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Abstract
We consider a nonlocal functional JK that may be regarded as a nonlocal version of the total
variation. More precisely, for any measurable function u : Rd → R, we define JK (u) as the
integral of weighted differences of u. The weight is encoded by a positive kernel K , possibly
singular in the origin. We study the minimisation of this energy under prescribed boundary
conditions, and we introduce a notion of calibration suited for this nonlocal problem. Our
first result shows that the existence of a calibration is a sufficient condition for a function to
be a minimiser. As an application of this criterion, we prove that halfspaces are the unique
minimisers of JK in a ball, provided they are admissible competitors. Finally, we outline
how to exploit the optimality of hyperplanes to recover a Γ -convergence result concerning
the scaling limit of JK .

Keywords Nonlocal minimal surfaces · Nonlocal calibrations · Fractional perimeter ·
Γ -convergence
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1 Introduction

We consider the d-dimensional vector spaceRd equipped with the Euclidean inner product ·.
In this note,we show that halfspaces are the unique localminimisers of the nonlocal functional

JK (u;Ω) := 1

2

ˆ
Ω

ˆ
Ω

K (y − x) |u(y) − u(x)| dydx

+
ˆ

Ω

ˆ
Ωc

K (y − x) |u(y) − u(x)| dydx,
(1)

where Ω ⊂ R
d is a Lebesgue measurable set and Ωc is its complement, while u and K are

positive Lebesgue measurable functions on R
d . Further hypotheses on the reference set Ω

and on the kernel K are stated below, see Sect. 1.1.
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We recall that when u = χE is the characteristic function of the Lebesgue measurable set
E ⊂ R

d , that is χE (x) = 1 if x ∈ E and χE (x) = 0 otherwise, then JK can be understood
as a nonlocal perimeter of the set E in Ω . More generally, JK (u;Ω) may be understood as
a nonlocal total variation of u in Ω .

Nonlocal perimeters were firstly introduced by Caffarelli et al. [8] to the purpose of
modelling phase field models that feature long-range space interactions. In their work,
K (x) = |x |−d−s , with s ∈ (0, 1). Subsequently, many authors have extended the analysis in
several directions, and by now the literature has become vast; as a narrow list of papers that are
more closely related to ours, we suggest that the interested reader may consult [3,7,9,12,19]
and the references therein.

Let B be the open unit ball in R
d with centre in the origin, put Sd−1 := ∂B, and let L d

be the d-dimensional Lebesgue measure. Our aim is to prove the following:

Theorem 1 For all n̂ ∈ S
d−1, we define H := {

x ∈ R
d : x · n̂ > 0

}
. Then,

JK (χH ; B) ≤ JK (v; B)

for all L d -measurable v : Rd → [0, 1] such that v(x) = χH (x) for L d -a.e. x ∈ Bc.
When K > 0 L d -a.e., for any other minimiser u satisfying the same constraint, it holds

u(x) = χH (x) L d -a.e. x ∈ R
d .

The proof that we propose relies on a general criterion for minimality, see Theorem 2,
which in turn involves a notion of calibration fitted for the nonlocal problem at stake, see
Definition 1.

Let us outline the structure of this note. In the next subsection, we make the mathematical
framework of this paper precise and we set the notations in use. Section 2 contains the
definition of nonlocal calibration and the Proof of Theorem 1. Lastly, in Sect. 3, as a possible
application of our main result, we discuss its role in the analysis of the scaling limit of the
functional JK .

1.1 Set-up and notations

We remind that we work in R
d , the d-dimensional Euclidean space, endowed with the

inner product · and the associated norm | · |. We let L d and H d−1 be, respectively, the
d-dimensional Lebesgue and the (d − 1)-dimensional Hausdorff measure on R

d . We shall
henceforth omit to specify the measure w.r.t. which a set or a function is measurable, when
the measure is L d or the product L d ⊗ L d on R

d × R
d ; analogously, we shall use the

expression “a.e.” in place of “L d -a.e.” and of “L d ⊗ L d -a.e.”. If u and v are measurable
functions, we shall also write “u = v in E” as a shorthand for “u(x) = v(x) for a.e. x ∈ E”.

In this note,Ω ⊂ R
d is an open and connected reference set such thatL d(Ω) ∈ (0,+∞).

Later on, in Sect. 3, some regularity on the boundary ∂Ω will be required.
For what concerns the kernel K : Rd → [0,+∞], it is not restrictive to assume that is

even, i.e.

