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Abstract
In this paper, we formulate and study the system of elastodynamics on domains with arbitrary
growing cracks. This includes homogeneousNeumann conditions on the crack sets andmixed
general Dirichlet–Neumann conditions on the boundary. The only assumptions on the crack
sets are to be (n−1)-rectifiable with finite surface measure, and increasing in the sense of set
inclusions. In particular, they might be dense; hence, the weak formulation must fall outside
the usual context of Sobolev spaces and Korn’s inequality. We prove existence of a solution
for both the damped and undamped systems, while in the damped case we are also able to
prove uniqueness and an energy balance.

Keywords Second-order linear hyperbolic system · Dynamic fracture mechanics · Cracking
domains · Boundary conditions · Bounded deformation
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1 Introduction

The theory of dynamic fracture mechanics contains basically three principles that can be
resumed as follows

• elastodynamics off the cracks;
• energy-dissipation balancewhich includes also the surface energy dissipated by the crack;
• a principle dictating when a crack must grow.

For the first two conditions, we refer to [13], while the third one is discussed in [14] in some
more details and a maximal dissipation condition is proposed.

In this paper, we focus on the first issue. Precisely, we fix a time interval [0, T ] and we
consider � ⊂ R

n a regular domain as reference configuration, a fixed family of growing-in-
time crack sets �(t) contained in �, and u(t, x) the displacement which might be essentially
discontinuous for x ∈ �(t). Then, given initial conditions, and mixed Dirichlet–Neumann
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boundary conditions on ∂�, we want to find a solution to the system of (possibly damped)
elastodynamics

ü(t) − div [C Eu(t)] − γ div [B E u̇(t)] = f (t), in �\�(t) (1)

where C and B are the elasticity tensor and the viscosity tensor, respectively, Eu denotes
the symmetric part of the gradient of u, div denotes the divergence operator acting on the
rows of matrices, f (t) is a vector field representing the volume force, and at each time t
the system (1) is complemented with homogeneous Neumann condition on the crack �(t).
This last condition reflects the fact that no external forces are acting on the crack lips. The
parameter γ can take value only in {0, 1}, and in particular, for γ = 1 the system is called
damped, while for γ = 0 the system is called undamped.

In the corresponding quasi-static models, all the known existence results for the coupled
problem (u(t), �(t)) without a priori assumptions on �(t), are obtained by minimizing a
weak form of the Griffith’s energy on function spaces with no regularity on the jump sets
except the (n−1)-rectifiability (see [6,9,10,12]). The existence of a solution with�(t) closed
is obtained only in particular cases through a regularity argument (see [3,4]). Therefore, also
in the dynamic case we expect that in dealing with any general existence results, no a priori
regularity assumptions on the crack sets �(t) should be assumed. For this reason, we assume
only that the cracks �(t) are (n − 1)-rectifiable with finite (n − 1)-dimensional Hausdorff
measure.

In this paper, we prove that in both the undamped and damped cases, a solution actually
exists.

The first issue is to give a weak formulation to the system written in (1). The presence
of the cracks forces at each time to solve the system on the set �\�(t). Therefore, we need
to introduce suitable function spaces Vt , containing for each time t the solution u(t) as well
as the test functions. The scalar case, i.e., when (1) reduces to the wave equation, has been
treated by Dal Maso, Larsen in [7]. Since the structure of the equation implies no bound on
the amplitude of the jump of u, but only on the L2-norm of the gradient

∫
�\�(t)

|∇u(t)|2 dx, (2)

they defined the problem in the context of GSBV (�) (for a definition, we refer to [1, Defini-
tion 4.26]). Precisely in [7], it has been shown the existence of a weak solution u(t) living at
each time t in the spaceGSBV 2

2 (�;�(t)), composed of all functions u ∈ GSBV (�)∩L2(�)

whose jump sets are contained in �(t) and such that (2) is finite.
In our case, the structure of the equation leads to an estimate of

∫
�\�(t)

|Eu(t)|2 dx .

Hence, Vt needs to include all the displacements in L2(�,Rn)whose jump sets are contained
in�(t) andwith square integrable symmetric gradient away form the cracks. Sincewe assume
no regularity on the cracks, in this general context a Korn’s type inequality is not true. This
means that we cannot control the L2-norm of the gradient of u(t) with the L2-norm of its
symmetric part. As a consequence, we are forced to formulate our problem in the context of
BD functions and precisely to define Vt = GSBD2

2(�;�(t)) (see Definition 2.3) and V ∗
t =

GSBD2
2(�;�(t))∗ its dual. Note that if �(t) are closed sets in �, then GSBD2

2(�;�(t))
reduces to the space of square integrable vector fields, whose symmetric gradients in the
sense of distribution on �\�(t) are square integrable.
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The weak formulation of the system will be

〈ü(t), φ〉∗t + 〈CEu(t), Eφ〉Hn + 〈BE u̇(t), Eφ〉Hn = 〈 f (t), φ〉H ∀φ ∈ Vt (3)

for a.e. t ∈ [0, T ], where 〈·, ·〉∗t denotes the duality pairing between Vt and V ∗
t , 〈·, ·〉H 〈·, ·〉Hn

denote the scalar product in L2(�,Rn) and in L2(�,Mn×n
sym ), respectively.

We want to emphasize that one of the most serious mathematical issues arises because
these spaces are varying (increasingly) in time, so that test functions at some time t are not
necessarily admissible test functions for times s < t . Moreover, since u(t) lives on each time
t in different spaces Vt , we need to give a meaning to the second derivative in time ü(t) as
an element of V ∗

t .
While in [7] only homogeneous Neumann boundary condition was considered, in the

present paper we consider also non-homogeneous mixed Dirichlet–Neumann boundary con-
ditions on ∂�. This introduces another difficulty when the crack sets approach the boundary,
and as a consequence, possible problems may occur with the boundary conditions. Indeed,
when we have non-homogeneous Neumann boundary condition on a part of ∂�, we might
think that when the elastic material between this part of the boundary and the crack sets is
infinitesimally small, then the elastic reaction to the traction forces will be infinitesimal too.
From a mathematical point of view, the difficulty is due to the lack of continuity of the trace
operator acting on functions having jump sets close to the boundary. In order to solve this
problem, we make use of the results obtained in [15], which allow us to restrict our attention
to a suitable space of traction forces F .

We also show an energy balance and uniqueness for the damped problem. The energy
balance we are able to prove in the damped case is a conservation of kinetic plus elastic plus
dissipated energy due to the damping. For the undamped problem the energy balance, where
only the kinetic plus the elastic energy are considered, is clearly false. This can be seen using
the results of [2]. In the undamped case, the uniqueness is still an open problem.

This paper is organized as follows: in Sect. 2 we define the function spaces. Precisely, we
define Vt , we show some functional properties about these spaces, and then we introduce the
space of admissible traction forces F appearing in the Neumann part of the boundary. Then
we give a precise definition of ü(t) for a.e. t ∈ [0, T ] as an element of V ∗

t , and we show that
under some regularity assumptions on the test functions, ü satisfies an integration by parts
formula in time.

In Sect. 3 we first give the definition of weak solution. Then we show an existence result
for the damped equation complemented with boundary conditions, by a discrete in time
approximation technique and passing to the limit when the time step goes to zero (see The-
orem 3.2). More precisely to define the discrete approximate solution uk in the time interval
(t ik, t

i+1
k ], suppose that we have already defined uk for t ≤ t ik , and let u

i+1
k be the minimizer

in Vti+1 + w(t ik)
1 of

u �→
∥∥∥∥u − uik

τk
− uik − ui−1

k

τk

∥∥∥∥
2

+ 〈C Eu, Eu〉 + 1

τk
〈B (Eu − Euik), Eu − Euik〉 − 2〈 f ik , u〉,

where uik = uk(t ik), ‖ · ‖ is the norm in L2 and 〈·, ·〉 is the L2-scalar product, f ik is a suitable
discrete approximation of f and τk is the time step. We define uk on (t ik, t

i+1
k ] as the linear

interpolation between uik and ui+1
k .

Then we show that the limit u of the uk satisfies the energy balance (38). Precisely for
each k, uk satisfies a discrete energy balance which converges to the desired energy balance

1 Vti+1 + w(t ik ) is the space of functions that jump on �(ti+1) with Dirichlet boundary condition w(t ik ) on
∂D� ⊂ ∂�.
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for u as k → ∞ (see Propositions 3.4 and 3.8). As a consequence, we deduce existence and
uniqueness for the damped problem (see Theorem 3.7).

Finally, in Sect. 4we show the existence of aweak solution to the undamped equation com-
plemented with boundary conditions, always by a discrete in time approximation technique
and passing to the limit when the time step goes to zero (Theorem 4.2).

2 Notation and preliminary results

We denote the space of n×n matrices with real entries asMn×n endowed with the Euclidean
scalar product

ξ · η :=
n∑
j=1

( n∑
i=1

ξi jηi j

)
,

and we denote as | · | the associated norm; the subspace of symmetric n × n matrices is
denoted by M

n×n
sym . L(Mn×n) is the space of continuous linear maps ofMn×n into itself.

Let � ⊂ R
n be an open set. We denote the space L2(�,Rn) as H , with scalar product

〈·, ·〉H and with associated norm ‖ · ‖H . Analogously we denote the space L2(�,Mn×n) as
Hn , with scalar product 〈·, ·〉Hn and with associated norm ‖ · ‖Hn .

