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Abstract
This paper studies the boundary behaviour of �-polyharmonic functions for the simple ran-
dom walk operator on a regular tree, where � is complex and |𝜆| > 𝜌 , the �2-spectral radius 
of the random walk. In particular, subject to normalisation by spherical, resp. polyspherical 
functions, Dirichlet and Riquier problems at infinity are solved, and a non-tangential Fatou 
theorem is proved.

Keywords Regular tree · Simple random walk · �-polyharmonic functions · Dirichlet and 
Riquier problems at infinity · Fatou theorem

Mathematics Subject Classification 31C20 · 05C05 · 60G50

1 Introduction

A complex-valued function f on a Euclidean domain D is called polyharmonic of order n, 
if it satisfies Δnf ≡ 0 , where Δ is the classical Euclidean Laplacian. The study of polyhar-
monic functions originates in work of the nineteenth century and is pursued very actively. 
Basic references are the books by Aronszajn et al. [2] and by Gazzola et al. [8].

A classical theorem of Almansi [1] says that if the domain D is star-like with respect to 
the origin, then every polyharmonic function of order n has a unique decomposition
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where each hk is harmonic on D, and |z| is the Euclidean length of z ∈ D . In particular, if 
the domain is the unit disk

then thanks to a Theorem of Helgason  [9], Almansi’s decomposition can be written as 
an integral representation over the boundary �� of the disk, that is, the unit circle, with 
respect to the Poisson kernel P(z, �) = (1 − |z|2)∕|� − z|2 (z ∈ �, � ∈ ��) . Namely,

where �0,… , �n−1 are certain distributions, namely analytic functionals on the unit circle. 
For details on those functionals, see, e.g. the nice exposition by Eymard [7].

A smaller body of work is available on the discrete counterpart, where the Laplacian 
is a difference operator arising from a reversible Markov chain transition matrix on a 
graph. Regarding boundary integral representations comparable to (1), Cohen et al. [5] 
have provided such a result concerning polyharmonic functions for the simple random 
walk operator on a homogeneous tree. This has recently been generalised by Picard-
ello and Woess [12] to arbitrary nearest neighbour transition operators on arbitrary trees 
which do not need to be locally finite: [12] provides a boundary integral representation 
for �-polyharmonic functions for suitable complex � . At this point, one of the typical 
tasks is to study convergence properties at the boundary for �-harmonic and -polyhar-
monic functions. This is the purpose of the present paper, which provides new results of 
this type.

Here, we come back to the specific situation of simple random walk on the homoge-
neous tree T with degree q + 1 , where q ≥ 2 . The necessary preliminaries are outlined in 
Sect. 2. For the transition operator P of the simple random walk on T, we study in more 
detail the boundary behaviour of �-polyharmonic functions, that is, f ∶ T → ℂ such that 
(� ⋅ I − P)nf = 0 . We assume that � ∈ ℂ⧵[−�, �] , where � is the �2-spectral radius of P 
and [−�, �] is its �2-spectrum. Close to the spirit of Korányi and Picardello [11], we extend 
their results from �-harmonic to �-polyharmonic functions, and results of the abovemen-
tioned work [5] from ordinary polyharmonic functions, i.e. � = 1 , to general complex � in 
the �2-resolvent set of P.

First, we consider higher order analogues of the Dirichlet problem at infinity: in the 
classical case � = 1 , one takes any continuous function g on the boundary at infinity �T  of 
T and provides a harmonic function on T which provides a continuous extension of g to the 
compactification T̂ = T ∪ �T  . It is given by the (analogue of the) Poisson transform of g 
with respect to the Martin kernel.

However, for �-polyharmonic functions of higher order, as well as for �-harmonic 
functions with � ≠ 1 , this needs an additional normalisation, in order to control the Pois-
son–Martin transforms with respect to the �-Martin kernel (and its higher order versions) 
at infinity. The normalisation is by spherical functions and their higher order analogues, 
the polyspherical functions, which to our knowledge had no previous appearance in the 
literature. They are introduced in Sect. 3, where we also study in the necessary detail their 
asymptotic behaviour at infinity, see Proposition 3.5.

f (z) =

n−1∑

k=0

|z|2k hk(z),

𝔻 = {z = x + � y ∈ ℂ ∶ �z� =
√
x2 + y2 < 1},

(1)f (z) =

n−1∑

k=0
∫��

|z|2k P(z, �) d�k(�),
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The first two main results are given by the “twin” Theorems 4.1 and 4.6 in Sect. 4. The 
(analogue of the) Poisson integral of g with respect to the nth extension of the �-Martin 
kernel (i.e. the kernel multiplied by the—suitably normalised—nth power of the Busemann 
function) is polyharmonic of order n + 1 , and normalised (= divided) by the nth polyspher-
ical function, it converges to g at the boundary. Next, Theorem 4.6 concerns Fatou type 
non-tangential convergence of polyharmonic extensions of complex Borel measures on the 
boundary. While the proofs of these results follow classical lines, the main point here is 
that one first had to understand how to exploit the boundary integral representation of �
-polyharmonic functions and that the most natural normalisation is by the polyspherical 
functions. This allows to apply much less involved methods than, for example, those used 
in [5] for the special case � = 1.

