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Abstract
We prove closing lemmas for automorphisms of a Stein manifold with the density property
and for endomorphisms of an Oka–Stein manifold. In the former case, we need to impose
a new tameness condition. It follows that hyperbolic periodic points are dense in the tame
non-wandering set of a generic automorphism of a Stein manifold with the density property
and in the non-wandering set of a generic endomorphism of an Oka–Stein manifold. These
are the first results about holomorphic dynamics on Oka manifolds. We strengthen previous
results of ours on the existence and genericity of chaotic volume-preserving automorphisms
of Stein manifolds with the volume density property. We build on work of Fornæss and
Sibony: our main results generalise theorems of theirs, and we use their methods of proof.
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1 Introduction

This paper continues a line of research begun with our previous paper [2]. We want to
establish dynamical properties that hold for generic endomorphisms or automorphisms of
all sufficiently flexible complex manifolds, more precisely, for generic endomorphisms of
an Oka–Stein1 manifold, for generic automorphisms of a Stein manifold with the density
property, or for generic volume-preserving automorphisms of a Stein manifold with the
volume density property.

Amore specificmotivation is to investigate holomorphic dynamics on themanifoldC
∗n =

(C\{0})n , n ≥ 2. Dynamics on C
∗n is more difficult to understand than the much-studied

dynamics on affine space C
n , because C

∗n is not known to have the density property, and
its Haar form (z1 · · · zn)−1dz1 ∧ · · · ∧ dzn is not exact. We obtain new results about C

∗n as
special cases of the general theorems in the paper. These results are as follows.

Theorem 1 (a) The closing lemma holds for endomorphisms of C
∗n, n ≥ 1.

(b)Hyperbolic periodic points are dense in the non-wandering set of a generic endomorphism
of C

∗n, n ≥ 1.
(c) Chaotic automorphisms are generic among volume-preserving automorphisms of C

∗n,
n ≥ 2, that act as the identity on Hn−1(C∗n). Also, C

∗n, n ≥ 2, has a chaotic volume-
preserving automorphism that can be approximated by finite compositions of time maps of
complete divergence-free vector fields.

By a complete vector field we mean a field that can be integrated for all complex time.
Recall that a point p of a space X is said to be non-wandering for an endomorphism f

of X if for every neighbourhood U of p, there is k ≥ 1 with U ∩ f k(U ) �= ∅. Also, p
is recurrent for f if there is a subsequence of ( f k(p))k∈N that converges to p. Clearly, a
periodic point is recurrent, a recurrent point is non-wandering, and the non-wandering points
of f form a closed subset of X .

Let E be a space of endomorphisms of a space X . We say that the closing lemma holds
for E if, whenever p ∈ X is a non-wandering point of an endomorphism f in E , every
neighbourhood of f in E contains an endomorphism of which p is a periodic point. We say
that the weak closing lemma holds for E if, whenever p ∈ X is a non-wandering point of an
endomorphism f in E , for every neighbourhood W of f in E and every neighbourhood V
of p in X , there is an endomorphism in W with a periodic point in V .

Recall, finally, that an endomorphism is said to be chaotic if it has a dense forward orbit
and its periodic points are dense. Equivalently, for every pair of nonempty open subsets, there
is a cycle that visits both of them.

In their groundbreaking 1997 paper [5], Fornæss andSibony established the closing lemma
for endomorphisms of C

n [5, Theorem 4.1] and automorphisms of C
n [5, Theorem 5.1]. Our

first main theorem is a generalisation of their results. In the automorphism case, we need to
impose a new restriction on the non-wandering point. We express the restriction by saying
that the non-wandering point is tame for the automorphism. Without this restriction, we do
not fully understand the proof of Fornæss and Sibony (our difficulty is with the claim “We
can even assume that there exists r > 0 such that …” at the top of [5, p. 831]).

Our new tameness property is defined as follows. For a compact subset K of a complex
manifold X , we define two closed subsets of X × Aut X :

T+
K = {(x, g) ∈ X × Aut X : g j (x) ∈ K for all j ≥ 0},

1 By an Oka–Stein manifold we simply mean a complex manifold that is both Oka and Stein.
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Generic aspects of holomorphic dynamics on highly flexible… 1699

T−
K = {(x, g) ∈ X × Aut X : g j (x) ∈ K for all j ≤ 0}.

Here, as usual, the group Aut X of holomorphic automorphisms of X is given the compact-
open topology. It is well known that the compact-open topology is defined by a complete
metric and makes Aut X a separable topological group. In summary, Aut X is a Polish group.

We say that p ∈ X is tame for f ∈ Aut X , or that the pair (p, f ) is tame, if whenever

(p, f ) ∈ (T+
K ∪ T−

K )◦ for a compact subset K of X , we have (p, f ) ∈
◦
T+
L ∪

◦
T−
L for some,

possibly larger, compact subset L of X . Note that (p, f ) is tame if and only if (p, f −1) is
tame.

The following propositions and the subsequent results in this introduction are proved in
Sect. 2.

Proposition 1 Let X be a complex manifold.
(a) Tame pairs are generic in X × Aut X.
(b) For a generic automorphism f of X, a generic point of X is tame for f .

Proposition 2 Let X be a Stein manifold and let p be a hyperbolic periodic point of an
automorphism f of X. Then the pair (p, f ) is tame.

We say that the tame closing lemma holds for automorphisms of a complex manifold X
if, whenever p ∈ X is a non-wandering point of an automorphism f of X , and p is tame for
f , every neighbourhood of f in Aut X contains an automorphism of which p is a periodic
point.