K (x) = K (−x) a.e. x ∈ R
d .

Besides, we suppose that ˆ
Rd

(1 ∧ |x |) K (x)dx < +∞, (2)

where if t, s ∈ R, t ∧ s equals the minimum between t and s. This condition entails that
K ∈ L1(B(0, r)c) for all balls B(0, r)with centre in the origin and radius r > 0; in particular,
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K might have a non-L1 singularity in 0. The main example of functions that fulfil (2) is given
by fractional kernels [8,17], i.e. kernels of the form

K (x) = a(x)

|x |d+s
,

where a : Rd → R is an even function such that 0 < λ ≤ a(x) ≤ Λ for some λ,Λ ∈ R and
s ∈ (0, 1).

A faster decay at infinity for K will be needed in Sect. 3, see (15).
We are interested in a variational problem concerning JK , to which we shall informally

refer as Plateau’s problem. Precisely, given a Lebesgue measurable set E0 ⊂ R
d such that

JK (χE0 ;Ω) < +∞, we define the family

F :=
{
v : Rd → [0, 1] : v is measurable and v = χE0 in Ωc

}
, (3)

and we address the minimisation of JK ( · ;Ω) in the class F ; namely, we consider

inf {JK (v;Ω) : v ∈ F } . (4)

Remark 1 (Truncation) For s ∈ R, let us set T (s) := (
(0 ∨ s) ∧ 1

)
(t ∨ s is the maximum

between the real numbers t and s).Observe thatT ◦χE0 = χE0 and JK (T ◦u;Ω) ≤ JK (u;Ω),
so the infimum in (4) equals

inf
{
JK (v;Ω) : v : Rd → R is measurable and v = χE0 in Ωc

}
.

We therefore see that choice of F as the class of competitors is not restrictive.

Remark 2 (The class of competitors is nonempty) Standing our assumptions on Ω , any set E
that has finite perimeter satisfies JK (χE ;Ω) < +∞, see [4,19] We shall recall the definition
of finite perimeter set later in this subsection.

As the functional JK ( · ;Ω) is convex, when Ω has finite measure, existence of solutions
to (4) can be established by the direct method of calculus of variations (see [4]; see also [12]
for an approach via approximation by smooth sets). In particular, as consequence of the
following coarea-type formula:

JK (u;Ω) =
ˆ 1

0
PerK ({u > t} ;Ω)dt, (5)

there always exists a minimiser which is a characteristic function. Indeed, for any u : Rd →
[0, 1], there exists t∗ ∈ R such that PerK ({u > t∗} ;Ω) ≤ JK (u;Ω); otherwise, (5) would
be contradicted. Thus, if u is a minimiser of (4), then χ{u>t∗} is minimising as well.

Formula (5) can be easily validated, see for instance [9,12]. The family of functionals on
L1(Ω) such that a generalised coarea formula holds was firstly introduced by Visintin [22].

It is well known that existence of solutions to the classical counterpart of (4) may be
proved in the framework of geometric measure theory. We remind here some basic facts,
while we refer to the monographs [2,18] for a thorough treatment of the subject.

We say that u : Ω → R is a function of bounded variation inΩ , and wewrite u ∈ BV(Ω),
if u ∈ L1(Ω) and

|Du| (Ω) := sup

{ˆ
Ω

u(x)divζ(x)dx : ζ ∈ C∞
c (Rd ;Rd), ‖ζ‖L∞ ≤ 1

}
< +∞.
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We dub |Du| (Ω) the total variation of u in Ω . We also say that a measurable set E is a set of
finite perimeter in Ω when its characteristic function χE is a function of bounded variation
in Ω , and, in this case, we refer to Per(E;Ω) := |DχE | (Ω) as perimeter of E in Ω . In this
framework, the result that parallels the existence of solutions to (4) reads as follows: there is
a set E with finite perimeter in Ω such that Per(E;Ω) attains

inf
{
|Du| (Ω) : u : Rd → [0, 1] is measurable and u = χE0 in Ωc

}
. (6)

Finite perimeter sets stand as measure-theoretic counterparts of smooth hypersurfaces.
For example, we may equip them with an inner normal: for any x ∈ supp |DχE |, we define

n̂(x) := lim
r→0+

DχE (B(x, r))

|DχE | (B(x, r))
, (7)

where DχE is the distributional gradient of χE and B(x, r) is the open ball of centre x and
radius r > 0. A fundamental result by De Giorgi [13] states that

