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Abstract
ξ -submanifold in the Euclidean space R

m+p is a natural extension of the concept of self-
shrinker to the mean curvature flow inRm+p . It is also a generalization of the λ-hypersurface
defined by Q.-M. Cheng et al to arbitrary codimensions. In this paper, some characteriza-
tions for ξ -submanifolds are established. First, it is shown that a submanifold in R

m+p is a
ξ -submanifold if and only if itsmodifiedmean curvature is parallel when viewed as a subman-

ifold in the Gaussian space
(
R

m+p, e− 1
m |x |2 〈·, ·〉 )

; then, two generalized weighted volume
functionals Vξ and V̄ξ are defined and it is proved that ξ -submanifolds can be characterized as
the critical points of these two functionals; also, the corresponding second variation formulas
are computed. Finally, we introduce the V P-variations and the corresponding W -stability
for ξ -submanifolds which are then systematically studied. As the main result, it is proved
that m-planes are the only complete, W -stable and properly immersed ξ -submanifolds with
flat normal bundle.
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1492 X. Li, Z. Li

1 Introduction

Let x : Mm → R
m+p be an m-dimensional submanifold in the (m + p)-dimensional

Euclidean spaceRm+p with the second fundamental form h. Then, x is called a self-shrinker
to the mean curvature flow if its mean curvature vector field H := tr h satisfies

H + x⊥ = 0, (1.1)

where x⊥ is the orthogonal projection of the position vector x to the normal space T ⊥Mm

of x .
It is well known that the self-shrinker plays an important role in the study of the mean

curvature flow. In fact, self-shrinkers correspond to self-shrinking solutions to the mean
curvature flow and describe all possible Type I singularities of the flow. Up to now, there
have been a plenty of research papers on self-shrinkers and on the asymptotic behavior of the
flow. For details of this see, for example, [1–6,8,12–17,19–24,28] and references therein. In
particular, the following result is well known (see Corollary 3.2 in Sect. 3):

An immersion x : Mm → R
m+p is a self-shrinker if and only if it is minimal when viewed

as a submanifold of the Gaussian space (Rm+p, e− |x |2
m 〈·, ·〉).

In March, 2014, Cheng and Wei formally introduced ([9], finally revised in May, 2015)
the definition of λ-hypersurface of weighted volume-preserving mean curvature flow in
Euclidean space, giving a natural generalization of self-shrinkers in the hypersurface case.
According to [9], a hypersurface x : Mm → R

m+1 is called a λ-hypersurface if its (scalar-
valued) mean curvature H satisfies

H + 〈x, N 〉 = λ (1.2)

for some constant λ, where N is the unit normal vector of x . They also found some variational
characterizations for those new kind of hypersurfaces, proving that a hypersurface x is a λ-
hypersurface if and only if it is the critical point of the weighted area functional A preserving
the weighted volume functional V where for any x0 ∈ R

m+1 and t0 ∈ R,

A(t) =
∫

M
e
− |x(t)−x0 |2

2t0 dμ, V(t) =
∫

M
〈x(t) − x0, N 〉 e

− |x(t)−x0 |2
2t0 dμ.

Meanwhile, some rigidity or classification results for λ-hypersurfaces are obtained, for exam-
ple, in [7,10] and [18]; for the rigidity theorems for space-like λ-hypersurfaces, see [26].

We should remark that this kind of hypersurfaces was also studied in [27] (arXiv preprint:
Jul. 2013; formally published in 2015) where the authors considered the stable, two-sided,
smooth, properly immersed solutions to the Gaussian Isoperimetric Problem, namely they
studied hypersurfaces � ⊂ R

m+1 that are second order stable critical points of minimizing
the weighted area functional Aμ(�) = ∫

�
e−|x |2/4dAμ for compact (uniformly) normal

variations that, in a sense, “preserve the weighted volume Vμ(�) = ∫
�

e−|x |2/4dVμ”. It
turned out that the λ-hypersurface equation (1.2) is exactly the Euler-Lagrange equation of
the variation problem in [27] of which a main result can be restated as

Hyperplanes are the only two-sided, complete and properly immersed λ-hypersurfaces in
the Euclidean space that are stable under the compact normal variations “preserving the
weighted volume”.

In 2015, the first author and his co-author made in [25] a natural generalization of both
self-shrinkers and λ-hypersurfaces by introducing the concept of ξ -submanifolds and, as the
main result, a rigidity theorem for Lagrangian ξ -submanifolds in C

2 is proved, which is
motivated by a result of [23] for Lagrangian self-shrinkers inC2. By definition, an immersed

123



Variational characterizations of ξ -submanifolds in the… 1493

submanifold x : Mm → R
m+p is called a ξ -submanifold if there is a parallel normal vector

field ξ such that the mean curvature vector field H satisfies

H + x⊥ = ξ. (1.3)

We believe that if self-shrinkers and λ-hypersurfaces are taken to be parallel to minimal
submanifolds and constant mean curvature hypersurfaces, respectively, then ξ -submanifolds
are expected to be parallel to submanifolds of parallel mean curvature vector. So there should
be many properties of ξ -submanifolds that are parallel to those of submanifolds with parallel
mean curvature vectors.

