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Abstract
In this paper, we study balanced metrics and Berezin quantization on a class of Hartogs 
domains defined by 𝛺n = {(z1,… , zn) ∈ ℂ

n ∶ |z1| < |z2| < ⋯ < |zn| < 1} which general-
ize the so-called classical Hartogs triangle. We introduce a Kähler metric g(�) associated 
with the Kähler potential �n(z) ∶= −

∑n−1

k=1
�k ln(�zk+1�2 − �zk�2) − �n ln(1 − �zn�2) on �n . 

As main contributions, on one hand we compute the explicit form for Bergman kernel of 
weighted Hilbert space, and then, we obtain the necessary and sufficient condition for the 
metric g(�) on the domain �n to be a balanced metric. On the other hand, by using the Cal-
abi’s diastasis function, we prove that the Hartogs triangles admit a Berezin quantization.

Keywords  Hartogs triangles · Balanced metrics · Berezin quantization

Mathematics Subject Classification  32A25 · 32M15 · 32Q15

1  Introduction

Let (L, h) be a positive Hermitian line bundle over a Kähler manifold (M, g) of dimension 
n such that Ric(h) = �g . Here, Ric(h) denotes the two-form on M whose local expression is 
given by

for a trivializing holomorphic section 𝜎 ∶ U ⊂ M → L⧵{0} . In the quantum mechanics ter-
minology, the pair (L, h) is also called a geometric quantization of the Kähler manifold 
(M, g).

Ric(h) = −
i

2
�� log h(�(z), �(z)),
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For all integers 𝛼 > 0 , we can define a complex Hilbert space H� consisting of the 
global holomorphic sections s of the line bundle (L� , h

�
) over M with Ric h

�
= ��g 

which are bounded with respect to the following norm:

Let {sj} be an orthonormal basis of H� with respect to ⟨, ⟩
�
 . Then, one can define a smooth 

real-valued function on M, called Rawnsley’s �-function:

One can check that this function depends only on the Kähler metric �g and not on the 
orthonormal basis chosen. It is well known that Rawnsley’s �-function �(�,g) has a asymp-
totic expansion in terms of the parameter � (e.g., [8, 33]). There are two important branches 
of research on Rawnsley’s �-function. The first one is the existence of balanced metrics on 
complex manifolds.

Definition 1.1  The metric g on M is balanced if the Rawnsley’s �-function 
�(1,g)(z) (z ∈ M) is a positive constant on M.

The definition of balanced metrics was originally given by Donaldson (cf. [16]) in 
the case of a compact polarized Kähler manifold in 2001. Later on, it was generalized 
by Arezzo–Loi [1] and Englis̆ [20] to the noncompact case. Furthermore, balanced met-
rics had been widely used to study the quantization of a Kähler manifold, the expansion 
of the Bergman kernel function and the stability of the projective algebraic varieties. 
The reader is referred to Cahen–Gutt–Rawnsley [6], Englis̆ [20], Zhang [34] and refer-
ences therein.

In fact, by Donaldson’s results we know that there exist balanced metrics on compact 
manifold with finite automorphism group. In the noncompact case, the existence and 
uniqueness of balanced metrics is still an open problem. Therefore, it makes sense to study 
the existence and uniqueness of balanced metrics on some special noncompact manifolds.

Unfortunately, despite the extensive studies of the compact case, very little seems to 
be known about the existence of balanced metrics on noncompact manifolds and even 
on the domains in ℂn.

We want to start with the simplest situation, namely (L, h) is the trivial positive holo-
morphic line bundle over a domain M ⊂ ℂ

n equipped with a Kähler metric g. In this 
case, the metric g can be described by a strictly plurisubharmonic real-valued function 
� , called a Kähler potential for g, that is 𝜔g =

√
−1

2𝜋
𝜕𝜕̄𝜑 . It is not hard to see that in this 

case, the Hilbert space H� equals the weighted Hilbert space H
��

 of square integrable 
holomorphic functions on (M, g) with the weight exp{− ��} defined by

where Hol(M) is the space of holomorphic functions on M. If H
��
(M) ≠ {0} , let K

�
(z, z) be 

its weighted Bergman kernel. Then, it is not difficult to see that the Rawnsley’s �-function 
in this case can be expressed as

⟨s, s⟩
𝛼
∶= ∫M

h
𝛼
(s(z), s(z))

𝜔
n
g

n!
< +∞.