Definition 2.1 We say that C : � → L(Mn×n) is a bounded symmetric and positive definite
tensor field, if it is Ln-measurable and

• ‖C‖L∞ < ∞,
• C(x)ξ ∈ M

n×n
sym , ∀ξ ∈ M

n×n, for a.e. x ∈ �,
• C(x)ξ · η = ξ · C(x)η, ∀ξ, η ∈ M

n×n, for a.e. x ∈ � (symmetry),
• C(x)ξ · ξ ≥ γ0|ξ |2, ∀ξ ∈ M

n×n
sym , for a.e. x ∈ � (γ0 > 0) (positiveness),

(which are the usual assumptions in linear elasticity). The strictly positive number γ0 is
called ellipticity constant of C. Under the previous assumptions on C, given any Lebesgue-
measurable functions ξ : � → M

n×n , we write

‖ξ‖HC
n

:=
∫

�

C(x)ξ(x) · ξ(x) dx .

Remark 2.2 Thanks to the symmetry and positiveness properties of C, it follows that the
function ‖ · ‖HC

n
defined on the real vector space of all measurable functions ξ : � → M

n×n
sym

is a norm. Moreover, by using also the L∞-bound, the norm ‖ · ‖HC
n
is equivalent to the norm

‖ · ‖Hn .

We recall that GSBD2
2(�) is the space of vector fields u ∈ GSBD(�) (see [5] for

the definition of GSBD(�)) such that u ∈ L2(�,Rn), and their symmetric approximate
gradients Eu belong to L2(�,Mn×n

sym ).

Definition 2.3 Let � ⊂ � be a countably (Hn−1, n − 1)-rectifiable set (see [11, Defini-
tion 3.2.14]) with Hn−1(�) < ∞. We define

GSBD2
2(�;�) := {u ∈ GSBD2

2(�) | Ju ⊂ �}.
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Proposition 2.4 Let � be an open set of Rn, and let � ⊂ � be a countably (Hn−1, n − 1)-
rectifiable set with Hn−1(�) < ∞. Then the space GSBD2

2(�;�) endowed with the scalar
product

〈u, v〉2 = 〈u, v〉H + 〈Eu, Ev〉Hn , (4)

is a separable Hilbert space. Moreover, we denote by ‖ · ‖ the associated norm to the scalar
product 〈·, ·〉2.
Proof Thanks to [5, Remark 4.6] we know that GSBD(�) is a real vector space, and as a
consequence, GSBDp

p (�) is a real vector space too. The fact that GSBDp
p (�;�) is also a

real vector space follows once we prove that given u, v ∈ GSBD(�) then Ju+v ⊂ Ju ∪ Jv
Hn−1-a.e.. To see this, fix 
 an orthonormal basis of Rn , say {ξ1, . . . , ξn}, and consider the
directions in S

n−1 defined by

C(
, δ) := {x ∈ S
n−1 | |x · ξi | > (1/

√
n − δ)|x |, for every ξi ∈ 
},

where δ is any real number in (0, 1/
√
n). We claim that

A := {x ∈ Ju+v | νu+v(x) ∈ C(
, δ)} ⊂ Ju ∪ Jv, Hn−1-a.e. (5)

Notice that for every ξ ∈ S
n−1 and for every y ∈ ξ⊥

[Rn\(Ju ∪ Jv)]ξy ∩ (Ju)
ξ
y = ∅, and [Rn\(Ju ∪ Jv)]ξy ∩ (Jv)

ξ
y = ∅,

and thanks to [5, Theorem 8.1] we deduce that for every ξ ∈ S
n−1

[Rn\(Ju ∪ Jv)]ξy ∩ J
ûξ
y

= ∅, and [Rn\(Ju ∪ Jv)]ξy ∩ J
v̂

ξ
y

= ∅, Hn−1-a.e. y ∈ ξ⊥. (6)

Since the one-dimensional slices of u and v are SBVloc-functions, by (6) we deduce that for
Hn−1-a.e. y ∈ ξ⊥ the sets [Rn\(Ju ∪ Jv)]ξy is contained in the set of Lebesgue points of

ûξ
y + v̂

ξ
y which in turn is contained in the set of Lebesgue points of ((u + v) · ξ)

ξ
y . By using

again [5, Theorem 8.1], this means that for every ξ ∈ S
n−1 we have

[Rn\(Ju ∪ Jv)]ξy ∩ (J ξ
u+v)

ξ
y = ∅, Hn−1-a.e. y ∈ ξ⊥. (7)

Now suppose that (5) does not hold. This means that there exists a set A′ ⊂ A with
Hn−1(A′) > 0 but Hn−1((Ju ∪ Jv) ∩ A′) = 0. Since 
 is a basis of Rn , then there must
exists ξi ∈ 
 such that

Hn−1(A′ ∩ {((u + v)+ − (u + v)−) · ξi �= 0}) > 0.

By using also that for Hn−1-a.e. x ∈ A′ ∩ {((u + v)+ − (u + v)−) · ξi �= 0} we have
νu+v(x) · ξi > 0 (simply by definition of A), and by using Coarea formula applied to the
projection map

πξ : A′ ∩ {((u + v)+ − (u + v)−) · ξi �= 0} → ξ⊥

we deduce that if we set A′
i := A′ ∩{((u+v)+−(u+v)−) ·ξi �= 0}, thenHn−1(πξ (A′

i )) > 0
and

H0([A′ ∩ {((u + v)+ − (u + v)−) · ξi �= 0}]ξy) > 0, Hn−1-a.e. y ∈ πξ (A′
i ).

But since A′
i ⊂ J ξi

u+v , by (7) this means also that

H0((Ju ∪ Jv)
ξ
y) > 0, Hn−1-a.e. y ∈ πξ (A′

i ),
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1576 E. Tasso

which is a contradiction since we assumed that Hn−1((Ju ∪ Jv) ∩ A′) = 0 and proves our
claim. Finally, thanks to the arbitrariness of
, relation (5) proves exactly that Ju+v ⊂ Ju∪ Jv
Hn−1-a.e..

To prove the completeness, we argue in the following way. Suppose that (uk) ⊂
GSBDp

p (�;�) is a Cauchy sequence. In particular, (uk)k converges strongly in L p(�,Rn)

to some u . Since

sup
k∈N

(‖uk‖L p + ‖Euk‖L p + Hn−1(Juk )
)

< ∞,

by Theorem [5, Theorem 11.3], eventually passing through a subsequence, we know that
there exists v ∈ GSBD(�) such that uk → v pointwise a.e. on � and Euk⇀Ev weakly
in L1(�). This implies u = v and thanks to the lower semicontinuity of the L p norm with
respect to the weak convergence also

‖Eu‖L p ≤ lim inf
k→∞ ‖Euk‖L p ,

hence u ∈ GSBDp
p (�).

It remains to prove that Ju ⊆ �. Using [5, Theorem, 11.3], for every open set U ⊂ � we
have

Hn−1(Ju ∩U ) ≤ lim inf
k→∞ Hn−1(Juk ∩U ) .

Since the measure Hn−1 ¬
� is inner regular, for every ε > 0 we can find a compact set

K ⊂ �, such that Hn−1(�\K ) ≤ ε, and so

Hn−1(Ju\K ) ≤ lim inf
k→∞ Hn−1(Juk\K ) ≤ lim inf

k→∞ Hn−1(�\K ) ≤ ε.

For the arbitrariness of ε, we conclude that Hn−1(Ju\�) = 0.
To prove the separability, consider the embedding j : GSBD2

2(�;�) → L2(Rn × R
n2)

defined by j(u) := (u, Eu). By the well-known fact that subspaces of a separable met-
ric space are separable, since j is an embedding, we deduce that also GSBD2

2(�;�) is
separable. ��

The dual GSBD2
2(�;�)∗ will not be identified with the underlying Hilbert space, but

instead will be endowed with a pairing consistent with the L2 inner product, as is usually
done for the duals of Sobolev spaces. Since

GSBD2
2(�;�) ⊂ L2(�,Rn)

is a dense embedding, we have

L2(�,Rn) = L2(�,Rn)∗ ⊂ GSBD2
2(�;�)∗,

and L2(�,Rn) is densely embedded in GSBD2
2(�;�)∗.

In the case� has also finite perimeter, the trace operator Tr(·) can be extended to the space
GSBD(�;�), using the notion of approximate limit on the point of the reduced boundary
F� (see [15, Definition 3.9]). Moreover, the following theorem holds true.

Theorem 2.5 Let � ⊂ R
n be an open set of finite perimeter, and let � ⊂ � be a countably

(Hn−1, n − 1)-rectifiable set, withHn−1(�) < ∞. Then there exists a measurable functions
� : F� → R

+ such that

(a) Hn−1({� = 0}) = 0 and � ∈ L∞(F�,Hn−1) (in particular, ‖�‖∞ ≤ 1);
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(b) For every u ∈ GSBD2
2(�;�) we have∫

F�

|Tr(u)|2� dHn−1 ≤ C(n, 2)(‖u‖H + ‖Eu‖Hn )
2, (8)

where C(n, 2) is a constant depending only on n and 2.

Proof Let �+ be the weight function given by [15, Theorem 3.2], if we define

�(x) := �+(x) for Hn−1-a.e. x ∈ F�,

then (a) and (b) are direct consequences of [15, Theorem 3.2] with p = 2. ��
Now let ∂N� be a Borel subset ofF�. In order to impose a Neumann boundary condition

in equation (1), we are led to study the continuity property of the following linear form

u �→
∫

∂N�

F · Tr(u) dHn−1 u ∈ GSBD2
2(�;�), (9)

where F : ∂N� → R
n is somemeasurable vector field. In view of inequality (8) we introduce

the following space.