In this paper, we aim at giving more characterizations of the ξ -submanifolds, including
ones by variationmethod, the latter beingmore important since a differential equation usually
needs a variational method to solve. For example, self-shrinker equation (1.1) has been
exploited a lot by making use of variation formulas. As the main part of this paper, we shall
systematically study the relevant stability problems for ξ -submanifolds, paying a particular
attention on the V P-variations and the relevant W -stability.

Now, beside the various characterizations of the ξ -submanifolds and some instability
results, the main theorem of this paper can be stated as

Theorem 1.1 (Theorem 7.3). Let x : Mm → R
m+p be a complete and properly immersed

ξ -submanifold with flat normal bundle. Then, x is W -stable if and only if x(Mm) is an
m-plane.

Clearly, Theorem 1.1 generalizes the main theorem for hypersurfaces in [27] which has
been stated earlier.

The following uniqueness conclusion for self-shrinkers is direct from Theorem 1.1:

Corollary 1.2 Any complete, W -stable and properly immersed self-shrinker in R
m+p with

flat normal bundle must be an m-plane passing the origin.

The organization of the present paper is as follows:
In Sect. 2,we present the necessary preliminarymaterial, including some typical examples;
In Sect. 3, we prove a theorem (Theorem 3.1) which generalizes (to ξ -submanifolds) a

well-known result that self-shrinkers are equivalent to minimal submanifolds in the Gaussian
space;

In Sect. 4, we introduce, for a given manifold Mm of dimension m, two families of
weighted volume functionals Vξ and V̄ξ in (4.1) parametrized by R

m+p-valued functions
ξ : Mm → R

m+p . Then we compute the first variation formulas (Theorem 4.1) which
give that ξ -submanifolds are exactly the critical points of Vξ and V̄ξ with ξ suitably chosen
(Corollary 4.2). We also compute the second variation formula of both functionals for ξ -
submanifolds (Theorem 4.3), in such a situation Vξ and V̄ξ being essential the same.

In Sects. 5 and 6, we study the stability problem of ξ -submanifolds. After checking
that, with respect to the functional Vξ or V̄ξ , many ξ -submanifolds including all the typical
examples are not stable in the usual sense (Sect. 5), we define in Sect. 6 a special kind
of variation for submanifolds of higher codimension, called “V P-variation,” which is a
natural generalization of “volume-preserving variation” for hypersurfaces. Accordingly, we
introduce “the Wξ -stability” with respect to Vξ or V̄ξ for higher codimensional submanifolds
and then show that, among the typical examples given in Sect. 2, only the m-planes are
Wξ -stable (Theorem 6.1 and Theorem 6.2). In particular, we give an index estimate for the
standard sphere (Theorem 6.2).
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1494 X. Li, Z. Li

Finally, in the last section (Sect. 7), we consider the V P-variation of the standardweighted
volume functional Vw ≡ V0 which corresponds to a special case, i.e., ξ = 0, of the functional
Vξ or V̄ξ defined in Sect. 4, and study the W -stability (i.e., W0-stability, see Definition 7.1)
for ξ -submanifolds. As the result, we first characterize ξ -submanifolds as critical points of
Vw under V P-variations (Corollary 7.2, corresponding to the conventional extremal points
with conditions) and then prove our main Theorem (Theorem 1.1).

Remark 1.1 Our discussion of variation problem for ξ -submanifolds naturally gives a new
motivation of variational characterization of the submanifolds with parallel mean curvature
vectors in the Euclidean space Rm+p (see Remark 4.3 at the end of Sect. 4).

Remark 1.2 Related to the present paper, it seems natural and interesting to characterize ξ -
submanifolds in terms of their Gauss map, just like in the study of submanifolds in R

m+p

with parallel mean curvature vectors. We shall deal this kind of problems later in the sequel.

2 �-submanifolds–definition and typical examples

Let Rm+p be the (m + p)-dimensional Euclidean space with the standard metric 〈·, ·〉 and
the standard connection D. Let x : Mm → R

m+p be an immersion with the induced metric
g, the second fundamental form h and the mean curvature vector H := tr gh. Denote by T M
the tangent space of M with the Levi-Civita connection ∇, and define T ⊥M := (x∗(T M))⊥
to be the normal space of x in R

m+p with the normal connection D⊥.

Definition 2.1 (ξ -submanifolds, [25]). The immersed submanifold x : Mm → R
m+p is

called a ξ -submanifold if the normal vector field

ξ := H + x⊥ (2.1)

is parallel in T ⊥M , namely D⊥ξ ≡ 0.

So, self-shrinkers of the mean curvature flow are a special kind of ξ -submanifolds with
ξ = 0.