�(�,g)(z) =

d
�∑

j=1

h
�
(sj(z), sj(z)).

H
𝛼𝜑
(M) ∶=

{
f ∈ Hol(M) ∶ ∫M

|f |2 exp{− 𝛼𝜑}
𝜔
n

n!
< +∞

}
,
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It can be easily verified that this function depends only on the metric g and not on the 
choice of the Kähler potential � (which is defined up to the sum with the real part of a 
holomorphic function on M).

Some progress had been made in this simplest case. In 2012, Loi–Zedda [28] proved 
the existence of balanced metrics on bounded symmetric domains. Note that bounded sym-
metric domains are homogeneous domains. Inspired by this, similar results were recently 
generalized by Loi–Mossa [26] to all bounded homogeneous (not necessarily symmetric) 
domains.

Recently, Feng–Tu [21] firstly found the existence of balanced metrics on a class of non-
homogeneous domains called generalized Cartan–Hartogs domains. Later on, Bi–Feng–Tu 
[5] proved that balanced metric can also exist on Fock–Bargmann–Hartogs domains. For 
the study of the balanced metrics, see Hélène–Englis̆–Youssfi [22], Loi [25], Loi–Zedda 
[27], and Zedda [31].

In this paper, we study the canonical metric on the Hartogs domains called n-dimen-
sional Hartogs triangles which generalize the classical Hartogs triangles defined by

The Hartogs triangles have attracted many attentions and been deeply investigated by many 
authors from different views. In 2013, Chakrabarti–Shaw [9] focused on Sobolev regular-
ity of the �-equation over the Hartogs triangle. In 2016, Edholm [17] obtained the explicit 
form for the Bergman kernel for the generalized Hartogs triangle of exponent 𝛾 > 0 , that is 
H

𝛾
∶= {(z1, z2) ∈ ℂ

2 ∶ |z1|𝛾 < |z2| < 1} . By using the close form for the Bergman kernel, 
Edholm–McNeal [18] studied Lp boundedness of the Bergman projection on H

�
 . Inspired 

by this, Chen [10] obtained the necessary and sufficient condition for the Bergman projec-
tion on Lp space of more general bounded Hartogs domains to be bounded. For the refer-
ence of the theories of Bergman kernel, see also Park [29].

Recently, Zapałowski [35] gave the rigidity of proper holomorphic self-mappings 
between generalized Hartogs triangle and obtained automorphism group of the generalized 
Hartogs triangle. The reader is also referred to [11–14, 23] for the studies of rigidity of the 
proper holomorphic mappings between Hartogs triangles. Moreover, we can see that the 
n-dimensional Hartogs triangles are nonhomogeneous pseudoconvex domains with non-
smooth boundary. More importantly, much less seems to be known about the geometric 
properties of Hartogs triangles. Thus, all the above inspire us to study the canonical met-
rics on n-dimensional Hartogs triangles.

Firstly, let us introduce a new Kähler metric g(�) on �n . Define the strictly plurisubhar-
monic function �n(z) on the Hartogs triangles �n as follows

where � = (�1,… , �n) with 𝜈k > 0 , 1 ≤ k ≤ n . The Kähler form � on �n is given by

Hence, the Kähler metric g(�) on �n associated with � can be expressed by

�(�,g)(z) ∶= exp{− ��(z)}K
�
(z, z), z ∈ M.

𝛺n ∶= {(z1,… , zn) ∈ ℂ
n ∶ |z1| < |z2| < ⋯ < |zn| < 1}, (n ≥ 2).

