 = −∫M

�1∧ ∗ Lxi�2 = −∫M

� ∧ �1∧ ∗b Lxi�2.

dim(KerL�s0
) ≥ dim(KerL�s

) ≥ dim(Hk
s
) = dim(Hk

s0
) = dim(KerL�s0

).



1461Invariance of basic Hodge numbers under deformations of Sasakian…

1 3

4 � Upper semi‑continuity of dimensions of kernels of transversely 
elliptic operators

We start by proving some of the results from [16] for smooth families of transversely ellip-
tic self-adjoint operators on manifolds with TP foliations.

Theorem 4.1  Let M be a compact manifold with a codimension q homologically orient-
able TP Riemannian foliation and let D ∶ Ωk(M∕F) → Ωk(M∕F) be a transversely ellip-
tic operator of even order. Then there exists a complete orthonormal set of eigenfunctions 
eh ∈ Ωk(M∕F) with corresponding real eigenvalues �h . Moreover, we can arrange them in 
such order that the eigenvalues grow and their only possible accumulation point is infinity.

Proof  First let us note that if our foliation has a dense leaf then the corresponding basic 
k-forms are a finitely dimensional vector space V so the theorem is trivially true. For a 
TP foliation it is known that the closures of the leaves form a bundle over some mani-
fold W. Note that there is a natural one to one correspondence between smooth sections 
of the bundle with fiber over a point w ∈ W of the form Vw ⊕Ωk

w
(W) (this is the so called 

useful bundle of [2]) and basic forms of F  . The operator D induces then a self-adjoint 
elliptic operator D̃ (via this correspondence) acting on the useful bundle over W (in [9, 
10] it was proven that the spaces Vw form a bundle over W and that the operator D̃ act-
ing on this bundle has the desired properties). Now by applying Theorem 1 from [16] to 
D̃ ∶ Γ(V)⊕Ω∗(W) → Γ(V)⊕Ωk(W) we get our desired result. 	�  ◻

In the exact same fashion we can adapt Theorems 2 and 3 from [16] to this context. 
Hence, we get the following theorems:

Theorem 4.2  Let M be a compact manifold with a codimension q homologically orient-
able TP Riemannian foliation and let Ds ∶ Ωk(M∕F) → Ωk(M∕F) be a family of trans-
versely elliptic operator of even order. Then the eigenvalues �h(s) in the previous theorem 
form continuous functions.

Theorem  4.3  Under the assumptions of Theorem  4.2 we put 
Es ∶= span{eshi | i ∈ {1,… , l}} where eshi are the eigenfunctions from Theorem 4.1 for the 
operator Ds such that the corresponding eigenvalues constitute a set of all the eigenvalues 
contained in some bounded domain U in ℂ which has no eigenvalues on its boundary. Then 
the projections onto Es depend smoothly on s.

We take the time to pose the following question:

Question 4.4  Can these theorems be further generalized to arbitrary Riemannian 
foliations?

Now we are ready to prove the main theorem of this section:

Theorem  4.5  Let M be a compact manifold with a codimension q homologically ori-
entable Riemannian foliation and let Ds ∶ Ωk(M∕F) → Ωk(M∕F) be a family of trans-
versely elliptic operators of even order m. Denote h(s) ∶= dimKer(Ds). Then h(s) is upper 
semi-continuous.
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Proof  We start by lifting the foliation F  to a foliation F# on the total space M# of the bun-
dle of orthonormal frames transverse to F  . As we already mentioned in the preliminary 
section, F# is TP. Moreover, we have an action of G = SO(q) on M# such that there is a 
natural one to one correspondence between G-invariant basic forms on (M#,F

#) and basic 
forms on (M,F) (see [9] for details). We can now lift the family of operators Ds to a family 
D#

s
 of operators on M# . However, the members of this family are usually not transversely 

elliptic. To remedy this we consider the family D′

s
 defined by the formula:

where Q1,… ,QN are the fundamental vector fields of the G-action on M#.
Noting that Qi are Killing (with respect to the transverse metric) via a similar argument 

as in remark 3.3 we observe that the operators LQi
LQi

 (and hence D′

s
 ) are self-adjoint. More 

precisely, one can prove this by computing the adjoint of LQi
 (treated as an operator on 

Ωk(M,ℂ) ) using the formula LQi
= diQi

+ iQi
d and the equality � = (−1)k+1 ∗b d ∗b (which 

is true due to homological orientability) as well as the formula i∗
Qi

= (−1)k ∗−1
b

iQi
∗b . Then 

using the fact that LQi
∗b=∗b LQi

 one finds that:

Due to the results of [9], the operators D′

s
 are also strongly transversely elliptic. Note that 

D
′

s
 coincides on G-invariant forms with the operator defined using the identification of 

G-invariant basic forms on (M#,F
#) and basic forms on (M,F).