Definition 2.6 (Admissible Neumann term) Let �, �, and � be as in the previous theorem,
and let ∂N� be a Borel subset of F�. We define N� := L2(∂N�,�Hn−1), and we denote
by N∗

� its dual. We identify N∗
� with the space of measurable vector fields F : ∂N� → R

n

such that ∫
∂N�

|F |2
�

dHn−1 < ∞,

and we consider the corresponding duality pairing between N∗
� and N� given by

〈F, g〉� :=
∫

∂N�

F · g dHn−1 (g ∈ N�).

The induced norm is denoted by ‖ · ‖∗
N�

.

Putting together the definition of N� and Theorem 2.5, we have the following result.

Proposition 2.7 Let �, �, and � be as in Theorem 2.5. Let ∂N� be a Borel subset of F�. If
F ∈ N∗

� then the linear form defined in (9) belongs to GSBD2
2(�;�)∗.

Proof It is enough to use inequality (8) to have∫
∂N�

F · Tr(u) dHn−1 ≤ ‖F‖∗
N�

‖Tr(u)‖N� ≤ C(n, 2)‖F‖∗
N�

(‖u‖H + ‖Eu‖Hn

)
.

��
Our choice ofNeumann forces, in some sense, is natural. In fact looking at the construction

of � made in [15], roughly speaking, it turns out that � measures the “closeness” of � to the
boundary. From a physical point of view, this might be interpreted as the fact that, when the
elasticmaterial between theNeumann boundary and the crack is infinitesimally small, then its
elastic reaction can only balance traction forceswhich decrease their intensity (proportionally
to �).

The following proposition is useful to prescribe aDirichlet boundary condition on a certain
portion of the boundary ∂D� ⊆ F�.
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1578 E. Tasso

Proposition 2.8 Let �, � be as in Proposition 2.7, let ∂D� be a Borel subset of F�, and
let g : ∂D� → R be a measurable function. Then the set {u ∈ GSBD2

2(�;�) | Tr(u) =
g on ∂D�} is an affine closed subspace of GSBD2

2(�;�).

Proof The only non-trivial fact is to show that it is closed with respect to the norm induced
by the scalar product (4). But this is a direct consequence of [15, Theorem 4.1]. ��
Definition 2.9 Let ∂D� ⊆ F� be a Borel set. We define

GSBD2
2,D(�;�) := {u ∈ GSBD2

2(�;�) | Tr(u) = 0, on ∂�D}. (10)

Thanks to our previous proposition,GSBD2
2,D(�;�) is actually an Hilbert space with scalar

product inherited as a subspace of GSBD2
2(�;�).

Now fix T > 0, and fix � ⊂ � a countably (Hn−1, n−1)-rectifiable set withHn−1(�) <

∞. Consider for t ∈ [0, T ] an increasing family of cracks t �→ �(t)

�(s) ⊆ �(t) ⊆ � if s ≤ t .

For simplicity of notation, we denoteGSBD2
2(�;�) by V andGSBD2

2,D(�;�(t)) by Vt .
The norm in V is denoted by ‖ · ‖, and the norm in Vt with ‖ · ‖t . Note that for s < t we have
Vs ⊂ Vt ⊂ V , and as we have alreadymentioned, since V ⊂ H (remember H = L2(�,Rn))
is densely embedded in H , we have the embedding H ⊂ V ∗ and the density of H in V ∗.
Similarly H is a dense subspace of V ∗

t for every t ∈ [0, T ]. We denote the pairing between
V ∗ and V by 〈·, ·〉, and the associated dual norm ‖ · ‖∗, we denote the pairing between V ∗

t
and Vt by 〈·, ·〉t , and the associated dual norm ‖ · ‖∗

t . We note that these pairings are the
unique continuous bilinear maps on V ∗ × V and V ∗

t × Vt such that 〈 f , v〉 = 〈 f , v〉H and
〈 f , vt 〉t = 〈 f , vt 〉H whenever f ∈ H , v ∈ V , vt ∈ Vt .
If s < t then Vs is not dense in Vt and so V ∗

t is not embedded in V ∗
s . Anyway we can

introduce the projection operators from V ∗
t to V ∗

s in the following way.

Definition 2.10 Let s < t and let i : Vs → Vt denote the embedding Vs ⊂ Vt . Let f be an
element of V ∗

t . Then we define the projection map Pst of V ∗
t onto V ∗

s as

〈Pst f , vs〉s := 〈 f , i(vs)〉t for any vs ∈ Vs . (11)

Note that the projection maps defined above are continuous and in particular ‖Pst f ‖∗
s ≤

‖ f ‖∗
t . When there is no misunderstanding, we omit the notation Pst f , since the action of

f ∈ V ∗
t on elements of Vs ⊂ Vt is clear from the context.

Lemma 2.11 Let u ∈ W 1,∞(0, T ; H). Assume that there exists a positive function g ∈
L2(0, T ), such that for every s, t ∈ [0, T ] with s < t , we have

u ∈ W 2,2(t, T ; V ∗
s ) and ‖ü(r)‖∗

s ≤ g(r) for a.e. r ∈ (t, T ). (12)

Then there exists a set E ⊂ [0, T ] of full measure, such that for every t ∈ E there exists
w(t) ∈ V ∗

t with the following properties

‖w(t)‖∗
t ≤ g̃(t), (13)

where g̃(t) = lim suph→0+ 1
h

∫ t+h
t g(r) dr, and

lim
h→0+

u̇(t + h) − u̇(t)

h
= w(t), weakly in V ∗

t , (14)
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Weak formulation of elastodynamics in domains with growing… 1579

and

lim
h→0

u̇(t + h) − u̇(t)

h
= w(t), strongly in V ∗

s for every s < t . (15)

In particular, for every s ∈ [0, T ] the functions t �→ u(t) and t �→ Pstw(t), considered
as a functions from (s, T ) to V ∗

s , belong, respectively, to W 2,2(s, T ; V ∗
s ) and L2(s, T ; V ∗

s ),
and satisfy ü(t) = Pstw(t) in V ∗

s for a.e. t ∈ (s, T ).

Remark 2.12 Under the previous hypothesis on u, for every t ∈ [0, T ] u̇(t) is a well-defined
element of H . More precisely, the functions u̇ : [0, T ] → H is weakly continuous, i.e., for
every tk → t ∈ [0, T ] we have

u̇(tk)⇀u̇(t) weakly in H , as k → ∞. (16)

Indeed, thanks to our hypothesis u̇(t) is a well-defined element of V ∗
0 for every t ∈ [0, T ] and

u̇(tk)⇀u̇(t) weakly in V ∗
0 whenever tk → t as k → ∞. Moreover, since u̇ ∈ L∞(0, T ; H),

by using the lower semicontinuity of the norm ‖ · ‖H with respect to the weak convergence
in H , and the fact that H ⊂ V ∗

0 is an embedding, we deduce that actually u̇(t) ∈ H for every
t ∈ [0, T ]. This shows that u̇(t) is a well-defined element of H for every t ∈ [0, T ]. Finally,
by arguing as before it is easy to see that u̇(tk)⇀u̇(t) weakly in H as k → ∞.

Remark 2.13 In the proof of Lemma 2.11, we are able to show that the convergence in (14)
holds when we consider the incremental quotients only for positive h.

In the proof of Lemma 2.11, we shall use the following result on increasing sequences of
subspaces of separable Hilbert spaces proved in [5, Lemma 2.3].

Lemma 2.14 Let {Xt | t ∈ [0, T ]} be an increasing family of closed linear subspaces of a
separable Hilbert space X. Then, there exists a countable set S ⊂ [0, T ] such that for all
t ∈ [0, T ]\S, we have

Xt =
⋃
s<t

Xs .

Proof (Lemma 2.11) Let D ⊂ [0, T ] be a countably dense set. Choose s ∈ D, then thanks to
(12) for a.e. t > s there exists ü(t) as an element of V ∗

s and ‖ü(t)‖∗
s ≤ g̃(t). By the fact that

D is countable, we have a set E ′ ⊂ (0, T ) of full measure, such that if t ∈ E ′ ü(t) exists as
an element of V ∗

s and ‖ü(t)‖∗
s ≤ g̃(t) for every s ∈ (0, t)∩ D. Moreover, by density, for any

s1 < t there exists s2 ∈ D with s1 < s2 < t and thanks to the continuity of the projection
map Ps1s2 , we have the relation between ü(t) computed in V ∗

s2 and in V ∗
s1 , given by

lim
h→0

u̇(t + h) − u̇(t)

h
= ü(t) in V ∗

s2 ⇒ lim
h→0

u̇(t + h) − u̇(t)

h
= Ps1s2 ü(t) in V ∗

s1 , (17)

This means that for every t ∈ E ′ and for every s < t

ü(t) exists in V ∗
s , ‖ü(t)‖∗

s ≤ g̃(t), (18)

and precisely two derivatives computed on different V ∗
s are related by (17). Hence, for every

t ∈ E ′, ü(t) is well defined as an element of V ∗
s for every s < t .

The previous bound in (18) implies in particular

u ∈ W 2,2(s, T ; V ∗
s ) for every s ∈ (0, T ). (19)
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Now define

E := E ′ ∪ {t ∈ [0, T ] |
⋃
s<t

Vs = Vt and g̃(t) < ∞}. (20)

By Lemma 2.14, Lebesgue’s differentiation theorem, and the definition of E ′, it holds that
E has still full measure.