(1.1)�n(z) ∶= −

n−1∑

k=1

�k ln(|zk+1|2 − |zk|2) − �n ln(1 − |zn|2),

𝜔 ∶=

√
−1

2𝜋
𝜕𝜕̄𝛷n.
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Thus, we can define the weighted Hilbert space H
�n
(�n) as follows:

One of the main results of our paper is the following.

Theorem 1.2  The Kähler metric g(�) on �n is balanced if and only if �k ≥ 2 is an integer 
for all k = 1,… , n − 1 , and 𝜈n > 1.

Remark 1.3  Notice that if �1 = ⋯ = �n = 2 , the Kähler metric g(�) is exactly the Bergman 
metric for �n.

Another important application of Rawnsley’s �-function is to study whether a Berezin 
quantization can be established on some Kähler manifolds. In recent years, Berezin quan-
tization has attracted a lot of attention and has been deeply studied by mathematicians and 
physicists, see, e.g., Cahen–Gutt–Rawnsley [6], Engliš [19], Loi–Mossa [26] and Zedda 
[32]. Roughly, a quantization is a construction of a quantum system from the classical 
mechanics of a system. In 1927, for seek of finding the purely mathematical significance 
of quantization, Weyl made an attempt at a quantization known as Weyl quantization. He 
associated a self-adjoint operators on a separable Hilbert space with functions on a sym-
plectic manifold and some certain commutations are fulfilled. Later on, Berezin [3] raised a 
new quantization procedure, i.e., Berezin quantization. A Berezin quantization on a Kähler 
manifold (�,�) is given by a family of associative algebra Ah where the parameter h runs 
through a set E of the positive reals with 0 in its closure, and moreover, there exists a sub-
algebra A of 

⨁
{Ah; h ∈ E} such that some properties are satisfied (refer to Berezin [3]). 

More precisely, we call an associative algebra with involution A a quantization of (�,�) if 
the following properties are satisfied. 

	 (i)	 There exist a family of associative algebras Ah of functions on � where the parameter 
h runs through a set E of the positive reals with 0 in its closure. Moreover, A is a 
subalgebra of 

⨁
{Ah; h ∈ E}.

	 (ii)	 For each f ∈ A which will be written f(h, x) ( h ∈ E , x ∈ � ) such that f (h, ⋅) ∈ Ah , 
the limit 

 exists.
	 (iii)	 �(f ∗ g) = �(f ) ⋅ �(g) , �(h−1(f ∗ g − g ∗ f )) =

1

i
{�(f ),�(g)} for f , g ∈ A . Here, ∗ 

and {, } denote the product of A and the Poisson bracket.
	 (iv)	 For any two points x1, x2 ∈ � , there exists f ∈ A such that �(f )(x1) ≠ �(f )(x2).

For a given Kähler manifold � endowed with a Kähler metric g associated with a Kähler 
form � , suppose that there exists a global Kähler potential �(z) ∶ � → ℝ which can extend 
to a sesquianalytic function �(z,w) on � ×� such that �(z, z) = �(z) . Then, the Calabi’s 
diastasis function is defined by (see Calabi [7])

g(𝜈)ij̄ =
𝜕
2
𝛷n

𝜕zi𝜕z̄j
, (1 ≤ i, j ≤ n).

(1.2)H
𝛷n
(𝛺n) ∶=

{
f ∈ Hol(𝛺n) ∶ ∫

𝛺n

|f |2 exp{−𝛷n}
𝜔
n

n!
< +∞

}
.

lim
h→0+

f (h, x) = �(f )(x)
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It is not hard to see that the Calabi’s diastasis function Dg(z,w) is symmetric in z and w and 
is uniquely defined up to the real part of a holomorphic function.

Moreover, the Calabi’s diastasis function has played a crucial rule in studying balanced 
metric, Berezin quantization and Kähler immersions (i.e., holomorphic and isometric 
immersions). For more details, please see [2, 7, 24].

In fact, by using the Rawnsley’s �-function and the Calabi’s diastasis function, 
Englis̆ [19] gave a sufficient condition for a Kähler manifold (�, g) to admit a Berezin 
quantization.

