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Abstract
We deal with the following Cauchy problem for a Schrödinger equation:

Dtu − Δu +
n∑

j=1

a j (t, x)Dx j u + b(t, x)u = 0, u(0, x) = g(x).

We assume a decay condition of type |x |−σ , σ ∈ (0, 1), on the imaginary part of the coeffi-
cients a j of the convection term for large values of |x |. This condition is known to produce
a unique solution with Gevrey regularity of index s ≥ 1 and loss of an infinite number of
derivatives with respect to the data for every s ≤ 1

1−σ
. In this paper, we consider the case

s > 1
1−σ

, where, in general, Gevrey ill-posedness holds. We explain how the space where a
unique solution exists depends on the decay and regularity of an initial data in Hm , m ≥ 0.
As a by-product, we show that a decay condition on data in Hm produces a solution with
(at least locally) the same regularity as the data, but with an expected different behavior as
|x | → ∞.

Keywords Schrödinger equation · Cauchy problem · Well-posedness · Regularity of
solutions · Pseudo-differential operators

Mathematics Subject Classification 35Q41 · 35B65

1 Introduction andmain results

In this paper, we consider the Cauchy problem
{
Su = 0, (t, x) ∈ [0, T ] × R

n,

u(0, x) = g(x), x ∈ R
n,
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for the operator

S = Dt − Δ +
n∑

j=1

a j (t, x)Dx j + b(t, x), (2)

where a j , b ∈ C([0, T ];B∞(Rn)). Moreover, we suppose the condition

|�a j (t, x)| ≤ C

〈x〉σ with σ ∈ (0, 1), (t, x) ∈ [0, T ] × R
n, (3)

where we use the notation 〈·〉2 = 1+ | · |2. Mainly, we are looking for well-posedness of the
Cauchy problem (1)–(3) in suitable spaces of functions of Gevrey regularity. We say that (1)
is globally in time well-posed in the couple of spaces of functions (or distributions) (X , Y )

if for every choice of g ∈ X there exists a unique solution u ∈ C([0, T ], Y ) and for every
t ∈ [0, T ] we have ‖u(t, ·)‖Y ≤ Ct‖g‖X for a function Ct ∈ C[0, T ]; we are going to say
that (1) is locally in time well-posed in (X , Y ) if there exists T ∗ ≤ T such that there exists a
unique solution u ∈ C([0, T ∗], Y ) and for every t ∈ [0, T ∗] we have ‖u(t, ·)‖Y ≤ Ct‖g‖X
for a function Ct ∈ C[0, T ∗].

It is well known, see [7], that the condition (3) allows to prove that if the coefficients of S
belong to the Gevrey space Gs0 , s0 < 1

1−σ
, then the Cauchy problem (1) is globally in time

well-posed in Gevrey spaces Gs for s0 ≤ s < 1
1−σ

. In the critical case s = 1
1−σ

, one has
local in time well-posedness of the Cauchy problem (1), only. The Cauchy problem (1) is
not well-posed, neither in H∞ nor in Gs for s > 1

1−σ
. Here, we refer to the necessity results

from [4] and [3].
We recall that, given s > 1, the Gevrey class Gs(Rn) consists of C∞ functions f = f (x)

such that

|∂α
x f (x)| ≤ CA|α||α|!s for all x ∈ R

n, α ∈ N
n

and with positive constants A and C . Suitable subclasses of Gs(Rn) consist of functions
f ∈ L2(Rn) such that eρ〈D〉1/s f ∈ L2(Rn) for some ρ > 0. In [7] the authors show that
if g ∈ Hm is such that eρ〈D〉1/s g ∈ Hm for some m ∈ R and ρ > 0, then the Cauchy
problem admits a unique solution u such that eτ 〈D〉1/s u ∈ Hm at any t ∈ [0, T ] for a suitable
τ = τ(t) ≤ ρ. Since eτ 〈D〉1/s is a pseudo-differential operator of infinite order, the solution
presents, with respect to the data, a loss of regularity, usually referred to as “loss of (an infinite
number of) derivatives” in the mathematical literature.

The aim of the present paper is to give an answer to the following two questions:

Q1 Let us suppose that the data g belongs to a weighted Hm space with m ≥ 0. Can we
obtain at least a local (in time) Sobolev solution which is valued in an, in general,
other weighted Hm space? If yes, then the regularities of the solution and the data with
respect to the spatial variables coincide. So, it turns out that the solution is valued in
Hm
loc with respect to x .

Q2 What about well-posedness results in spaces with Gevrey regularity Gs with s > 1
1−σ

?

As far as the authors know, the smoothing effect coming from decay of Cauchy data has been
studied in the literature but not from the point of view of well-posedness, at least in question
Q2. Some results concerning question Q1 are available under some stronger conditions with
respect to (3). We describe hereafter briefly the state-of-the-art.

– In the particular case a j ≡ 0 for j = 1, . . . , n, in [5] the author proved that if g belongs
to the weighted L2 space with the weight 〈x〉k , then there exists a uniquely determined
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The interplay between decay of the data and regularity of the… 1651

Sobolev solution u with a better regularity in x , but it belongs to a weighted Sobolev
space with weight 〈x〉−k instead. More precisely,

〈x〉kg ∈ H0 with k > 0 implies 〈x〉−ku(t, ·) ∈ Hk for all t > 0.

The Hk norm of 〈x〉−ku(t, ·) blows up as t−k for t → 0+. We have a smoothing effect
but no well-posedness.

– In [6] the author considered the case 1 ≤ s < 1
1−σ

and proved that, under assumption
(3) and the additional decay assumption

|∂α
x a j (t, x)| ≤ C(ρ〈x〉)−|α||α|!s,

one has

ek〈x〉1−σ

g ∈ H0 with k > 0 implies

|∂α
x u(t, ·)| ≤ C(ρ|t |)−|α|α!sec〈x〉1−σ

for all t > 0

with a suitable positive constant c. The Gevrey semi-norms of the classical solutions
blow up as t → 0+. The smoothing effect is not due to any well-posedness result. We
notice also that a decay behavior is assumed for all spatial derivatives of the coefficients.

– In [1] the authors proved that, in the framework of the SG calculus (so with coefficients
a j , b possibly admitting an algebraic growth with respect to x) and if (3) holds with
σ = 1, the assumption that the data g belongs to a Sobolev space with weight 〈x〉k gives
a unique Sobolev solution with the same regularity as the data, but from another weighted
space. More precisely,1

〈x〉kg ∈ Hm, m ≥ 0, implies 〈x〉k−cu(t, ·) ∈ Hm for all t ∈ [0, T ]
with a suitable c > 0 with bounded norm with respect to t ∈ [0, T ]. We recall that the
SG (Symbol Global) calculus requires symbol like behavior of the coefficients also with
respect to the spatial variables.

– Apartial answer to questionQ1has been given, again in the framework of the SGcalculus,
as a by-product of [2]. Under the assumption

a j , b ∈ C
([0, T ],Gs0

)
, s0 <

1

1 − σ
and

∣∣∂β
x �a j (t, x)

∣∣ ≤ C |β|+1β!s0〈x〉−σ−|β|

we have

ek〈x〉1−σ

g ∈ Hm, m ≥ 0, k > 0 implies

e(k−c)〈x〉 1s u(t, ·) ∈ Hm for all t ∈ [0, T ]
with a suitable c > 0 and for every s ∈ [s0, 1

1−σ
) with bounded norm with respect to

t ∈ [0, T ]. This means that, the description of data from a weighted Sobolev space with
a suitable exponential weight gives a uniquely determined Sobolev solution valued in the
same Sobolev space but with either a slower increasing exponential weight (if c < k) or
an exponentially decreasing weight (if c > k) as |x | → ∞.

In the present paper, we are going to state and prove our main result, Theorem 1, which
gives an answer to question Q2 and provides, as a corollary, the answer to question Q1, see
Corollary 1 here below.

To state our main result we introduce the following function spaces.

1 We restrict ourselves to Sobolev solutions with respect to the spatial variables. For this reason we explain
the result for m ≥ 0. Several steps of our approach can be generalized to m ∈ R, too.
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1652 A. Ascanelli et al.

Definition 1 For given m ≥ 0, σ ∈ (0, 1), s1, s2 ∈ ( 1
1−σ

,∞], A > 0, ρ > 0, we define

As1,s2
A,ρ (Hm) :=

{
g ∈ Hm : eA〈x〉1−σ− 1

s2 〈Dx 〉
1
s2
h +ρ〈Dx 〉

1
s1
h g ∈ Hm

}
, (4)

and the projective and inductive limit of these spaces, respectively, by

As1,s2(H
m) =

⋂

A,ρ>0

As1,s2
A,ρ (Hm) and As1,s2(Hm) =

⋃

A,ρ>0

As1,s2
A,ρ (Hm).