In general, the polyharmonic extension of a continuous boundary function cannot be 
unique because one may add lower order polyharmonic functions that do not change the 
limit. However, uniqueness is proved in the case of �-harmonic functions ( n = 1 ), see The-
orem 4.7. That is, normalising by the associated spherical function, the solution of the �
-Dirichlet problem at infinity is unique. Note that since � is in general complex, typical 
tools from Potential Theory such as the maximum principle cannot be applied here and are 
replaced by a new idea, using spherical averages, which we have not encountered before in 
this context.

As a corollary of these results, a tree-counterpart of the Riquier problem at infinity is 
provided. In the case of a bounded Euclidean domain D as above, this consists in providing 
continuous boundary functions g0,… , gn−1 and looking for a polyharmonic function f of 
order n on D such that Δkf  is a continuous extension of gk for each k. For finite graphs, the 
analogous problem has been studied in a note by Hirschler and Woess [10], where one can 
find further references concerning the discrete setting. In the case of �-harmonic functions 
on T, the formulation of the analogous problem requires again suitable normalisation, see 
Definition 4.9 and Corollary 4.10.

2  Homogeneous trees and boundary integral representations

Let T = Tq be the homogeneous tree where each vertex has q + 1 ≥ 3 neighbours. We 
need some features of its structure and first recall the well-known boundary �T  of the tree. 
For x, y ∈ T  , there is a unique geodesic path �(x, y) = [x = x0, x1,… , xn = y] of minimal 
length n, such that xk−1 ∼ xk for x = 1,… , n , and d(x, y) = n is the graph distance between 
x and y. A geodesic ray is a sequence [x0, x1, x2,…] of distinct vertices with xn−1 ∼ xn . Two 
rays are equivalent if they share all but finitely many among their vertices. An end of T is 
an equivalence class of geodesic rays, and �T  is the set of all ends. For any � ∈ �T  and 
x ∈ T  , there is a unique geodesic �(x, �) which starts at x and represents � . Next, we choose 
a root vertex o ∈ T  . We set T̂ = T ∪ �T  . For any pair of points z,w ∈ T̂  , their confluent 
z ∧ w is the last common vertex on the finite or infinite geodesics �(o,w) an �(o, z) , unless 
z = w is an end, in which case z ∧ z = z . Furthermore, for a vertex x ≠ o , we define its pre-
decessor x− as the neighbour of x on the arc �(o, x).

We now equip T̂  with a new metric: we set |x| = d(x, o) for x ∈ T  , and let

(2)�(z,w) =

{
q−|z∧w|, if z ≠ w,

0, if z = w.
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This is an ultra-metric which turns T̂  into a compact space with T as an open, discrete and 
dense subset. A basis of the topology is given by all branches T̂x,y , where x, y ∈ T  with 
x ≠ y . Here,

This is a compact-open set, and its boundary �Tx,y = T̂x,y ∩ �T  is called a boundary arc. As 
a matter of fact, a basis of the topology of �T  is given by the collection of all �Tx ∶= �To,x , 
including �To ∶= �T  . A locally constant function on �T  is a finite linear combination

of indicator functions of boundary arcs. It can equivalently be written in terms of boundary 
arcs �Tx,yk for any fixed vertex x. A distribution on �T  is an element of the dual of the linear 
space of locally constant functions. Equivalently, it can be written as a finitely additive 
measure � on the collection of all boundary arcs. For this, it suffices to consider only the 
boundary arcs with respect to o, so that � is characterised as a set function

For g as above, we write �(g) as an integral

When � is non-negative real, compactness yields immediately that it extends to a �-additive 
measure on the Borel �-algebra of �T  . In general, � does not necessarily extend to a �-addi-
tive complex measure; see Cohen et al. [6].

We now turn to harmonic functions. For a function f ∶ T → ℂ , we define

where y ∼ x means that the vertices x, y ∈ T  are neighbours. P is the transition operator 
of the simple random walk on T. We recall the very well-known fact that as a self-adjoint 
operator on the space �2(T) , its spectrum is the interval [−�, �] , where � = 2

√
q∕(q + 1) . 

In this setting, the discrete counterpart of the Laplacian is P − I , where I is the identity 
operator.

Definition 2.1 For � ∈ ℂ , a �-polyharmonic function of order n is a function f ∶ T → ℂ 
such that (� ⋅ I − P)nf = 0.

For n = 1 , it is called �-harmonic, and when � = 1 , we speak of a polyharmonic, resp. 
harmonic function.

Following [12], for a suitable boundary integral representation, the “eigenvalue” 
� should belong to the resolvent set ���(P) = ℂ⧵[−�, �] of P on �2(T) . In this case, let 
G(x, y|�) = (� ⋅ I − P)−1�y(x) be the Green function, that is, the (x, y)-matrix element of the 
resolvent, where x, y ∈ T  . By [12, Thm. 4.2], or by direct computation, G(x, x|�) ≠ 0 , and 

T̂x,y = {z ∈ T̂ ∶ y ∈ �(x, z)}.

g =

n∑

j=1

cj ��Txj

(3)� ∶ {�Tx ∶ x ∈ T} → ℂ with �(�Tx) =
∑

y∶y−=x

�(�Ty) for all x.