Theorem  1.4  (see [19]) Let � be a Kähler manifold endowed with a Kähler metric g 
associated with Kähler form � . If

	 (I)	 The function exp{−Dg(z,w)} is globally defined on � ×� , exp{−Dg(z,w)} ≤ 1 
and exp{−Dg(z,w)} = 1 if and only if z = w , where Dg(z,w) denotes the Calabi’s 
diastasis function.

	 (II)	 There exists a subset E ⊂ ℝ
+ which has +∞ in its closure such that the Rawnsley’s 

�-function �(�,g)(z) is a positive constant for � ∈ E.

Then, (�, g) admits a Berezin quantization.
As far as we know, the above conditions are satisfied by homogeneous Kähler manifold, 

a contractible homogeneous Kähler manifold (i.e., all the products (�, g) × (ℂm, g0) , where 
(�, g) is an homogeneous bounded domain and g0 is the standard flat metric) and some 
special pseudoconvex domains (cf. [4, 19, 26, 30]). So some experts are dedicated to find 
more noncompact Kähler manifolds which a Berezin quantization can be carried out.

In this paper, by using Theorems 1.2 and 1.4, we will show that the conditions (I) and 
(II) can be satisfied by the Hartogs triangles (�n, g(�)) , that is

Theorem 1.5  Let �n be the Hartogs triangle endowed with the Kähler metric g(�) . If �k 
for all k = 1,… , n − 1 are positive rational numbers and 𝜈n > 0 , then (�n, g(�)) admits a 
Berezin quantization.

The paper is organized as follows. In Sect. 2, we give an explicit formula for the Berg-
man kernel of the weighted Hilbert space of square integrable holomorphic functions on 
(�n, g(�)) with the weight exp{−�n} for some special �k . By using the expression of the 
Rawnsley’s �-function, we give the proof of Theorem 1.2. In Sect. 3, using the Calabi’s 
diastasis function, Theorems 1.2 and 1.4, we prove Theorem 1.5.

2 � Weighted Bergman kernel and balanced metrics on Hartogs 
triangles

In the following lemma, we describe the volume form of the Kähler metric g(�) . The proof 
is omitted since it can be obtained by a straightforward induction argument of n.

Lemma 2.1  For n ≥ 2 , let �n be defined by (1.1). Then, we have

(1.3)Dg(z,w) ∶= �(z, z) + �(w,w) − �(z,w) − �(w, z), (z,w) ∈ � ×�.
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where z = (z1,… , zn) ∈ �n.

Since �n is a Reinhardt domain, we are going to compute the squared L2
�n

-norms for 
some holomorphic monomials in �n.

Lemma 2.2  Let z = (z1,… , zn) ∈ �n , and p = (p1,… , pn) ∈ ℤ
n , we have

where B(p, q) = ∫ 1

0
xp−1(1 − x)q−1dx is the beta function.

Proof  Combining (1.1) and (2.1), we get

where dm(z) is the Euclidean measure. We introduce polar coordinates in each variable 
by putting zk = tke

i�k , 1 ≤ k ≤ n . After doing so, and integrating out the angular variables, 
(2.3) becomes

Next, we set sk = t2
k
, 1 ≤ k ≤ n and then change variables again. We can obtain

Claim that

We will prove this claim by induction for n. For n = 2 , by (2.4), we learn that

(2.1)det

�
𝜕
2
𝛷n

𝜕zt𝜕z̄

�
(z) =

∏n

j=1
𝜈j

∏n−1

k=1
�zk+1�2

(1 − �zn�2)2
∏n−1

k=1
(�zk+1�2 − �zk�2)2

,

(2.2)‖zp‖2
L2
�n

=

n�

k=1

(��k)

n�

k=1

B

�
k�

j=1

(pj + �j) − �k + 1, �k − 1

�
,

(2.3)

‖zp‖2
L2
�n

= ∫
�n

�z�2p exp{−�n}
�
n

n!