Having reduced the problem to the TP case we are now able to proceed in a similar fash-
ion as in [13] (with the findings of [16] replaced by their corresponding results from this 
section). Using Theorem 4.1 for the family D′

s
 we get a complete system of eigensections 

{esh}h∈ℕ,s∈[0,1] together with the corresponding eigenvalues �h(s) which form an ascending 
sequence in [0,∞) with (at most) a single accumulation point at infinity. Fix a point 
s0 ∈ [0, 1] and let k0 be the largest number such that for h ∈ {1,… , k0} we have �hs0 = 0 . 
Consider the family of vector spaces Es = span{esh | h ∈ {1,… , k0}} . Since the only accu-
mulation point of the sequence �h(s0) is infinity we can find a small disc around 0 in ℂ such 
that the only eigenvalue of D′

s0
 contained in this disc is zero. Using Theorem 4.2 we estab-

lish that for each h the eigenvalues �h(s) form a continuous function and hence in a small 
neighbourhood U of s0 all s ∈ U are contained in this disc as well. This allows us to con-
clude by Theorem 4.3 that PEs

(ẽsh) for h ∈ {1,… , k0} form smooth sections of Ωk(M∕F) 
over a small neighbourhood U′ ⊂ U of s0 which span Es (where PEs

 is the projection onto Es 
and ẽsh are the extensions of es0h with the use of some partition of unity over [0, 1]). Shrink-
ing the neighbourhood is necessary to retain linear independence of ẽsh . Hence, we have 
shown that Es form a bundle over U′.

Note that since the G-action commutes with D′ (by the definition of D′ ) and Es is a sum 
of eigenspaces for each s we have a well defined action of G on the family Es . Let EG

s
 denote 

the subspace of Es consisting of G-invariant forms. Due to the fact that smooth deforma-
tions of representations of a compact Lie groups give isomorphic representations we have 
that EG

s
 form a bundle over U′ . Finally, we have:

for s ∈ U� . This concludes the proof. 	� ◻

D
�

s
∶= D#

s
+ (−1)

m

2 (

N∑

i=1

LQi
LQi

)
m

2 .

L
∗
Qi

= −LQi
.

dim(Ker(Ds0
)) = dim((Ker(D�

s0
))G) = dim(EG

s
) ≥ dim((Ker(D�

s
))G) = dim(Ker(Ds)),
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Remark 4.6  Homological orientability is necessary for the proof of self-adjointness of 
LQi

LQi
 to work, as otherwise a correction term appears in the formula for � . One could 

remedy this by taking LQi
L
∗
Qi

 instead but then the operators D′
s
 do not coincide with Ds on 

basic forms (via the aforementioned correspondence).

Remark 4.7  The above discussion can be easily adapted to complex valued forms and their 
bigradation. Moreover, this can be done even if the transverse holomorphic structures vary 
with s. To see this note that 𝜋 ∶ (NF)∗ ⊗ ℂ → (N0,1F)∗

s
 induces an isomorphism between 

(N0,1F)∗
s0

 and (N0,1F)∗
s1
 which preserves basic forms for s1 sufficiently close to s0.

Corollary 4.8  Let (Ms,Fs) be a smooth family of compact manifolds with homologically 
orientable transversely Hermitian foliations such that Fs1

= Fs2
 for s1, s2 ∈ [0, 1] and 

denote hp,q
BC
(s) ∶= dim(H

p,q

BC
(Ms∕Fs)) . Then hp,q

BC
(s) is upper semi-continuous.

Proof  Consider the family (ΔBC)s of transversely elliptic differential operators. Then by 
Theorem 2.14 we have:

Hence, after choosing a point s0 ∈ [0, 1] we see that in a sufficiently small neighbourhood 
U of s0 the dimension of Hp,q

BC
(Ms∕Fs,ℂ) can only drop (since they are described as a kernel 

of a linear operator). 	�  ◻

Remark 4.9  Similar results analogously follow for Dolbeault and Aeppli cohomology theo-
ries. One needs to use then the operators Δ𝜕̄ and ΔA.