∫�T

g d� =

n∑

j=1

cj �(�Txj ).

Pf (x) =
1

q + 1

∑

y∶y∼x

f (y),
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we can define F(x, y|�) = G(x, y|�)∕G(x, x|�) . These functions depend only on the graph 
distance d(x, y) between x and y.

For |�| ≥ � , one has a combinatorial-probabilistic interpretation:

where f (n)(x, y) is the probability that the simple random walk starting at x hits y at the nth 
step for the first time. Simple and well-known computations yield

see, e.g. [13, Lemma 1.24] (with z = 1∕� ). The complex square root is 
√
rei� =

√
rei�∕2 for 

� ∈ (−�, �).
The �-Martin kernel on T × �T  is

where

is the Busemann function or horocycle index of x with respect to the end � . Note that for 
fixed x, the function � ↦ K(x, �|�) is locally constant.

Now, a basic result in the seminal paper of Cartier [4], valid for real � ≥ � , and its exten-
sion to complex � ∈ ���(P) [12] says the following for simple random walk on T.

For � ∈ ℂ⧵[−�, �] , every �-harmonic function h on T has a unique integral 
representation

where � is a distribution on �T  as in (3). If 𝜆 > 𝜌 and h > 0 , then � is a positive Borel meas-
ure. Indeed, this holds for arbitrary nearest neighbour random walks on arbitrary countable 
trees, and [12] has a method to extend this to a boundary integral representation of �-poly-
harmonic functions. Specialised to simple random walk on T = Tq , this yields the follow-
ing extension of a result of [5], where the basic case � = 1 is considered.

Theorem  2.2 [12] For � ∈ ℂ⧵[−�, �] ,  every �-polyharmonic harmonic function f of 
order n  on T has a unique integral representation 

where �0,… , �n−1 are distributions on �T .

The normalisation by k! s(�)k , where s(�) is as in (5), is not present in [12, Cor. 5.4]. We 
shall see below in Lemma 3.4 why it is useful.

(4)F(x, y|�) =

∞∑

n=1

f (n)(x, y)∕�n,

(5)
F(x, y��) = F(�)d(x,y), where

F(�) =
q + 1

2q

�
� − s(�)

�
with s(�) = �

√
1 − �2∕�2,

K(x, �|�) =
F(x, x ∧ �|�)

F(o, x ∧ �|�)
= F(�)�(x,�), x ∈ T , � ∈ �T ,

�(x, �) = d(x, x ∧ �) − d(o, x ∧ �)

(6)h(x) = ∫�T

K(x, �|�) d�(�),

f (x) =

n−1∑

k=0
∫�T

K(x, �|�) �k(x, �|�) d�k(�) with �k(x, �|�) =
�(x, �)k

k! s(�)k
,
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3  Polyspherical functions

Definition 3.1 For any � ∈ ℂ , the spherical function Φ(x|�) is the unique function on T 
with Φ(o|�) = 1 which is �-harmonic and radial,, i.e. it depends only on |x| = d(o, x).

Namely, if we set �k(�) = Φ(x|�) for |x| = k , then we have the recursion

We shall consider the case when � is in the �2-resolvent set of P, that is, � ∈ ℂ⧵[�, �] . Let 
F(�) be as in (5), and let

be the second solution, besides F(�) , of the equation

Then, one can solve the above recursion, and

We collect a few elementary properties.

Lemma 3.2 We have for  � ∈ ℂ⧵[�, �]

Furthermore,

Proof First of all, by (8), F(�) ≠ 0 and F(�)F̃(�) = 1∕q . Next, by (4), 
�F(𝜆)� ≤ F(�𝜆�) < F(𝜌) = 1

�√
q for |𝜆| > 𝜌 . Also when |�| = � and � ≠ ±� , we have 

�F(𝜆)� < F(𝜌) = 1
�√

q . At last, for � in the real interval (−�, �) , the limits of F(⋅) are

according to whether � is approached within the upper or lower half plane. Thus, in the 
upper open semidisk {z ∈ ℂ ∶ |z| < 𝜌, ℜz > 0} , as well as in the corresponding lower 
open semidisk, F(�) is analytic, and its absolute values at the boundary are ≤ 1

�√
q . By 

the Maximum Modulus Principle, �F(𝜆)� < 1∕
√
q within each of those two semidisks. We 

see that the last inequality holds in all of ℂ⧵[�, �].
Consequently, �q�F(𝜆)� = 1∕�F(𝜆)� >

√
q . The values for � = 1 are obvious.

�0(�) = 1, �1(�) = �, and ��k(�) =
1

q + 1
�k−1(�) +

q

q + 1
�k+1(�) for k ≥ 1.

(7)F̃(�) =
q + 1

2q

(
� + s(�)

)

(8)�F(�) =
1

q + 1
+

q

q + 1
F(�)2.