The following are some typical examples of ξ -submanifolds:

Example 2.1 (The ξ -curves).
Let x : (a, b) → R

1+p be a unit-speed smooth curve (that is, with an arc-length parameter
s). Denote by {T , eα : 2 ≤ α ≤ 1 + p} the Frenet frame with T := ẋ ≡ ∂x

∂s being the unit
tangent vector, and κi the i-th curvature, i = 1, . . . , p. Then, we have the following Frenet
formula:

Ṫ = κ1e2, ė2 = −κ1T + κ2e3, · · · , ėp = −κp−1ep−1 + κpep+1, ė1+p = −κpep.(2.2)

In particular, if there exists some i such that κi ≡ 0, then it must hold that κ j ≡ 0 for all
j > i . Sometimes we call κ := κ1 and τ := κ2 the curvature and the (first) torsion of x . Now

the definition Eq. (2.1) becomes
( d
ds (Ṫ + x − 〈x, T 〉 T )

)⊥ ≡ 0 which, by (2.2), is equivalent
to

κ̇1 − κ1 〈x, T 〉 ≡ 0, κ1κ2 ≡ 0. (2.3)

It follows that
x is a ξ -curve if and only if it is a plane curve with the curvature κ satisfying

κ̇ − κ 〈x, ẋ〉 ≡ 0. (2.4)
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Variational characterizations of ξ -submanifolds in the… 1495

In particular,
x is a self-shrinker if and only if it is a plane curve with the curvature κ satisfying

κr + 〈x, N 〉 ≡ 0, (2.5)

where κr is the relative curvature and N := ±e2 is the unit normal of x pointing the left of
T . Note that curves in the plane satisfying (2.5) are classified by U. Abresch and J. Langer
in [1] which are now known as Abresch–Langer curves (see [23]).

Example 2.2 (The m-planes not necessarily passing through the origin).
An m-plane x : Pm → R

m+p (p ≥ 0) is by definition the inclusion map of a m-
dimensional connected, complete and totally geodesic submanifold ofRm+p . In other words,
those Pms are subplanes of dimension m in R

m+p that are not necessarily passing through
the origin. Let p0 be the orthogonal projection of the origin 0 onto Pm and ξ be the position
vector of p0 which is constant and is thus parallel along Pm . Clearly Pm is a ξ -submanifold
because H ≡ 0 and the tangential part x
 of x is precisely x − ξ .

Example 2.3 (The standard spheres centered at the origin).
For a given point x0 ∈ R

m+1 and a positive number r . Define

Sm(r , x0) = {x ∈ R
m+1; |x − x0| = r},

the standard m-sphere inRm+1 with radius r and center x0. In particular, we denote Sm(r) :=
Sm(r , 0). It is easily found that Sm(r , x0) is a ξ -submanifold if and only if x0 = 0.

In fact, since x − x0 is a normal vector field of length r , the normal part x⊥ of x is

x⊥ = 1

r2
〈x, x − x0〉 (x − x0).

Note that H = − m
r2

(x − x0) is parallel. It follows that H + x⊥ is parallel if and only if x⊥
is. This is clearly equivalent to that 〈x, dx〉 ≡ 0 which is true if and only if x0 = 0.

Example 2.4 (Submanifolds in a sphere with parallel mean curvature vector).
Let x : Mm → Sm+p(a) ⊂ R

m+p+1 be a submanifold in the standard sphere Sm+p(a) of
radius a, which is of parallel mean curvature vector H . Then, as a submanifold of Rm+p+1,
x is a ξ -submanifold.

In fact, as the submanifold ofRm+p+1, the mean curvature vector of x is H̄ = �x = H −
m
a2

x . Thus, ξ := H̄ + x⊥ = H + (1− m
a2

)x which is clearly parallel. In particular, x(Mm) ⊂
R

m+p+1 is a self-shrinker if and only if x(Mm) ⊂ Sm+p(a) is a minimal submanifold.

Example 2.5 (The product of ξ -submanifolds).
Let xa : Mma → R

ma+pa , a = 1, 2, be two immersed submanifolds. Denote m =
m1 + m2, p = p1 + p2 and Mm = Mm1 × Mm2 . Then, it is not hard to show that x :=
x1 × x2 : Mm → R

m+p is a ξ -submanifold if and only if both x1 and x2 are ξ -submanifolds.
In particular, for any given positive numbers r1, . . . , rk (k ≥ 0), positive integers

m1, . . . , mk, n1, . . . , nl (l ≥ 0, k + l > 0) and n ≥ n1 + · · · + nl , the embedding

x : Sm1(r1) × · · · × Smk (rk) × Pn1 × · · · × Pnl → R
m1+···+mk+k+n (2.6)

are all ξ -submanifolds.

Remark 2.1 Apart from these typical examples of ξ -submanifolds given above, there should
certainly be other nonstandard examples. In particular, we have the so-called λ-torus con-
structed by Q.-M. Cheng and G. X. Wei in [11], which is among a general class of rotational
λ-hypersurfaces. Precisely, we have
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1496 X. Li, Z. Li

Theorem 2.1 ([11]). For any m ≥ 2 and λ > 0, there exists an embedded rotational λ-
hypersurface x : Mm → R

m+1, which has the topology of the torus S1 × S
m−1.

It would be interesting if one can construct similar ξ -submanifolds with certain symmetry.