We say that a complex manifold X is homogeneous if Aut X acts transitively on X . (This
is homogeneity in the weaker sense: it is well known that there need not be a transitive Lie
group action on a homogeneous manifold.) Homogeneity is an assumption in one of the
closing lemmas below, but what we need in the proof is the related condition that for every
neighbourhood W of the identity in Aut X and every point p ∈ X , the set { f (p) : f ∈ W }
is a neighbourhood of p. This condition, called micro-transitivity by some authors, implies
homogeneity. It implies that the orbits of the action of Aut X on X are open, so there is only
one orbit (we take our manifolds to be connected). The converse is true by the following
theorem of Effros ([3]; see also [1]). A transitive continuous action of a Polish group on a
Polish space is micro-transitive.

The following important sufficient condition for homogeneity is easily established: X is
homogeneous if there is a set of complete holomorphic vector fields on X that span each
tangent space of X . There is then a finite such set (whether or not X is Stein), so X is elliptic;
this was observed by Kaliman and Kutzschebauch [8, proof of Theorem 4]. Every Oka–Stein
manifold is elliptic and, as far as the present authors are aware, there is no known example of
an Oka–Stein manifold on which the complete holomorphic vector fields do not span every
tangent space.

Here, then, is our first main theorem.

Theorem 2 (a) The tame closing lemma holds for automorphisms of a Stein manifold with
the density property.

(b) The closing lemma holds for endomorphisms of a homogeneous Oka–Stein manifold.
(c) The weak closing lemma holds for endomorphisms of an Oka–Stein manifold.

In each case, the periodic point whose existence is asserted may be taken to be hyperbolic.

Remark 1 (a) Let us comment on the one-dimensional case. No open Riemann surface has
the density property. The open Riemann surfaces that are Oka are C and C\{0} and they are
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1700 L. Arosio, F. Lárusson

homogeneous. The closing lemma that holds for endomorphisms of each of them seems quite
nontrivial, although the proof given here can be simplified somewhat in the one-dimensional
case.

(b) A Stein manifold with the density property is Oka and homogeneous. The definitive
reference onOka theory is [6]. See also the survey [7]. See [6, Chapter 4] or [9] for an overview
of Andersén-Lempert theory, which is the theory of Stein manifolds with the density property
or one of its variants.

Roughly speaking, a Stein manifold has the density property if it has many complete
holomorphic vector fields and hence, by integrating such fields, many automorphisms. A
manifold is Oka if it is the target of many holomorphic maps from Stein manifolds, in the
sense that such maps satisfy analogues of the classical Runge approximation andWeierstrass
interpolation theorems. An Oka–Stein manifold therefore has many endomorphisms.

The prototypical example of a Stein manifold with the density property is C
n , n ≥ 2.

If X and Y are Stein manifolds with the density property, then so are X × Y , X × C, and
X × C

∗. Most known examples of Stein manifolds with the density property are captured
by the following theorem of Kaliman and Kutzschebauch [10, Theorem 1.3]. Let X be a
connected affine homogeneous space of a linear algebraic group. If X is not isomorphic to
C or C

∗n for some n ≥ 1, then X has the algebraic density property and therefore also the
density property.

(c) The manifold C
∗n , n ≥ 2, is an important example of an Oka–Stein manifold for

which it is not known whether or not it has the density property. So we know that the
closing lemma holds for endomorphisms of C

∗n , n ≥ 2, but we do not know whether the
tame closing lemma holds for automorphisms. Automorphisms of C

∗n , n ≥ 2, are indeed
mysterious: for example, it is an open question whether they necessarily preserve the volume
form (z1 · · · zn)−1dz1 ∧· · ·∧dzn . Algebraic automorphisms of C

∗n do preserve it; therefore
C

∗n does not possess the algebraic density property.
(d) Part (b) of Theorem 2 gives a closing lemma of sorts for automorphisms of a homo-

geneous Oka–Stein manifold X . If f is an automorphism of X and p is a non-wandering
point of f , not necessarily tame, then there are endomorphisms of X , arbitrarily close to f ,
of which p is a periodic point. Such endomorphisms will be injective on arbitrarily large
compact subsets of X .

Two general density theorems follow rather easily from Theorem 2. By the tame non-
wandering set of an automorphism f , we mean the set of points that are both non-wandering
and tame for f .

Corollary 1 (a) Hyperbolic periodic points are dense in the tame non-wandering set of a
generic automorphism of a Stein manifold with the density property.

(b) Hyperbolic periodic points are dense in the non-wandering set of a generic endo-
morphism of an Oka–Stein manifold.

As far as the authors know, Theorem 2 and Corollary 1 are the first results about holo-
morphic dynamics on Oka manifolds.

Next we strengthen the main result of our previous paper [2, Theorem 1]. There the
following result was proved with A equal to the whole group AutωX of automorphisms of
X that preserve ω, under the hypothesis that ω is exact. Clearly, AutωX is a closed subgroup
of Aut X . The cohomology groups below are complex de Rham cohomology groups.

Theorem 3 Let X be a Stein manifold of dimension n ≥ 2 satisfying the volume density
property with respect to a holomorphic volume form ω whose class in Hn(X) lies in the cup
product image of H1(X) × Hn−1(X). Let A be a closed submonoid of AutωX such that:
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• A contains all time maps of complete divergence-free vector fields on X.
• Every automorphism in A acts as the identity on Hn−1(X).

Then chaotic automorphisms are generic in A.

The largest that A can be is the group of all elements of AutωX that act as the identity on
Hn−1(X) (this group is closed by Poincaré duality). For X = C

∗n with the usual Haar form,
this largest A is the kernel of an epimorphism AutωX → SL(n, Z). That the morphism is
surjective is shown by the automorphisms

(z1, . . . , zn) �→ (
za111 · · · za1nn , . . . , zan11 · · · zannn

)
,

where (ai j ) ∈ SL(n, Z).
The smallest that A can be is the closure of the subgroup of finite compositions of time

maps of complete divergence-free vector fields on X . The following corollary is therefore
immediate.

Corollary 2 Let X be a Stein manifold of dimension n ≥ 2 satisfying the volume density
property with respect to a holomorphic volume form whose class in Hn(X) lies in the cup
product image of H1(X)×Hn−1(X). Then X has a chaotic volume-preserving automorphism
that can be approximated by finite compositions of time maps of complete divergence-free
vector fields on X.