Moreover, for given s1 > 1 we define for every s2 ∈ [s1,∞], A > 0, ρ ≥ 0 the space

Bs1,s2
A,ρ (Hm) :=

{
g ∈ (As1,s2(H

m))∗ : e−A〈x〉1−σ− 1
s2 〈Dx 〉

1
s2
h +ρ〈Dx 〉

1
s1
h g ∈ Hm

}
. (5)

Here, (As1,s2(H
m))∗ denotes the dual space to As1,s2(H

m). Finally, we define

Bs1,s2(Hm) =
⋃

A>0,ρ≥0

Bs1,s2
A,ρ (Hm).

Remark 1 Notice that in the limit case 1
s1

= 1
s2

= 0 we get

A∞,∞(Hm) =
{
g ∈ Hm : eA〈x〉1−σ

g ∈ Hm for some A > 0
}
,

a weighted space of Hm−functions with an exponentially increasing weight at infinity, and

B∞,∞(Hm) = {g ∈ Hm
loc : e−A〈x〉1−σ

g ∈ Hm for some A > 0},
a weighted space of Hm−functions with an exponentially decaying weight at infinity.

We now present the main result of this paper, which gives an answer to question Q2.

Theorem 1 Assume that the data g ∈ As1,s2
A,ρ (Hm) for suitable m ≥ 0, σ ∈ (0, 1), s1, s2 ∈

( 1
1−σ

,∞], s2 ≥ s1, and A, ρ > 0. Then the Cauchy problem

Dtu − Δu +
n∑

j=1

a j (t, x)Dx j u + b(t, x)u = 0, u(0, x) = g(x),

with a j , b ∈ C([0, T ],G 1
1−σ ), where the coefficients a j satisfy (3) for j = 1, . . . , n, admits

a uniquely determined local (in time) Sobolev solution u such that for every t ∈ [0, T ∗],
T ∗ ≤ T small enough, we have

u(t, ·) ∈
⋂

1
s ∈[0, 1

s1
]
Bs1,s(Hm).

Moreover, for every s ≥ s1, there exists a function Ct continuous on [0, T ∗] such that for
every t ∈ [0, T ∗] the following energy estimate holds:

‖u(t, ·)‖Bs1,s
A,M(T−t)(H

m )
≤ Ct‖g‖As1,s2

A,ρ (Hm )
. (6)

We remark that the estimate (6) gives local in time well-posedness of (1) in the couple of
spaces (As1,s2 ,Bs1,s) for every s ≥ s1, s2 ≥ s1 and s1, s2 ∈ ( 1

1−σ
,∞].

If we choose in (4), (5) the parameters s1, s2 formally as 1
s1

= 1
s2

= 0, then we obtain
from Theorem 1 the following statement.
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Corollary 1 If the data g ∈ Hm, m ≥ 0 is such that eA〈x〉1−σ
g ∈ Hm for a positive constant

A, then the Cauchy problem

Dtu − Δu +
n∑

j=1

a j (t, x)Dx j u + b(t, x)u = 0, u(0, x) = g(x),

with a j , b ∈ C([0, T ],G 1
1−σ ), where the coefficients a j satisfy (3) for j = 1, . . . , n, admits

a uniquely determined local (in time) Sobolev solution u such that for every t ∈ [0, T ∗],
T ∗ ≤ T small enough, we have e−A′〈x〉1−σ

u(t, ·) ∈ Hm, where A′ > 0 is a suitable constant.
Consequently, u(t, ·) belongs to Hm

loc(R
n). Moreover, there exists a positive constant M and

a function Ct continuous on [0, T ∗] such that for every t ∈ [0, T ∗]
‖e(A−4M)〈x〉1−σ

u(t, ·)‖Hm ≤ Ct‖eA〈x〉1−σ

g‖Hm ,

i.e., the Cauchy problem is locally in time well-posed in weighted Sobolev spaces.

The result of Corollary 1, which is an answer to question Q1, implies that if the data g belongs
to a Sobolev space Hm with an exponentially increasing weight, then the Sobolev solution is
still valued in the same Sobolev space with an exponentially decreasing weight for |x | → ∞.

Remark 2 We remark that, in comparison with [2] in the case of uniformly bounded in x
coefficients and in comparison with [6], we obtain by Corollary 1 a Sobolev solution valued
in Hm

loc without any assumption on the spatial derivatives of�a j . Furthermore, in comparison
with [6], where a pointwise estimate for u is given with a time-dependent constant tending
to infinity for t → +0, we have to mention that here, since we do not look for smoothing,
we obtain for the solution u an energy estimate on the whole interval [0, T ∗].

To conclude this section, we point out that in the particular case s2 = ∞ our main result
reads as follows:

Corollary 2 Assume that the data g ∈ Hm, m ≥ 0, is such that

eA〈x〉1−σ +ρ〈Dx 〉
1
s1
h g ∈ Hm

for given σ ∈ (0, 1), s1 ∈ ( 1
1−σ

,∞], A, ρ > 0. Then, the Cauchy problem

Dtu − Δu +
n∑

j=1

a j (t, x)Dx j u + b(t, x)u = 0, u(0, x) = g(x),

with a j , b ∈ C([0, T ],G 1
1−σ ), a j satisfying (3) for j = 1, . . . , n, admits a uniquely deter-

mined local (in time) Sobolev solution u such that for every t ∈ [0, T ∗], T ∗ ≤ T small
enough, we have that

u(t, ·) ∈
⋂

1
s ∈[0, 1

s1
]
Bs1,s(Hm).

In particular, taking s = ∞ we get

e−A〈x〉1−σ +ρ′〈Dx 〉
1
s1
h u(t, ·) ∈ Hm
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for a suitable positive ρ′. Moreover, there exists a function Ct continuous on [0, T ∗] such
that for every t ∈ [0, T ∗] the following estimate holds:

‖e−A〈x〉1−σ +ρ′〈Dx 〉
1
s1
h u(t, ·)‖Hm ≤ Ct‖eA〈x〉1−σ +ρ〈Dx 〉

1
s1
h g‖Hm . (7)

Remark 3 We remark that Corollary 2 states that if we start with a data having Gevrey-type
regularity of exponent s1 and belonging to a weighted space with exponentially increasing
weight eA〈x〉1−σ

, we find a unique solution with the same Gevrey regularity belonging to a
weighted space with exponentially decreasing weight e−A〈x〉1−σ

for every s1 > 1/(1 − σ).
This result is consistent with the one obtained in [2] for the critical case s = 1

1−σ
. We can so

overcome the critical index 1/(1 − σ) for Gs well- posedness by allowing a suitable loss of
asymptotic behavior as |x | → ∞ in the used weights.

Remark 4 We believe that this loss of asymptotic behavior is sharp in the sense that a smaller
loss of asymptotic behaviormay lead to a non-well-posedCauchy problem in suitableGevrey
classes. Indeed, in a forthcoming paper, we aim to construct a Cauchy data g ∈ Hm such
that

eA〈x〉1−α+ρ〈D〉
1
s1
h g ∈ Hm for some σ < α < 1

but for every s1 ∈ ( 1
1−σ

, 1
1−α

] we have e−A′〈x〉1−α+ρ′〈D〉
1
s1
h u(t, ·) /∈ Hm .

A result of this type would confirm that the “extreme” loss of behavior (from the weight
eA〈x〉1−σ

to the weight eA〈x〉1−σ
) that we observe in Corollary 2 (and, of course, in Theorem

1) is necessary to gain, by assuming a decay on the data, well-posedness in Gs also for
s > 1/(1 − σ).

The strategy of the proof of Theorem 1 (and, with minor changes, of the two corollaries) is
as follows:

– We perform the change of variable

v(t, x) = eΛ(t, x, D)u(t, x),

where eΛ = op(eΛ(t,x,ξ)) is a pseudo-differential operator of infinite order with symbol
eΛ(t,x,ξ), constructed in a way such that the Cauchy problem SΛv = 0, v(0) = gΛ is
equivalent to (1). It has data gΛ ∈ Hm and SΛ has the structure

SΛ = Dt − �x +
n∑

j=1

{
a j (t, x)Dx j + 2iop((∂x j Λ)ξ j )

}

+ iop(∂tΛ) + r1−σ (t, x, D) + r0(t, x, D)

=: Dt − �x − i AΛ(t, x, D), (8)

where r1−σ and r0 are pseudo-differential operators of order 1 − σ and r0, respectively.
– By a correct choice of Λ, while writing an energy estimate for v it is possible to use the

contribution coming from
∑n

j=1 2iop((∂x j Λ)ξ j ) to compensate the contribution coming
from

∑n
j=1 a j (t, x)Dx j and to use the contribution coming from iop(∂tΛ) to compensate

the contribution coming from r1−σ , obtaining that

2�〈AΛ(t, x, D)v, v〉 ≥ 0, (9)

that is, the Cauchy problem for v is well-posed in Sobolev spaces.

123



The interplay between decay of the data and regularity of the… 1655

– The inverse change of variable u = (eΛ)−1v gives the solution to the original Cauchy
problem.