3 As submanifolds of the Gaussian space

As mentioned in the introduction, m-dimensional self-shrinkers of the mean curvature
flow in the Euclidean space R

m+p ≡ (Rm+p, 〈·, ·〉) is equivalent to being minimal sub-
manifolds when viewed as submanifolds in the Gaussian metric space (Rm+p, ḡ) where

ḡ := e− |x |2
m 〈·, ·〉. In this section, we generalize this to ξ -submanifolds to obtain our first

characterization. In fact, we will prove a theorem which says that ξ -submanifolds are essen-
tially equivalent to being submanifolds of parallel mean curvature in (Rm+p, ḡ).

For an immersion x : Mm → R
m+p , we use (· · ·) to denote geometric quantities when

x is taken as an immersion into (Rm+p, ḡ) that correspond those quantities (· · · ) when x is
taken as an immersion into (Rm+p, 〈·, ·〉). So, for example, we have the induced metric ḡ, the
second fundamental form h̄ and the mean curvature H̄ , etc. To make things more clear, we
would like to introduce a “modified mean curvature” for the immersion x , which is defined

as H̃ = e− |x |2
2m H̄ . Then, we have

Theorem 3.1 (Thefirst characterization).An immersion x : Mm → R
m+p is a ξ -submanifold

if and only if its modified mean curvature H̃ is parallel.

Proof Denote by D̄ the Levi-Civita connections of (Rm+p, ḡ). For any given frame field
{eA; A = 1, 2 · · · , m+ p}, the corresponding connection coefficients of the standard connec-
tion D and D̄ are, respectively, denoted by	C

AB and 	̄C
AB with A, B, C, . . . = 1, 2, . . . m + p.

Then by the Koszul formula, we find

	̄C
AB = 	C

AB + 1

m

(
g(x, eD)gAB gC D − g(x, eA)δC

B − g(x, eB)δC
A

)
, (3.1)

or equivalently,

D̄eB eA = DeB eA + 1

m
(gAB x − g(x, eA)eB − g(x, eB)eA). (3.2)

Now given an immersion x : Mm → R
m+p , the induced metric on Mm by x of the

ambient metric ḡ will still be denoted by ḡ. Choose a frame field {ei , eα} along x such that ei ,
i = 1, 2, . . . , m, are tangent to Mm and eα , α = m + 1, . . . , m + p are normal to x∗(T Mm)

satisfying
〈
eα, eβ

〉 ≡ g(eα, eβ) = δαβ . Then by the Gauss formula and (3.1) or (3.2), we find
the relation between the second fundamental forms h̄ and h is as follows:

h̄i j ≡ h̄(ei , e j ) = (
D̄e j ei

)⊥ = hi j + 1

m
x⊥gi j (3.3)

where hi j = h(ei , e j ) = (
De j ei

)⊥. It follows that the mean curvature vectors satisfy

H̄ ≡ ḡi j h̄i j = e
|x |2
m (H + x⊥). (3.4)

Now we compute the covariant derivative of the modified mean curvature H̃ ≡ e− |x |2
2m H̄

with respect to the normal connection D̄⊥. First we note that, since ḡ is conformal to 〈·, ·〉
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on R
m+p , {eα} which satisfies

〈
eα, eβ

〉 = δαβ remains a normal frame field of x considered
as the immersion into (Rm+p, ḡ), not orthonormal anymore. Thus, we can write

H̃ =
∑

H̃αeα with H̃α = e
|x |2
2m (Hα + 〈x, eα〉)

where H = ∑
Hαeα . Note that by (3.1),

	̄α
βi = 	α

βi − 1

m
〈x, ei 〉 δα

β , ∀α, β, i .

It follows that, for each α = m + 1, . . . , m + p,
(

D̄⊥
ei

H̃
)α = ei (H̃α) + H̃β	̄α

βi

= ei
(
e

|x |2
2m

)
(Hα + 〈x, eα〉) + e

|x |2
2m (ei (Hα) + ei 〈x, eα〉)

+ e
|x |2
2m (Hβ + 〈

x, eβ

〉
)

(
	α

βi − 1

m
〈x, ei 〉 δα

β

)

= e
|x |2
2m (ei (Hα) + ei 〈x, eα〉 + Hβ	α

βi + 〈
x, eβ

〉
	α

βi )

= e
|x |2
2m

(
D⊥

ei
(H + x⊥)

)α
,

where D̄⊥, D⊥ denote the induced normal connections accordingly. Thus, Theorem 3.1 is
proved. ��

The following conclusion is direct by (3.4):

Corollary 3.2 An immersion x : Mm → R
m+p is a self-shrinker if and only if it is minimal

when viewed as a submanifold of the Gaussian space (Rm+p, ḡ).

4 Variational characterizations

In this section, we first define two functionals and derive the corresponding first and second
variation formulas, aiming to establish variational characterizations of the ξ -submanifolds.

For a given manifold M ≡ Mm of dimension m, define

M := {all the immersions x : Mm → R
m+p}

and let ξ : Mm → R
m+p be a vector-valued function on the manifold Mm . Then, we can

naturally introduce, as follows, two kinds of interesting functionals Vξ and V̄ξ on M which
are parametrized by ξ :

Vξ (x) :=
∫

M
e− fx dVx , V̄ξ (x) =

∫

M
e− f̄x dVx , x ∈ M, (4.1)

where for any p ∈ Mm , fx (p) := 1
2 |x(p) − ξ(p)|2, f̄x (p) = fx (p) − 1

2 |ξ(p)|2 and dVx is
the volume element of the induced metric gx of x .