Now let t ∈ E . In order to prove (13), we notice that for every φ ∈ Vt there exists an
increasing sequence (sn)n∈N converging to t , and a sequence of functions (φsn )n∈N with
φsn ∈ Vsn strongly converging to φ in Vt . Hence, we can define w(t) : Vt → R as

〈w(t), φ〉t := lim
n→∞〈ü(t), φsn 〉sn for every φ ∈ Vt . (21)

We have to show that the previous limit exists and does not depend on the approximating
sequence (φsn )n∈N. It is enough to notice that if n > m then

〈ü(t), φsn 〉sn − 〈ü(t), φsm 〉sm = 〈ü(t), φsn − φsm 〉sn
≤ ‖ü(t)‖∗

sn‖φsn − φsm‖sn
≤ g̃(t)‖φsn − φsm‖t .

(22)

This defines a continuous linear functional on Vt and moreover ‖w(t)‖∗
t ≤ g̃(t) . This is

exactly (13).
To prove (14) let t ∈ E . We fix ε > 0 and φ ∈ Vt , and then we can find s < t and φs ∈ Vs

such that ‖φs − φ‖t ≤ ε. Hence,

lim
h→0+

〈
u̇(t + h) − u̇(t)

h
− w(t), φ

〉
t
= lim

h→0+

〈
u̇(t + h) − u̇(t)

h
− w(t), φs + (φ − φs)

〉
t

≤ lim sup
h→0+

1

h

∫ t+h

t
〈ü(r) − w(t), φ − φs〉t dr

≤ lim sup
h→0+

(
1

h

∫ t+h

t
g(r) dr + g̃(t)

)
‖φ − φs‖t

≤ 2g̃(t)ε,

(23)

where we used the fact that u ∈ W 2,2(t, T ; V ∗
t ) and the fundamental theorem of calculus.

The arbitrariness of ε gives assertion (14) and concludes the proof. ��
Definition 2.15 Under the assumption of Lemma 2.11, the element w(t) of V ∗

t defined in
(14) for a.e. t ∈ [0, T ] is denoted by ü(t) .

Lemma 2.16 Let u be as in Lemma 2.11 and consider ϕ ∈ L2(0, T ; V ) ∩ W 1,2(0, T ; H)

such that ϕ(t) ∈ Vt for every t ∈ [0, T ]. Then the map t �→ 〈u̇(t), ϕ(t)〉H is absolutely
continuous on [0, T ] and more precisely

〈u̇(t2), ϕ(t2)〉H − 〈u̇(t1), ϕ(t1)〉H =
∫ t2

t1
〈ü(τ ), ϕ(τ)〉τ + 〈u̇(τ ), ϕ̇(τ )〉τ dτ, (24)

for every 0 ≤ t1 < t2 ≤ T .

Proof By Remark 2.12 we know that t �→ u̇(t) is weakly continuous in H . Therefore, since
t �→ ϕ(t) is strongly continuous in H , we deduce that t �→ 〈u̇(t), ϕ(t)〉H is a continuous
real valued map.
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First of all, we prove our assertion for ϕ(·)h := ϕ(· − h) instead of ϕ(·). Fix any t ∈
[h, T − h]. Since ϕ(· − h) ∈ Vt on the time interval [t, t + h] and u ∈ W 2,2(t, t + h; V ∗

t ),
we easily deduce that

〈u̇(t2), ϕh(t2)〉H − 〈u̇(t1), ϕh(t1)〉H =
∫ t2

t1
〈ü(τ ), ϕh(τ )〉τ + 〈u̇(τ ), ϕ̇h(τ )〉τ dτ, (25)

for every t1, t2 ∈ (t, t + h) (t1 < t2). Since t was arbitrary and 〈u̇(·), ϕh(·)〉H is continuous,
we can actually obtain (25) for every t1, t2 ∈ [h, T − h] (t1 < t2).

Finally thanks to the fact ϕ ∈ W 1,2(0, T ; H) the left-hand side of (25) converges to
〈u̇(t2), ϕ(t2)〉H − 〈u̇(t1), ϕ(t1)〉H as h → 0+, while using also ϕ ∈ L2(0, T ; V ) (in par-
ticular, the continuity of the translations in L2), the right-hand side of (25) converges to∫ t2
t1

〈ü(τ ), ϕ(τ)〉τ + 〈u̇(τ ), ϕ̇(τ )〉τ dτ and we are done. ��

3 The damped system of elastodynamics

From now on we consider the following standing assumptions:

(a) � ⊂ R
n is an open set of finite perimeter;

(b) (�(t))t∈[0,T ] is an increasing family of crack sets:

�(s) ⊆ �(t) ⊆ � for s < t, (26)

where � ⊆ � is a countably (Hn−1, n − 1)-rectifiable set with Hn−1(�) < ∞;
(c) ∂D�, ∂N� are two disjoint Borel subsets of F�, respectively the Dirichlet and the

Neumann part of the reduced boundary, such that ∂D� ∪ ∂N� = F�;
(d) C andB are bounded symmetric and positive definite tensor fieldswith ellipticity constant

γ0 and γ1, respectively (see Definition 2.1).

In this section, we deal with the damped system of elastodynamics:

ü(t) − div [C Eu(t)] − div [B E u̇(t)] = f (t). (27)

Now we shall give the precise definition of weak solution:

Definition 3.1 Assume (a), (b), (c) and (d). With the notation introduced in Sect. 2, let f ∈
L2(0, T ; V ∗), let w ∈ W 2,2(0, T ; H) ∩ W 1,2(0, T ; H1(�)n) and let F ∈ L2(0, T ; N�)

where � is the function relative to the crack set � given by Theorem 2.5. We say that u is a
weak solution to (27) on the time dependent domain t �→ �\�(t) with Dirichlet boundary
condition w(t) on ∂D�, Neumann boundary condition F(t) on ∂N� and homogeneous
Neumann boundary condition on �(t), if

u ∈ W 1,∞(0, T ; H) ∩ W 1,2(0, T ; V ). (28)

For every t ∈ [0, T ] u(t) − w(t) ∈ Vt . (29)

For every s ∈ [0, T ) u ∈ W 2,2(s, T ; V ∗
s ), and (30)

‖Pst ü(t)‖∗
s ≤ g(t) for a.e. t ∈ (s, T ), for some g ∈ L2(0, T ). (31)

lim
h→0+

∫ T

h

‖u̇(t) − u̇(t − h)‖2H
h

dt = 0. (32)

For a.e. t ∈ [0, T ]
〈ü(t), φ〉t + 〈C Eu(t), Eφ〉Hn + 〈B E u̇(t), Eφ〉Hn − 〈F(t), Tr(φ)〉�
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= 〈 f (t), φ〉t , for every φ ∈ Vt

where ü(t) is the one given by Definition 2.15. (33)

Given u0 ∈ V such that u0 − w(0) ∈ V0 and u1 ∈ H , since t �→ u(t) is strongly continuous
in V the initial value for u is well defined as element of V0+w(0). Moreover, we are able to
prescribe the initial conditions for u̇(0) asking

lim
h→0+

1

h

∫ h

0
‖u̇(t) − u1‖2H dt = 0. (34)

Since Eu(t) and E u̇(t) are in general only elements of Hn , it does not make sense to
talk about their traces. For this reason the Neumann boundary conditions, F(t) on ∂N�

and homogeneous on both sides of �(t), have to be intended in a weak sense by means of
integration by parts in Eq. (33). Moreover, condition (32) is technical and is related to the
presence of the damping term. In fact, it plays a crucial role in view of the energy balance
(38) (see Proposition 3.4).

The work of the external forces on the solution u over a time interval [t1, t2] ⊂ [0, T ] is
given by

Wload(u; t1, t2) :=
∫ t2

t1
〈 f (t), u̇(t)〉t dt (35)

which is well defined by (28) and the fact that f ∈ L2(0, T ; V ∗). One would expect that the
work on the solution u due to the varying Dirichlet boundary conditions w and Neumann
boundary conditions F over a time interval [t1, t2] ⊂ [0, T ] is given by

Wbdry(u; t1, t2) :=
∫ t2

t1

( ∫
∂D�

(CEu(t) + BEu(t))ν · ẇ(t) dHn−1
)
dt

+
∫ t2

t1
〈F(t), u̇(t)〉�dt .

(36)

Unfortunately, under the assumptions (28)–(31) the trace of the normal derivative ∂νu(t)
cannot be defined, not even in a weaker sense, because Eu(t) in general belongs only to Hn .
We decide to solve this problem following [8, Proposition 3.1], by using theweak formulation
of the work due to the Dirichlet boundary conditions:

WD
bdry(u; t1, t2) := 〈u̇(t2), ẇ(t2)〉H − 〈u̇(t1), ẇ(t1)〉H −

∫ t2

t1
〈ẅ(t), u̇(t)〉H dt

−
∫ t2

t1
〈F(t), ẇ(t)〉� dt −

∫ t2

t1
〈 f (t), ẇ(t)〉t dt +

∫ t2

t1
〈C Eu(t) + B E u̇(t), Eẇ(t)〉Hn dt .

(37)

With this notation, the energy balance that we are able to prove for the solution u to (27)
has the following form:

1

2
‖u̇(t)‖2H + 1

2
‖Eu(t)‖2HC

n
+ 1

2

∫ t

0

1

2
‖E u̇(τ )‖2HB

n
dτ

= 1

2
‖u1‖2H + 1

2
‖Eu0‖HC

n
+ Wload(u; 0, t) + Wbdry(u; 0, t).