As explained in more detail in [2], among the Stein manifolds that satisfy the hypotheses
of Theorem 3 are the following.

• Any connected linear algebraic group of dimension at least 2 that is not semisimple,
for example C

n and C
∗n , n ≥ 2, with respect to a left- or right-invariant Haar form.

(Theorem 3 does not cover any semisimple groups.)
• Y × C and Y × C

∗, where Y is any Stein manifold with the volume density property. (A
product manifold is always endowed with the product volume form and C and C

∗ carry
the standard volume forms dz and dz/z, respectively.)

Leuenberger [11] produced new examples of algebraic hypersurfaces in affine space with
the density property and the volume density property, including the famous Koras–Russell
cubic

C = {(x, y, z, w) ∈ C
4 : x2y + x + z2 + w3 = 0}

with the volume form x−2dx ∧ dz ∧ dw. It is known that C is diffeomorphic to R
6, but

not algebraically isomorphic to C
3 (in fact, the algebraic automorphism group does not act

transitively on C). Whether C is biholomorphic to C
3 is an open question.

The Koras–Russell cubic satisfies the tame closing lemma for automorphisms, the closing
lemma for endomorphisms, both general density theorems, Theorem 3, and Corollary 2.

Remark 2 Recall that the set of periodic points of a chaotic automorphism is dense. Hence,
in the setting of Theorem 3, a closing lemma and a general density theorem can be easily
derived.

Following the proof of Theorem 3, we state a proposition, similar to [2, Theorem 7],
describing some very particular consequences of the failure of genericity of chaos in the
absence of the cohomological hypothesis in Theorem 3, namely the existence of a robustly
non-expelling automorphism with a very special orbit. We end the paper by proving that time
maps of global flows are not robustly non-expelling.

123



1702 L. Arosio, F. Lárusson

2 Proofs

This section contains the proofs of Theorems 2 and 3 andCorollary 1, and, first, Propositions 1
and 2.

Proof of Proposition 1 (a) Let K1 ⊂ K2 ⊂ · · · be compact sets exhausting X , with Kn ⊂
◦
Kn+1 for each n. The set of tame pairs in X ×Aut X contains the set � of pairs (p, f ) such
that for each n,

(p, f ) ∈ (T+
Kn

∪ T−
Kn

)◦ implies (p, f ) ∈
◦

T+
Kn

∪
◦

T−
Kn

.

We have

� =
⋂

n

(
◦

T+
Kn

∪
◦

T−
Kn

) ∪ ((T+
Kn

∪ T−
Kn

)◦)�,

where � denotes the complement in X × Aut X , so

�� =
⋃

n

(
◦

T+
Kn

∪
◦

T−
Kn

)� ∩ (T+
Kn

∪ T−
Kn

)◦.

For each n, the set (
◦

T+
Kn

∪
◦

T−
Kn

)� ∩ (T+
Kn

∪ T−
Kn

)◦ is contained in ∂T+
Kn

∪ ∂T−
Kn
. Since T+

Kn
is

closed, ∂T+
Kn

is closed with empty interior; so is ∂T−
Kn
. Hence, by Baire, �� is contained in

an Fσ set with empty interior.
(b) is an easy consequence of (a). ��

Proof of Proposition 2 Let p be a hyperbolic periodic point of an automorphism f of a Stein
manifold X . First assume that p is attracting (the case of a repelling periodic point is anal-
ogous). Let K be a compact subset of X containing the f -orbit of p in its interior. The
persistence of attracting periodic points implies that for all (x, g) sufficiently close to (p, f ),

we have g j (x) ∈ K for all j ≥ 0, that is, (p, f ) ∈
◦
T+
K .

Now assume that p is a saddle point. We claim that for every compact subset K of X , we
have (p, f ) /∈ (T+

K ∪T−
K )◦, because arbitrarily close to p, there are points x with f j (x) /∈ K

for some j < 0 and some j > 0. We may assume that p is a fixed point of f . The stable
and unstable manifoldsWs andWu of p are immersed C

s and C
u , respectively, so neither is

contained in K . Take transverse polydiscs Du toWs and Ds toWu outside K . By the lambda
lemma [12, Lemma 2.7.1 and Remark 3, p. 85], there are points in Du that, under iteration
by f , come arbitrarily close to p and subsequently get mapped into Ds . ��

Next comes a perturbation lemma that will be used in the proof of Theorem 2.

Lemma 1 Let X be a Stein manifold with the density property or with the Oka property, and
let S be the space of automorphisms or endomorphisms of X, respectively. Let x1, . . . , xm
be distinct points in X. For every neighbourhood W of idX in S , there is a neighbourhood
V of the identity in the group of linear automorphisms of Tx1X, such that for every λ ∈ V ,
there is h ∈ W such that:

(1) h(x j ) = x j for j = 1, . . . ,m.
(2) dx j h = id for j = 2, . . . ,m.
(3) dx1h = λ.
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Proof First consider the endomorphism case. Embed X as a closed submanifold of C
N

and let U be a tubular neighbourhood of X with a holomorphic retraction ρ onto X . Let
W be a neighbourhood of idX in End X . (As usual, the monoid End X of holomorphic
endomorphisms of X carries the compact-open topology, which is defined by a complete
metric.) Find ε > 0 and a holomorphically convex compact subset K of X containing
x1, . . . , xm , such that an endomorphism of X that is within ε of the identity on K lies in W
(with respect to, say, the Euclidean metric). Let L be a compact subset of X containing K in
its interior.

It is evident that the lemma holds with C
N in place of X , so given a neighbourhoodW ′ of

idCN in EndC
N , find a neighbourhood V ′ of the identity in the group of linear automorphisms

of Tx1C
N , such that for every λ ∈ V ′, there is fλ ∈ W ′ satisfying (1–3). By shrinking W ′,

we may assume that all f ∈ W ′ satisfy the following properties.