Per(E;Ω) = H d−1(∂∗E ∩ Ω),

where

∂∗E :=
{
x ∈ R

d : n̂(x) exists and
∣∣n̂(x)

∣∣ = 1
}

is the so-called reduced boundary of E . In addition, for any x ∈ ∂∗E ,
E − x

r
→

{
y ∈ R

d : y · n̂(x) > 0
}

as r → 0+ in L1
loc(R

d). (8)

Once existence of solutions to (6) is on hand, a useful criterion to verify the minimality
of a given competitor is provided by means of calibrations. The notion of calibration may
be expressed in very general terms (see [16,20] and references therein); as far as we are
concerned, we say that a (classical) calibration for the finite perimeter set E is a divergence-
free vector field ζ : Rd → R

d such that |ζ(x)| ≤ 1 a.e. and ζ(x) = n̂(x) for H d−1-a.e.
x ∈ ∂∗E . It can be shown that if the set E admits a calibration, then its perimeter equals
the infimum in (6). The goal of the next section is to establish a nonlocal analogue of this
principle.

2 Minimality via calibrations

In this section, we propose a notion of calibration adapted to the current nonlocal setting,
and we show that the existence of a calibration is a sufficient condition for a function u to
minimise the energy JK w.r.t compact perturbations. Then, we show that halfspaces admit
calibrations, and thus we infer their minimality.

We remind that we assume thatRd ×R
d is equipped with the product measureL d ⊗L d .

Definition 1 Let u : Rd → [0, 1] and ζ : Rd × R
d → R be measurable functions. We say

that ζ is a nonlocal calibration for u if the following hold:

1. |ζ(x, y)| ≤ 1 for a.e. (x, y) ∈ R
d × R

d ;
2. for a.e. x ∈ R

d ,

lim
r→0+

ˆ
B(x,r)c

K (y − x) (ζ(y, x) − ζ(x, y)) dy = 0; (9)

123



Halfspaces minimise nonlocal perimeter: a proof via… 1689

Fig. 1 If ζ is a calibration for the
set E (i.e. for χE ) and x, y are as
in the picture, then ζ(x, y) = −1

E

x

y

n̂

3. for a.e. (x, y) ∈ R
d × R

d such that u(x) �= u(y),

ζ(x, y)(u(y) − u(x)) = |u(y) − u(x)| . (10)

Remark 3 In a very recent, independent work [6], Cabré has proposed a notion of nonlocal
calibration akin to ours. Given an open bounded setΩ ⊂ R

d and a measurable E ⊂ R
d such

that E = { fE > 0} for some measurable fE : Rd → R, he introduces the set functional

CΩ(F) :=
ˆ ˆ

(Ωc×Ωc)c
K (y − x)(χF (y) − χF (x))sign( fE (y) − fE (x))dydx,

where F ⊂ R
d satisfies F ∩ Ωc = E ∩ Ωc, and, in [6, Theorem 2.4], he provides sufficient

conditions for the set E to be a minimiser for Plateau’s problem, as well as conditions to
grant uniqueness. As applications, the author establishes the local minimality of graphs with
0 nonlocal curvature and, very interestingly, re-proves a result in [8] stating that minimisers
have null nonlocal curvature in a viscosity sense.

The next remark collects some comments about the definition above.

Remark 4 Let ζ : Rd × R
d → R be a calibration for u : Rd → [0, 1].

1. It is not restrictive to assume that ζ is antisymmetric: indeed, ζ̃ (x, y) := (ζ(x, y) −
ζ(y, x))/2 is a calibration for u as well.

2. In view of (2), the integral in (9) is convergent for each r > 0. We can regard (9) as a
nonlocal counterpart of the vanishing divergence condition that is prescribed for classical
calibrations. Such nonlocal gradient and divergence operators were introduced in [15],
and they have already been exploited to study nonlocal perimeters by Mazón et al. [19],
where the authors propose a notion of K -calibrable set in relation to a nonlocal Cheeger
energy.

3. Suppose that u = χE for some measurable E ⊂ R
d . By (10), ζ must satisfy

ζ(x, y) =
{

−1 if x ∈ E, y ∈ Ec

1 if x ∈ Ec, y ∈ E .