(9)

Φ(x|𝜆) = a(𝜆)F(𝜆)|x| + ã(𝜆) �F(𝜆)|x|, where

a(𝜆) =
s(𝜆) −

q−1

q+1
𝜆

2s(𝜆)
and ã(𝜆) =

s(𝜆) +
q−1

q+1
𝜆

2s(𝜆)
.

0 < �F(𝜆)� < 1
�√

q < ��F(𝜆)�, F(1) = 1∕q, and �F(1) = 1.

Φ(x|1) = 1 and Φ(x|�) ≠ 0 for all x ∈ T .

q + 1

2q

�
� ± �

√
�2 − �2

�
,
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Finally, we claim that for the coefficient functions in (9) one has |a(𝜆)| < |ã(𝜆)| . For 
|𝜆| > 𝜌 , as well as for |�| = � and � ≠ ±� , one can see this from the fact that 1 − �2∕�2 
belongs to the complex half-plane with positive real part. For � in one of the above 
two semidisks, one can proceed as above: one checks that ã(𝜆) ≠ 0 . Then, the function 
a(𝜆)∕ã(𝜆) is analytic in each semidisk, with boundary values whose absolute values are 
≤ 1 , and the desired inequality follows. Therefore,

for every x ∈ T  , and Φ(x|�) ≠ 0.

We can describe the spherical functions via their integral representation (6). Let � 
stand for the uniform distribution on �T  . This is the Borel probability measure which 
for each k ∈ ℕ0 assigns equal mass to all boundary arcs �Tx , where x ∈ T  with |x| = k . 
That is,

We shall often write d�(�) = d� . Then,

Indeed, the right-hand side satisfies all requirements of Definition 3.1, which determine the 
spherical function. A comparison with Theorem 2.2 leads us to the following.

Definition 3.3 For n ≥ 0 , the nth polyspherical function is

It is �-polyharmonic of order n + 1 , and it is radial. With respect to those two proper-
ties, it is uniquely determined by its values for |x| = 0, 1,… , n . For n ≥ 1 , its value at 
x = o is 0. For n = 0 , it is of course the spherical function (10).

In particular, (� ⋅ I − P)n Φn(⋅|�) is �-harmonic and radial, so that it must be a mul-
tiple of Φ(⋅|�) . In order to determine the factor, we need to recall part of how The-
orem  2.2 was obtained in [12]. Let K(n)(x, �|�) be the nth derivative of K(x, �|�) with 
respect to � . Then,

In [12, equation (5.2)], it is shown that

where the functions gk,n(�) are given recursively; in particular, with s(�) as in (5),

|
|a(𝜆)F(𝜆)

|x||
| <

|
|ã(𝜆)

�F(𝜆)|x|||

�(�Tx) =

{
1, if x = o,

1
/(

(q + 1)q|x|−1
)
, if x ≠ o.

(10)Φ(x|�) = ∫�T

K(x, �|�) d�.

Φn(x|�) = ∫�T

K(x, �|�) �n(x, �|�) d�.

(11)
(−1)n

n!
(� ⋅ I − P)nK(n)(⋅, �|�) = K(⋅, �|�).

(12)K(n)(x, �|�) = K(x, �|�)

n∑

k=1

�(x, �)k gk,n(�),

gn,n(�) = (−1)ns(�)−n.
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Combining (11) and (12), we get

Lemma 3.4 (� ⋅ I − P)n
[
K(⋅, �|�) �n(x, �|�)

]
= K(⋅, �|�).

Integrating with respect to d� , we also obtain the following.

We shall need the asymptotic behaviour of Φn(x|�) as |x| → ∞.

Proposition 3.5 Let � ∈ ℂ with |𝜆| > 𝜌. Then, as |x| → ∞,

with ã(𝜆) given by (9). In particular, in the standard case � = 1, we have �F(1) = ã(1) = 1.

Therefore, there is R = Rn,𝜆 > 0 such that

Furthermore,

Proof By Lemma 3.2,

Now, let x ∈ T⧵{o} . For � ∈ {0, 1,… , |x|} , let A
�
= {� ∈ �T ∶ |x ∧ �| = �} , and set 

�
�
= m(A

�
) . Then,

We use F(�) =
(
qF̃(�)

)−1 and set k = |x| − � . Then, the integral formula of Definition 3.3 
translates into

The last term within the big parentheses tends to 0 as |x| → ∞ . Decompose the sum into 
the two pieces where in the first one, summation is over 1 ≤ k ≤ √

�x� and in the second 

(13)(� ⋅ I − P)nΦn(⋅|�) = Φ(⋅|�).

Φn(x|𝜆) ∼ ã(𝜆)
(−1)n |x|n

n! s(𝜆)n
�F(𝜆)|x|,

Φn(x|𝜆) ≠ 0 and |Φn(x|𝜆)| ≤ 2|ã(𝜆)|
|x|n

n! |s(𝜆)|n
|�F(𝜆)||x| for |x| ≥ R.

(14)lim
|x|→∞

Φk(x|𝜆)

Φn(x|𝜆)
= 0 for k < n.

|q �F(𝜆)2| > 1 for |𝜆| > 𝜌.