• f (L) ⊂ U and ρ ◦ f is within ε/2 of the identity on K .
• ρ ◦ f and the identity are close enough on L that they are homotopic as maps L → X ,

so ρ ◦ f extends to a continuous map X → X . (For this, L needs to be well chosen, say
as a subcomplex of X with respect to a CW structure on X . Then any continuous map
(L × [0, 1]) ∪ (X × {0}) → X extends to a continuous map X × [0, 1] → X .)

Consider the neighbourhood V of the identity in the group of linear automorphisms of Tx1X
consisting of those automorphisms that extend to an automorphism of Tx1C

N in V ′. Take
λ ∈ V and extend it to an automorphism, also denoted λ, in V ′. Let fλ ∈ W ′ be as above and
let gλ : X → X be continuous with gλ = ρ ◦ fλ on L . Then gλ satisfies (1–3). Applying the
Oka property formulated as the basic Oka property with approximation and jet interpolation,
we can deform gλ to a holomorphic map hλ : X → X , still satisfying (1–3), and within ε/2
of gλ on K . Thus hλ is within ε of the identity on K , so hλ ∈ W .

In the automorphism case, the lemma can be proved in the same way as [2, Theorem 6],
ignoring preservation of volume. ��

Our next lemma isolates the contradiction, due to Fornæss and Sibony, from the end of
the proof of [2, Theorem 5]. It is used in the proofs of Theorems 2 and 3. We start with two
definitions.

Let X be a complex manifold and let A be a submonoid of End X . We call a holomorphic
vector field η on X an A-velocity if there is a holomorphic map 
 : C × X → X such that:

• 
t = 
(t, ·) ∈ A for all t ∈ C.
• 
0 = idX .

• ∂

∂t



∣∣∣∣
t=0

= η.

We say that f ∈ A is robustly non-expelling in A if there is a neighbourhood W of f in A,
a nonempty open set V ⊂ X , and a compact subset K ⊂ X such that g j (V ) ⊂ K for all
g ∈ W and j ≥ 0. Then the closed set

T+
K = {(x, g) ∈ X × A : g j (x) ∈ K for all j ≥ 0}

has nonempty interior UK , and the slice UK , f = {x ∈ X : (x, f ) ∈ UK } is a nonempty,
open, relatively compact, forward f -invariant subset of X .

Lemma 2 Let X be a complex manifold and A be a submonoid of End X. Let f be robustly
non-expelling in A and let H ⊂ UK , f be a nonempty, forward f -invariant, compact set.
Then there does not exist a continuous, zero-free, f -invariant vector field on H which is
approximable by A-velocities uniformly on H.
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1704 L. Arosio, F. Lárusson

By a vector field on H , we mean a section of the tangent bundle of X over H . We say that
such a vector field ξ is f -invariant if ξ( f (x)) = dx f (ξ(x)) for all x ∈ H .

Proof We argue by contradiction. Let ξ be a continuous, zero-free, f -invariant vector field
on H which is uniformly approximable on H by A-velocities. Let ‖·‖ be a hermitian metric
on X . Let

M = sup
x∈H , j≥0

‖dx f j‖,

which is finite since the images of the maps f j near H are contained in the compact subset
K of X , and let

c = min
x∈H ‖ξ(x)‖ > 0.

Let η be an A-velocity such that ‖ξ − η‖ ≤ c

2M
on H . Let 
 : C × X → X be associated

to η as above.
Since H × { f } ⊂ UK , there is a neighbourhood W of f in A such that H × W ⊂ UK .

Since 
t → idX as t → 0, there is δ > 0 such that 
t ◦ f ∈ W when |t | < δ. Hence

(
t ◦ f ) j (x) ∈ K when |t | < δ, x ∈ H , j ≥ 0.

Cauchy estimates show that there is a constant C such that for all x ∈ H and j ≥ 0,
∥∥∥∥

∂

∂t
(
t ◦ f ) j (x)

∣∣∣∣
t=0

∥∥∥∥ ≤ C .

By the chain rule, the derivative
∂

∂t
(
t ◦ f ) j (x)

∣∣∣∣
t=0

is

η( f j (x)) + d f j−1(x) f (η( f j−1(x))) + d f j−2(x) f
2(η( f j−2(x))) + · · · .

For x ∈ H and i = 0, . . . , j − 1,

‖d f j−i (x) f
i (η( f j−i (x))

) − ξ( f j (x))‖ = ‖d f j−i (x) f
i (η( f j−i (x)) − ξ( f j−i (x))

)‖ ≤ c

2
.

Thus we obtain a contradiction. Namely, for x ∈ H , the derivative
∂

∂t
(
t ◦ f ) j (x)

∣∣∣∣
t=0

is

bounded as j → ∞, but is also within
c

2
j of jξ( f j (x)), whose norm is at least cj . ��

Proof of Theorem 2 We largely follow the proofs of Theorems 4.1 and 5.1 in [5]. Let X be a
Stein manifold with the density property or with the Oka property, and let S be the space
of automorphisms or endomorphisms of X , respectively. Let p ∈ X be a non-wandering
point of f ∈ S that, in the automorphism case, is also tame for f . The proof is divided
into two steps. Before we start, let us dispose of the last claim in Theorem 2 by noting that a
periodic point of a morphism can be made hyperbolic by an arbitrarily small perturbation of
the morphism using Lemma 1.
Step 1. Assume that f is robustly non-expelling at p, meaning that there is a neighbourhood
W of f in S , a neighbourhood V of p in X , and a compact subset K of X such that
g j (V ) ⊂ K for all g ∈ W and j ≥ 0. By replacing K by a larger set, we can assume that it
is holomorphically convex. We will show that p is a periodic point of f .
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Let U be the interior of the closed set