Heuristically, this means that the calibration gives the sign of the inner product between
the vector y− x and the inner normal to E at the “crossing point”, provided the boundary
of E is sufficiently regular (see Fig. 1). Indeed, if we imagine to displace a particle from
to x and y, ζ equals −1 when the particle exits E , and it equals 1 if the particle enters E .

Our criterion reads as follows:
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1690 V. Pagliari

Theorem 2 Let E0 ⊂ R
d be a measurable set such that JK (χE0 ;Ω) < +∞, and let F be

the family in (3). If for some u ∈ F there exists a calibration ζ , then

JK (u;Ω) ≤ JK (v;Ω) for all v ∈ F .

Moreover, if K > 0 a.e. and ũ ∈ F is another minimiser, then ζ is a calibration for ũ as
well.

Proof By the definitions of JK ( · ;Ω), ζ , and F , for any v ∈ F ,

JK (v;Ω) ≥ a(v) + b1(v) + b0, (11)

where

a(v) := 1

2

ˆ
Ω

ˆ
Ω

K (y − x)ζ(x, y)(v(y) − v(x))dydx,

b1(v) := −
ˆ

Ω

ˆ
Ωc

K (y − x)ζ(x, y)v(x)dydx,

b0 :=
ˆ

Ω

ˆ
Ωc

K (y − x)ζ(x, y)χE0(y)dydx .

Since it is not restrictive to assume that JK (v;Ω) is finite, we can suppose that a(v), b1(v),
and b0 are finite as well.

We claim that it suffices to prove that a(v) = −b1(v) to grant the minimality of u. Indeed,
a(v) = −b1(v) yields

JK (v;Ω) ≥ b0 for all v ∈ F , (12)

and we remark that the lower bound b0 is attained by u, because equality holds in (11) for
this function. Therefore, u is a minimiser.

Now, we prove that a(v) = −b1(v) for all v ∈ F . Recalling that we can assume ζ to be
antisymmetric, we have

a(v) = −
ˆ

Ω

ˆ
Ω

K (y − x)ζ(x, y)v(x)dydx .

Also, (9) yields

0 = −2 lim
r→0+

ˆ
B(x,r)c

K (y − x)ζ(x, y)dy

= −2 lim
r→0+

ˆ
B(x,r)c∩Ω

K (y − x)ζ(x, y)dy − 2
ˆ

Ωc
K (y − x)ζ(x, y)dy,

whence

a(v) = − lim
r→0+

ˆ
Ω

ˆ
B(x,r)c∩Ω

K (y − x)ζ(x, y)v(x)dydx = −b1(v).

Next, let ũ ∈ F be another minimiser of JK ( · ;Ω), that is JK (ũ;Ω) = b0. Our purpose
is proving that for a.e. (x, y) ∈ R

d × R
d such that ũ(x) �= ũ(y) it holds

ζ(x, y) (ũ(y) − ũ(x)) = |ũ(y) − ũ(x)| . (13)

First of all, note the equality holds for a.e. (x, y) ∈ Ωc × Ωc, because u = ũ in Ωc.
Furthermore, from (11) we have

b0 = JK (ũ;Ω) ≥ a(ũ) + b1(ũ) + b0 = b0,
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thus
1

2

ˆ
Ω

ˆ
Ω

K (y − x)
[|ũ(y) − ũ(x)| − ζ(x, y)(ũ(y) − ũ(x))

]
dydx

+
ˆ

Ω

ˆ
Ωc

K (y − x)
[|ũ(y) − ũ(x)| − ζ(x, y)(ũ(y) − ũ(x))

]
dydx = 0.

The integrand appearing in the previous identity is positive; therefore, when K > 0, we
deduce that (13) is satisfied for a.e. x ∈ Ω and y ∈ R

d . Eventually, in the case x ∈ Ωc and
y ∈ Ω , we achieve the conclusion by exploiting the antisymmetry of ζ . ��

We take advantage of the previous theorem to prove that halfspaces are the unique local
minimisers of JK ( · ; B). This property has already been shown for fractional kernels in [3,8]
by means of a reflection argument, which in fact turns out to be effective whenever K is
radial and strictly decreasing [4]. Here, we are able to deal with the case when the kernel is
neither monotone nor radial.

We start with the following lemma, whose proof is a simple verification:

Lemma 1 Given n̂ ∈ S
d−1, let us set

ζ(x, y) := sign((y − x) · n̂) and H :=
{
x ∈ R

d : x · n̂ > 0
}

.

Then, ζ is a calibration for χH .