5 � Deformations of the transverse holomorphic structure with fixed 
foliation

Throughout this section we assume that {Js}s∈[0,1] is a smooth family of transverse Her-
mitian structures on a compact homologically orientable foliated manifold (M,F) (such 
deformations were already considered in [12] under the name f-deformations). In this 
section we will show that if (M,F, Js0 ) satisfies the 𝜕𝜕̄-lemma (resp. admits a transverse 
Kähler structure) then there exists a neighbourhood U of s0 such that for s ∈ U the trans-
versely holomorphically foliated manifold (M,F, Js) satisfies the 𝜕𝜕̄-lemma (resp. admits 
a transverse Kähler structure). We shall show in the subsequent section that this is not 
the case when the foliation is deformed as well. We will use the notation (Ms,Fs) instead 
of (M,F, Js) to point out which transverse holomorphic structure is being considered. 
With the upper semi-continuity theorem of the previous section the rigidity of basic 𝜕𝜕̄
-lemma is a simple consequence of the foliated version of the Frölicher type inequality.

Theorem  5.1  Let (Ms,Fs) be a smooth family of compact manifolds with transversely 
Hermitian homologically orientable foliations such that Fs1

= Fs2
 for s1, s2 ∈ [0, 1]. If 

(Ms0
,Fs0

) satisfies the 𝜕𝜕̄-lemma, then there exists a neighbourhood U of s0 such that for 
s ∈ U the transversely Hermitian foliated manifold (Ms,Fs) satisfies the 𝜕𝜕̄-lemma.

dim(Ker((ΔBC)s)|Ωp,q(Ms∕Fs ,ℂ)
) = dim(H

p,q

BC
(Ms∕Fs,ℂ)).
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Proof  Using Corollary 4.8 and the remark that follows we know that the dimensions of 
both the Bott–Chern and Aeppli cohomologies can only drop on a sufficiently small neigh-
bourhood U of s0 . Since (Ms0

,Fs0
) satisfies the 𝜕𝜕̄-lemma we have the equality:

and hence the Frölicher-type inequality applied to (Ms,Fs) for s ∈ U prevents the dimen-
sions of Bott–Chern and Aeppli cohomologies from dropping. Hence, the equality (and 
consequently the 𝜕𝜕̄-lemma) is valid for all s ∈ U . 	�  ◻

Theorem  5.2  Let (Ms,Fs) be a smooth family of compact manifolds with transversely 
Hermitian homologically orientable foliations such that Fs1

= Fs2
 for s1, s2 ∈ [0, 1]. If 

(Ms0
,Fs0

) is transversely Kähler then there exists a neighbourhood U of s0 such that for 
s ∈ U the transversely Hermitian foliated manifold (Ms,Fs) is transversely Kähler.

Proof  Using the Frölicher type inequality and Theorem  4.8 we can again conclude that 
the dimensions of Ker(ΔBC) are constant. By Theorem  4.3 we have that the projection 
�#

s
∶ Ω1,1(M#∕F#) → Ker((Δ�

BC
)s) depends smoothly on s. Hence, by restricting �# to 

G-invariant forms and noting that (Δ�
BC
)s preserve basic forms we conclude that the same is 

true for the projection �s ∶ Ω1,1(M∕F) → Ker((ΔBC)s) . Put:

where �s0
 is the transverse Kähler form on (Ms0

,Fs0
) (no collision arises since for �s0 the 

expression on the right is in fact equal to �s0
 ). Note that the forms �s are real and closed 

(since they are in Ker(ΔBC) ). Invariance under Js follows from being (1, 1)-forms. Moreo-
ver, for s sufficiently close to s0 these forms are non-degenerate and �s(Jsv, v) ≥ 0 . Hence, 
the forms �s are in fact Kähler forms for (Ms,Fs) . 	�  ◻

We also present the following simple consequence of Corollary 4.8:

Corollary 5.3  Let (Ms,Fs) be a smooth family of compact manifolds with homologically 
orientable transversely Kähler foliations such that Fs1

= Fs2
 for s1, s2 ∈ [0, 1]. For fixed 

integers p and q the function associating to each point s ∈ [0, 1] the basic Hodge number 
h
p,q
s  of (Ms,Fs) is constant.