K(x, ���) = F(�)�x�−2� for � ∈ A
�
, and �

�
=

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

q

q + 1
for � = 0,

q − 1

(q + 1)q�
for � = 1,… , �x� − 1,

1

(q + 1)q�x�−1
for � = �x�.

n! s(�)n Φn(x|�) =

|x|∑

�=0

F(�)|x|−2�
(
|x| − 2�

)n
��

=
q

q + 1

(
−|x|

)n
F̃(�)|x|

(

1 +
q − 1

q

|x|−1∑

k=1

(
q F̃(�)2

)−k
( |x| − 2k

|x|

)n
+ (−1)n

(
q F̃(�)2

)−|x|

)

.
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one, summation is over k >
√
�x� . Then, the second part is a remainder of a convergent 

series, so that it also tends to 0 as |x| → ∞ . Now, in the range 1 ≤ k ≤ √
�x� , the quotients 

(|x| − 2k)∕|x| tend to 1 uniformly as |x| → ∞ . Therefore, the first part of the sum converges 
to

as |x| → ∞ . This yields the proposed asymptotic formula, with some elementary computa-
tions for getting the factor ã(𝜆).

4  Dirichlet‑, Riquier‑ and Fatou‑type convergence

In the classical case of harmonic functions, that is, when � = 1 , the Dirichlet problem asks 
whether for any real or complex-valued function g ∈ C(�T) , there is a continuous extension to 
T̂ which is harmonic in T. That is, we look for a function h = hg on T such that

If a solution exists, then it is necessarily unique by the minimum (maximum) principle. For 
our simple random walk on T, it is folklore that the Dirichlet problem is solvable, and that 
the solution is given as the Poisson integral of g:

We are now interested in the general case when � ∈ ℂ⧵[−�, �] , which will remain fixed 
throughout this section. First of all, the above question is not well-posed. Indeed, if for 
example 𝜆 > 1 is real, then the “Poisson integral” of the constant function � on �T  is Φ(x|�) . 
By Proposition 3.5, it tends to ∞ as |x| → ∞ , since �F(𝜆) > 1 . Thus, we need to normalise, 
compare with [11]. The same is necessary for the polyharmonic versions of higher order.

Theorem 4.1 Let � ∈ ℂ with |𝜆| > 𝜌. For g ∈ C(�T) and n ≥ 0, set

Then, f is �-polyharmonic of order n + 1 and 

Before the proof of this result, we introduce the normalized kernel

We only need it for large |x|, and then Φn(x|�) ≠ 0 by Proposition 3.5, so that the division 
in (15) and the definition of Kn are legitimate. If we fix such an x ∈ T  with |x| ≥ R , the 

q − 1

q

∞∑

k=1

(
q F̃(�)

)−k
=

q − 1

q

1

q F̃(�)2 − 1
,

(I − P)h = 0 and lim
x→�

h(x) = g(�) for every � ∈ �T .

h(x) = ∫�T

K(x, �|1) g(�) d�.

f (x) = ∫�T

K(x, �|�) �n(x, �|�) g(�) d�

(15)lim
x→�

f (x)

Φn(x|�)
= g(�) for every � ∈ �T .

(16)Kn(x, �|�) =
K(x, �|�) �n(x, �|�)

Φn(x|�)
, n ≥ 0.
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function � ↦ Kn(x, �|�) is locally constant, since it depends only on x ∧ � which ranges 
within the finite geodesic �(o, x) . Therefore, it is continuous.

Lemma 4.2 Let y ∈ T . Then,

uniformly for � ∈ �T⧵�Ty.

Proof If x ∈ Ty and � ∈ �T⧵�Ty , then x ∧ � = y ∧ � ∈ �(o, y) . We have

Therefore, using Lemma 3.2 and Proposition 3.5,

which tends to 0 as proposed.

Proof of Theorem 4.1 For x ∈ T  with |x| ≥ R,

defines a complex Borel measure on �T  . (It also depends on � and n, which we omit in the 
present notation.) We have �x(�T) = 1. We write |�|x for its total variation measure. Its 
density with respect to d� is ||K(x, �|�) �n(x, �|�)||

/
|
|Φn(x|�)

|
| . Let us write

A computation completely analogous to the one in the proof of Proposition 3.5 shows that

Therefore,

We can now prove (15) along classical lines. Let �0 ∈ �T  and 𝜀 > 0 . Then, given 
g ∈ C(�T) , there is a neighbourhood of �0 on which |g(𝜉) − g(𝜉0)| < 𝜀 . We may assume 
that this neighbourhood is of the form �Ty , where y ∈ �(o, �0) . If x → �0 then x ∈ Ty when 
|x| is sufficiently large. Then,

lim
|x|→∞, x∈�Ty

Kn(x, �|�) = 0

�(x, �) = |x| − 2|y ∧ �| ≥ |x| − 2|y|.