Now, we prove Theorem 1.

Proof of Theorem 1 In view of Theorem 2 and of the lemma above, we deduce that χH is a
minimiser of the problem under consideration. Hence, we are left to prove uniqueness.

Let u : Rd → [0, 1] be another minimiser. The second assertion in Theorem 2 grants that
ζ(x, y) := sign((y − x) · n̂) is a calibration for u as well, so we get

sign((y − x) · n̂)(u(y) − u(x)) = |u(y) − u(x)| for a.e. x, y ∈ R
d ,

whence
u(x) ≤ u(y) for a.e. x, y ∈ R

d such that x · n̂ < y · n̂. (14)

Next, we focus on the superlevel sets of u: for t ∈ (0, 1), we define

Et := {x : u(x) > t} ,

andwe observe that if (x, y) ∈ Et ×Ec
t , it must be x ·n̂ ≥ y ·n̂ for a.e. x ∈ Et and a.e. y ∈ Ec

t ;
otherwise, by (14) we would have u(x) ≤ u(y) on some nonnegligible subsets of Et and Ec

t .
Therefore, there exists λt ∈ R such that (up to negligible sets) Et ⊂ {

x : x · n̂ ≥ λt
}
and

Ec
t ⊂ {

y : y · n̂ ≤ λt
}
, whence L d(Et � {

x : x · n̂ ≥ λt
}
) = 0 for all t ∈ (0, 1). Recalling

that it holds u = χH in Bc, we infer that λt = 0 and this gets

L d(Et�H) = 0 for all t ∈ (0, 1).

Summing up, we proved that u : Rd → [0, 1] is a function such that, for all t ∈ (0, 1),
the superlevel set Et coincides with the halfspace H , up to a negligible set. To reach the
conclusion, we let {tk}k∈N ⊂ (0, 1) be a sequence that converges to 0 when k → +∞.
Because it holds

{x : u(x) = 0} =
⋂

k∈N
Ec
tk and {x : u(x) = 1} =

⋂

k∈N
E1−tk ,

we see thatL d({x : u(x) = 0}�Hc) = 0 andL d({x : u(x) = 1}�H) = 0. Thus, u = χH

in R
d . ��

123



1692 V. Pagliari

3 �-limit of the rescaled energy

In this section, we outline how to exploit Theorem 1 to study the limiting behaviour of
certain rescalings of the energy JK . In precise terms, we are interested in the Γ -convergence
as ε → 0+ of

{
JKε ( · ;Ω)

}
with respect to the L1

loc(R
d)-convergence, where for ε > 0, we

let

Kε(x) := 1

εd
K

( x
ε

)
.

In [4], the analysis has already been carried out by Berendsen and the author of this note
when K is radial and strictly decreasing, but, as we concisely explain in the remainder of this
note, the same arguments may be conveniently adapted to the current more general setting.
We shall not deal with all the computations in depth, because our main interest here is how to
take advantage of the minimality of halfspaces. This will be apparent in Lemma 2. We refer
to the works in the bibliography for the technical details.

For the sake of completeness, we recall the following definition:

Definition 2 (Γ -convergence) Let X be a set endowed with a notion of convergence, and for
ε > 0, let fε : X → [−∞,+∞] be a function. We say that the family { fε} Γ -converges as
ε → 0+ to the function f0 : X → [−∞,+∞] w.r.t. the convergence in X if

1. for any x0 ∈ X and for any {xε} ⊂ X that converges to x0, it holds

f0(x0) ≤ lim inf
ε→0

fε(xε);

2. for any x0 ∈ X there exists {xε} ⊂ X that converges to x0 with the property that

lim sup
ε→0

fε(xε) ≤ f0(x0).

When u : Rd → [0, 1] is a measurable function, let us define

J 1ε (u;Ω) := 1

2

ˆ
Ω

ˆ
Ω

Kε(y − x) |u(y) − u(x)| dydx,

J 2ε (u;Ω) :=
ˆ

Ω

ˆ
Ωc

Kε(y − x) |u(y) − u(x)| dydx,
Jε(u;Ω) := J 1ε (u;Ω) + J 2ε (u;Ω).

Observe that, according to the notation in (1), Jε = JKε .We also introduce the limit functional

J0(u;Ω) :=
{

1
2

´
Rd K (z)

(´
Ω

|z · Du|) dz if u ∈ BV(Ω),

+∞ otherwise.