Proof  For transversely Kähler foliations we have the equality:

where hk denotes the basic Betti numbers. Theorem 4.8 implies that the numbers hi,j cannot 
increase and hence for the equality to be preserved they have to remain constant. 	�  ◻

∑

p+q=k

(dimℂ(H
p,q

BC
(Ms0

∕Fs0
)) + dimℂ(H

p,q

A
(Ms0

∕Fs0
))) = 2dimℂ(H

k(Ms0
∕Fs0

,ℂ)),

�s ∶=
1

2
(�s�s0

+ �s�s0
),

∑

i+j=k

hi,j = hk,
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6 � Example

We recall an example of a family of transversely Hermitian foliations presented in [13]. Let 
M ∶= �1 × �1 × �3 . Define �1 to be the vector field tangent to the first circle in the prod-
uct and �0 to be the vector field tangent to the fibers of the Hopf fibration (with total space 
�3 ). Let �s = (1 − s)�0 + s�1 and let Fs denote the foliation of dimension 1 defined by �s . The 
transverse Hermitian structure is taken from the leaf space � 2 × �2 (resp. transverse manifold 
{∗} × �1 × �3 ) for s = 0 (resp. s ∈ (0, 1] ). Equivalently, one can define the transverse holo-
morphic structure by specifying the almost complex structure J since the manifold M is paral-
lelizable. In this case one takes J evaluated on the vector field tangent to the second circle to 
be the orthogonal complement of �s in the tori which are generated by the vector fields �0 and 
�1 (the evaluation on the vector fields complementary to �1 in the parallelization of �3 does not 
change).

Remark 6.1  Since the leaf space of F0 is precisely � 2 × �2 it is in fact transversely Kähler. 
For s ∈ (0, 1] the transverse manifold of this foliation can be taken to be {∗} × �1 × �3 
which admits no closed non-degenerate 2-form. Hence, these foliations are not transversely 
symplectic. This proves that being transversely Kähler is not a rigid property under small 
deformations if the foliations are allowed to vary.

Since (M0,F0) is transversely Kähler it has to also satisfy the 𝜕𝜕̄-lemma. We will show 
that for s ∈ [0, 1]�ℚ the 𝜕𝜕̄-lemma does not hold and so we will disprove rigidity of this 
property when the foliation is allowed to vary. Note that �3 × �1 is a Lie group which has a 
basis of one forms {�1, �2, �3, �4} invariant under the action of this group on itself and such 
that:

We define the corresponding basis of (1, 0) forms by:

From this we can easily compute that:

Since all these forms are invariant under the action of �3 × �1 they also satisfy L�s
�i = 0 

and hence they are a basis (over C∞(Ms∕Fs) ) of basic forms. Note also that for s ∈ [0, 1]�ℚ 
the basic functions are precisely the functions constant in the directions �0 and �1 , hence 
they can be canonically identified with the functions on �2 × �1 . One can now see that 
H

1,1

A
(M∕F) ≠ 0 since the form �2 ∧ �2 provides a non-vanishing class in it. By the 

d�1 = − 2�2 ∧ �3

d�2 =2�1 ∧ �3

d�3 = − 2�1 ∧ �2

d�4 =0.

�1 =�1 + i�2

�2 =�3 + i�4.

𝜕̄𝛽1 =i𝛽1 ∧ 𝛽2

𝜕̄𝛽2 = − i𝛽1 ∧ 𝛽1

𝜕̄𝛽1 =i𝛽1 ∧ 𝛽2

𝜕̄𝛽2 =0.
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Frölicher type inequality it suffices to prove that H2(Ms∕Fs,ℂ) = 0 . By the Frölicher spec-
tral sequence, it is sufficient to prove that the second Dolbeault cohomology is zero. It is 
easily seen that H2,0

𝜕̄
(Ms∕Fs) = H

0,2

𝜕̄
(Ms∕Fs) = 0 since for degree (2, 0) the kernel is trivial 

and for (0, 2) the image is the entire space of (0, 2) basic forms. For degree (1, 1) one sees 
that 𝜕̄(f𝛽2 ∧ 𝛽1) and 𝜕̄(f𝛽2 ∧ 𝛽2) never vanish while the other two components are contained 
in the image of 𝜕̄ . Hence, we get that for any neighbourhood U of 0 there exists an s ∈ U 
such that (Ms,Fs) does not satisfy the 𝜕𝜕̄-lemma while (M0,F0) satisfies the 𝜕𝜕̄-lemma.

Remark 6.2  It is important to note that all the foliations in this family are homologically 
orientable. This is obvious for s = 0 . For s ∈ (0, 1] the generator of the top basic cohomol-
ogy is provided by �1 ∧ �2 ∧ �3 ∧ �4.