The construction of the correct function Λ is the crux of the matter, and it is quite technical.
Indeed, several features are required for Λ and the transformation needs obviously to be
invertible. The symbol Λ will be of the form

Λ(t, x, ξ) = Λ̃(t, x, ξ) + M(T − t)〈ξ 〉
1
s1
h (10)

with M > 0 large, to be chosen at the end of the proof to get (9), where the second term in
(10) rules the Gevrey regularity of the solution and the first one, which rules the behavior
at infinity, is constructed in such a way that eΛ̃ is invertible (for h ≥ 1 large enough and
T ≤ T ∗ small enough). Moreover, it satisfies the crucial inequality

∂tΛ(t, x, ξ) + 2
n∑

j=1

ξ j∂x j Λ(t, x, ξ) ≤ −M〈x〉−σ 〈ξ 〉h .

This inequality will allow us to use the new terms appearing in SΛ for the compensation
procedure described above. Notice that the restriction to a subinterval [0, T ∗] is needed for
the invertibility of eΛ̃. Finally, the symbol Λ̃ that we construct has a special behavior of type

〈x〉1−σ− 1
s 〈ξ 〉

1
s
h for every 0 ≤ 1

s ≤ 1− σ . This particular behavior is very useful in the proof

of our theorems; on one hand we can think that Λ̃ behaves like 〈ξ 〉1−σ
h when we perform

the change of variable (so we can apply the well-established theory for symbols uniformly
bounded in space to compute the conjugation eΛ̃SΛ(eΛ̃)−1), and on the other hand we can

think that Λ̃ behaves like 〈x〉1−σ whenwe recapture u = e−M(T−t)〈Dx 〉1/s1h (eΛ̃)−1v, obtaining
a solution v with no loss of regularity, but possibly different behavior as |x | → ∞.

The paper is structured as follows:

– In Sect. 2, we present a class of symbols with Gevrey regularity, the corresponding
class of pseudo-differential operators, and the class of Gevrey–Sobolev spaces, where
these operators act continuously in suitable scales of spaces. Moreover, we state the
invertibility of operators of infinite order of the form eΛ and we describe the structure of
the conjugation eΛS(eΛ)−1.

– In Sect. 3, we perform the change of variable, constructing Λ, checking its invertibility
and deriving explicitly the equivalent Cauchy problem.

– Section 4 is devoted to a crucial result, Lemma 1, which states the continuity of the maps
eΛ : As1,s2 −→ Hm and (eΛ)−1 : Hm −→ Bs1,s . Moreover, we give the proof of the
main theorem and of the corollaries. The continuity of eΛ will allow us to study the
Cauchy problem for v in Sobolev spaces, the continuity of (eΛ)−1 will provide the space
of well-posedness for the original Cauchy problem.

A discussion about the characterization of As1,s2 and Bs1,s spaces via Fourier transform
concludes the paper.

2 Preliminaries

In what follows, we are going to consider form ∈ R and s ≥ 1 symbols of Gevrey regularity
in the following sense: we say that a givenC∞(R2n) function a = a(x, ξ) belongs to Sms (Rn)

if it satisfies
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1656 A. Ascanelli et al.

|∂α
ξ ∂β

x a(x, ξ)| ≤ Ch A
|α|+|β||α + β|!s〈ξ 〉m−|α|

h , (x, ξ) ∈ R
2n, α, β ∈ Z

n+, (11)

for some constants h > 0, Ch > 0 and A > 1. Here and in the following, we use the notation
〈ξ 〉2h := h2 + |ξ |2. The space Sms (Rn) is a limit space in the following sense:

Sms (Rn) := lim←
�→+∞

Sms,�(R
n) with Sms,�(R

n) := lim→
A→+∞

Sms,�,A(Rn).

Here, Sms,A,�(R
n) denotes the Banach space of all symbols satisfying the conditions such that

|a|m,s,A,� := sup
|α+β|≤�

sup
x,ξ

∣∣∂α
ξ ∂β

x a(x, ξ)
∣∣A−|α|−|β|(|α| + |β|)!−s〈ξ 〉−m+|α|

h < +∞.

We are going to use pseudo-differential operators p(x, D) = op(p(x, ξ)) with symbols
σ(p(x, D)) = p(x, ξ) ∈ Sms (Rn). These operators act continuously on the so-called
Sobolev–Gevrey spaces, defined for m ∈ R, ρ > 0, s ≥ 1 as follows:

Hm
ρ,s(R

n) := {
u ∈ S ′(Rn) : ‖u‖m,ρ,s := ∥∥eρ〈Dx 〉 1s u

∥∥
Hm < ∞}

.

We are also going to deal with pseudo-differential operators of infinite order eΛ(x,D) with
symbols of the form eΛ(x,ξ), where Λ satisfies

∣∣∂α
ξ ∂β

x Λ(x, ξ)
∣∣ ≤ CΛA|α|+|β||α + β|!s〈ξ 〉

1
s −|α|
h , (x, ξ) ∈ R

n, α, β ∈ Z
n+ (12)

for a constant CΛ independent of the parameter h ≥ 1 and s > 1. By Theorem 6.14 in [8],
operators of this form turn out to be invertible on L2 by Neumann series for h large enough
and CΛ small enough. Indeed, let us consider the pseudo-differential operator eΛ(x,D) with
symbol eΛ(x,ξ), and define its so-called reversed operator

(ReΛ)(x, D)u(x) := (2π)−n
∫

Rn

( ∫

Rn
ei(x+y)·ξ+Λ(y,ξ)u(y) dy

)
dξ

defined as an oscillatory integral. Then, we have the following properties:

1. eΛ : H0
ρ,s(R

n) −→ H0
ρ−ρ′,s(R

n) is a continuous mapping for |ρ − ρ′| < δA− 1
s and

ρ′ > CΛ,
2. ReΛ : H0

ρ,s(R
n) −→ H0

ρ−ρ′,s(R
n) is a continuous mapping for |ρ| < δA− 1

s and
ρ′ > CΛ, where δ > 0 is a suitable constant, see [8, Part I, Proposition 6.7],

3. if we form the composition eΛ(Re−Λ), then we get

eΛ(Re−Λ) = I + r(x, Dx )

where r(x, ξ) has the asymptotic expansion

r(x, ξ) ∼
∑

j≥1

r j (x, ξ), r j (x, ξ) =
∑

|α|= j

1

α!∂
α
ξ

(
eΛ(x,ξ)Dα

x e
−Λ(x,ξ)

)
(13)

and satisfies

∣∣r (α)
(β) (x, ξ)

∣∣ ≤ Cα,β〈ξ 〉
1
s −1−α

h ≤ Cα,βh
1
s −1〈ξ 〉−α

h ,

with Cα,β independent of h.
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Using these properties we can fix a large h in order to have a bounded operator

r(x, Dx ) : u ∈ Hμ → r(x, Dx )u ∈ Hμ with norm ‖r(x, Dx )‖Hμ→Hμ < 1.

The operator I + r(x, Dx ) is invertible by Neumann series and its inverse operator is given
by

I + p(x, Dx ), p =
∞∑

j=1

(−r) j .

This proves that the operator Re−Λ(I + p) is the right inverse of eΛ. By similar arguments
one proves the existence of a left inverse. Thus, the operator eΛ is invertible, and the inverse
operator is given by

(eΛ)−1 = (Re−Λ)(I + p). (14)

Moreover, let us notice that the inverse has the structure

(eΛ)−1 = (Re−Λ)(I − r + lower order terms)

=
(
Re−Λ

)
(I − r1 + lower order terms)

= (Re−Λ)op
(
1 +

n∑

j=1

∂ξ j Dx j Λ(x, ξ) + lower order terms
)
.

Remark 5 We may apply the same arguments to the operator eΛ′
with symbol σ(Λ′) given

by

σ(Λ′)(x, ξ) = A〈x〉1−σ− 1
s2 〈ξ 〉

1
s2
h + ρ〈ξ 〉

1
s1
h . (15)

In particular, we have

As1,s2
A,ρ (Hm) = {u =R e−Λ′

v : v ∈ Hm}. (16)

Finally, Theorem6.14 in [8] states that there exist δ > 0 and h0 > 1 such that for every h ≥ h0
andCΛ < δA− 1

s the conjugation eΛ p(eΛ)−1 makes sense for every operator p(x, D) having
the symbol p(x, ξ) ∈ Sms (R2n). Moreover, the conjugation has the following structure:

eΛ(x, D)p(x, D)(eΛ(x, D))−1 = p(x, D) + q(x, D) + r(x, D), (17)

where r(x, ξ) ∈ S
m−2(1− 1

s )
s (Rn) and

q(x, ξ) =
∑

|α|=1

∂α
ξ p(x, ξ)(i∂x )

αΛ(x, ξ) +
∑

|β|=1

Dβ
x p(x, ξ)∂

β
ξ Λ(x, ξ).