Remark 4.1 (1) These two functionals Vξ and V̄ξ are both of weighted volumes in a sense

since, for example, the weighted volume element e− 1
2 |x−ξ |2dVx corresponding to the first

one can be viewed as induced from an unnormalized “general Gaussian measure” on the
ambient Euclidean space Rm+p with “mean” ξ . Note that when ξ is constant as in the case
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1498 X. Li, Z. Li

of m-planes,
(

1√
2π

)m+p
e− fx dVRm+p is nothing but the usual generalized Gaussian measure

with the mean ξ (and the variance σ 2 ≡ 1)1; meanwhile, the functional V̄ξ is clearly a new

weighted volume obtained from Vξ by just adding a new weight e
1
2 |ξ |2 . Also, the weight

function e− fx or e− f̄x naturally has a close relation with the definition of the Hermitian
Polynomials (see, for example, [14] and [15]). These polynomials will also be used later in
our stability discussion in Sect. 5.

(2) All of the typical ξ -submanifolds (that is, m-planes Pm , standard m-spheres Sm(r))
and their products (2.6) have finite values for both the functionals Vξ and V̄ξ , where ξ is
chosen to be H + x⊥.

Now let x ∈ M be fixed with the induced Riemannian metric g := x∗ 〈·, ·〉 and sup-
pose that F : M × (−ε, ε) → R

m+p is a variation of x with η := F∗( ∂
∂t )|t=0 being the

corresponding variation vector field. For p ∈ M , t ∈ (−ε, ε), denote

xt (p) = F(p, t),
∂ F

∂t
= F∗

(
∂

∂t

)
,

∂ F

∂ui
= F∗(

∂

∂ui
) ≡ (xt )∗

(
∂

∂ui

)

where (ui ) is a local coordinates on M . We always assume that, for each t ∈ (−ε, ε),
xt : Mm → R

m+p is an immersion, that is, xt ∈ M, t ∈ (−ε, ε).

Definition 4.1 (Compact variation). A variation F : M × (−ε, ε) → R
m+p is called com-

pactly supported, or simply compact, if there exists a relatively compact open domain B such

that, for each t ∈ (−ε, ε), the support set {p ∈ Mm; ∂ F
∂t (p) �= 0} of the vector field ∂ F

∂t is
contained in B.

Denote ft = fxt , f̄t = f̄xt and

	0(T
⊥(M)) = {all smooth normal vector fields η of x with compact support}.

Theorem 4.1 (The first variation formula). Let F be a compact variation of x. Then,

V ′
ξ (t) = −

∫

M

〈
(Ht + x⊥

t − ξ) + ∇ t
(

〈xt , ξ 〉 − 1

2
|ξ |2

)
,
∂ F

∂t

〉
e− ft dVt , (4.2)

V̄ ′
ξ (t) = −

∫

M

〈
(Ht + x⊥

t − ξ) + ∇ t 〈xt , ξ 〉 ,
∂ F

∂t

〉
e− f̄t dVt , (4.3)

where Ht is the mean curvature vector of the immersion xt , ∇ t is the gradient operator of
the induced metric gxt and dVt = dVxt .

In particular, if F is a normal variation of x, that is, η ∈ 	0(T ⊥(M)), then

V ′
ξ (0) = −

∫

M

〈
(H + x⊥ − ξ), η

〉
e− f0dV , (4.4)

V̄ ′
ξ (0) = −

∫

M

〈
(H + x⊥ − ξ), η

〉
e− f̄0dV . (4.5)

1 See the explanation in Wikipedia, the free encyclopedia under the title “Gaussian measure”.
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Proof From now on, we shall always write f for fx or ft in the computation. It is well known
that

∂

∂t
dVt =

(

div

(
∂ F

∂t

)

−

〈
Ht ,

∂ F

∂t

〉)

dVt

=
((

gi j
t

〈
∂ F

∂ui
,
∂ F

∂t

〉)

, j
−

〈
Ht ,

∂ F

∂t

〉)

dVt .

Furthermore

∂

∂t
e− f = −e− f ∂ f

∂t
= −e− f

〈
xt − ξ,

∂ F

∂t

〉
.