T = {(x, g) ∈ X × S : g j (x) ∈ K for all j ≥ 0}
and letU f be the slice {x ∈ X : (x, f ) ∈ U } (nonempty by assumption). Clearly,U f is open
and relatively compact, and f (U f ) ⊂ U f . We claim that U f is Runge in X .2 Let L ⊂ U f

be compact. Denote by L̂ the O(X)-hull of L . Find a compact neighbourhood L ′ of L and
an open neighbourhood W of f such that L ′ × W ⊂ T , that is, g j (L ′) ⊂ K for all g ∈ W
and j ≥ 0. In other words, for each g ∈ W , L ′ is a subset of the holomorphically convex
compact set

⋂

j≥0
g− j (K ), so L̂ ′ is as well. Thus the neighbourhood L̂ ′ × W of L̂ × { f } is

contained in T , so L̂ × { f } ⊂ U and L̂ ⊂ U f . (To see that L̂ ′ is indeed a neighbourhood
of L̂ , we use the fact that the interior of a holomorphically convex compact subset of a Stein
manifold is Runge; see [4, Proposition 2.7].) This shows that U f is Runge.3 The connected
component U0 of U f containing p is also Runge.

Since p is non-wandering, there is a smallest integer  ≥ 1 such that f (U0) intersects
U0, and then f (U0) ⊂ U0. Then p is non-wandering for g = f . We claim that p is in fact
recurrent for g (and hence for f ). To prove this, let (Vk) be a decreasing neighbourhood basis
of p. For each k, there is jk such that g jk (Vk) intersects Vk . Either ( jk) has a strictly increasing
subsequence or a constant subsequence (these are not mutually exclusive, of course). In the
latter case, p is a periodic point of g and hence of f , so we are done, so let us assume that
( jk) is strictly increasing. Now (g jk ) has a subsequence, say itself, that converges locally
uniformly on U f to a limit h : U f → X . If h(p) �= p, then h(Vk) does not intersect Vk for
large enough k, so g jk (Vk) does not intersect Vk for large enough k, which contradicts the
non-wandering assumption. Hence h(p) = p, so p is recurrent for g.

For j = 0, . . . ,  − 1, denote by Uj the connected component of U f containing f j (U0).
We have g(Uj ) ⊂ Uj . Let � = U0 ∪ · · · ∪ U−1. Clearly, � is Runge and f (�) ⊂ �. We
may assume that the sequencemk = jk+1− jk is strictly increasing and that gmk converges to
a holomorphic map ρ on�. Since gmk ◦g jk = g jk+1 , ρ fixes p. Let M ⊂ � be the subvariety
of fixed points of ρ, and let M0 be the connected component of M containing p.
Claim. The map ρ satisfies ρ2 = ρ on a neighbourhood of M0. Hence M0 is a closed
submanifold of �.
Proof. Consider the sequence rk = mk − jk = jk+1 − 2 jk , which we may assume is strictly
increasing. A subsequence of (grk ) converges to a map η on U0 fixing p. Then

η ◦ h = ρ on h−1(U0),

h ◦ ρ = h on ρ−1(U0).

Hence in a neighbourhood of p,

ρ2 = η ◦ h ◦ ρ = η ◦ h = ρ,

so ρ2 = ρ in a neighbourhood of M0. Being the image of a holomorphic retraction, M0 is
smooth, and the claim is proved.

As f commuteswith ρ, it follows that f (M) ⊂ M . Since g jk (p) → p, we have gs(M0) ⊂
M0 for some s ≥ 1. Assume that dim M0 ≥ 1; otherwise p is a periodic point of f and we

2 We take a Runge open subset to be Stein by definition.
3 In the same way, the set A f0 in [2, Claim 2] can be shown to be Runge if we assume, as we may, that the
compact sets �k are holomorphically convex. The Runge property is needed in the proof of [2, Lemma 1].
The authors neglected to mention this in [2].
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are done. We will complete Step 1 by showing that this assumption leads to a contradiction,
leaving us with the conclusion that p is a periodic point of f .

Choose the smallest s such that gs(M0) ⊂ M0. For j = 0, . . . , s−1, set p j = f j (p), and
let Mj be the connected component of M containing p j . Every point p j satisfies g jk (p j ) →
p j , so h(p j ) = p j . Arguing as before, we see that each Mj is a closed submanifold of �.
The closed submanifold � = M0 ∪ · · · ∪ Ms−1 of � (possibly disconnected) is f -invariant.
Observe that mk is a multiple of s for all k large enough. For each j , a sequence of some of
the iterates of gs converges to the identity on Mj , so gs |Mj is an automorphism of Mj (it is
obviously injective and, by Rouché, surjective), which implies that f |� is an automorphism
of �.

Since� is a closed submanifold of the relatively compact domain� in X , the groupAut�
of holomorphic automorphisms of � has the structure of a finite-dimensional real Lie group.
Since a sequence of some of the iterates of f converges to the identity on �, the closure G
of the subgroup { f n : n ∈ Z}, obviously an abelian subgroup of Aut�, is compact (by the
lemma ofWeil that says that a cyclic subgroup of a locally compact Hausdorff group is either
discrete or relatively compact).

Arguing as in the proof of Theorem 5 in [2], we see that G is isomorphic to a product of a
real torus and a finite abelian group, and its orbits are totally real, so the G-orbit Gx of any
x ∈ � is a compact totally real submanifold of �. Since � is Runge, Ĝx ⊂ �. As in [2,
Claim 6], it may be shown that there is q ∈ � such that Ĝq = Gq .

The remainder of Step 1 is divided into two cases. In each case we arrive at a contradiction.
Case 1. If Gq is finite, then q is a periodic point of f . Let m be its period. Since a sequence
of iterates of f converges to the identity on �, q is not attracting. As in the proof of [2,
Claim 3], using Lemma 1, we can perturb f so as to obtain a map f0 such that f m0 (q) = q ,
(q, f0) ∈ U , and dq f m0 has an eigenvalue λ of absolute value strictly bigger than 1. Then

for each j ≥ 1, the differential at q of the map f mj
0 : U f0 → U f0 has an eigenvalue with

absolute value λ j . Let γ be a holomorphic disc in U f0 tangent to an associated eigenvector.