Kn(x, 𝜉|𝜆) ∼
|F(𝜆)|−2|y∧𝜉|

|ã(𝜆)|

|
|
|
|
|

F(𝜆)

�F(𝜆)

|
|
|
|
|

|x| (
|x| − 2|y ∧ 𝜉|

|x|

)n

,

d�x(�) = Kn(x, �|�) d�

|Φ|n(x|�) = ∫�T

|
|K(x, �|�) �n(x, �|�)

|
| d�.

|Φ|n(x|�) ∼ C(�)
|x|n

n! |s(�)|n
|F̃(�)||x|, where C(�) =

1

q + 1

q2|F̃(�)|2 − 1

q|F̃(�)|2 − 1
.

(17)|𝗆|x(𝜕T) =
|Φ|n(x|𝜆)

|Φn(x|𝜆)|
→

C(𝜆)

|ã(𝜆)|
, as |x| → ∞.

�
�
�
�

f (x)

Φn(x��)
− g(�0)

�
�
�
�
=
�
�
�
���T

�

g(�) − g(�0)
�

d�x(�)
�
�
�
�
≤ 2‖g‖∞ ���x(�T⧵�Ty) + � ���x(�Ty).
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Now, Lemma 4.2 implies that for x → � we have |�|x(�T⧵�Ty) → 0, while |�|x(�Ty) 
remains bounded by (17).

Next, we consider a Fatou-type theorem for polyharmonic functions. That is, in the integral 
of Theorem 4.1 we replace g(�) d� by a complex Borel measure � on �T . We need to consider 
a restricted type of convergence to the boundary.

Definition 4.3 Let � ∈ �T  and a ≥ 0 . The cone at � of width a is

The motivation for this definition is well-known: in the open unit disk, consider a cone 
C�(z) whose vertex is a point z on the unit circle, whose axes connects the origin with z, and 
whose opening angle is 𝛼 < 𝜋 . Then, passing to the hyperbolic metric on the disk, all elements 
of the cone are at bounded distance (depending on � ) from the axes. The standard graph met-
ric of T should be seen as an analogue of the hyperbolic metric on the disk, while a tree-ana-
logue of the Euclidean metric is the ultrametric � of (2). Compare with Boiko and Woess [3] 
for a “dictionary” concerning the many of the other analogies between the potential theory 
on the unit disk and T. Thus, a is a substitute for the angle � , and of course, if |x| → ∞ within 
Γa(�) then x → � in the topology of T̂ . We shall use the following tools.

Lemma 4.4 [11] For g ∈ L1(�T ,�), let

be the associated Hardy–Littlewood maximal function on �T  .  Then, the operator g ↦ Mg 
is weak type (1,1), that is, there is C > 0 such that for every t > 0,

With R as in Proposition 3.5, we now define for a ≥ 0 and g ∈ L1(�T ,�),

Proposition 4.5 For every a ≥ 0, there is a constant Ca such that

Proof Let �(o, �) = [o = x0, x1, x2,…]. First, let a = 0 . Fix x = xr with r ≥ R . Then, with 
A
�
= {� ∈ �T ∶ |x ∧ �| = �} as above, we use the properties listed in Lemma 3.2 and 

compute

Γa(�) =
{
x ∈ T ∶ d

(
x,�(o, �)

) ≤ a
}
.

Mg(�) = sup
x∈�(o,�)

1

�(�Tx) ∫�Tx

|g| d�

�

�
�Mg� ≥ t

� ≤ C ‖g‖1
�
t for all g ∈ L1(�T ,�).

(18)�ag(�) = sup

{
|
|
|
|��T

Kn(x, ⋅|�) g d�
|
|
|
|
∶ x ∈ Γa(�), |x| ≥ R

}

.

�ag ≤ Ca Mg for every g ∈ L1(�T ,�).



46 E. Sava-Huss, W. Woess 

1 3

For general a ∈ ℕ , let y ∈ T  with |y| ≥ R and d
(
y,�(o, �)

) ≤ a . Then, d(x, y) ≤ 2a , 
where x is the element on �(o, �) with |x| = |y| . Recall that |F(𝜆)| < 1 . Since 
|�(x, �) − �(y, �)| ≤ d(x, y) , we have

for every � ∈ �T  . Therefore,

Setting Ca = (1 + 2a)n |F(�)|−2a C0 , the proposition follows.

After Lemma 4.4 and Proposition 4.5, also the proof of the following theorem now fol-
lows the strategy of [11]. For the sake of providing a complete picture in the situation of 
trees, we also include some of the “standard” details in its proof.

Theorem 4.6 Let � ∈ ℂ with |𝜆| > 𝜌, and let � be a complex Borel measure on �T . For 
n ≥ 0, set

Then, f is �-polyharmonic of order n + 1 and

where g is the Radon–Nikodym derivative of the absolutely continuous part of �  with 
respect to the uniform distribution � on �T .