Our goal is proving the following:

Theorem 3 (Γ -convergence of the rescaled energy) LetΩ ⊂ R
d be an open, connected, and

bounded set with Lipschitz boundary. Let also K : Rd → (0,+∞) be an even function such
that ˆ

Rd
K (x) |x | dx < +∞. (15)

Then, for any measurable u : Rd → [0, 1] the following hold:
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1. For any family {uε} that converges to u in L1
loc(R

d), we have

J0(u;Ω) ≤ lim inf
ε→0+

1

ε
J 1ε (uε;Ω).

2. There exists a family {uε} that converges to u in L1
loc(R

d) such that

lim sup
ε→0+

1

ε
Jε(uε;Ω) ≤ J0(u;Ω).

We remark that, being J 2ε ( · ;Ω) positive, Theorem 3 entails the Γ -convergence of
{Jε( · ;Ω)} to J0( · ;Ω) w.r.t. the L1

loc(R
d)-convergence. Also, note that (15) prescribes a

condition that is more stringent than (2).
Several results about the asymptotics of functionals akin to Jε have been considered in

the literature [1,5,13,19,21]; in particular, we wish to mention the following one by Ponce:

Theorem 4 (Corollary 2 and Theorem 8 in [21]) Let Ω ⊂ R
d be an open bounded set with

Lipschitz boundary and let u ∈ BV(Ω). If (15) holds, then

lim
ε→0+

1

ε
J 1ε (u;Ω) = J0(u;Ω) (16)

Moreover, J0( · ;Ω) is the Γ -limit as ε → 0+ of
{
ε−1 Jε( · ;Ω)

}
w.r.t. the L1(Ω)-topology.

We discuss separately the proofs of statements 1 and 2 in Theorem 3. Preliminarily, we
remark that we only need to study the Γ -convergence of Jε regarded as a functional on
measurable sets, namely, for E ⊂ R

d measurable, we consider

J iε (E;Ω) := J iε (χE ;Ω) for i = 1, 2,

Jε(E;Ω) := Jε(χE ;Ω),

and the limit functional

J0(E;Ω) := J0(χE ;Ω).

Indeed, by appealing to results byChambolle et al. [10, Propositions 3.4 and 3.5], it is possible
to recover the Γ -convergence of Jε as a functional on measurable functions from the analysis
of the restrictions; this is mainly due to convexity and to the validity of coarea formulas.

So, as for the Γ -upper limit inequality, we need to show that, for any given measurable
E ⊂ R

d , there exists a family {Eε} that converges to E in L1
loc(R

d) as ε → 0+ such that

lim sup
ε→0+

1

ε
J 1ε (Eε;Ω) ≤ J0(E;Ω).

Hereafter, by saying that the family of sets {Eε} converges to E in L1
loc(R

d), we mean that
χEε → χE in L1

loc(R
d).

The desired inequality may be achieved as in [4] by reasoning on a class of sets D which
is dense w.r.t. the energy J0 among all measurable sets. We omit the details, since Theorem 1
plays no role in this step.

Now we turn to the proof of the Γ -lower limit inequality. Our task is proving that, for
any given measurable E ⊂ R

d and for any family {Eε} that converges to E in L1
loc(R

d) as
ε → 0+, it holds

J0(E;Ω) ≤ lim inf
ε→0+

1

ε
J 1ε (Eε;Ω). (17)

123



1694 V. Pagliari

In [21], the approach to the Γ -lower limit inequality relies on representation formulas for
the relaxations of a certain class of integral functionals. Here, following [4], we propose a
strategy which combines pointwise limit (16) and Theorem 1.

Observe that we can write

J0(E;Ω) :=
{´

∂∗E∩Ω
σK (n̂(x))dH d−1(x) if E is a finite perimeter set in Ω,

+∞ otherwise,

where n̂ : ∂∗E → S
d−1 is themeasure-theoretic inner normal of E (recall (7)) andσK : Rd →

[0,+∞) is the anisotropic norm

σK (p) := 1

2

ˆ
Rd

K (z) |z · p| dz, for p ∈ R
d . (18)

Remark 5 (The radial case [4]) When K is radial, J0 coincides with De Giorgi’s perimeter,
up to a multiplicative constant that depends on K and on d . Indeed, if K (x) = K̄ (|x |) for
some K̄ : [0,+∞) → [0,+∞), for any p̂ ∈ S

d−1, we have that

σK ( p̂) = 1

2

(ˆ +∞

0
K̄ (r)rddr

)ˆ
Sd−1

∣∣e · p̂∣∣ dH d−1(e)

= 1

2

(ˆ
Rd

K (x) |x | dx
) 

Sd−1
|e · ed | dH d−1(e),

where ed := (0, . . . , 0, 1) is the last element of the canonical basis.