3 Change of variables

To prove Theorem 1 and Corollary 1, we perform the change of variables

v(t, x) = eΛ(t,x,D)u(t, x),

by choosing a suitable symbol Λ = Λ(t, x, ξ) with the following features:
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1658 A. Ascanelli et al.

– the function Λ has the form Λ(t, x, ξ) = Λ̃(t, x, ξ) + Λ3(t, ξ), where Λ̃ satisfies for an
arbitrary μ > 1 the following symbol like estimates:

∣∣∂α
ξ ∂β

x Λ̃(t, x, ξ)
∣∣ ≤ Cα+β+1|α + β|!μ〈x〉δ−|β|〈ξ 〉d−|α|

h

for all δ, d with d ≥ 0, δ + d = 1 − σ, (18)

where C = CT is a suitable positive constant which depends continuously on T but
which is independent of h ≥ 1;

– Λ3 ∈ S
1
s1 (Rn) (recall that 1

s1
< 1 − σ );

– the operator eΛ is invertible for h > 0 large enough;
– the operators of infinite order

eΛ(t, x, D) : As1,s2
A,ρ (Hm) −→ Hm and Re−Λ(t, x, D) : Hm −→ Bs1,s2

A,ρ (Hm)

are continuous mappings for suitable (large enough) A and ρ, see Lemma 1 below;
– for sufficiently large constants h > 0 and M > 0 the following crucial inequality holds:

∂tΛ(t, x, ξ) + 2
n∑

j=1

ξ j∂x j Λ(t, x, ξ) ≤ −M〈x〉−σ 〈ξ 〉h . (19)

By this change of variable, choosing suitably the phase function Λ, we reduce the Cauchy
problem

Su = 0, u(0, x) = g, (20)

to the equivalent Cauchy problem
{
SΛv = 0, SΛ = Dt − Δx − i AΛ(t, x, D) + r0(t, x, D),

v(0, x) = gΛ, gΛ = eΛ(0)g,
(21)

where the pseudo-differential operator AΛ satisfies the condition

2�〈AΛ(t, x, D)v, v〉 ≥ 0.

The remainder r0 is a pseudo-differential operator of order zero. It turns out that this Cauchy
problem is L2 well-posed, and trivially also Hm well-posed. Then, coming back to the
original Cauchy problem, from v ∈ C([0, T ]; Hm), using the structure of Λ3 and (18) with
δ = 1 − σ − 1

s and d = 1
s , 0 ≤ 1

s ≤ 1
s1
, we obtain that u = (eΛ)−1v satisfies for every

t ∈ [0, T ∗] the condition

e−A〈x〉1−σ− 1
s 〈D〉

1
s
h +ρ′〈D〉

1
s1
h u(t, ·) ∈ Hm

with a suitable positive ρ′. For this reason, u(t, ·) ∈ Bs1,s
A,ρ′(Hm) for t ∈ [0, T ∗] and every

0 ≤ 1
s ≤ 1

s1
. More details are provided in the proofs of Theorem 1 and of Corollary 1.

Remark 6 In the case of Corollary 1, we take Λ3(t, ξ) ≡ 0. By choosing δ = 1 − σ and
d = 0, we arrive at a result without any loss of regularity. The other limit case δ = 0,
d = 1 − σ , corresponds to a result of [7].

We choose

Λ(t, x, ξ) := Λ̃(t, x, ξ) + Λ3(t, ξ), Λ̃(t, x, ξ) := Λ1(t, x, ξ) + Λ2(x, ξ), (22)
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where

Λ1(t, x, ξ) := M(T − t)〈x〉−σ 〈ξ 〉h
(
1 − χ

( 〈x〉
ε〈ξ 〉h

))
, (23)

Λ2(x, ξ) := χ
( 2〈x〉

ε〈ξ 〉h
)
λ(x, ξ), (24)

Λ3(t, ξ) := M(T − t)〈ξ 〉
1
s1
h , (25)

under the following assumptions:

– M is a sufficiently large positive constant to be chosen later on;
– ε > 0 is an arbitrarily small constant depending on M ;
– h ≥ 1 will be chosen later on, in fact, we will choose h ≥ h0 with h0 > 0 large enough

to have the invertibility of eΛ̃;
– χ ∈ C∞

0 (R) is such that 0 ≤ χ(t) ≤ 1, tχ ′(t) ≤ 0 for all t ∈ R, χ(t) = 1 for |t | ≤ 1
2 ,

χ(t) = 0 for |t | ≥ 1, and |χ(k)(t)| ≤ Ak+1
0 k!μ for some μ > 1 to be chosen later on;

– λ = λ(x, ξ) is a solution to the inequality

n∑

j=1

ξ j∂x j λ(x, ξ) ≤ −M〈x〉−σ 〈ξ 〉h, (26)

with a large constant M to be chosen later on.

The function λ is given as follows:

λ(x, ξ) := −M
(
λ1(x, ξ)χ

(2x · ω

〈x〉
)

− λ2(x, ξ)
(
1 − χ

(2x · ω

〈x〉
)))

(27)

with ω = ξ/|ξ |, where

λ1(x, ξ) :=
∫ x ·ω

0
〈x − τω〉−σ

h dτ and λ2(x, ξ) :=
∫ x ·ω

0
〈τ 〉−σ

h dτ.

We know by Lemma 4 of [2] that there exists a constant Cσ independent of h and M such
that the function λ = λ(x, ξ) which is defined in (27) satisfies the following estimate for
every α, β ∈ Z

n+:
∣∣∂α

ξ ∂β
x λ(x, ξ)

∣∣ ≤ MC |α|+|β|+1
σ |α + β|!μ〈x〉1−σ−|β||ξ |−|α| (28)

for every (x, ξ) ∈ R
2n with |ξ | > 1. Notice that it is enough to estimate λ = λ(t, x, ξ) for

|ξ | > 1 because Λ2 is supported in the region

〈ξ 〉h ≥ 2〈x〉
ε

≥ 2

ε
> 〈1〉h

if ε is small enough, thanks to the use of the cut-off function χ .

Now, since in (24) the term Λ2 = Λ2(x, ξ) is given by χ
( 2〈x〉

ε〈ξ 〉h
)
λ(x, ξ) and due to (see

[7], formula (2.6))

∣∣∣∂α
ξ ∂β

x

(
χ

( 2〈x〉
ε〈ξ 〉h

))∣∣∣ ≤ C1A
|α+β|
1 |α + β|!μ〈x〉−|β|〈ξ 〉−|α|

h
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with C1, A1 independent of ε, it follows that for every δ ∈ [−σ, 1− σ ], d ∈ [0, 1] satisfying
δ + d = 1 − σ we have the relations

∂α
ξ ∂

β
x Λ2(x, ξ) =

∑

α1+α2=α

∑

β1+β2=β

(
α

α1

)(
β

β1

)
∂
α1
ξ ∂

β1
x χ

(
2〈x〉
ε〈ξ〉h

)
∂
α2
ξ ∂

β2
x λ(x, ξ),

∣∣∂α
ξ ∂

β
x Λ2(x, ξ)

∣∣ ≤ MC |α|+|β|+1
σ |α + β|!μ〈x〉1−σ−|β|〈ξ〉−|α|

h

= MC |α|+|β|+1
σ |α + β|!μ〈x〉δ−|β|〈x〉d 〈ξ〉−|α|

h

≤ M
( ε

2

)d
C̃ |α|+|β|+1

σ |α + β|!μ〈x〉δ−|β|〈ξ〉d−|α|
h (29)

with a constantCσ which is independent of h, M, ε.Here, we use the inequality 〈x〉 ≤ ε

2
〈ξ 〉h

on the support of χ
( 〈x〉

ε〈ξ 〉h
)
. As it concerns the term Λ1 = Λ1(t, x, ξ) in (22), we have

∂α
ξ ∂β

x Λ1(t, x, ξ) = M(T − t)
∑

α1+α2=α

∑

β1+β2=β

(
α

α1

)(
β

β1

)
∂

α1
ξ 〈ξ 〉h∂β1

x 〈x〉−σ

×∂
α2
ξ ∂β2

x

(
1 − χ

( 〈x〉
ε〈ξ 〉h

))
,

∣∣∂α
ξ ∂β

x Λ1(t, x, ξ)
∣∣ ≤ M(T − t)C |α|+|β|+1

2 |α + β|!μ〈x〉−σ−|β|〈ξ 〉1−|α|
h

= M(T − t)C |α|+|β|+1
2 |α + β|!μ〈x〉δ−|β|〈x〉−σ−δ〈ξ 〉d−|α|

h 〈ξ 〉1−d
h

≤ M(T − t)
(2

ε

)1−d
C |α|+|β|+1
2 |α + β|!μ〈x〉δ−|β|〈ξ 〉d−|α|

h 〈x〉1−d−σ−δ

= M(T − t)
(2

ε

)1−d
C |α|+|β|+1
2 |α + β|!μ〈x〉δ−|β|〈ξ 〉d−|α|

h ,

for every δ ∈ [−σ, 1 − σ ], d ∈ [0, 1] satisfying δ + d = 1 − σ, with a constant C2 which

is independent of h, M, T , ε. Here, we use the inequality 〈ξ 〉h ≤ 2

ε
〈x〉 on the support of

1 − χ
( 〈x〉

ε〈ξ 〉h
)
. Summing up we arrive for δ + d = 1 − σ with δ ∈ [−σ, 1 − σ ], d ∈ [0, 1]

at the following estimate:

∣∣∂α
ξ ∂β

x Λ̃(t, x, ξ)
∣∣ ≤ M

(
T

(2
ε

)1−d +
( ε

2

)d)
C̃ |α|+|β|+1

σ |α + β|!μ〈x〉δ−|β|〈ξ 〉d−|α|
h

(30)

with a new constant C̃σ . As special caseswemay conclude from (30) the following estimates:

δ = 1 − σ, d = 0 :
∣∣∂α

ξ ∂β
x Λ̃(t, x, ξ)

∣∣ ≤ M
(2T

ε
+ 1

)
C̃ |α|+|β|+1

σ |α + β|!μ〈x〉1−σ−|β|〈ξ 〉−|α|
h ,

δ = 0, d = 1 − σ : (31)
∣∣∂α

ξ ∂β
x Λ̃(t, x, ξ)

∣∣ ≤ M
(
T

(2
ε

)σ +
( ε

2

)1−σ )
C̃ |α|+|β|+1

σ |α + β|!μ〈x〉−|β|〈ξ 〉1−σ−|α|
h ,

δ = −σ, d = 1 : (32)
∣∣∂α

ξ ∂β
x Λ̃(t, x, ξ)

∣∣ ≤ M
(
T + ε

2

)
C̃ |α|+|β|+1

σ |α + β|!μ〈x〉−σ−|β|〈ξ 〉1−|α|
h . (33)

Notice the following observations:
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1. In (31), we can estimate |∂α
ξ ∂

β
x Λ(t, x, ξ)| by a constant which depends only on M after

choosing ε arbitrarily positive but then fixed, and taking the parameter T small enough
(i.e., 2T

ε
< 1).

2. In (32), we can estimate |∂α
ξ ∂

β
x Λ(t, x, ξ)| by a constant which is independent ofM after

taking ε small enough (i.e., M( ε
2 )

1−σ < 1) and then the parameter T small enough

(i.e., MT
( 2

ε

)σ
< 1).

3. In (33) we can estimate |∂α
ξ ∂

β
x Λ(t, x, ξ)| by a constant which is independent of M after

taking T and ε small enough.

Notice, moreover, that in the intermediate case δ = 1−σ − 1
s and d = 1

s with 0 ≤ 1
s ≤ 1−σ

we get

∣∣∂α
ξ ∂β

x Λ̃(t, x, ξ)
∣∣ ≤ M

(
T

(2
ε

)σ+ 1
s +

( ε

2

) 1
s
)

×C̃ |α|+|β|+1
σ |α + β|!μ〈x〉1−σ− 1

s −|β|〈ξ 〉
1
s −|α|
h , (34)

where the constants which gives the semi-norms of Λ̃ can be chosen arbitrarily small by
taking ε and T small enough.

Formula (32) states that we can consider Λ̃ = Λ̃(t, x, ξ) for all t ∈ [0, T ] as a symbol
in S1−σ

μ (Rn) for every μ > 1. Moreover, Λ̃ satisfies (12) with 1 − σ instead of 1
s . So we

can apply Theorem 6.14 in [8] and obtain that if h is large enough, then the operator eΛ̃

is invertible on L2 and (eΛ̃)−1 has the form (14). This provides also the invertibility of
eΛ = eΛ̃+Λ3 = eΛ̃eΛ3 with inverse e−Λ3(eΛ̃)−1 since eΛ3 is trivially invertible. Moreover,
the conjugation eΛ(t, x, D)p(t, x, D)(eΛ(t, x, D))−1 makes sense and by (17) the following
formula holds for every p ∈ Sm1/(1−σ)(R

n):

eΛ(t, x, D)p(t, x, D)(eΛ(t, x, D))−1

= eΛ̃(t, x, D)
(
eΛ3(t,D) p(t, x, D)e−Λ3(t,D)

)
(eΛ̃)−1(t, x, D)

= eΛ̃(t, x, D)op
(
p(t, x, ξ) + p1(t, x, ξ) + p2(t, x, ξ)

)
(eΛ̃)−1(t, x, D)

= p(t, x, D) + q(t, x, D) + r(t, x, D), (35)

where

p1(t, x, ξ) =
n∑

j=1

M(T − t)

s1
〈ξ 〉

1
s1

−1

h ∂ξ j 〈ξ 〉h Dx j p(t, x, ξ) ∈ S
m−1+ 1

s1
1

1−σ

⊂ Sm−σ
1

1−σ

,

p2(t, x, ξ) ∈ S
m−2(1− 1

s1
)

1
1−σ

⊂ Sm−2σ
1

1−σ

,

q(t, x, ξ) =
∑

|α|=1

∂α
ξ p(t, x, ξ)(i∂x )

αΛ̃(t, x, ξ)

+
∑

|β|=1

Dβ
x p(t, x, ξ)∂

β
ξ Λ̃(t, x, ξ) + p1(t, x, ξ),

r(t, x, ξ) ∈ S
m−2(1− 1

s1
)

1
1−σ

⊂ Sm−2σ
1

1−σ

. (36)
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Let us complete this section by checking that the function Λ = Λ(t, x, ξ) satisfies (19).
By (22), (23), (24), (25), we compute

∂tΛ(t, x, ξ) + 2
n∑

j=1

ξ j ∂x j Λ(t, x, ξ) = ∂t Λ̃(t, x, ξ) + ∂tΛ3(t, ξ) + 2
n∑

j=1

ξ j ∂x j Λ̃(t, x, ξ)

≤ ∂t Λ̃(t, x, ξ) + 2
n∑

j=1

ξ j ∂x j Λ̃(t, x, ξ) = −M〈x〉−σ 〈ξ〉h
(
1 − χ

( 〈x〉
ε〈ξ〉h

))

+2
n∑

j=1

ξ j

(
χ ′( 2〈x〉

ε〈ξ〉h
)
2ε−1〈ξ〉−1

h λ(x, ξ)∂x j 〈x〉 + χ
( 2〈x〉

ε〈ξ〉h
)
∂x j λ(x, ξ)

)

+2
n∑

j=1

M(T − t)〈ξ〉hξ j

((
∂x j 〈x〉−σ

)(
1 − χ

( 〈x〉
ε〈ξ〉h

))

+〈x〉−σ χ ′( 〈x〉
ε〈ξ〉h

)
ε−1〈ξ〉−1

h ∂x j 〈x〉
)

since ∂tΛ3(t, ξ) = −M〈ξ 〉
1
s1
h ≤ 0.Nowwe use (26), (28) and we take account of the support

of χ, χ ′, to verify that all the terms of the right-hand side of the last formula (except the ones
containing the partial derivative ∂x j λ, but to those terms we apply the estimate (26)) behave
like 〈x〉−σ 〈ξ 〉h . All these terms, except the first one, aremoreover bounded by arbitrarily small
constants, since we can choose ε small, and then T small as described above. Summarizing,
these considerations imply the crucial inequality (19).

4 Proof of themain result

Before giving the proof of Theorem 1, we will state and prove the following lemma which
deals with the continuity of eΛ and Re−Λ with respect to the spaces (4) and (5) of our interest.
This lemma provides the way to shift from the solution to the original Cauchy problem (20)
to the solution to the equivalent (and L2 well-posed) Cauchy problem (21) and to shift back.

Lemma 1 Let us choose m ≥ 0, σ ∈ (0, 1), s1, s2 ∈ ( 1
1−σ

,∞], s2 ≥ s1, A > 0 and
ρ > 0. Consider the function Λ which is defined in (22). Then, for every parameters A and
ρ satisfying the conditions

A > sup
t∈[0,T ],x,ξ∈Rn

Λ̃(t, x, ξ)

〈x〉1−σ− 1
s2 〈ξ 〉

1
s2
h

, and ρ> sup
t∈[0,T ],ξ∈Rn

Λ3(t, ξ)

〈ξ 〉
1
s1
h

we have the following mapping properties:

1. the mapping eΛ : As1,s2
A,ρ (Hm) −→ Hm is continuous;

2. the mapping Re−Λ̃ : Hm −→ Bs1,s2
A,0 (Hm) is continuous.

Proof Let us recall that the function Λ̃ satisfies (34) for every 1
s ≤ 1

s1
being 1

s1
< 1 − σ .