Proof We first give an outline of the standard fact that the limit in (19) is 0 when � is singu-
lar with respect to equidistribution. The latter means that there is a Borel set E ⊂ 𝜕T  with 

|
|
|
|�𝜕T

Kn(x, ⋅|𝜆) g d�
|
|
|
|
≤ 2 �

𝜕T

|
|K(x, ⋅|𝜆) �(x, ⋅)

n|
|

|ã(𝜆)| |x|n |�F(𝜆)||x|
|g| d�

=
2

|ã(𝜆)|

|
|
|
|
|

F(𝜆)

�F(𝜆)

|
|
|
|
|

|x| |x|∑

𝓁=0
�
A
𝓁

|F(𝜆)|−2𝓁
(
|x| − 2𝓁

|x|

)n

|g| d�

≤ 2

|ã(𝜆)|

|
|
|
|
|

F(𝜆)

�F(𝜆)

|
|
|
|
|

|x| |x|∑

𝓁=0
�

𝜕Tx𝓁

|F(𝜆)|−2𝓁 |g| d�

≤ 2(q + 1)

q |ã(𝜆)|

|x|∑

𝓁=0

q−𝓁|F(𝜆)|−2𝓁 Mg(𝜉)

=
2(q + 1)

q |ã(𝜆)|

|x|∑

𝓁=0

|
|
|
|
|

F(𝜆)

�F(𝜆)

|
|
|
|
|

|x|−𝓁

Mg(𝜉)

≤ C0 Mg(𝜉), where C0 =
2(q + 1)

q |ã(𝜆)|

1

1 − |F(𝜆)∕�F(𝜆)|
.

|K(y, �|�)| = |F(�)|�(y,�) ≤ |F(�)|−2aK(x, �|�) and |�(y, �)|n ≤ (1 + 2a)n|�(x, �)|n,

|Kn(y, ⋅|�)| ≤ (1 + 2a)n |F(�)|−2a |Kn(x, ⋅|�)|.

f (x) = ∫�T

K(x, �|�) �n(x, �|�) d�(�).

(19)lim
x→�, x∈Γa(�)

f (x)

Φn(x|�)
= g(�) for every a ≥ 0 and 𝗆-almost every � ∈ �T ,
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uniform measure 0 such that �T⧵E is a �-null-set. For every 𝜀 > 0 , there are disjoint bound-
ary arcs �Ty1 ,… , �Tyk depending on � , whose union E� contains E and has uniform meas-
ure < 𝜀 . Let |�| be the total variation measure of � . If x → �0 ∈ �T⧵E� , then by Lemma 4.2,

Since this holds for every 𝜀 > 0 , we get that f (x)∕Φn(x|�) → 0 almost everywhere on �T .
Now, we may assume without loss of generality that we have g = d�∕d�m ∈ L1(�T ,�) . 

Then, there is a sequence (gk)k∈ℕ of continuous functions on �T  such that

Set

By Lemma 4.4 and Proposition 4.5,

for every 𝜀 > 0 . By the Borel–Cantelli Lemma, this yields that

For each k, the function on T̂  with values gk(�) for � ∈ �T  and fk(x)∕Φn(x|�) for x ∈ T  is 
continuous on T̂  by Theorem 4.1. This readily implies that for � ∈ A , we have convergence 
as proposed in (19).

We now come back to continuous boundary functions and Theorem 4.1. For n ≥ 1 , we 
cannot expect uniqueness of f as a polyharmonic function of order n + 1 which has the 
asymptotic behaviour of (15). Indeed, (14) shows that we can add polyharmonic functions 
of lower order such that the limit in Theorem 4.1 remains the same. However, for the case 
n = 0 , i.e. for �-harmonic functions, we can investigate uniqueness: this case corresponds 
to the classical Dirichlet problem at infinity. Indeed, for real 𝜆 > 𝜌 one can use the typical 
argument, namely the maximum principle, to prove uniqueness. However, for complex � , 
this is not available, and we have to introduce another method.

Theorem 4.7 Let � ∈ ℂ⧵[−�, �] .  For g ∈ C(�T), the function

is the unique solution of the �-Dirichlet problem with boundary function g, i.e. the unique �
-harmonic function such that

|
|
|
|

f (x)

Φn(x|�)

|
|
|
|
≤ �E�

|Kn(x, �|�)| d|�|(�) → 0.

�

k

‖g − gk‖1 < ∞.

fk(x) = ∫�T

K(x, �|�) �n(x, �|�) gk(�) d�.

�

k

�

�
�a(g − gk) ≥ 𝜀

� ≤ Ca C
�

k

‖g − gk‖1∕𝜀 < ∞

𝗆(A) = 1, where A =
{

� ∈ �T ∶ lim
k→∞

�a(g − gk)(�) = 0
}

.

hg(x) = ∫�T

g(�)K(x, �|�) d�

lim
x→�

hg(x)

Φ(x|�)
= g(�) for every � ∈ �T .
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Proof Continuity holds by Theorem 4.1. By linearity, we need to prove uniqueness only in 
the case when g ≡ 0 . Thus, we assume that � ⋅ h = Ph and that lim|y|→∞ h(y)∕Φ(y|�) = 0 , 
and we have to show that h ≡ 0.