Then the family of holomorphic discs f mj
0 ◦ γ : D → U f0 � X , j ≥ 1, contradicts Cauchy

estimates at q .
Case 2. Assume, finally, that the holomorphically convex totally real submanifold Gq of
� has positive dimension. Let b ≥ 1 be such that f b is in the identity component G0 of
G. There is a 1-parameter subgroup (ht )t∈R of G0 such that h1 = f b. Consider the vector

field ξ = ∂

∂t
ht

∣∣∣∣
t=0

on �. It is holomorphic and it does not have any zeros, for if it did, f

would have a periodic point in �. Moreover, since ht is a limit of iterates of f for each t ,
the vector field ξ is f -invariant. We now obtain a contradiction using Lemma 2 with A = S
and H = Gq as soon as we show that ξ is approximable by S -velocities on Gq .

The vector field ξ is holomorphic on�, which is a closed complex submanifold of the Stein
open set �, so ξ extends holomorphically to �. Since � is a neighbourhood of Gq , and Gq
is holomorphically convex in X , we can approximate ξ uniformly on Gq by a holomorphic
vector field θ on X .

In the automorphism case, since X has the density property, θ can be approximated
uniformly on Gq by a vector field η which is the sum of complete holomorphic vector fields
v1, . . . , vm on X . Let ϕ j

t be the flow of v j and let 
t = ϕm
t ◦ · · · ◦ ϕ1

t ∈ Aut X , t ∈ C. Then
∂

∂t

t

∣∣∣∣
t=0

= η on X , so η is an Aut(X)-velocity approximating ξ on Gq .

In the endomorphism case, we let � be the flow of θ , viewed as a holomorphic map
from a neighbourhood of {0} × X in C × X to X . Since X has the Oka property, � may be
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approximated on a neighbourhood of {0}×Gq by a holomorphic map
 : C× X → X with


0 = idX . Then
∂

∂t

t

∣
∣
∣
∣
t=0

is an End(X)-velocity approximating ξ on Gq .

In summary, assuming that f is robustly non-expelling at the non-wandering point p, we
have shown that p is a periodic point of f , so the proof is complete in this case. Note that in
the automorphism case, we have not yet used the assumption that p is tame for f , and in the
endomorphism case, we have not invoked homogeneity of X .
Step 2. Now assume that f is not robustly non-expelling at p, meaning that for every neigh-
bourhood W of f in S , every neighbourhood V of p, and every compact subset K of X ,
there is g ∈ W and a point in V whose g-orbit is not contained in K . In the remainder of the
proof, the assumption that p is non-wandering is not needed.

First consider the automorphism case. If f −1 is robustly non-expelling at p, then we apply
Step 1 to f −1 in place of f , noting that p is a non-wandering point of f −1, and conclude
that p is a periodic point of f −1 and hence of f . So let us assume that neither f nor f −1 is
robustly non-expelling at p.

Let K ⊂ X be compact and holomorphically convex. The hypothesis that neither f nor
f −1 is robustly non-expelling at p gives g1 ∈ Aut X and q1 ∈ X arbitrarily close to f and p,
respectively, such that the forward g1-orbit of q1 is not contained in K , say gm1+1

1 (q1) /∈ K ,
with m1 ≥ 1 as small as possible, and also gives g0 ∈ Aut X and q0 ∈ X arbitrarily close
to f and p, respectively, such that the backward g0-orbit of q0 is not contained in K , say
g−m0−1
0 (q0) /∈ K , with m0 ≥ 1 as small as possible. The assumption that p is tame is

designed to allow us to take q0 = q1 =: q and g0 = g1 =: g.
We can now use [13, Theorem 2] to find h ∈ Aut X as close to the identity as we wish

on K , such that h fixes g−m0(q), g−m0+1(q), . . . , gm1(q), and h(gm1+1(q)) = g−m0−1(q).
Then h ◦ g has q as a periodic point and h ◦ g is as close to g as we wish on g−1(K ).
Since X has the density property, it has automorphisms arbitrarily close to the identity that
interchange p and any sufficiently nearby point (this can be proved in the same way as [2,
Proposition 1], ignoring preservation of volume). To complete the proof of part (a) of the
theorem, we conjugate h ◦ g by such an automorphism.

Now consider the endomorphism case. Take neighbourhoods W of f and V of p and
a holomorphically convex compact subset L of X . By assumption, there are g ∈ W and
q ∈ V such that the g-orbit of q is not contained in L . Say gk(q) ∈ L for 0 ≤ k < m and
gm(q) /∈ L . Let φ : X → X be continuous, equal to the identity on a neighbourhood of L ,
and with φ(gm(q)) = q . Since X is Stein and Oka, φ can be deformed to h ∈ S , arbitrarily
close to the identity on L , such that h(gk(q)) = gk(q) for 1 ≤ k < m and h(gm(q)) = q .
Then h ◦ g is arbitrarily close to g on g−1(L) with q as a periodic point. This concludes the
proof of part (c) of the theorem.

Finally, if X is homogeneous, then X has automorphisms arbitrarily close to the identity
that interchange p and any sufficiently nearby point, and we can complete the proof of part
(b) of the theorem by conjugating h ◦ g by such an automorphism. ��

Proof of Corollary 1 We follow the proof of Theorem 6.1 in [5]. As before, let X be a Stein
manifold with the density property or with the Oka property, and let S be the space of
automorphisms or endomorphisms of X , respectively.