Thus by using the divergence theorem, we find

V ′
ξ (t) =

∫

M

∂

∂t

(
e− f dVt

)
=

∫

M

(
∂

∂t
e− f

)
dVt + e− f ∂

∂t
dVt

)

=
∫

M

(

−e− f
〈
xt − ξ,

∂ F

∂t

〉
+ e− f

((
gi j

t

〈
∂ F

∂ui
,
∂ F

∂t

〉)

, j
−

〈
Ht ,

∂ F

∂t

〉))

dVt

= −
∫

M

(〈
Ht + x⊥

t − ξ,
∂ F

∂t

〉
+ gi j

t
∂

∂u j

(
〈xt , ξ 〉 − 1

2
|ξ |2

)
∂ F

∂ui
,
∂ F

∂t

〉)
e− f dVt

= −
∫

M

(〈
(Ht + x⊥

t − ξ) + ∇ t
(

〈xt , ξ 〉 − 1

2
|ξ |2

)
,
∂ F

∂t

〉)
e− f dVt ,

which gives (4.2). The other formula (4.3) is derived in the same way. ��
Corollary 4.2 (Variational characterizations). An immersion x ∈ M is a ξ -submanifold if
and only if there exists a parallel normal vector field ξ ∈ 	(T ⊥M) such that x is the critical
point of both the functionals Vξ , V̄ξ for all the compact normal variations of x.

To find the second variational formulas, we suppose that x is a ξ -submanifold, that is,
H + x⊥ = ξ , where ξ is a parallel normal vector of x . In particular, |ξ |2 is a constant. Note
that in this case, the two functionals Vξ and V̄ξ are essentially the same. So in what follows
we only need to consider Vξ .

Suppose that F is a compact normal variation of x . Then from (4.2), we have

V ′′
ξ (0) = −

∫

M

〈
D ∂

∂t

(
(Ht + x⊥

t − ξ) + ∇ t 〈xt , ξ 〉
)

,
∂ F

∂t

〉
|t=0e− f dV

−
∫

M

〈
∇ t 〈xt , ξ 〉 , D ∂

∂t

∂ F

∂t

〉
|t=0e− f dV

= −
∫

M

〈
D ∂

∂t

(
(Ht + x⊥

t − ξ) + ∇ t 〈xt , ξ 〉
)

|t=0, η
〉

e− f dV

−
∫

M

〈
∇ 〈x, ξ 〉 , D ∂

∂t

∂ F

∂t
|t=0

〉
e− f dV . (4.6)

Since

Ht = (gt )
i j ht

(
∂

∂ui
,

∂

∂u j

)
= (gt )

i j
(

D ∂

∂u j

∂ F

∂ui
− (xt )∗∇ t

∂

∂u j

∂

∂ui

)
,
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we have

D ∂
∂t

Ht = ∂

∂t
(gt )

i j ht

(
∂

∂ui
,

∂

∂u j

)
+ (gt )

i j D ∂
∂t

(
D ∂

∂u j

∂ F

∂ui
− (xt )∗∇ t

∂

∂u j

∂

∂ui

)
. (4.7)

On the other hand,

(
∂

∂t
(gt )

i j
)

|t=0 = −
((

(gt )
ik(gt )

jl
〈

D ∂
∂t

∂ F

∂uk
,
∂ F

∂ul

〉
+

〈
∂ F

∂uk
, D ∂

∂t

∂ F

∂ul

〉))
|t=0

= −gik g jl
(

∂

∂uk

〈
∂ F

∂t
,
∂ F

∂ul

〉
−

〈
∂ F

∂t
, D ∂

∂uk

∂ F

∂ul

〉)
|t=0

− gik g jl
(

∂

∂ul

〈
∂ F

∂t
,

∂ F

∂uk

〉
−

〈
∂ F

∂t
, D ∂

∂ul

∂ F

∂uk

〉)
|t=0

= gik g jl
〈
h(

∂

∂uk
,

∂

∂ul
), η

〉
+ gik g jl

〈
h(

∂

∂ul
,

∂

∂uk
), η

〉
,

and by the flatness of Rm+p ,

D ∂
∂t

D ∂

∂u j

∂ F

∂ui
|t=0 = D ∂

∂u j
D ∂

∂t

∂ F

∂ui
+ D[

∂
∂t ,

∂

∂u j

] ∂ F

∂ui
|t=0

= D ∂

∂u j

(
D⊥

∂

∂ui
η − x∗

(
Aη

∂

∂ui

))

= D⊥
∂

∂u j
D⊥

∂

∂ui
η − h

(
∂

∂u j
, Aη

(
∂

∂ui

))

− x∗

(

AD⊥
∂

∂ui
η

∂

∂u j

)

− x∗
(

∇ ∂

∂u j

(
Aη

∂

∂ui

))

where Aη is the Weingarten operator of x with respect to the variation vector η. Moreover,

D ∂
∂t

(
(xt )∗ ∇ t

∂

∂u j

∂

∂ui

)
|t=0 = D ∂

∂t

(
(	t )

k
i j (xt )∗

∂

∂uk

)
|t=0

= ∂

∂t
((	t )

k
i j )|t=0x∗

∂

∂uk
+ 	k

i j D ∂
∂t

(
∂ F

∂uk

)
|t=0

= ∂

∂t
((	t )

k
i j )|t=0x∗

∂

∂uk
+ D∇ ∂

∂u j

∂

∂ui
η.