(38)

Now we prove the main result.
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Theorem 3.2 (Partial existence) Assume (a), (b), (c) and (d). Let f , w and F be as in Defi-
nition 3.1. Then, given two initial conditions u0 ∈ V such that u0 − w(0) ∈ V0 and u1 ∈ H,
there exists a function u satisfying (28)–(31) and (33) of Definition 4.1, with initial conditions
u(0) = u0 and (34). Moreover, u satisfies the energy inequality

1

2
‖u̇(t)‖2H + 1

2
‖Eu(t)‖2HC

n
+ 1

2

∫ t

0

1

2
‖E u̇(τ )‖2HB

n
dτ

≤ 1

2
‖u1‖2H + 1

2
‖Eu0‖HC

n
+ Wload(u; 0, t) + Wbdry(u; 0, t)

(39)

for a.e. t ∈ [0, T ].
Remark 3.3 Since F ∈ L2(0, T ; N�), by Proposition 2.7 we have that 〈F(t), Tr(φ)〉� is
actually a duality pairing between V ∗

t and Vt . Therefore, we can absorb the Neumann term
into the forcing term defining

〈 f̃ (t), φ〉t := 〈 f (t), φ〉t + 〈F(t), Tr(φ)〉�,

and we can reduce ourselves to prove Theorem 3.2 when (33) has the simplest form

〈ü(t), φ〉t + 〈C Eu(t), Eφ〉Hn + 〈B E u̇(t), Eφ〉Hn = 〈 f (t), φ〉t .

Proof For k ∈ N, we set τk := T /k and t jk := jτk . For j = 1, 2,…, k we define f j
k ∈ V ∗

T by

f j
k := 1

τk

∫ t j+1
k

t jk

f (τ ) dτ, (40)

and

w
j
k := w(t jk ), (41)

(we use w ∈ W 1,2(0, T ; H1(�)n) implies that for every t ∈ [0, T ] w(t) is well defined in
H1(�)n).

Inductively, we define u j
k for j = −1, 0, . . . , k by the following:

u0k := u0, u−1
k := u0 − τku

1; (42)

then, for j = 0, 1, . . . , k − 1, the function u j+1
k is the minimizer in V

t j+1
k

+ w
j
k of

u �→
∥∥∥∥u − u j

k

τk
− u j

k − u j−1
k

τk

∥∥∥∥
2

H
+ ‖Eu‖2HC

n
+ 1

τk
‖(Eu − Eu j

k )‖2HB
n

− 2〈 f j
k , u〉

t j+1
k

.

(43)

Thanks to the ellipticity hypothesis on C and B, at each step the above functional is coercive
in V

t j+1
k

+ w
j
k because it is greater than

ck[‖u‖2H + (γ0 + γ1)‖Eu‖2Hn
] − 2‖ f j

k ‖∗
t j+1
k

(‖u‖H + ‖Eu‖Hn ) − a j+1
k (44)

where ck := min{1, 1/τ 2k }, a j+1
k is a constant depending only on k j , and γ0, γ1 > 0 are the

ellipticity constants of C and B, respectively. By using also that the first three terms in (43)
are lower semicontinuous (here we use the symmetry and positiveness of C and B) while
the term 〈 f j

k , u〉
t j+1
k

is even continuous with respect to the weak convergence in the closed
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affine subspace V
t j+1
k

+ w
j+1
k , we deduce that the functional in (43) admits a minimizer

u j+1
k ∈ V

t j+1
k

+ w
j+1
k . The Euler equation for the minimizer u j+1

k is

〈
u j+1
k − u j

k

τk
− u j

k − u j−1
k

τk
,

φ

τk

〉
H

+ 〈C Eu j+1
k , Eφ〉Hn + 1

τk
〈B(Eu j+1

k − Eu j
k ), Eφ〉Hn

= 〈 f j
k , φ〉

t j+1
k

(45)

for every φ ∈ V
t j+1
k

. Then using u j+1
k − u j

k − (w
j+1
k − w

j
k ) ∈ V

t j+1
k

as φ, we can write

∥∥∥∥u
j+1
k − u j

k

τk

∥∥∥∥
2

H
−

〈
u j+1
k − u j

k

τk
,
u j
k − u j−1

k

τk

〉
H

−
〈
u j+1
k − u j

k

τk
− u j

k − u j−1
k

τk
,
w

j+1
k − w

j
k

τk

〉
H

+ ‖Eu j+1
k ‖2HC

n
− 〈C Eu j+1

k , Eu j
k 〉Hn − 〈C Eu j+1

k , Ew
j+1
k − Ew

j
k 〉Hn

+ 1

τk
‖Eu j+1

k − Eu j
k‖2Hn

− 1

τk
〈B(Eu j+1

k − Eu j
k ), Ew

j+1
k − Ew

j
k 〉Hn = 〈 f j

k , u j+1
k − u j

k 〉t j+1
k

− 〈 f j
k , w

j+1
k − w

j
k 〉t j+1

k
.

(46)

Now using the identity ‖a‖2 −〈a, b〉 = 1
2‖a‖2 + 1

2‖a− b‖2 − 1
2‖b‖2, multiplying by 2, and

rearranging, we get
∥∥∥∥u

j+1
k − u j

k

τk

∥∥∥∥
2

H
+

∥∥∥∥u
j+1
k − u j

k

τk
− u j

k − u j−1
k

τk

∥∥∥∥
2

H

− 2

〈
u j+1
k − u j

k

τk
− u j

k − u j−1
k

τk
,
w

j+1
k − w

j
k

τk

〉
H

+ ‖Eu j+1
k ‖2HC

n
+ ‖Eu j+1

k − Eu j
k‖2HC

n
+ 2〈C Eu j+1

k , Ew
j+1
k − Ew

j
k 〉Hn

+ 2
1

τk
‖Eu j+1

k − Eu j
k‖2HB

n
− 2

1

τk
〈B(Eu j+1

k − Eu j
k ), Ew

j+1
k − Ew

j
k 〉Hn

=
∥∥∥∥u

j
k − u j−1

k

τk

∥∥∥∥
2

H
+ ‖Eu j

k‖HC
n

+ 2〈 f j
k , u j+1

k − u j
k 〉t j+1

k
− 2〈 f j

k , w
j+1
k − w

j
k 〉t j+1

k
.

(47)

Summing from j = 0 to i ∈ {1, . . . , k} and using (42), we get

∥∥∥∥u
i+1
k − uik

τk

∥∥∥∥
2

H
+ ‖Eui+1

k ‖2HC
n

+
i∑

j=0

∥∥∥∥u
j+1
k − u j

k

τk
− u j

k − u j−1
k

τk

∥∥∥∥
2

H

+
i∑

j=0

‖Eu j+1
n − Eu j

k‖2HC
n

+ 2
1

τk

i∑
j=0

‖Eu j+1
k − Eu j

k‖2HB
n

= ‖u1‖2H + ‖Eu0‖2HC
n

+ 2
i∑

j=0

(〈 f j
k , u j+1

k − u j
k 〉t j+1

k
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+ 2
i∑

j=0

〈 f j
k , w

j+1
k − w

j
k 〉t j+1

k
+2

i∑
j=0

〈C Eu j+1
k + 1

τk
B(Eu j+1

k − Eu j
k ), Ew

j+1
k − Ew

j
k 〉Hn

− 2
i∑

j=0

〈
u j
k − u j−1

k

τk
,
w

j+1
k − w

j
k

τk
− w

j
k − w

j−1
k

τk

〉
H

+2

〈
ui+1
k − uik

τk
,
wi+1
k − wi

k

τk

〉
H

− 2

〈
u1k − u0k

τk
,
w1
k − w0

k

τk

〉
H

(48)

We define the piecewise affine discrete approximations uk , vk , wk , zk : [0, T ] → V for
t ∈ (t jk , t j+1

k ] by

uk(t) := u j
k + t − t jk

τk
(u j+1

k − u j
k ), (49)

wk(t) := w
j
k + t − t jk

τk
(w

j+1
k − w

j
k ), (50)

vk(t) := u j
k − u j−1

k

τk
+ t − t jk

τk

(
u j+1
k − u j

k

τk
− u j

k − u j−1
k

τk

)
, (51)

zn(t) := w
j
k − w

j−1
k

τk
+ t − t jk

τk

(
w

j+1
k − w

j
k

τk
− w

j
k − w

j−1
k

τk

)
, (52)

and the piecewise constant discrete approximations ũk , w̃k , fk : [0, T ] → V for t ∈ (t jk , t j+1
k ]

by

ũk(t) := u j+1
k , w̃k(t) := w

j+1
k , fk(t) := f j

k . (53)

Rewriting (48) in terms of uk , wk , ũk , vk , zk , we get the discrete energy balance for every
t ∈ (t jk , t j+1

k ) :

‖u̇k(t)‖2H + ‖Euk(t j+1
k )‖2HC

n
+ τk

∫ t j+1
k

0
‖v̇k(τ )‖2H dτ + τk

∫ t j+1
k

0
‖E u̇k(τ )‖2HC

n
dτ

+
∫ t j+1

k

0
‖E u̇k(τ )‖2HB

n
dτ = ‖u1‖2H + ‖Eu0‖2HC

n
+ 2

∫ t j+1
k

0
〈 fk(τ ), u̇k(τ )〉

t j+1
k

dτ

+ 2
∫ t j+1

k

0
〈 fk(τ ), ẇk(τ )〉

t j+1
k

+ 〈C E ũk(τ ), Eẇk(τ )〉Hn + 〈B E u̇k(τ ), Eẇk(τ )〉Hn dτ

− 2
∫ t j+1

k

0
〈u̇k(τ ), żk(τ )〉H dτ + 2〈u̇k(t), ẇk(t)〉H − 2〈u1, ẇk(0)〉H (54)

Let Mk := supt∈(0,T ) ‖u̇k(t)‖H , Lk := supt∈(0,T ) ‖E ũk(t)‖HC
n
. By (54) we can give the

estimate

M2
k + L2

k + ‖E u̇k‖2L2(0,T ;HB
n )