Let {Un : n ≥ 1} be a countable basis for the topology of X . Let Sn be the open set of all
f ∈ S such that f has a hyperbolic cycle intersectingUn . ThenG = ⋂

S \∂Sn is a residual
subset of S . We will show that if f ∈ G, then the set P of hyperbolic periodic points of f
is dense in the set � of non-wandering points of f that, in the automorphism case, are also
tame for f .
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Suppose that f ∈ G and �∩Un �= ∅. It suffices to show that P ∩Un �= ∅. By definition
of G, we have f /∈ ∂Sn . Hence either f ∈ Sn , in which case P ∩ Un �= ∅ is immediate,
or f /∈ Sn . The latter case is ruled out by the closing lemma (Theorem 2). Indeed, by the
closing lemma (for endomorphisms, the weak version suffices), if p ∈ � ∩ Un , then there
are morphisms in S , arbitrarily close to f , with hyperbolic periodic points arbitrarily close
to p. ��

Let us recall a definition from [2]. We call an automorphism expelling if the set of points
with relatively compact forward orbit (this set is Fσ ) has no interior. Note that a chaotic
automorphism is expelling.

Proof of Theorem 3 Let X and ω be as in Theorem 3. As in [2], and closely following the
proof of [2, Theorem 5], we first prove the weaker result that expelling automorphisms are
generic in A. We will argue by contradiction, using Lemma 2, so let us assume that expelling
automorphisms are not generic in A.

Being closed in AutωX , A is a Baire space. By Baire category arguments as in the proof of
[2, Claim 1], there is f ∈ A which is robustly non-expelling in A. Thus there is a compact set
K ⊂ X such that U = UK , f is a nonempty, open, relatively compact, forward f -invariant
subset of X . (The set UK , f was defined above, just before the statement of Lemma 2.) By
[2, Claim 2], U is completely invariant by f .

No point x0 ∈ U can be periodic for f . Indeed, suppose that x0 is periodic for f with
period m. Assume that the differential dx0 f

m admits an eigenvalue with absolute value λ

strictly bigger than 1. Then for each j ≥ 1, the differential at x0 of the map f mj : U → U
admits an eigenvalue with absolute value λ j . Let γ be a holomorphic disc in U tangent to
an associated eigenvector. Then the family of holomorphic discs f mj ◦ γ : D → U � X ,
j ≥ 1, contradicts Cauchy estimates at x0.

Since f preserves the holomorphic volume formω, its holomorphic Jacobian determinant
is 1. Hence, if dx0 f

m has no eigenvalue with absolute value strictly bigger than 1, then all
the eigenvalues of dx0 f

m have absolute value 1. Assume this. Let v be an eigenvector for
dx0 f

m . Let x j = f j (x0) for j ≥ 0. By [2, Theorem 6], there is h ∈ AutωX such that:

(1) h is arbitrarily close to idX .
(2) h(x j ) = x j for j = 0, . . . ,m − 1.
(3) dx0h(v) = αv, with α > 1.
(4) dx j h = id for j = 1, . . . ,m − 1.

From the proof of [2, Theorem 6], it is easy to see that the automorphism h is a finite
composition of time maps of complete divergence-free holomorphic vector fields, and thus
belongs to A. Let f1 = h ◦ f . Then x0 is a periodic point of period m for f1 and v is an
eigenvector of dx0 f

m
1 whose eigenvalue has absolute value strictly greater than 1. If h is close

enough to idX , then f1 is close enough to f that the point (x0, f1) belongs toUK . We obtain
a contradiction as before.

Let �0 be a connected component of U and let � be the union of all the connected
components in the f -cycle of �0. Clearly � is completely f -invariant. Since f is volume-
preserving, � has a finite number of connected components, and since every component is
Kobayashi hyperbolic, it follows that Aut� is a real Lie group. As explained in the proof of
Theorem 2, � can be shown to be Runge.

Let G be the closure in Aut� of the subgroup generated by f . Arguing as in [2, Claims
4–5–6], we see that G is compact and abelian, every orbit of G is totally real, and there is an
orbit Gq which is O(X)-convex. Since Gq is totally real, dimGq ≤ n, and since f admits
no periodic points in U , dimGq ≥ 1.
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The compact set Gq will play the role of H in Lemma 2. The vector field ξ on Gq that
will contradict the lemma is provided by the following lemma.

Lemma 3 On a neighbourhood of Gq, there is a holomorphic vector field ξ , which is f -
invariant, divergence-free, and zero-free, such that the cohomology class of ξ�ω in Hn−1(Gq)

lies in the image of Hn−1(X).

Proof There are two cases. Suppose first that 1 ≤ dimGq ≤ n − 1. Take s ≥ 1 such that
f s lies in the identity component G0 of G. There is a 1-parameter subgroup (gt )t∈R of

G0 such that g1 = f s . Consider the vector field ξ = d

dt
gt

∣
∣
∣
∣
t=0

on �. It is holomorphic,

divergence-free, tangent to the G-orbits in �, and does not have any zeros, for if it did, f
would have a periodic point in �, which is absurd. Moreover, ξ is f -invariant, since all
elements of G commute with f . The restriction of ξ�ω to Gq is the zero form. This is clear
if dimGq ≤ n−2. If dimGq = n−1 and we take vectors v1, . . . , vn−1 in the tangent space
of Gq at x ∈ Gq , then the vectors ξ(x), v1, . . . , vn−1 are linearly dependent because ξ is
tangent to Gq , so ξ�ω(v1, . . . , vn−1) = ω(ξ(x), v1, . . . , vn−1) = 0.

Suppose now that dimGq = n. Then Gq may be identified with a Lie group of the form
T
n×E , where E is a finite abelian group, embedded as a totally real real-analytic submanifold

of X . By the assumption on ω, we may write ω = α ∧ β + dγ , where α is a closed 1-form
on X , β is a closed (n − 1)-form, and γ is an (n − 1)-form (these forms may be taken to be
holomorphic). The form β cannot be exact on Gq . Indeed, suppose that β is exact; then so
is ω. In suitable local holomorphic coordinates z1, . . . , zn on X at each of its points, Gq is
defined by the equations Imz1 = 0, . . . , Imzn = 0, so ω|Gq has no zeros. On the other hand,
since ω|Gq is exact and invariant under the action of f and hence the action of G and hence
the action of Gq on itself, we conclude that ω|Gq = 0, which gives a contradiction.