It then follows that
〈

∂

∂t
(gt )

i j ht

(
∂

∂ui
,

∂

∂u j

)
|t=0, η

〉
= 2gik g jl

〈
h

(
∂

∂uk
,

∂

∂ul

)
, η

〉 〈
h

(
∂

∂ui
,

∂

∂u j

)
, η

〉
,

(4.8)

gi j
〈

D ∂
∂t

D ∂

∂u j

∂ F

∂ui
|t=0, η

〉
= gi j

(〈
D⊥

∂

∂u j
D⊥

∂

∂ui
η − h

(
∂

∂u j
, Aη

(
∂

∂ui

))
, η

〉)
, (4.9)

gi j
(〈

D ∂
∂t

(
(xt )∗ ∇ t

∂

∂u j

∂

∂ui

)
|t=0, η

〉)
= gi j

〈

D⊥
∇ ∂

∂u j

∂

∂ui
η, η

〉

. (4.10)

123



Variational characterizations of ξ -submanifolds in the… 1501

Hence,

〈
D ∂

∂t
Ht |t=0, η

〉
=

〈

gi j

(

D⊥
∂

∂ui
D⊥

∂

∂u j
η − D⊥

∇ ∂

∂ui

∂

∂u j
η

)

, η

〉

+ gik g jl
〈
h

(
∂

∂uk
,

∂

∂ul

)
, η

〉 〈
h

(
∂

∂ui
,

∂

∂u j

)
, η

〉

=
〈
�⊥

Mη, η
〉
+ gik g jl

〈
h

(
∂

∂uk
,

∂

∂ul

)
, η

〉 〈
h

(
∂

∂ui
,

∂

∂u j

)
, η

〉

=
〈
�⊥

Mη + gik g jl 〈
hi j , η

〉
hkl , η

〉
,

where hi j = h( ∂
∂ui ,

∂
∂u j ). Furthermore,

〈
D ∂

∂t
(x⊥

t − ξ)|t=0, η
〉
=

〈
D ∂

∂t
xt |t=0 − D ∂

∂t
(xt )


|t=0, η
〉

= 〈η, η〉 −
〈

D ∂
∂t

(
(gt )

i j
〈
xt ,

∂ F

∂ui

〉
∂ F

∂u j

)
|t=0, η

〉

= 〈η, η〉 − 〈
Dx
η, η

〉 = 〈η, η〉 −
〈
D⊥

x
η, η
〉
.

Therefore,
〈

D ∂
∂t

(Ht + x⊥
t − ξ),

∂ F

∂t

〉
|t=0 =

〈
�⊥

Mη − D⊥
x
η + gik g jl 〈

hi j , η
〉
hkl + η, η

〉

Meanwhile,

〈
D ∂

∂t
(∇ t 〈xt , ξ 〉)|t=0, η

〉
=

〈
(gt )

i j ∂

∂ui
〈xt , ξ 〉 D ∂

∂t

∂ F

∂ui
|t=0, η

〉

=
〈
gi j ∂

∂ui
〈x, ξ 〉 D ∂

∂ui
η, η

〉
=

〈
D⊥∇〈x,ξ〉η, η

〉

= −
〈
D⊥

Aξ (x
)
η, η

〉

since ξ is parallel along x .
By summing up, we have proved the following second variation formulas for ξ -

submanifolds:

Theorem 4.3 Let x : Mm → R
m+p be a ξ -submanifold. Then for any compact normal

variation F : Mm × (−ε, ε) → R
m+p, we have

V
′′
ξ (0) = −

∫

M

(〈
�⊥

M (η) − D⊥
x
+Aξ (x
)

η + gik g jl 〈
hi j , η

〉
hkl + η, η

〉

+
〈
∇ 〈x, ξ 〉 , D ∂

∂t

∂ F

∂t
|t=0

〉)
e− f dV , (4.11)

V̄
′′
ξ (0) = −

∫

M

(〈
�⊥

M (η) − D⊥
x
+Aξ (x
)

η + gik g jl 〈
hi j , η

〉
hkl + η, η

〉

+
〈
∇ 〈x, ξ 〉 , D ∂

∂t

∂ F

∂t
|t=0

〉)
e− f̄ dV . (4.12)

In order to simplify the second variation formulas, we introduce the following definition:
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Definition 4.2 (SN -variation). A variation F : Mm × (−ε, ε) → R
m+p of an immersion

x : Mm → R
m+p is called specially normal (or simply SN ) if it is normal and ∂2F

∂t2
|t=0 = 0.

Remark 4.2 The introduction of the SN-variation is based on the observation that theHessian
Hess( f ) at a given point p of a smooth function f on a Riemannian manifold Ñ , p ∈ Ñ , is
determined only by those local values of f along the simplest curves γ̃ passing through the
point p. For example, if we choose γ̃ to be geodesic ones, then the second derivatives can be
computed as

d2

dt2

∣
∣
∣
∣
t=0

( f (γ̃ )) = Hess( f )(γ̃ ′(0), γ̃ ′(0)),

implying that f is (semi-)convex at p if and only if d2

dt2

∣
∣
∣
t=0

( f (γ̃ )) ≥ 0 for all of these

geodesics γ̃ .

Clearly, for any η ∈ 	(T ⊥M), SN -variations with variation vector field η always exist in
our present case. For example, we can choose

F(p, t) = x(p) + ψ(t)η(p), ∀ (p, t) ∈ Mm × (−ε, ε)

where ψ is any smooth function satisfying ψ(0) = ψ ′′(0) = 0, ψ ′(0) = 1.