By a blow-up argument à la Fonseca-Müller [14] that has already been applied to similar
problems [1,3], it turns out that Γ -lower limit inequality (17) holds as soon as one char-
acterises the norm σK in terms of the evaluation on halfspaces of the Γ -inferior limit of
ε−1 Jε( · ; B). Precisely, we need to validate the following:

Lemma 2 For any p̂ ∈ S
d−1,

σK ( p̂) = inf

{
lim inf
ε→0+

1

ωd−1ε
J 1ε (Eε; B) : Eε → Hp̂ in L1(B)

}
,

where ωd−1 is the (d − 1)-dimensional Lebesgue measure of the unit ball in R
d−1, and

Hp̂ := {
x ∈ R

d : x · p̂ > 0
}
.

It is in the proof of this lemma that Theorem 1 comes into play.

Proof of Lemma 2 For p̂ ∈ S
d−1, let us set

σ ′
K ( p̂) := inf

{
lim inf
ε→0+

1

ωd−1ε
J 1ε (Eε; B) : Eε → Hp̂ in L1(B)

}
. (19)

By (16), we know that

σK ( p̂) = lim
ε→0+

1

ωd−1ε
J 1ε (Hp̂; B), (20)

hence σK ( p̂) ≥ σ ′
K ( p̂).

To the purpose of proving the reverse inequality, we introduce a third function σ ′′
K and we

show that σK ≤ σ ′′
K ≤ σ ′

K . So, for p̂ ∈ S
d−1 and δ ∈ (0, 1), we let

σ ′′
K ( p̂) := inf

{
lim inf
ε→0+

1

ωd−1ε
J 1ε (Eε; B) : Eε → Hp̂ in L1(B) and Eε�Hp̂ ⊂ B1−δ

}
,
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where B1−δ := B(0, 1−δ) and Eε�Hp̂ is the symmetric difference between Eε and Hp̂ . We
decide not to use a notation that exhibits the dependence of σ ′′

K on the parameter δ because
a posteriori the values of σ ′′

K are not influenced by it.
We firstly show that σK ≤ σ ′′

K . Let Eε be a family of measurable subsets of Rd such that
Eε ∩ Bc = Hp̂ ∩ Bc and that Eε → Hp̂ in L1(B). By Theorem 1, we have that

0 ≤ Jε(Eε; B) − Jε(Hp̂; B)

= J 1ε (Eε; B) − J 1ε (Hp̂; B) − [
J 2ε (Eε; B) − J 2ε (Hp̂; B)

]
.

If we also assume that Eε�Hp̂ ⊂ B1−δ , we see that

J 2ε (Eε; B) − J 2ε (Hp̂; B)

=
ˆ
Eε∩B1−δ

ˆ
Hp̂∩Bc

Kε(y − x)dydx −
ˆ
Hp̂∩B1−δ

ˆ
Hp̂∩Bc

Kε(y − x)dydx

and hence, noticing that |y − x | ≥ δ if x ∈ Bc and y ∈ B1−δ ,

∣∣J 2ε (Eε; B) − J 2ε (Hp̂; B)
∣∣ ≤ 2

δ

ˆ
Eε�Hp̂

ˆ
Bc

Kε(y − x)
|y − x |

ε
dydx

≤ 2

δ
L d(Eε�Hp̂)

ˆ
Rd

K (z) |z| dz.

By our choice of {Eε} and (15), this yields

lim
ε→0+

∣∣J 2ε (Eε; B) − J 2ε (Hp̂; B)
∣∣ = 0,

whence

0 ≤ lim inf
ε→0+

[
Jε(Eε; B) − Jε(Hp̂; B)

]

= lim inf
ε→0+

[
J 1ε (Eε; B) − J 1ε (Hp̂; B)

]
.

Recalling (20) and the definition of σ ′′
K , we deduce σK ( p̂) ≤ σ ′′

K ( p̂).
To conclude, we are left to show that σ ′′

K ≤ σ ′
K . This may be done as in the proof of [4,

Lemma 3.11] by means of a suitable “gluing” lemma (see also [3]). ��
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