Since β is not exact on Gq , its cohomology class b is nonzero in Hn−1(Gq). There is a
unique T

n-invariant real-analytic vector field ξ on Gq such that b = [ξ�ω]. We claim that ξ
is not only T

n-invariant, but also f -invariant (or equivalently (Tn × E)-invariant). Note first
that the vector field f∗ξ is T

n-invariant. Indeed, if τ ∈ T
n , then

τ∗( f∗ξ) = f∗(τ∗ξ) = f∗ξ,

since both τ and f act as elements of the abelian group G. Since f ∈ A acts as the identity
on Hn−1(X), restricting to Hn−1(Gq), we obtain f∗b = b, so

[ξ�ω] = b = f∗b = [( f∗ξ)�ω].
From the uniqueness of ξ we conclude that f∗ξ = ξ . Also, ξ is not identically zero on
Gq since b �= 0. From the (Tn × E)-invariance of ξ , it immediately follows that ξ has no
zeros on the orbit Gq . Finally, ξ extends to a holomorphic, f -invariant vector field on a
neighbourhood of Gq . Invariance of ξ and ω on Gq implies that the flow of ξ preserves ω.
The same holds for the extension of ξ , so it is divergence-free. ��

In order to prove the genericity of expelling automorphisms in A, it remains to show that
ξ can be approximated by A-velocities on Gq . Let U1 be a tubular neighbourhood of Gq
on which ξ is defined. Then the cohomology class of ξ�ω in Hn−1(U1) lies in the image of
Hn−1(X). If U2 ⊂ U1 is a Runge neighbourhood of Gq , then the cohomology class of ξ�ω
in Hn−1(U2) lies in the image of Hn−1(X). Hence we can approximate ξ uniformly on Gq
by a divergence-free holomorphic vector field η̃ in X .

Since X has the volume density property, η̃ can be approximated uniformly on H by
a vector field η which is the sum of complete divergence-free holomorphic vector fields
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v1, . . . , vm on X . The vector field η is an A-velocity. Indeed, if we let ϕ
j
t be the flow of v j

and set, for t ∈ C,


t = ϕm
t ◦ · · · ◦ ϕ1

t ∈ A,

then

∂

∂t

t (x)

∣
∣
∣
∣
t=0

= η(x) for all x ∈ X .

We have shown that expelling automorphisms are generic in A. The proof that chaotic
automorphisms are generic in A is exactly the same as the proof of Theorem 1 in [2, Section
5], noting that the automorphism g that was obtained there from Varolin’s [13, Theorem 2]
is a composition of time maps and therefore an element of A. ��

The proof of Theorem 3 yields the following result, similar to [2, Theorem 7], but
now expressing a stronger consequence of the existence of robustly non-expelling volume-
preserving automorphisms.

Proposition 3 Let X be a Stein manifold of dimension n ≥ 2 satisfying the volume density
property with respect to a holomorphic volume form ω. Let A be a closed submonoid of
AutωX such that:

• A contains all time maps of complete divergence-free vector fields on X.
• Every automorphism in A acts as the identity on Hn−1(X).

Suppose that expelling automorphisms are not generic in A.
(a) Then there is an automorphism in A that is robustly non-expelling in A.
(b) Every automorphism f ∈ A that is robustly non-expelling in A has a total orbit whose

closure Z is the union of finitely many, mutually disjoint, n-dimensional, holomorphically
convex, totally real, real-analytic tori in X, such that there is no divergence-free, zero-free
holomorphic vector field ξ on any neighbourhood of Z, such that ξ is f -invariant on Z and
the cohomology class of ξ�ω in Hn−1(Z) lies in the image of Hn−1(X).

We hope that this result may be of help in constructing examples or proving non-existence
of robustly non-expelling automorphisms. We conclude the paper by showing that examples
will not be found among time maps of global flows.

Proposition 4 Let ξ be a complete holomorphic vector field without zeros on a Stein manifold
X. Let �t , t ∈ C, be the time maps of the flow of ξ . Then �t is not robustly non-expelling in
{�t : t ∈ C} ⊂ Aut X for any t ∈ C, that is, �t is expelling for all t in a dense Gδ subset of
C.

Remark 3 (a) As a simple illustration, consider the divergence-free vector field z
∂

∂z
+w

∂

∂w
on C

∗2 with �t (z, w) = (et z, etw). If t is imaginary, �t is not expelling (every orbit is
relatively compact), but if t is not imaginary, �t is expelling.

(b) If X has the volumedensity property and ξ is divergence-free, then,without the assump-
tion that ξ has no zeros, we can prove that �t is not robustly non-expelling in the closure of
the subgroup of finite compositions of time maps of complete divergence-free vector fields
on X , because fixed points of a robustly non-expelling volume-preserving automorphism can
be ruled out as in the proof of Theorem 3.

Proof Suppose that �1, say, is robustly non-expelling in {�t : t ∈ C}, so there are δ > 0, a
nonempty open subset V of X , and a compact subset K of X such that � j

t+1(V ) ⊂ K for all
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j ≥ 0 and |t | < δ. Take p ∈ V . As in the proof of Lemma 2, and with the same notation as
there, on the one hand, there is a constant C such that

∥
∥
∥
∥

∂

∂t
(�t ◦ �1)

j (p)

∣
∣
∣
∣
t=0

∥
∥
∥
∥ ≤ C for all j ≥ 0.

On the other hand,

∂

∂t
(�t ◦ �1)

j (p)

∣
∣
∣
∣
t=0

= jξ(�
j
1(p))

and

‖ξ(�
j
1(p))‖ ≥ inf

K
‖ξ‖ > 0.

��
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