= ∫
�n

�z�2p(1 − �zn�2)�n
n−1�

k=1

(�zk+1�2 − �zk�2)�k

×

∏n

k=1
�k

∏n−1

k=1
�zk+1�2

(1 − �zn�2)2
∏n−1

k=1
(�zk+1�2 − �zk�2)2

dm(z),

n∏

k=1

(2𝜋𝜈k)�0≤t1<⋯<tn<1

t
2p1+1

1
(1 − t2

n
)𝜈n−2

n−1∏

k=1

t
2pk+1+3

k+1
(t2
k+1

− t2
k
)𝜈k−2dt1 ⋯ dtn.

(2.4)
n∏

k=1

(𝜋𝜈k)�0≤s1<⋯<sn<1

s
p1
1
(1 − sn)

𝜈n−2

n−1∏

k=1

s
pk+1+1

k+1
(sk+1 − sk)

𝜈k−2ds1 ⋯ dsn.

‖zp‖2
L2
�n

=

n�

k=1

(��k)

n�

k=1

B

�
k�

j=1

(pj + �j) − �k + 1, �k − 1

�
.
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This means that the claim holds for n = 2 . Thus, assume that the claim holds for n = � ; 
then, for n = � + 1 , by (2.4), we obtain

Therefore,

The proof is completed. � □

Hence, by the definition of the beta function, we can easily obtain the following 
property.

Proposition 2.3  H
�n
(�n) ≠ {0} if and only if 𝜈k > 1 for all k = 1,… , n.

‖zp‖2
L2
𝛷n

= 𝜋
2
𝜈1𝜈2 �0≤s1<s2<1

(1 − s2)
𝜈2−2s

p2+1

2
s
p1
1
(s2 − s1)

𝜈1−2ds1ds2

= 𝜋
2
𝜈1𝜈2 �

1

0

(1 − s2)
𝜈2−2s

p2+1

2
ds2 �

s2

0

s
p1
1
(s2 − s1)

𝜈1−2ds1

= 𝜋
2
𝜈1𝜈2B(p1 + 1, 𝜈1 − 1)�

1

0

(1 − s2)
𝜈2−2s

p2+1

2
s
p1+𝜈1−1

2
ds2

= 𝜋
2
𝜈1𝜈2B(p1 + 1, 𝜈1 − 1)B(p1 + p2 + 𝜈1 + 1, 𝜈2 − 1).

‖zp‖2
L2
𝛷n

=

𝓁+1�

k=1

(𝜋𝜈k)�0≤s1<⋯<s
𝓁+1<1

s
p1
1
(1 − s

𝓁+1)
𝜈
𝓁+1−2

𝓁�

k=1

s
pk+1+1

k+1
(sk+1 − sk)

𝜈k−2ds1 ⋯ ds
𝓁+1

=

𝓁+1�

k=1

(𝜋𝜈k)�
1

0

(1 − s
𝓁+1)

𝜈
𝓁+1−2s

p
𝓁+1+1

𝓁+1
ds

𝓁+1

× �0≤s1<⋯<s
𝓁
<s

𝓁+1

s
p1
1
(s

𝓁+1 − s
𝓁
)𝜈𝓁−2

𝓁−1�

k=1

s
pk+1+1

k+1
(sk+1 − sk)

𝜈k−2ds1 ⋯ ds
𝓁

=

𝓁+1�

k=1

(𝜋𝜈k)�
1

0

(1 − s
𝓁+1)

𝜈
𝓁+1−2s

p
𝓁+1+1

𝓁+1
s
∑

𝓁

k=1
(pk+𝜈k)−1

𝓁+1
ds

𝓁+1

× �0≤ŝ1<⋯<ŝ
𝓁
<1

ŝ
p1
1
(1 − ŝ

𝓁
)𝜈𝓁−2

𝓁−1�

k=1

ŝ
pk+1+1

k+1
(ŝk+1 − ŝk)

𝜈k−2dŝ1 ⋯ dŝ
𝓁
.