Since formula (34) holds for every 0 ≤ 1
s ≤ 1 − σ , we take s = s2 > 1

1−σ
. Then we get

sup
t∈[0,T ],x,ξ∈Rn

Λ̃(t, x, ξ)

〈x〉1−σ− 1
s2 〈ξ 〉

1
s2
h

= M
(
T

(2
ε

)σ+ 1
s2 +

( ε

2

) 1
s2

)
C̃σ < ∞, (37)
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so the choice of the parameter A is possible. On the other hand, we have

sup
t∈[0,T ],ξ∈Rn

Λ3(t, ξ)

〈ξ 〉
1
s1
h

= sup
t∈[0,T ],ξ∈Rn

M(T − t) = MT < ∞, (38)

and also the choice of the parameter ρ is possible. Consider now, for u ∈ As1,s2
A,ρ (Hm) with

A, ρ as large as we need,

eΛu = eΛ
(
eA〈x〉1−σ− 1

s2 〈D〉
1
s2
h +ρ〈D〉

1
s1
h

)−1
w

with

w = eA〈x〉1−σ− 1
s2 〈D〉

1
s2
h +ρ〈D〉

1
s1
h u ∈ Hm .

The operator

(
eA〈x〉1−σ− 1

s2 〈D〉
1
s2
h +ρ〈D〉

1
s1
h

)−1

has the structure given by (14). Hence,

eΛu = eΛ
(R

e−A〈x〉1−σ− 1
s2 〈D〉

1
s2
h −ρ〈D〉

1
s1
h

)
(1 + p)w

= eΛ
(R

e−A〈x〉1−σ− 1
s2 〈D〉

1
s2
h −ρ〈D〉

1
s1
h

)
z, (39)

where the principal part of p is

n∑

j=1

∂ξ j Dx j

(
A〈x〉1−σ− 1

s2 〈ξ 〉
1
s2
h + ρ〈ξ 〉

1
s1
h

)
∈ S0.

Consequently, z = (1 + p)w ∈ Hm . Now, let us notice that

(R
e−A〈·〉1−σ− 1

s2 〈D〉
1
s2
h −ρ〈D〉

1
s1
h u

)
(x) =

((
e−A〈·〉1−σ− 1

s2 〈D〉
1
s2
h −ρ〈D〉

1
s1
h

)∗
u
)
(−x). (40)

Indeed, using the L2 scalar product we may compute as follows:

〈(
e−A〈·〉1−σ− 1

s2 〈D〉
1
s2
h −ρ〈D〉

1
s1
h

)∗
u, v

〉
=

〈
u,

(
e−A〈·〉1−σ− 1

s2 〈D〉
1
s2
h −ρ〈D〉

1
s1
h

)
v
〉

=
∫

Rn
u(y)

(
e−A〈·〉1−σ− 1

s2 〈D〉
1
s2
h −ρ〈D〉

1
s1
h

)
v(y) dy

=
∫

Rn

∫

Rn
e−iyξ−A〈y〉1−σ− 1

s2 〈ξ〉
1
s2
h −ρ〈ξ〉

1
s1
h ¯̂v(ξ)u(y)(2π)−n dξdy

=
∫

Rn

∫

Rn

∫

Rn
ei xξ−iyξ−A〈y〉1−σ− 1

s2 〈ξ〉
1
s2
h −ρ〈ξ〉

1
s1
h v̄(x)u(y)(2π)−n dxdξdy

=
〈 ∫

Rn

∫

Rn
ei·ξ−iyξ−A〈y〉1−σ− 1

s2 〈ξ〉
1
s2
h −ρ〈ξ〉

1
s1
h u(y)(2π)−n dξdy, v

〉
.
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This implies

(
e−A〈·〉1−σ− 1

s2 〈D〉
1
s2
h −ρ〈D〉

1
s1
h

)∗
u(x)

=
∫

Rn

∫

Rn
ei(x−y)ξ−A〈y〉1−σ− 1

s2 〈ξ〉
1
s2
h −ρ〈ξ〉

1
s1
h u(y)(2π)−n dξdy

=
∫

Rn

∫

Rn
ei(−x+y)ξ−A〈y〉1−σ− 1

s2 〈ξ〉
1
s2
h −ρ〈ξ〉

1
s1
h u(y)(2π)−n dξdy

=
(R

e−A〈·〉1−σ− 1
s2 〈D〉

1
s2
h −ρ〈D〉

1
s1
h u

)
(−x).

For every A′ < A, the symbol

a(x, ξ) = σ
((

e−A〈x〉1−σ− 1
s2 〈D〉

1
s2
h −ρ〈D〉

1
s1
h

)∗)
(x, ξ)

satisfies

|∂α
ξ D

β
x a(x, ξ)| ≤ C(A′, α, β)e−A′〈x〉1−σ− 1

s2 〈ξ〉
1
s2
h −ρ〈ξ〉

1
s1
h .

For s1, s2 < +∞, the symbol of the reversed operator is so of class S−∞, and the reverse
turns out to be a regularizing operator in this specific case. Coming back to the composition
in (39), we gain that the composition is well defined, and the symbol q = q(x, ξ) of the
composed operator satisfies the estimate

|∂α
ξ D

β
x q(x, ξ)| ≤ C(A′, α, β)〈ξ 〉−σ |α|eΛ(t,x,ξ)−A′〈x〉1−σ− 1

s2 〈ξ〉
1
s2
h −ρ〈ξ〉

1
s1
h .

Indeed, with A′ and ρ large enough it follows

Λ̃(t, x, ξ) − A′〈x〉1−σ− 1
s2 〈ξ 〉

1
s2
h

≤
(
M

(
T

(2
ε

)σ+ 1
s2 +

( ε

2

) 1
s2

)
C̃σ − A′)〈x〉1−σ− 1

s2 〈ξ 〉
1
s2
h

= −CT 〈x〉1−σ− 1
s2 〈ξ 〉

1
s2
h ,

Λ3(t, ξ) − ρ〈ξ 〉
1
s1
h ≤ (MT − ρ) 〈ξ 〉

1
s1
h = −C ′

T 〈ξ 〉
1
s1
h .

Summing up,

eΛ(t, x, D)
(R

e−A〈x〉1−σ− 1
s2 〈D〉

1
s2
h −ρ〈D〉

1
s1
h

)

is a pseudo-differential operator of order zero acting on z ∈ Hm . So, if u ∈ As1,s2
A,ρ (Hm) with

A and ρ large enough, then eΛu ∈ Hm . Similarly, one obtains that for every u ∈ Hm the
function Re−Λ̃u ∈ Bs1,s2

A,0 (Hm) has the property

e−A〈x〉1−σ− 1
s2 〈D〉

1
s2
h Re−Λ̃u ∈ Hm .

This completes the proof. ��
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Proof of Theorem 1 Let us perform the change of variables

v(t, x) = eΛ(t,x,D)u(t, x),

with Λ as in (22). Take the parameter h large so that eΛ is invertible and the conjugation
formula (35) holds. By this change of variables, the Cauchy problem (20) is reduced to the
equivalent Cauchy problem (21). In the further considerations we are going to show that the
remainder r0 is of order zero and the operator AΛ satisfies

2�〈AΛ(t, x, D)v, v〉 ≥ 0.

By (22) and (35), we have

SΛ = eΛS(eΛ)−1

= Dt − Δx + i∂tΛ(t, x, D) + eΛ
n∑

j=1

(
(∂x j Λ)2 + ∂2x j Λ + 2(∂x j Λ)∂x j

)
(eΛ)−1

+eΛ
( n∑

j=1

a j (t, x)Dx j + b(t, x)
)
(eΛ)−1.

By formula (30) with δ = 1 − σ and d = 0, and since Λ3 does not depend on x , we get
∂x j Λ, ∂2x j Λ ∈ S0μ for an arbitrary μ > 1. After applying formula (35) and taking account of
the Gevrey regularity of the coefficients a j , b we arrive at

SΛ = Dt − Δx + i∂tΛ(t, x, D)

+ eΛ
( n∑

j=1

2i(∂x j Λ)Dx j +
n∑

j=1

a j (t, x)Dx j + b(t, x)
)
(eΛ)−1 + r(t, x, D)

= Dt − Δx + i∂tΛ(t, x, D) +
n∑

j=1

2i(∂x j Λ)Dx j +
n∑

j=1

a j (t, x)Dx j

+ r1−σ (t, x, D) + r0(t, x, D),

where r = r(t, x, ξ) and r0 = r0(t, x, ξ) are symbols in S0 1
1−σ

. Moreover, r1 = r1−σ (t, x, ξ)

is a symbol of positive order with principal part given by

n∑

j=1

∑

|β|=1

(
Dβ
x a j (t, x)

)
∂

β
ξ Λ(x, ξ)ξ j ∈ S1−σ

1
1−σ

by using our assumption 1
s1

< 1 − σ . Here, we also use that the symbols

∑

|α|=1

∂α
ξ

(
(∂x j Λ)ξ j

)
(i∂x )

αΛ(x, ξ) +
∑

|β|=1

Dβ
x

(
(∂x j Λ)ξ j

)
∂

β
ξ Λ(x, ξ),

∑

|α|=1

∂α
ξ

(
a jξ j

)
(i∂x )

αΛ(x, ξ)

belong to S0 1
1−σ

as well by choosing δ = 1 − σ and d = 0 in (30) and by taking into

consideration the structure of Λ3. Consequently, we get

SΛ = Dt − Δx − i AΛ(t, x, D) + r0(t, x, D) (41)
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with

AΛ(t, x, ξ) = −∂tΛ(t, x, ξ) −
n∑

j=1

2(∂x j Λ)ξ j + i
n∑

j=1

a j (t, x)ξ j + ir1−σ (t, x, ξ).