≤ a(Mk + Lk + ‖E u̇k‖L2(0,T ;HB
n )) + b, (55)

where a and b are constants that depend only on ‖ f ‖L2(0,T ;V ∗), ‖w‖W 1,2(0,T ;V ),
‖w‖W 2,2(0,T ;H), ‖u1‖H and on T . As a consequence, we can deduce the following

Euk(t) and E ũk(t) are bounded in Hn uniformly in t and k, (56)

u̇k(t) and vk(t) are bounded in H uniformly in t and k, (57)
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E u̇k is bounded in L2(0, T ; Hn) uniformly in k. (58)

Notice also that u0 ∈ H implies that uk is bounded in H uniformly in t and k. This together
with (56) gives

uk(t) is bounded in V uniformly in t and k. (59)

Furthermore, using (49)–(51) and (53), we can rewrite (45) for all t ∈ (t jk , t j+1
k ) as

〈v̇k(t), φ〉H + 〈C E ũk(t), Eφ〉Hn + 〈B E u̇k(t), Eφ〉Hn = 〈 fk(t), φ〉
t j+1
k

(60)

for every φ ∈ V
t j+1
k

. The last equation leads us to write for all t ∈ (t jk , t j+1
k )

‖v̇k(t)‖∗
t j+1
k

≤ ‖E ũk(t)‖HC
n

+ ‖E u̇k(t)‖HB
n

+ ‖ fk(t)‖∗
t j+1
k

. (61)

In particular, fix s ∈ [0, T ), then for every t1, t2 ∈ [s, T ] with t1 < t2, we have∫ t2

t1
‖Pst v̇k(t)‖∗

s dt ≤
∫ t2

t1
(‖E ũk(t)‖HC

n
+ ‖E u̇k(t)‖HB

n
+ ‖ fk(t)‖∗

s ) dt . (62)

Using (56)–(58), and (61), there exists a constant M such that eventually passing through a
subsequence (depending on s ∈ [0, T )), if we call v a weak limit of vk in W 1,2(s, T ; V ∗

s ),
and g̃ a weak limit of t �→ ‖E u̇k(t)‖Hn in L2(0, T ), we have

∫ t2

t1
‖Pst v̇(t)‖∗

s dt ≤ M |t2 − t1| +
∫ t2

t1
(g̃(t) + ‖ f (t)‖∗

s ) dt, (63)

for every t1, t2 ∈ [s, T ] with t1 < t2.
Now if we fix a dense set D ⊂ [0, T ] by using a diagonal argument, we obtain a subse-

quence, not relabeled, such that

uk⇀u weakly in W 1,2(0, T ; V ), (64)

vk⇀v weakly in L2(0, T ; H), (65)

vk⇀v weakly in W 1,2(s, T ; V ∗
s ) for every s ∈ D, (66)

and ∫ t2

t1
‖Pst v̇(t)‖∗

s dt ≤ M |t2 − t1| +
∫ t2

t1
(g̃(t) + ‖ f (t)‖∗

s ) dt, (67)

for every t1, t2 ∈ [s, T ] with t1 < t2.
Moreover, by using the continuity of the projection maps Pst , it follows that (66) and (67)

become

vk⇀v weakly in W 1,2(s, T ; V ∗
s ) for every s ∈ [0, T ), (68)

and ∫ t2

t1
‖Pst v̇(t)‖∗

s dt ≤ M |t2 − t1| +
∫ t2

t1
(g̃(t) + ‖ f (t)‖∗

s ) dt, (69)

for every s ∈ [0, T ) and every t1, t2 ∈ [s, T ] with t1 < t2. In particular,

‖Pst v̇(t)‖∗
s ≤ M + g̃(t) + ‖ f (t)‖∗

s , (70)

for every s ∈ [0, T ) and a.e. t > s.
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By (57) it is easy to see that in fact

u ∈ W 1,∞(0, T ; H), (71)

and this with convergence (64) gives (28).
Now we want to show

u̇(t) = v(t) in H for a.e. t ∈ [0, T ]. (72)

First of all, for t ∈ (t jk , t j+1
k ) we have u̇k(t) = vk(t

j+1
k ) and so

‖u̇k(t) − vk(t)‖∗
t j+1
k

= ‖vk(t j+1
k ) − vk(t)‖∗

t j+1
k

≤
∫ t j+1

k

t jk

‖v̇k(τ )‖∗
t j+1
k

dτ ≤ τ
1
2
k C, (73)

where C is a uniform bound on the L2 norm of the right-hand side of (61). Then for all

s < t we have ‖u̇k(t) − vk(t)‖∗
s ≤ τ

1
2
k C , and this together with (65) implies u̇k⇀v weakly

in L2(s, T ; V ∗
s ) for any s ∈ [0, T ). But also u̇k⇀u̇ weakly in L2(0, T ; H) by (64). So

v(t) = u̇(t) in V ∗
s , for every s ∈ [0, T ) and for a.e. t ∈ (s, T ). Since v(t) and u̇(t) belong to

H , and H is embedded in V ∗
s for every s ∈ [0, T ], we finally get that v(t) = u̇(t) as elements

of H for a.e. t ∈ [0, T ]. This together with (64) and (69) allows to conclude that

u ∈ W 2,2(t, T ; V ∗
s ) for every s, t ∈ [0, T ] with s < t . (74)

Let g(t) := M + g̃(t) + ‖ f (t)‖∗
t then by (70) we have

‖Pst ü(t)‖∗
s ≤ g(t), (75)

for every s ∈ [0, T ) and for a.e. t > s, and we obtain (31).
Now we investigate the convergence of the constant piecewise interpolated ũk . Since by

(64) uk are Lipschitz with values in H uniformly in k, as before we get that

ũk⇀u weakly in L2(0, T ; H), (76)

and since by (56) E ũk is bounded in L2(0, T ; Hn), we also obtain that up to subsequences

ũk⇀u weakly in L2(0, T ; V ). (77)

Furthermore, note that ũk(t − τk) − w̃k(t − τk) ∈ Vt for every t ∈ [0, T ], and by (64) we
can write for every t ∈ (t jk , t j+1

k ]

‖uk(t) − ũk(t − τk)‖V = ‖uk(t) − uk(t
j
k )‖V ≤

∫ t j+1
k

t jk

‖u̇k(τ )‖V dτ ≤ τ
1/2
k C,

where C is a constant independent on k. This means that, by using also w ∈ W 1,2(0, T ; H1

(�;Rn)), we can write

ũk(· − τk) − w̃k(· − τk)⇀u − w weakly in L2(0, T ; V ). (78)

Since the linear subspace {v ∈ L2(0, T ; V ) | v(t) ∈ Vt for a.e. t ∈ [0, T ]} is strongly
closed in L2(0, T ; V ), it is also weakly closed in L2(0, T ; V ) . Therefore, u(t) ∈ Vt + w(t)
for a.e. t ∈ [0, T ]. Moreover, for every t ∈ (0, T ] there exists an increasing sequence
ti ∈ [0, T ] converging to t such that u(ti ) − w(ti ) ∈ Vti for every i . Thanks to (64) we
know that t �→ u(t) − w(t) is a strongly continuous map with values in V , and we obtain
u(t) − w(t) ∈ Vt for every t ∈ (0, T ]. Together with the initial condition u(0) = u0 ∈ V0
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we obtain (29). Moreover, thanks to (74) and (75) we are in position to apply Lemma 2.14
to the function u − w and hence to deduce that for a.e. t ∈ [0, T ]

u̇(t + h) − u̇(t)

h
⇀ü(t) weakly in V ∗

t as h → 0+. (79)

Now we want to show that (33) holds for a.e. t ∈ [0, T ] for every φ ∈ Vt . We claim that
there exists a negligible set W ⊂ [0, T ] such that for s ∈ D and for all φ ∈ Vs , we have

〈ü(t), φ〉s + 〈C Eu(t), Eφ〉Hn + 〈B E u̇(t), Eφ〉Hn = 〈 f (t), φ〉s, (80)

for every t ∈ (s, T ]\W .
To prove the claim, first we fix s ∈ D and φ ∈ Vs . Using (60) we have for a.e. t > s

〈v̇k(t), φ〉s + 〈C E ũk(t), Eφ〉Hn + 〈B E u̇k(t), Eφ〉Hn = 〈 fk(t), φ〉s . (81)

Hence, we have also
∫ T

s
(〈v̇k(t), φ〉s + 〈C E ũk(t), Eφ〉Hn + 〈B E u̇k(t), Eφ〉Hn − 〈 fk(t), φ〉s) dt = 0. (82)

By construction fk → f strongly in L2(0, T ; V ∗). We know that v̇k⇀v̇ weakly in
L2(s, T ; V ∗

s ) by (125). Since u̇ = v in W 1,2(s, T ; V ∗
s ), we also have that ü = v̇ in

L2(s, T ; V ∗
s ) . Using also (64) and (77), we can pass to the limit in (82) to have

∫ T

s
(〈ü(t), φ〉s + 〈C Eu(t), Eφ〉Hn + 〈B E u̇(t), Eφ〉Hn − 〈 f (t), φ〉s) dt = 0. (83)

By (81) we deduce that the integrand in (83) is zero for a.e. t > s. Since Vs is separable, the
set Ns of t > s for which (81) does not hold can be taken independent of φ. We set W to
be the union over s ∈ D of the sets Ns , so that W also has measure zero. It follows that for
every s ∈ D and for every t ∈ (s, T ]\W (80) holds, and this shows the claim.