‖zp‖2
L2
�n

=

�+1�

k=1

(��k)

��

k=1

B

�
k�

j=1

(pj + �j) − �k + 1, �k − 1

�

× ∫
1

0

(1 − s
�+1)

�
�+1−2s

∑
�+1

k=1
(pk+�k)−��+1

�+1
ds

�+1

=

�+1�

k=1

(��k)

��

k=1

B

�
k�

j=1

(pj + �j) − �k + 1, �k − 1

�

× B

�
�+1�

k=1

(pk + �k) − �
�+1 + 1, �

�+1 − 1

�

=

�+1�

k=1

(��k)

�+1�

k=1

B

�
k�

j=1

(pj + �j) − �k + 1, �k − 1

�
.
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Now, we give an elementary lemma for the gamma function.

Lemma 2.4  (see D’Angelo [15] Lemma 2) Let x = (x1,… , xm) ∈ ℝ
m with ‖x‖ < 1 and 

s ∈ ℝ with s > 0 . Then,

Theorem  2.5  Suppose that (�n, g(�)) is the n-dimensional Hartogs triangle endowed 
with the Kähler metric g(�) . Let �k ≥ 2 be integers for all k = 1,… , n − 1 , and let 𝜈n > 1 . 
Let H

�n
(�n) be the weighted Hilbert space of square integrable holomorphic functions on 

(�n, g(�)) with the weight exp{−�n} (see (1.2)). Then, H
�n
(�n) ≠ {0} , and the Bergman 

kernel of H
�n
(�n) is given by

Proof  Since �n is a Reinhardt domain, together with Lemma 2.2 and the definition of the 
beta function, we can obtain that { zp

‖zp‖
L2
�n

} forms a complete orthonormal basis of H
�n
(�n) , 

where the multi-index p = (p1,… , pn) ranges all integers that satisfy the following inequal-
ities for all k = 1,… , n,

Let N denote the set of all the multi-index p = (p1,… , pn) satisfying such inequalities. 
Hence, Formula (2.2) implies that

Notice that by Lemma 2.4, we can learn that

�

q∈ℕm

� (�q� + s)

� (s)
∏m

i=1
� (qi + 1)

x2q =
1

(1 − ‖x‖2)s
.

(2.5)K
𝛷n
(z, z̄) =

𝜈n − 1

𝜋n𝜈n(1 − |zn|2)𝜈n

n−1∏

k=1

𝜈k − 1

𝜈k(|zk+1|2 − |zk|2)𝜈k
.

k∑

j=1

(pj + �j) − �k ≥ 0.

K
𝛷n
(z, z̄) =

�

p∈N

�zp�2

‖zp‖2
L2
𝛷n

=
1∏n

k=1
(𝜋𝜈k)

+∞�

p1=0

�z1�2p1
B(p1 + 1, 𝜈1 − 1)

+∞�

p2=−p1−𝜈1

�z2�2p2
B(p1 + p2 + 𝜈1 + 1, 𝜈2 − 1)

⋯

+∞�

pn=−
∑n−1

k=1
(pk+𝜈k)

�zn�2pn
B(
∑n

k=1
(pk + 𝜈k) − 𝜈n + 1, 𝜈n − 1)

.
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Thus, we obtain

Similarly, we can see that

Hence,

Therefore, by induction, we conclude that

The proof is completed. � □

Now, we are able to prove Theorem 1.2.

Proof of Theorem 1.2  By the definition of balanced metric and Theorem 2.5, we see that

+∞�

pn=−
∑n−1

k=1
(pk+�k)

�zn�2pn
B(
∑n

k=1
(pk + �k) − �n + 1, �n − 1)

= �zn�−
∑n−1

k=1
2(pk+�k)

+∞�

m=0

�zn�2m

B(m + 1, �n − 1)

= �zn�−
∑n−1

k=1
2(pk+�k)

� (�n)

� (�n − 1)

+∞�

m=0

� (m + �n)

� (m + 1)� (�n)
�zn�2m

= (�n − 1)�zn�−
∑n−1

k=1
2(pk+�k)

1

(1 − �zn�2)�n
.