7 � An application to transversely symplectic foliations and K‑contact 
manifolds

We start by recalling basic ddΛ and d + dΛ cohomology theories (see [21] for the clas-
sical case and [7, 19] for the foliated case). Given a transversely symplectic foliation F  
one can define a transverse symplectic star operator ∗s by defining it on the transverse 
manifold. With the help of the symplectic star we can define the operator:

which acts on basic forms. We can use this operator to define the cohomology theories:

Similarly as with Bott–Chern and Aeppli cohomologies when the foliation is Riemannian 
there exist elliptic self-adjoint operators:

such that the inclusions of their kernels give isomorphisms (see [7]):

We say that F  satisfies the basic ddΛ-lemma if the following equalities hold:

Finally we note that there is a transversely symplectic version of the Frölicher type ine-
qualities (see [19]) which in particular states that the basic ddΛ-lemma is equivalent to the 
equality:

dΛ� ∶= (−1)k+1 ∗s d ∗s (�)

H∙
d+dΛ

(M∕F) ∶=
Ker(d + dΛ)

Im(ddΛ)
,

H∙
ddΛ

(M∕F) ∶=
Ker(ddΛ)

Im(d) + Im(dΛ)
.

Δd+dΛ ∶=(ddΛ)(ddΛ)∗ + (ddΛ)∗(ddΛ) + d∗dΛdΛ∗d + dΛ∗dd∗dΛ + d∗d + dΛ∗dΛ,

ΔddΛ ∶=(ddΛ)(ddΛ)∗ + (ddΛ)∗(ddΛ) + ddΛ∗dΛd∗ + dΛd∗ddΛ∗ + dd∗ + dΛdΛ∗,

Ker(Δd+dΛ ) ≅ H∙
d+dΛ

(M∕F),

Ker(ΔddΛ ) ≅ H∙
ddΛ

(M∕F).

Ker(dΛ) ∩ Im(d) = Ker(d) ∩ Im(dΛ) = Im(ddΛ).



1467Invariance of basic Hodge numbers under deformations of Sasakian…

1 3

provided the transversely symplectic foliation is Riemannian and homologically orientable. 
If the foliation does not satisfy the ddΛ-lemma then the right-hand side is strictly smaller 
then the left-hand side.

With this established we can now give the first result of this section:

Theorem  7.1  Let (Ms,Fs) be a smooth family of compact manifolds with transversely 
symplectic homologically orientable Riemannian foliations such that Fs1

= Fs2
 for 

s1, s2 ∈ [0, 1]. If (Ms0
,Fs0

) satisfies the ddΛ-lemma, then there exists a neighbourhood U 
of s0 such that for s ∈ U the transversely symplectic foliated manifold (Ms,Fs) satisfies the 
ddΛ-lemma.

Proof  By a similar argument as in Corollary  4.8 and the remark that follows we know 
that the dimensions of d + dΛ and ddΛ cohomologies can only drop on a sufficiently small 
neighbourhood U of s0 . Since (Ms0

,Fs0
) satisfies the ddΛ-lemma we have the equality:

and hence the symplectic Frölicher-type inequality applied to (Ms,Fs) for s ∈ U prevents 
the dimensions of d + dΛ and ddΛ cohomologies from dropping. Hence, the equality (and 
consequently the ddΛ-lemma) is valid for all s ∈ U . 	�  ◻

We note that in particular this Theorem can be applied to the K-contact case where 
the basic ddΛ-lemma is equivalent to the K-contact Hard Lefschetz Property (see [5, 17]). 
Hence, we get the following corollary:

Corollary 7.2  Let Ms be a smooth family of compact K-contact manifolds such that their 
Reeb foliations Fs are all equal. If (Ms0

,Fs0
) satisfies the K-contact Hard Lefschetz Prop-

erty, then there exists a neighbourhood U of s0 such that for s ∈ U the transversely sym-
plectic foliated manifold (Ms,Fs) satisfies satisfies the K-contact Hard Lefschetz Property.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

References

	 1.	 Angella, D.: Cohomological aspects in complex non-Kähler geometry. Springer, Berlin (2014)
	 2.	 Asaoka, M., El Kacimi Alaoui, A., Hurder, S., Richardson, K.: Foliations: Dynamics, Geometry and 