Using Lemma 2.14, it follows that for a.e. t and for every φ ∈ Vt , there exist si ↗ t with
si ∈ D and φi ∈ Vsi , such that φi → φ strongly in Vt . Now note that if t belongs also to
(0, T ]\W , by our previous claim we have

〈ü(t), φi 〉t + 〈C Eu(t), Eφi 〉Hn + 〈B E u̇(t), Eφi 〉Hn − 〈 f (t), φi 〉t
= 〈ü(t), φi 〉si + 〈C Eu(t), Eφi 〉Hn + 〈B E u̇, Eφi 〉Hn − 〈 f (t), φi 〉si = 0.

(84)

The convergence of the φi to φ gives (33).
Since by construction

fk → f strongly in L2(0, T ; V ∗), (85)

wk → w strongly in W 1,2(0, T ; H1(�)n), (86)

ẇk → ẇ strongly in H for every t ∈ [0, T ], (87)

żk → L2(0, T ; H) strongly in L2(0, T ; H), (88)

using also (64) and (77), passing to the limit as k → ∞ in (54), we obtain (39) by lower
semicontinuity.
To prove (34), it is equivalent to show that there exists a set N ⊂ [0, T ] of measure zero such
that for every ti ∈ [0, T ]\N with ti → 0, we have

u̇(ti ) → u1 strongly in H (89)
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(by Remark 2.12 u̇(t) is a well-defined element in H for every t ∈ [0, T ]). By (28) and (39)
we have

‖u̇(t)‖2H + ‖Eu(t)‖2HC
n

≤ ‖u1‖2H + ‖Eu0‖2HC
n

+ o (1), as t → 0+ (90)

for every t ∈ [0, T ]\N where N ⊂ [0, T ] is a set of measure zero. Now let (ti ) be such that
ti ∈ [0, T ]\N and ti → 0. By Remark 2.12, we already know that

u̇(t)⇀u̇(0) weakly in H , as t → 0+. (91)

Moreover, by (68) together with (72) we can write for a.e. t ∈ [0, T ]

u̇(t) − u̇(0) =
∫ t

0
ü(τ ) dτ = lim

k→∞

∫ t

0
v̇k(τ ) dτ = lim

k→∞ vk(t) − u1 in V ∗
0 ; (92)

hence, by choosing t such that (up to subsequences) vk(t) → u̇(t) in V ∗
0 (which is possible

by (68)), we deduce that u̇(0) = u1 in V ∗
0 . Since both u̇(0) and u1 are elements of H , and H

is embedded in V ∗
0 , we deduce u̇(0) = u1 in H . Therefore, the convergence (91) becomes

u̇(ti )⇀u1 weakly in H .

This means that (89) is equivalent to

lim sup
i→∞

‖u̇(ti )‖2H ≤ ‖u1‖2H . (93)

Since by (28) t �→ Eu(t) is strongly continuous in Hn we clearly have Eu(ti ) → Eu(0)
strongly in Hn . By using the convergence (64) and a similar argument to (92) we deduce that
u(0) = u0, and hence that Eu(ti ) → Eu0 strongly in Hn . Therefore, by using ti in inequality
(90) and passing to the limit as i → ∞, we deduce exactly (93) and hence also (89). ��
Proposition 3.4 Let u be the function given by Theorem 4.2, then u satisfies condition (32)
and the energy balance (38) for every t Lebesgue point of ‖u̇(·)‖2H .
Proof Letw be theDirichlet boundary condition considered inDefinition 3.1.Wenote that for
every h ∈ (0, T ) and for a.e. t ∈ [0, T ] the functions u(t)−u(t−h)−(w(t)−w(t−h)) ∈ Vt .
Hence, if we define z(t) := u(t) − w(t) we can test Eq. (33) with z(t)−z(t−h)

h and integrate
on (h, T ) to get

∫ t

h

〈
ü(τ ),

z(τ ) − z(τ − h)

h

〉
τ

dτ +
∫ t

h

〈
C Eu(τ ),

Ez(τ ) − Ez(τ − h)

h

〉
Hn

dτ

+
∫ t

h

〈
B E u̇(τ ),

Ez(τ ) − Ez(τ − h)

h

〉
Hn

dτ

=
∫ t

h

〈
f (τ ),

z(τ ) − z(τ − h)

h

〉
τ

dτ +
∫ t

h

〈
F(τ ),

z(τ ) − z(τ − h)

h

〉
�

dτ.

(94)

Since u ∈ W 1,2(0, T ; V ) and w ∈ W 2,2(0, T ; H) ∩ W 1,2(0, T ; V ), we take the limit as
h → 0+ on both side of the previous equality

lim
h→0+

∫ t

h

〈
ü(τ ),

z(τ ) − z(τ − h)

h

〉
τ

dτ +
∫ t

0
〈C Eu(τ ), E ż(τ )〉Hndτ

+
∫ t

0
〈B E u̇(τ ), E ż(τ )〉Hndτ =

∫ t

0
〈 f (τ ), ż(t)〉τdτ +

∫ t

0
〈F(τ ), ż(τ )〉�dτ.

(95)
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In order to compute the limit of the first term in the left-hand side of (95), we use
Lemma 2.16 to write

∫ t

h

〈
ü(τ ),

z(τ ) − z(τ − h)

h

〉
τ

dτ =
〈
u̇(t),

z(t) − z(t − h)

h

〉
H

−
〈
u̇(h),

z(h) − z(0)

h

〉
H

−
∫ t

h

〈
u̇(τ ),

ż(τ ) − ż(τ − h)

h

〉
H
dτ.

(96)

Now, since t is a Lebesgue point of ‖u̇(·)‖2H and u satisfies the initial condition (34) we have

lim
h→0+

〈
u̇(t),

u(t) − u(t − h)

h

〉
H

= ‖u̇(t)‖2H and lim
h→0+

〈
u̇(h),

u(h) − u(0)

h

〉
H

= ‖u1‖2H .

Moreover, using the identity 〈u̇(τ ), u̇(τ ) − u̇(τ − h)〉H = − 1
2‖u̇(τ − h)‖2H+ 1

2‖u̇(τ )‖2H +
1
2‖u̇(τ ) − u̇(τ − h)‖2H , we can write

∫ t

h

〈
u̇(τ ),

u̇(τ ) − u̇(τ − h)

h

〉
H
dτ = 1

2h

∫ t+h

t
‖u̇(τ )‖2H dτ − 1

2h

∫ h

0
‖u̇(τ )‖2H dτ

+ 1

2h

∫ t

h
‖u̇(τ ) − u̇(τ − h)‖2H dτ.

(97)

Again using condition (34) and the fact that t is a Lebesgue point of ‖u̇(·)‖2H , we can write

lim
h→0+

∫ t

h

〈
u̇(τ ),

u̇(τ ) − u̇(τ − h)

h

〉
H
dτ = 1

2
‖u̇(t)‖2H − 1

2
‖u1‖2H

+ lim
h→0+

1

2

∫ t

h

‖u̇(τ ) − u̇(τ − h)‖2H
h

dτ.

(98)

By using the regularity assumption w ∈ W 2,2(0, T ; H), a simple calculation leads to

lim
h→0+

∫ t

h

〈
ü(τ ),

w(τ) − w(τ − h)

h

〉
τ

dτ = 〈u̇(t), ẇ(t)〉H − 〈u1, ẇ(0)〉H

−
∫ t

0
〈u̇(τ ), ẅ(τ )〉H dτ.

(99)

Putting together (97) with (99), and using the fact that z = u − w, we can take the limit on
both sides of(96) to get

lim
h→0+

∫ t

h

〈
ü(τ ),

z(τ ) − z(τ − h)

h

〉
τ

dτ = 1

2
‖u̇(t)‖2H − 1

2
‖u1‖2H

+ lim
h→0+

1

2

∫ t

h

‖u̇(τ ) − u̇(τ − h)‖2H
h

dτ + 1

2
〈u̇(t), ẇ(t)〉H

− 1

2
〈u1, ẇ(0)〉H + 1

2

∫ t

0
〈u̇(τ ), ẅ(τ )〉H dτ.

(100)
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Putting together (95) with (100), we obtain for every Lebesgue point t of ‖u̇(·)‖2H
1

2
‖u̇(t)‖2H + 1

2
‖Eu(t)‖2HC

n
+

∫ t

0
‖E u̇(τ )‖2HB

n
dτ − lim

h→0+
1

2

∫ t

h

‖u̇(τ ) − u̇(τ − h)‖2H
h

dτ

= 1

2
‖u1‖2H + 1

2
‖Eu0‖HC

n
+ Wload(u; 0, t) + Wbdry(u; 0, t).

(101)

But since we already know that u satisfies the energy inequality (39), we immediately con-
clude that both condition (32) and the energy balance (38) hold. ��

Remark 3.5 At each time t we expect that any energy increment for the solution u(t), is due
to the external forces. By identity (101), which is true for every u satisfying (28)–(31) and
(33), the requirement (32), i.e.,

lim
h→0+

1

2

∫ t

h

‖u̇(τ ) − u̇(τ − h)‖2H
h

dτ = 0,

is natural in term of energy balance: indeed, the sum of the kinetic energy plus elastic energy
plus viscous energy at time t cannot exceed the amount of energy at time zero plus the work
done by the external forces in the time interval [0, t].

Remark 3.6 Since u̇(t) − ẇ(t) ∈ Vt for a.e. t ∈ [0, T ], we can use it as test function in (33)
and integrate on (0, t) to obtain

∫ t

0
〈ü(τ ), u̇(τ )〉τ dτ + 1

2
‖Eu(t)‖2HC

n
+

∫ t

0
‖E u̇(τ )‖2HB

n
dτ

= 1

2
‖Eu0‖2HC

n
+ Wload(u; 0, t) + Wbdry(u; 0, t).