K
𝛷n
(z, z̄) =

1∏n

k=1
(𝜋𝜈k)

𝜈n − 1

�zn�2𝜈n−1 (1 − �zn�2)𝜈n

+∞�

p1=0

�z1�2p1
B(p1 + 1, 𝜈1 − 1)

⋯

+∞�

pn−1=−
∑n−2

k=1
(pk+𝜈k)

�zn−1�2pn−1 �zn�−2pn−1−
∑n−2

k=1
2(pk+𝜈k)

B(
∑n−1

k=1
(pk + 𝜈k) − 𝜈n−1 + 1, 𝜈n−1 − 1)

.

+∞�

pn−1=−
∑n−2

k=1
(pk+�k)

�zn−1�2pn−1 �zn�−2pn−1−
∑n−2

k=1
2(pk+�k)

B(
∑n−1

k=1
(pk + �k) − �n−1 + 1, �n−1 − 1)

= �zn−1�−
∑n−2

k=1
2(pk+�k)

+∞�

m=0

�zn−1∕zn�2m

B(m + 1, �n−1 − 1)

= (�n−1 − 1)�zn−1�−
∑n−2

k=1
2(pk+�k)

1

(1 − � zn−1
zn
�2)�n−1

.

K
𝛷n
(z, z̄) =

1∏n

k=1
(𝜋𝜈k)

(𝜈n − 1)(𝜈n−1 − 1)

�zn−1�2𝜈n−2 (1 − �zn�2)𝜈n (�zn�2 − �zn−1�2)𝜈n−1

×

+∞�

p1=0

�z1�2p1
B(p1 + 1, 𝜈1 − 1)

⋯

+∞�

pn−2

�zn−2�2pn−2 �zn−1�−2pn−2−
∑n−3

k=1
2(pk+𝜈k)

B(
∑n−2

k=1
(pk + 𝜈k) − 𝜈n−2 + 1, 𝜈n−2 − 1)

.

K
𝛷n
(z, z̄) =

𝜈n − 1

𝜋n𝜈n(1 − |zn|2)𝜈n

n−1∏

k=1

𝜈k − 1

𝜈k(|zk+1|2 − |zk|2)𝜈k
.



282	 E. Bi, G. Su 

1 3

Thus, the metric g(�) is balanced. On the other hand, now assume that g(�) is balanced. 
This means that there exists a constant C > 0 such that

Notice that by Lemma 2.4, we get

Thus, for any p1 ∈ ℕ , consider the coefficient of |z1|2p1 in the series expansion of K
𝛷n
(z, z̄) , 

and then, one can see that

where C̃ is a constant which is independent of z. Since zp1
1

 belongs to the basis of H
�n
(�n) , 

we can conclude that the right hand of (2.6) must contain a positive constant term. This 
means that we can find some term in (2.6) which is independent of zk , for all k = 2,… , n . 
Thus, for any 1 ≤ k ≤ n − 1 , there exist pk and pk+1 such that

Notice that for any 1 ≤ k ≤ n , pk is an integer, and thus, �1,… , �n−1 are forced to be inte-
gers. Thus, the proof follows by Proposition 2.3. � □

In 2016, Edholm [17] introduced a new domain named the generalized Hartogs triangle 
of exponent 𝛾 > 0 and obtained the closed form of Bergman kernel for this domain with 
some special � . And then Park [29] extended Edholm’s result to three-dimensional case. The 
method can even be applied to n-dimensional case as well. Inspired by their work, we state the 
following open problem:

Problem 2.6  Consider the generalized Hartogs triangle

where p1,… , pn are any positive integers. Can we give some conditions of p to find bal-
anced metrics on ℍp , even for the case n = 2?

𝜀(1,g(𝜈))(z) = exp{−𝛷n(z)}K𝛷n
(z, z̄)

=
1

𝜋n

n∏

k=1

𝜈k − 1

𝜈k

.

K
𝛷n
(z, z̄) = C exp{𝛷n(z)}

= C(1 − |zn|2)−𝜈n
n−1∏

k=1

(|zk+1|2 − |zk|2)−𝜈k .