We extend the notion of the spherical functions as follows:

where the functions �k are given by (9). For fixed x ∈ T  , this is the unique �-harmonic 
function of y with value 1 at x which is radial with respect to the point x. Now, let us define 
the spherical average of h around x, that is, the function defined by

A short computation shows that h̄ is �-harmonic, whence h̄(y) = h(x)Φ(x, y|𝜆) . By assump-
tion, the function T̂ → ℂ with value 0 on �T  and value h(y)∕Φ(y|�) at y ∈ T  is continuous. 
By uniform continuity

Let y ∈ T  be such that d(y, x) ≥ N + |x| . Then, every v ∈ T  with d(y, x) = d(v, x) satisfies 
|v| ≥ N , so that

Applying Proposition 3.5 once more, to both Φ(v|�) and Φ(x, v|�),

Since F̃(�)|v|−d(v,x) is bounded in absolute value by max{|F̃(�)||x|, |F̃(�)|−|x|} , we see that 
there is a finite upper bound, say Mx(�) , depending only on x and � , such that

Consequently, also the absolute value of the average h̄(y) has the same upper bound. We get

Letting N → ∞ , we conclude that h(x) = 0 , and this holds for any x ∈ T  , as required.

Theorem 4.1 tells us that for considering the boundary behaviour of a �-polyharmonic 
function f of order n, it first should be normalised by dividing by Φ(n−1)(⋅|�).

Lemma 4.8 Let f be polyharmonic of order n and such that the �-harmonic function 
h = (� ⋅ I − P)n−1f   satisfies 

where g ∈ C(�T). Then,

Φ(x, y|�) = �d(y,x)(�),

h̄(x) = h(x) and h̄(y) =
1

(q + 1)qd(y,x)−1

∑

v ∶ d(v,x)=d(y,x)

h(v), if y ≠ x.

lim
N→∞

�N = 0, where �N = sup{|h(y)∕Φ(y|�)| ∶ y ∈ T , |y| ≥ N}.

|h(v)| ≤ �N |Φ(v|�)| = �N |Φ(x, v|�)|
|
|
|
|

Φ(v|�)

Φ(x, v|�)

|
|
|
|

Φ(v|�)

Φ(x, v|�)
∼ F̃(�)|v|−d(v,x) = F̃(�)|v|−d(y,x) as |y| → ∞.

|h(v)| ≤ �N |Φ(x, v|�)|Mx(�) = �N |Φ(x, y|�)|Mx(�) whenever d(v, x) = d(y, x).

|h(x)| =
|
|
|
|
|

h̄(y)

Φ(x, y|𝜆)

|
|
|
|
|

≤ 𝜀N Mx(𝜆).

lim
x→�

h(x)

Φ(x|�)
= g(�) for all � ∈ �T ,
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where gis�-polyharmonic of order n − 1.

Proof It follows from Theorems 4.7 that

Set

By Lemma 3.4,

Therefore, g = f − fg satisfies (� ⋅ I − P)n−1g = 0.

If in the above lemma, the natural normalisation g
/
Φ(n−2)(⋅|�) has continuous bound-

ary values, then g
/
Φ(n−1)(⋅|�) tends to 0 at the boundary of the tree by (14). Thus, by 

Theorem 4.1, f
/
Φ(n−1)(⋅|�) has the same boundary limit g as (� ⋅ I − P)n−1f

/
Φ(⋅|�).

We conclude that for considering an analogue of the classical Riquier problem, with 
given boundary functions g0,… , gn−1 , our solution f should be obtained step-wise: first, 
(� ⋅ I − P)n−1f

/
Φ(⋅|�) should have boundary limit gn−1 , and we take fn−1 = fgn−1 accord-

ing to Lemma 4.8. Next, the function f − fn−1 should be polyharmonic of order n − 1 , and 
(� ⋅ I − P)n−2(f − fn−1)

/
Φ(⋅|�) should have boundary limit gn−2 . We then proceed recur-

sively. We clarify this by the next definition.

Definition 4.9 Let � ∈ ℂ⧵[−�, �] and g0,… , gn−1 ∈ C(�T). Then, a solution of the associ-
ated Riquier problem at infinity is a polyharmonic function

of order n, where each fk is polyharmonic of order k + 1 and

Corollary 4.10 A solution of the Riquier problem as stated in Definition 4.9 is given by 
the functions

One also has

f (x) = ∫�T

g(�)K(x, �|�) �(n−1)(x, �|�) d� + g,

h(x) = hg(x) = ∫�T

g(�)K(x, �|�) d�.

fg(x) = ∫�T

g(�)K(x, �|�) �(n−1)(x, �|�) d�.

(� ⋅ I − P)n−1fg = h = (� ⋅ I − P)n−1f .

f = f0 +⋯ + fn−1

lim
x→�

(� ⋅ I − P)kfk(x)

Φ(x|�)
= gk(�) for every � ∈ �T .

fk(x) = ∫�T

gk(�)K(x, �|�) �k(x, �|�) d�.

lim
x→�

f0(x) +⋯ + fk(x)

Φk(x|�)
= lim

x→�

fk(x)

Φk(x|�)
= gk(�) for every � ∈ �T .
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As already outlined further above, the solution is not unique. We can add to fk some 
suitable �-polyharmonic function of lower order: normalised by Φk(x|�) , by (14) the lat-
ter will tend to zero, as |x| → ∞ . What is unique is—by Theorem  4.7—the solution 
(� ⋅ I − P)kfk = hgk.
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