(42)

Now we look for an energy estimate for v = v(t, x). We compute

d

dt
‖v(t, ·)‖2L2 = 2�〈v′, v〉L2

= 2�〈iΔv, v〉L2 − 2�〈AΛ(t, x, D)v, v〉L2 − 2�〈(ir0)v, v〉L2

≤ C‖v(t, ·)‖2L2 − 2�〈AΛ(t, x, D)v, v〉L2

≤ C‖v(t, ·)‖2L2 − 〈(AΛ + A∗
Λ)(t, x, D)v, v〉L2 .

Taking account of (19), (3), (33) and (29) with δ = 1 − σ and d = 0, we obtain

(
AΛ + (AΛ)∗

)
(t, x, ξ) = −2

(
∂tΛ(t, x, ξ) +

n∑

j=1

2(∂x j Λ)ξ j

)
− 2

n∑

j=1

�a j (t, x)ξ j

+(
ir1−σ + ir∗

1−σ

) + terms of order zero

≥ 2M〈x〉−σ 〈ξ 〉h − 2C〈x〉−σ 〈ξ 〉h − 2Cσ MT 〈x〉−σ 〈ξ 〉h − 2Cσ M〈x〉1−σ χ
( 2〈x〉

ε〈ξ 〉h
)

≥ 2M〈x〉−σ 〈ξ 〉h − 2C〈x〉−σ 〈ξ 〉h − 2Cσ MT 〈x〉−σ 〈ξ 〉h − 2Cσ Mε〈x〉−σ 〈ξ 〉h
≥ 2 (M − C − Cσ MT − Cσ Mε) 〈x〉−σ 〈ξ 〉h,

where we have also used that 〈x〉 ≤ ε〈ξ 〉h on the support ofΛ2. First we choose M > C +2,
where C is the constant in (3). Then, we choose ε and T so small that Cσ Mε < 1 and
Cσ MT < 1. With these choices, we have

(
AΛ + (AΛ)∗

)
(t, x, ξ) ≥ 2 (M − C − 2) 〈x〉−σ 〈ξ 〉h ≥ 0.

Applying the sharp Gårding inequality we obtain 2�〈AΛ(t, x, D)v, v〉 ≥ 0. Hence,

d

dt
‖v(t, ·)‖2L2 ≤ C‖v(t, ·)‖2L2 .

Thus, the energy estimate

‖v(t, ·)‖2L2 ≤ c‖gΛ‖2L2 ,

is established for all t ∈ [0, T ] with a suitable positive constant c. The Cauchy problem for
v is so well-posed in L2.

It is well-posed also in Sobolev spaces Hm , since the conjugation 〈D〉mSΛ〈D〉−m trans-
forms the Cauchy problem SΛv = 0, v(0, x) = gΛ(x) with gΛ ∈ Hm to an equivalent
Cauchy problem S̃Λṽ = 0, ṽ(0, x) = g̃Λ(x) with g̃Λ ∈ L2, where ṽ = 〈D〉mv and a new
pseudo-differential operator S̃Λ which has exactly the same structure as SΛ.

To go back to the solution u to the original Cauchy problem, notice that g ∈ As1,s2
A,ρ (Hm)

implies by Lemma 1 that we can obtain gΛ = eΛ(0)g ∈ Hm by a sharp choice of M, ε, ρ

and T ∗ ≤ T . The Cauchy problem (21) is Hm well-posed, so it admits a unique solution
v ∈ C([0, T ∗], Hm). For every t ∈ [0, T ∗], v(t, ·) ∈ Hm implies by Lemma 1 that
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u(t, ·) =
((

eΛ̃eΛ3
)−1

v
)
(t, ·) =

(
e−Λ3

(
eΛ̃

)−1
v
)
(t, ·)

= e−M(T−t)〈Dx 〉
1
s1

((
eΛ̃

)−1
v
)
(t, ·)

= e−M(T−t)〈Dx 〉
1
s1

((
Re−Λ̃

)
(1 + p)v

)
(t, ·)

= e−M(T−t)〈Dx 〉
1
s1 Re−Λ̃z(t, ·)

= e−M(T−t)〈Dx 〉
1
s1

w(t, ·) ∈ Bs1,s
A,ρ′(Hm)

for every 0 ≤ 1
s ≤ 1

s1
and with ρ′ = M(T − t), since the principal part of p is in S0, and

so z = (1 + p)v ∈ Hm . This implies w ∈ Bs1,s
A,0 . The proof is complete, since starting from

data in As1,s2
A,ρ (Hm) we have obtained a solution u ∈ Bs1,s

A,ρ′(Hm) for every 0 ≤ 1
s ≤ 1

s1
and

for a suitable ρ′. Moreover, we may conclude for every s ≥ s1 as follows:

‖u(t, ·)‖Bs1,s
A,ρ′ (Hm )

= ‖e−A〈x〉1−σ− 1
s 〈D〉 1s +ρ′〈D〉

1
s1 u(t, ·)‖Hm

= ‖e−A〈x〉1−σ− 1
s 〈D〉 1s +ρ′〈D〉

1
s1 e−Λ3(t,D)(eΛ̃)−1v(t, ·)‖Hm

= ‖e−A〈x〉1−σ− 1
s 〈D〉 1s (eΛ̃)−1v(t, ·)‖Hm

= ‖(eΛ̃)−1v(t, ·)‖Bs1,s
A,0 (Hm )

≤ Ct‖v(t, ·)‖Hm (by continuity, see Lemma 1)

≤ C ′
t‖gΛ‖Hm (by the energy estimate)

= C ′
t‖eΛ(0)g‖Hm

= C ′
t‖g‖As1,s2

A,ρ′ (Hm )
(by continuity, see Lemma 1)

with continuous functions Ct , C ′
t with respect to time thanks to the well-posedness of the

auxiliary Cauchy problem. ��
Remark 7 We remark that the choice of the parameters A, ρ and T , depending on formulas
(37) and (38), may be interpreted in two different ways:

– on the one hand, if one aims to obtain a solution defined on the whole interval [0, T ],
then one has to choose large A and ρ, i.e., one asks for more regularity to the data g;

– on the other hand, if one has a fixed regularity for the data g, i.e., if A and ρ are fixed,
then one can obtain a solution in Hm only for small times t ∈ [0, T ∗], T ∗ ≤ T .

Proof of Corollary 1 The change of variables

v(t, x) = eΛ(t,x,D)u(t, x),

with Λ = Λ̃ in (22) (i.e., Λ3 ≡ 0) and h large enough to get invertibility of eΛ reduces the
Cauchy problem (20) to an equivalent Cauchy problem (21) with 2�〈AΛ(t, x, D)v, v〉 ≥ 0
and r0 of order zero, following the same computations as in the proof of Theorem 1.

To go back to the solution u to the original Cauchy problem, notice that the assumption
eA〈x〉1−σ

g ∈ Hm implies by (32) that gΛ = eΛ(0)g satisfies e(A−2M)〈x〉1−σ
gΛ ∈ Hm . By the

change of variables w = e(A−2M)〈x〉1−σ
v we get the equivalent Cauchy problem

S′
Λw := e(A−2M)〈x〉1−σ

SΛe
(−A+2M)〈x〉1−σ

w = 0, w(0, x) = g′
Λ(x)
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with g′
Λ ∈ Hm with S′

Λ having the same structure as SΛ. Consequently, the Cauchy problem
for w admits a unique solution w ∈ C([0, T ]; Hm). The Cauchy problem for v admits
a unique solution satisfying e(A−2M)〈x〉1−σ

v(t, ·) ∈ Hm , respectively. Finally, the unique
solution u = (eΛ)−1v of the original Cauchy problem satisfies e(A−4M)〈x〉1−σ

u(t, ·) ∈ Hm

for every t ∈ [0, T ]. For this reason, u(t, ·) may belong to a weighted Sobolev space with
exponentially decreasing weight, compare with [2,6]. Finally, the solution u satisfies the
following energy estimate:

‖e(A−4M)〈x〉1−σ

u(t, ·)‖Hm = ‖e(A−4M)〈x〉1−σ

(eΛ)−1v(t, ·)‖Hm

≤ Ct‖e(A−2M)〈x〉1−σ

v(t, ·)‖Hm = ‖w(t, ·)‖Hm

≤ Ct‖g′
Λ‖Hm = Ct‖e(A−2M)〈x〉1−σ

gΛ‖Hm

= Ct‖e(A−2M)〈x〉1−σ

eΛ(0)g‖Hm

≤ Ct‖e(A−4M)〈x〉1−σ

g‖Hm ,

where the functionCt is continuous on [0, T ] andmaychange from line to line.This completes
the proof. ��
Remark 8 The choice δ = 1 − σ and d = 0 allows us to obtain in Corollary 1 a solution
which is valued in Sobolev spaces. Notice that if 1 − σ = 1

s , then to ensure eΛ(0)g ∈ Hm

under the assumption eA〈x〉1−σ
g ∈ Hm we need to require CT ≤ A, that is, T is small

enough. This is the reason why we obtain local (in time) results for the Cauchy problem for
S. We remark that in this paper in the definition of Λ1 we take the time-dependent function
ρ = ρ(t) = M(T − t) since we are looking for a local (in time) well-posedness result in the
critical case 1 − σ = 1

s , too. In the non-critical case 1 − σ < 1
s , the condition CT ≤ A is

no more required. By taking the same function ρ = ρ(t) as in [7], we can obtain global (in
time) well-posedness of the Cauchy problem for S under the assumptions of Corollary 1.