Comparing this last identity with the energy balance (38), we have for a.e. t ∈ (0, T ) that

1

2
‖u̇(t)‖2H − 1

2
‖u1‖2H =

∫ t

0
〈ü(τ ), u̇(τ )〉τ dτ,

and since τ �→ 〈ü(τ ), u̇(τ )〉τ ∈ L1(0, T ) we deduce that ‖u̇(·)‖2H ∈ W 1,1(0, T ).

Putting together Theorem 3.2 and Proposition 3.4, we deduce the existence of a solution
u to the damped system of elastodynamics. Moreover, using (101) we can also obtain the
uniqueness of weak solutions considered in Definition 3.1. This is the content of the next
theorem.

Theorem 3.7 (Existence and uniqueness) Under hypothesis of Theorem 3.2, there exists a
unique solution u considered in Definition 3.1. Moreover, u satisfies the energy balance

1

2
‖u̇(t)‖2H + 1

2
‖Eu(t)‖2HC

n
+ 1

2

∫ t

0

1

2
‖E u̇(τ )‖2HB

n
dτ

= 1

2
‖u1‖2H + 1

2
‖Eu0‖HC

n
+ Wload(u; 0, t) + Wbdry(u; 0, t)

(102)

for a.e. t ∈ [0, T ].
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Proof The existence of a solution satisfying (102) is simply a consequence of Theorem 3.2
and Proposition 3.4.

To show uniqueness, we notice that (28)–(33) are all preserved under linear combinations.
Therefore, the difference v between two solutions is a solution with Dirichlet and Neumann
homogeneous conditions, with forcing term f = 0, and satisfying v(0) = 0 and

lim
h→0+

1

h

∫ h

0
‖v̇(t)‖2h dt = 0.

Moreover, using the same argument as in Proposition 3.4, since (32) holds for v, we have

1

2
‖u̇(t)‖2H + 1

2
‖Eu(t)‖2HC

n
+ 1

2

∫ t

0

1

2
‖E u̇(τ )‖2HB

n
dτ = 0,

for a.e. t ∈ [0, T ]. Therefore, v̇(t) = 0 a.e. on [0, T ]. Since v ∈ W 1,∞(0, T ; H) and
v(0) = 0, we conclude v(t) = 0 a.e. on [0, T ]. ��

Finally, one can also prove that the energy balance (38) holds for every t ∈ [0, T ] and
that the map t �→ u̇(t) is strongly continuous in H . For the proof of this result we refer to
[7, Lemma 3.10].

Proposition 3.8 Under the assumptions of Theorem 3.2, let u be the weak solution of the
damped wave equation considered in Definition (3.1), with initial conditions u(0) = u0 and
(34) . Then t �→ u̇(t) is continuous from [0, T ] to H and the energy balance (38) holds for
every t ∈ [0, T ].

4 The undamped system of elastodynamics

In this section, we study weak solutions of the undamped system of elastodynamics

ü(t) − div [C Eu(t)] = f (t). (103)

As for the damped case, we give the definition of weak solution.

Definition 4.1 Assume (a), (b), (c) and (d). With the notation introduced in Sect. 2, let f ∈
W 1,2(0, T ; V ∗), letw ∈ W 2,2(0, T ; H)∩W 1,2(0, T ; H1(�)n) and let F ∈ W 1,2(0, T ; N�)

where � is the function relative to the crack set � given by Theorem 2.5 . We say that u is
a weak solution of (1) on the time dependent domain t �→ �\�(t) with Dirichlet boundary
condition w(t) on ∂D�, Neumann boundary condition F(t) on ∂N�, and homogeneous
Neumann boundary condition on �(t), if

u ∈ L∞(0, T ; V ) ∩ W 1,∞(0, T ; H). (104)

For every t ∈ [0, T ] u(t) − w(t) ∈ Vt . (105)

For every s ∈ [0, T ) u ∈ W 2,2(s, T ; V ∗
s ) and (106)

‖Pst ü(t)‖∗
s ≤ g(t) for a.e. t ∈ (s, T ), for some g ∈ L2(0, T ). (107)

For a.e. t ∈ [0, T ]
〈ü(t), φ〉t + 〈C Eu(t), Eφ〉Hn − 〈F(t), Tr(φ)〉� = 〈 f (t), φ〉t , for every φ ∈ Vt

where ü(t) is the one given by Definition 2.15. (108)
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Given u0 ∈ V such that u0 − w(0) ∈ V0 and u1 ∈ H , since t �→ u(t) is strongly continuous
in H the initial value for u is well defined as element of H . Moreover, we are able to prescribe
the initial conditions, respectively, for Eu(0) and u̇(0) by asking

lim
h→0+

1

h

∫ h

0
‖Eu(t) − Eu0‖2Hn

dt = 0, (109)

and

lim
h→0+

1

h

∫ h

0
‖u̇(t) − u1‖2H dt = 0. (110)

Since in this case u̇(t) is in general only an element of H , we need to consider also a
weakened formulation of the work due to the Neumann boundary conditions. More precisely,
the term appearing in the work due to the boundary forces Wbdry(u; t1, t2), which in the
damped case read as

∫ t2

t1
〈F(t), u̇(t)〉� dt,

becomes

〈F(t2), u(t2)〉� − 〈F(t1), u(t1)〉� −
∫ t2

t1
〈Ḟ(t), u(t)〉� dt, (111)

for every time interval [t1, t2] ⊂ [0, T ].
The following is the main result.

Theorem 4.2 Assume (a), (b), (c) and (d). Let f ,w and F be as in Definition 4.1. Then, given
two initial conditions u0 ∈ V such that u0 − w(0) ∈ V0 and u1 ∈ H, there exists a solution
u of (1) with initial conditions (109) and (110). Moreover, u satisfies the energy inequality

1

2
‖u̇(t)‖2H + 1

2
‖Eu(t)‖2HC

n
≤ 1

2
‖u1‖2H + 1

2
‖Eu0‖HC

n
+ Wload(u; 0, t) + Wbdry(u; 0, t)

(112)

for a.e. t ∈ [0, T ].
Proof Since the argument is similar to the one given for Theorem 4.2, we simply give a
sketch of the proof.

For k ∈ N, we set τk := T /k and t jk := jτk . For j = 1, 2,…, k we define f j
k ∈ V ∗ and

w
j
k ∈ H1(�)n by

f j
k := f (t jk ), w

j
k := w(t jk ), (113)

using that f ∈ W 1,2(0, T ; V ∗) and w ∈ W 1,2(0, T ; H1(�)n), so f and w are well-defined
elements of V ∗ and H1(�)n , respectively, for every t ∈ [0, T ]. Inductively, we define u j

k for
j = −1, 0, . . . , k by the following

u0k := u0, u−1
k := u0 − τku

1; (114)

then, for j = 0, 1, . . . , k − 1, the function u j+1
k is the minimizer in V

t j+1
k

+ w
j
k of

u �→
∥∥∥∥u − u j

k

τk
− u j

k − u j−1
k

τk

∥∥∥∥
2

H
+ ‖Eu‖2HC

n
− 2〈 f j

k , u〉
t j+1
k

. (115)
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Then if we define uk , ũk ,wk , w̃k , vk , and zk as in (49)–(53), then proceeding exactly as in 3.2,
we deduce the following bounds

Euk(t) and E ũk(t) are bounded in Hn uniformly in t and k, (116)

u̇k(t) and vk(t) are bounded in H uniformly in t and k, (117)

uk(t) is bounded in V uniformly in t and k. (118)

Furthermore, using the Euler equation for u j+1
k , we can write for all t ∈ (t jk , t j+1

k )

〈v̇k(t), φ〉H + 〈C E ũk(t), Eφ〉Hn = 〈 fk(t), φ〉
t j+1
k

(119)

for every φ ∈ V
t j+1
k

. The last equation leads us to write for all t ∈ (t jk , t j+1
k )

‖v̇k(t)‖∗
t j+1
k

≤ ‖E ũk(t)‖HC
n

+ ‖ fk(t)‖∗
t j+1
k

. (120)

In particular, fix s ∈ [0, T ), then for every t1, t2 ∈ [s, T ] with t1 < t2, we have∫ t2

t1
‖Pst v̇k(t)‖∗

s dt ≤
∫ t2

t1
(‖E ũk(t)‖HC

n
+ ‖ fk(t)‖∗

s ) dt . (121)

Again following exactly 3.2, we deduce that up to subsequences

uk⇀u, weakly in W 1,2(0, T ; H), (122)

ũk⇀u, weakly in L2(0, T ; V ), (123)

vk⇀v weakly in L2(0, T ; H), (124)

vk⇀v weakly in W 1,2(s, T ; V ∗
s ). (125)

Moreover, u ∈ L∞(0, T ; V ) ∩ W 1,∞(0, T ; H), u̇(t) = v(t) a.e. on [0, T ], and
‖Pst ü(t)‖∗

t ≤ M + ‖ f (t)‖∗
s , (126)

for every s ∈ [0, T ) and for a.e. t > s.
Now the proof that u is a solution, and that satisfies the energy inequality (112) proceeds

as in the damped case. Finally, it remains to prove that u satisfies the initial conditions (109)
(110). It is enough to show that there exists a set N ⊂ [0, T ] of measure zero such that for
every ti ∈ [0, T ]\N with ti → 0, we have

u̇(ti ) → u1 strongly in H , (127)

and

Eu(ti ) → Eu0 strongly in Hn . (128)

Again this can be achieved following a similar argument to the damped case. ��
Acknowledgements The author wishes to thank Prof. Gianni Dal Maso for many helpful discussions on the
topic.
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