(|zk+1|2 − |zk|2)−�k =
+∞∑

pk=0

� (pk + �k)

� (�k)� (pk + 1)
|zk|2pk |zk+1|−2(�k+pk).

(2.6)the coefficient of |z1|2p1 = C̃

n∑

k=2

+∞∑

pk=0

� (pk + �k)

� (pk + 1)
|zk|2(pk−pk−1−�k−1).

�k = pk+1 − pk.

ℍp ∶= {z ∈ ℂ
n ∶ |z1|p1 < |z2|p2 < ⋯ < |zn|pn < 1}
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3 � Berezin quantization of Hartogs triangles

Now, we consider the Berezin quantization on (�n, g(�)) . At first, we give some useful 
lemma.

Lemma 3.1  (see Lemma 3.2 in [30]) Assume that � is a domain in ℂn . Let g be a Kähler 

metric on � associated to the Kähler form � =

√
−1

2�
��� . Then, the following formula is 

established

Now, we can give the proof of Theorem 1.5.

Proof of  Theorem  1.5  Firstly, we prove that (�n, g(�)) satisfies condition (I) in Theo-
rem 1.4. In fact, it is easy to see that

By Taylor expansion, we know that

where c
�
(�k) are the constants depending on � and �k . By Cauchy–Schwarz inequality, we 

get

for 1 ≤ k ≤ n − 1 . Similarly, we also have

Hence, we must have

Furthermore, by (3.1) and (3.2), we get exp{−Dg(�)(z,w)} = 1 if and only if for 
1 ≤ k ≤ n − 1 , we have

�(��,g)(z) = �
n
�(�,�g)(z).

exp{−Dg(�)(z,w)}

=

n−1∏
k=1

�zk+1wk+1 − zkwk�−2�k

n−1∏
k=1

�
(�zk+1�2 − �zk�2)(�wk+1�2 − �wk�2)

�−�k
×

�1 − znwn�−2�n�
(1 − �zn�2)(1 − �wn�2)

�−�n

=

n−1∏
k=1

����
1 −

zk

zk+1

wk

wk+1

����

−2�k

n−1∏
k=1

�
(1 − � zk

zk+1
�2)(1 − � wk

wk+1

�2)
�−�k

×
�1 − znwn�−2�n�

(1 − �zn�2)(1 − �wn�2)
�−�n

.

(
1 −

zk

zk+1

wk

wk+1

)−�k

=
∑

�=0

c
�
(�k)

(
zk

zk+1

)�(
wk

wk+1

)�

,

(3.1)
|||||
1 −

zk

zk+1

wk

wk+1

|||||

−2�k

≤
((

1 −
|||||

zk

zk+1

|||||

2
)(

1 −
|||||

wk

wk+1

|||||

2
))−�k

(3.2)|1 − znwn|−2�n ≤
(
(1 − |zn|2)(1 − |wn|2)

)−�n

.

exp{−Dg(�)(z,w)} ≤ 1, (z,w) ∈ �n ×�n.
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It follows that z = w.
Now, we are in position to check the condition (II) in Theorem 1.4. Let E ⊂ ℝ

+ be a set 
defined by

Since �k (1 ≤ k ≤ n − 1) are positive rational numbers and 𝜈n > 0 , we can learn that +∞ 
is in the closure of the subset E. Then, we want to prove that this subset E satisfies con-
dition (II) in Theorem 1.4. Actually, since � ∈ E , this means that ��k are integers for all 
1 ≤ k ≤ n − 1 , and 𝛼𝜈n > 1 ; thus, by Theorem 1.2, we can conclude that �g(�) is the bal-
anced metric on �n , i.e., �(1,�g(�))(z) is a positive constant for all � ∈ E . Then, by Lemma 
3.1, we can obtain that �(�,g(�))(z) is a positive constant for all � ∈ E . This follows that E 
satisfies condition (II) in Theorem 1.4. Therefore, we conclude that (�n, g(�)) admit Bere-
zin quantization by Theorem 1.4. The proof is complete. � □
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