Topology. Swiss publisher, Birkhäuser (2014)

dim(H
j

d+dΛ
(M∕F)) + dim(H

j

ddΛ
(M∕F)) = 2dim(Hj(M∕F)),

∑

p+q=k

(dim(H
p,q

d+dΛ
(Ms0

∕Fs0
)) + dim(H

p,q

ddΛ
(Ms0

∕Fs0
))) = 2dim(H

k(Ms0
∕Fs0

)),

http://creativecommons.org/licenses/by/4.0/


1468	 P. Raźny 

1 3

	 3.	 Blair, D.E.: Geometry of manifolds with structural group U(n) × O(s) . J. Differ. Geom. 4(2), 155–167 
(1970)

	 4.	 Boyer, C.P., Galicki, K.: Sasakian Geometry. Oxford University Press, Oxford Mathematical Mono-
graphs (2007)

	 5.	 Cappelletti-Montano, B., De Nicola, A., Yudin, I.: Hard Lefschetz theorem for Sasakian manifolds. J. 
Differ. Geom. 101(1), 47–66 (2015)

	 6.	 Cavalcanti, G.R.: The decomposition of forms and cohomology of generalized complex manifolds. J. 
Geom. Phys. 57(1), 121–132 (2006)

	 7.	 Czarnecki, A.: On the Symplectic Structures in Frame Bundles and the Finite Dimension of Basic 
Symplectic Cohomologies. SIGMA 14 (2018). https​://doi.org/10.3842/SIGMA​.2018.029

	 8.	 Deligne, P., Griffiths, PhA, Morgan, J., Sullivan, D.P.: Real homotopy theory of Kähler manifolds. 
Invent. Math. 29(3), 245–274 (1975)

	 9.	 El Kacimi-Alaoui, A.: Opérateurs transversalement elliptiques sur un feuilletage riemannien et applica-
tions. Compositio Mathematica 73, 57–106 (1990)

	10.	 El Kacimi-Alaoui, A., Hector, G.: Dëcomposition de Hodge basique pour un feuilletage riemannien. 
Ann. Inst. Fourier 36, 207–227 (1987)

	11.	 Fédida, E.: Sur l’existence des feuilletages de Lie. C. R. Acad. Sci. Paris Sér. A 278, 835–837 (1974)
	12.	 Girbau, J., Nicolau, M.: On deformations of holomorphic foliations. Annales de l’institut Fourier 

39(2), 417–449 (1989)
	13.	 Goertsches, O., Nozawa, H., Töben, D.: Rigidity and vanishing of basic Dolbeault cohomology of 

Sasakian manifolds. J. Symplect. Geom. 14(1), 31–70 (2012)
	14.	 Gualtieri, M.: Generalized Complex Geometry. Ph.D. thesis, Oxford University (2003) Math.

DG/0401221
	15.	 Nozawa, H.: Deformation of Sasakian metrics. T. Am. Math. Soc. 366(5), 2737–2771 (2008)
	16.	 Kodaira, K., Spencer, D.: On deformations of complex analytic structures III. Stability theorems for 

complex structures. Ann. Math. 2(71), 43–76 (1960)
	17.	 Lin, Y.: Lefschetz contact manifolds and odd dimensional symplectic geometry. arXiv​:1311.1431 

(2013)
	18.	 Molino, P.: Riemannian foliations. Birkhäuser, (1986). Translated by G. Cairns
	19.	 Raźny, P.: The Frölicher-type inequalities of foliations. J. Geom. Phys. 114, 593–606 (2017)
	20.	 Voisin, C.: Hodge Theory and Complex Algebraic Geometry. Cambridge Studies in Advanced Math-

ematics, vol. 76. Cambridge University Press, Cambridge (2007)
	21.	 Tseng, L.-S., Yau, S.-T.: Cohomology and Hodge theory on symplectic manifolds: I. J. Differ. Geom. 

91(3), 383–416 (2012)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.3842/SIGMA.2018.029
http://arxiv.org/abs/1311.1431

	Invariance of basic Hodge numbers under deformations of Sasakian manifolds
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Foliations
	2.2 Basic Bott–Chern and Aeppli cohomology theories
	2.3 Sasakian manifolds

	3 Invariance of basic Hodge numbers under deformations of Sasakian manifolds
	4 Upper semi-continuity of dimensions of kernels of transversely elliptic operators
	5 Deformations of the transverse holomorphic structure with fixed foliation
	6 Example
	7 An application to transversely symplectic foliations and K-contact manifolds
	References