Remark 9 Let us characterize the spaces As1,s2
A,ρ (Hm) which are used in the formulation of

the main results in Theorem 1, Corollaries 1 and 2. Here, A and ρ are positive constants, the
parameter m ≥ 0. We turn to As1,s2

A,ρ (Hm), where σ ∈ (0, 1) and s1, s2 ∈ ( 1
1−σ

,∞]. Then
due to (4)

As1,s2
A,ρ (Hm) :=

{
u ∈ Hm : eA〈x〉1−σ− 1

s2 〈Dx 〉
1
s2
h +ρ〈Dx 〉

1
s1
h u ∈ Hm

}
.

Let us introduce

v := eρ〈Dx 〉
1
s1
h u with a given u ∈ Hm,m ≥ 0.

Then v belongs to the Gevrey–Sobolev space

Hm,s1 =
⋃

ρ>0

Hm,s1
ρ , where Hm,s1

ρ = e−ρ〈D〉
1
s1 Hm .

We apply to elements of this space the pseudo-differential operator of infinite order

eA〈x〉1−σ− 1
s2 〈Dx 〉

1
s2
h with

1

s2
∈ [0, 1 − σ ].

If s2 = ∞, then we apply

eA〈x〉1−σ
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only, that is, u belongs to the Gelfand–Shilov space

Ss11
1−σ

=
{
f ∈ C∞(Rn) : sup

x∈Rn , α∈Nn
C−|α|α!−s1eε|x |1−σ |∂α

x f (x)| < ∞
}

with positive constants C and ε. These spaces can be characterized in the following way,
too:

Ss1
1

1−σ

=
⋃

m j∈R,ρ j∈R+, j=1,2

{
u ∈ S ′(Rn) : 〈·〉m2〈D〉m1eρ2〈·〉1−σ

eρ1〈D〉1/s1 u ∈ L2
}

.

If s2 = 1
1−σ

, then we apply

eA〈Dx 〉1−σ
h

only, that is, u belongs to the Gevrey–Sobolev space H1−σ,m . Let us understand the inter-
mediate situation.

To describe the space As1,s2
A′,ρ′(Hm), A′, ρ′ > 0, by Fourier multipliers, we use Remark 5,

(40) and the Fourier transform to get

As1,s2
A′,ρ′(Hm) = {

u ∈ Hm : eΛ′
u ∈ Hm} = {

u = (eΛ′
)−1w : w ∈ Hm}

= {
u = Re−Λ′

(1 + p)w : w ∈ Hm} = {
u = Re−Λ′

w : w ∈ Hm}

= {
u = (e−Λ′

)∗w : w ∈ Hm}

with

σ(Λ′)(x, ξ) = A′〈x〉1−σ− 1
s2 〈ξ 〉

1
s2
h + ρ′〈ξ 〉

1
s1
h

as in (15). Here, w is a function in Hm that may change from line to line. Now, we see that
(e−Λ′

)(x, Dx ) is at least an operator of finite order. So by asymptotically developing the
symbol of the adjoint we obtain

σ
(
(e−Λ′

)∗(x, ξ)
) = e−Λ′′(x,ξ) p̃(x, ξ), Λ′′(x, ξ) = A′′〈x〉1−σ− 1

s2 〈ξ 〉
1
s2
h + ρ′′〈ξ 〉

1
s1
h ,

with p̃(x, Dx ) a bounded operator of order 0 and with suitable A′′, ρ′′ > 0. For this reason,
we can characterize the space as follows:As1,s2

A′,ρ′(Hm) is contained in the space of all functions
u ∈ Hm such that

u = op (e−Λ′′(x,ξ))(x, Dx )w with w ∈ Hm,

where op (e−Λ′′(x,ξ))(x, Dx ) is the pseudo-differential operator of infinite order with symbol
e−Λ′′(x,ξ).

Remark 10 Let us characterize the spaces Bs1,s2
A,ρ (Hm) which are used in the formulation of

the main results in Theorem 1, Corollaries 1 and 2. Here, A and ρ are positive constants, the
parameterm ≥ 0.We turn toBs1,s2

A,ρ (Hm), where σ ∈ (0, 1), s1 ∈ ( 1
1−σ

,∞] and s2 ∈ [s1,∞].
Then due to (5), we have

Bs1,s2
A,ρ (Hm) :=

{
u ∈ (As1,s2(H

m))∗ : e−A〈x〉1−σ− 1
s2 〈Dx 〉

1
s2
h +ρ〈Dx 〉

1
s1
h u ∈ Hm

}
.

Let us introduce

v := eρ〈Dx 〉
1
s1
h u with a given u ∈ Hm,m ≥ 0.
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Then v belongs to the Gevrey–Sobolev space Hs1,m . We apply to elements of this space the
pseudo-differential operator of infinite order

e−A〈x〉1−σ− 1
s2 〈Dx 〉

1
s2
h with

1

s2
∈

[
0,

1

s1

]
.

If s2 = ∞, then we apply

e−A〈x〉1−σ

only, that is, u belongs to a weighted Gevrey–Sobolev space with an exponentially decreasing
weight. If s2 = s1, then

Bs1,s2
A,ρ (Hm) :=

{
u ∈ (As1,s1(H

m))∗ : e
(
ρ−A〈x〉1−σ− 1

s1
)
〈Dx 〉

1
s1
h u ∈ Hm

}
.

To characterize the spaces Bs1,s2
A′,ρ′(Hm), A′, ρ′ > 0, by Fourier multipliers we can formally

repeat the same computations done in Remark 9. By using the symbol

Λ′(x, ξ) = −A′〈x〉1−σ− 1
s2 〈ξ 〉

1
s2
h + ρ′〈ξ 〉

1
s1
h

straight-forward computations give that Bs1,s2
A′,ρ′(Hm) is contained in the space of all u ∈

(As1,s2(H
m))∗ such that

u = op (e−Λ′′(x,ξ)) w with w ∈ Hm,

where

Λ′′(x, ξ) = −A′′〈x〉1−σ− 1
s2 〈ξ 〉

1
s2
h + ρ′′〈ξ 〉

1
s1
h ,

with suitable A′′, ρ′′ > 0 andwhere op (e−Λ′′(x,ξ))(x, Dx ) is the pseudo-differential operator
of infinite order with symbol e−Λ′′(x,ξ).

Let us now restrict to the case s2 > s1. Taking into consideration

〈x〉1−σ− 1
s2 〈ξ 〉

1
s2
h ≤ Cε

(
〈x〉(1−σ− 1

s2
) 1+ε

ε + 〈ξ 〉
1
s2

(1+ε)

h

)

for all ε > 0, a sufficiently small positive ε allows to conclude from

e
A′′Cε

(
〈x〉(1−σ− 1

s2
) 1+ε

ε +〈ξ〉
1
s2

(1+ε)

h

)

e
−A′′Cε

(
〈x〉(1−σ− 1

s2
) 1+ε

ε +〈ξ〉
1
s2

(1+ε)

h

)

e−Λ′′(x,ξ)

= eA
′′Cε〈x〉(1−σ− 1

s2
) 1+ε

ε

e−ρ′′〈ξ〉
1
s1
h +A′′Cε〈ξ〉

1
s2

(1+ε)

h

·e
−A′′Cε

(
〈x〉(1−σ− 1

s2
) 1+ε

ε +〈ξ〉
1
s2

(1+ε)

h

)
+A′′〈x〉1−σ− 1

s2 〈ξ〉
1
s2
h

that Bs1,s2
A′,ρ′(Hm) is contained in the space of functions u ∈ Hm

loc such that

u = e Ã〈x〉(1−σ− 1
s2

) 1+ε
ε

e−ρ̃〈Dx 〉
1
s1
h w with w ∈ Hm,

for suitable positive constants Ã and ρ̃. Consequently, u belongs to a Gevrey space with
exponentially decaying weight.
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