Corollary 4.4 (The simplified second variation formulas). Let x : Mm → R
m+p be a ξ -

submanifold. Then for any compact SN-variation F : Mm × (−ε, ε) → R
m+p it holds

that

V
′′
ξ (0) = −

∫

M

( 〈
(�⊥

M − D⊥
x
+Aξ (x
)

+ 1)η + gik g jl 〈
hi j , η

〉
hkl , η

〉 )
e− f dV , (4.13)

V̄
′′
ξ (0) = −

∫

M

( 〈
(�⊥

M − D⊥
x
+Aξ (x
)

+ 1)η + gik g jl 〈
hi j , η

〉
hkl , η

〉 )
e− f̄ dV . (4.14)

Remark 4.3 From the above discussion, one may naturally think of the variational character-
ization of the usual submanifolds with parallel mean curvature vector in the Euclidean space.
In fact, our computations and argument in this section essentially apply to this situation. For
example, a suitable functional Ṽξ may be defined by

Ṽξ =
∫

M
e〈x,ξ〉dVx , ∀x ∈ M

and the first variation formula of Ṽξ is given in the following

Proposition 4.5 Let x ∈ M be fixed and ξ : Mm → R
m+p be a smooth map. Suppose that

F is a compact variation of x. Then

Ṽ ′
ξ (t) = −

∫

M

〈
(Ht − ξ) + ∇ t 〈xt , ξ 〉 ,

∂ F

∂t

〉
e〈x,ξ〉dVt . (4.15)

In particular, if F is a normal variation of x, then

Ṽ ′
ξ (0) = −

∫

M
〈H − ξ, η〉 e〈x,ξ〉dV . (4.16)

Corollary 4.6 An immersion x ∈ M has a parallel mean curvature vector if and only if there
exists a parallel normal vector field ξ ∈ 	(T ⊥M) such that x is the critical point of the
functional Ṽξ for all the compact normal variations of x.
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Accordingly, the second variation formula for a submanifold x : Mm → R
m+p with

parallel mean curvature vector H ≡ ξ may be described as

Theorem 4.7 Let x : Mm → R
m+p be an immersed submanifold with parallel mean curva-

ture H. Then for any compact normal variation F : Mm × (−ε, ε) → R
m+p we have

Ṽ
′′
H (0) = −

∫

M

(〈
�⊥

M (η) + D⊥∇〈x,H〉η, η
〉
+ |Aη|2 +

〈
∇ 〈x, H〉 , D ∂

∂t

∂ F

∂t
|t=0

〉)
e〈x,H〉dV .

(4.17)

5 The instabilities of the typical examples

The most natural stability definition to the functional Vξ is as follows:

Definition 5.1 A ξ -submanifold x : Mm → R
m+p is called stable if Vξ (x) < +∞ and for

every compact SN -variation F : Mm × (−ε, ε) → R
m+p of x it holds that V ′′

ξ (0) ≥ 0 or,

equivalently, V̄ ′′
ξ (0) ≥ 0.

In this section, we shall show that, as ξ -submanifolds, all the typical examples given in
Sect. 2 are not stable in the sense of Definition 5.1.

Write the second fundamental form h of x locally as h = hi jω
iω j = hα

i j eα with respect

to an orthonormal tangent frame field {ei ; 1 ≤ i ≤ m} with dual {ωi } and an orthonormal
normal frame field {eα; m + 1 ≤ α ≤ m + p}, and denote

L = �⊥
Mm − D⊥

x
+Aξ (x
)
, L = L + 〈

hi j , ·
〉
hi j + 1, L̃ = �Mm − ∇x
+Aξ (x
), (5.1)

where �⊥
Mm , �Mm are Laplacians on T ⊥Mm , T Mm , respectively, and sometimes we shall

omit the subscript “Mm ” if no confusion is made. It follows that

Q(η, η) :≡ −
∫

M
〈L(η), η〉 e− f dV , (5.2)

and that, for any parallel normal vector field N ,

L(N ) = N + 〈
hi j , N

〉
hi j . (5.3)

Lemma 5.1

L(φη) = (L̃φ)η + φL(η) + 2D⊥∇φη, φ ∈ C∞(Mm), η ∈ 	(T ⊥Mm). (5.4)

Proof We compute directly

L(φη) = �⊥(φη) − D⊥
x
+Aξ (x
)

(φη) + 〈
hi j , φη

〉
hi j + φη

= (�φ)η + 2D⊥∇φη + φ�⊥η − (∇x
+Aξ (x
)φ)η

− φ(D⊥
x
+Aξ (x
)

η) + φ
〈
hi j , η

〉
hi j + φη

= (� − ∇x
+Aξ (x
))φη + φ(�⊥ − D⊥
x
+Aξ (x
)

+ 〈
hi j , ·

〉
hi j + 1)η + 2D⊥∇φη

= (L̃φ)η + φ(Lη) + 2D⊥∇φη.

��
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Lemma 5.2 Let x : Mm → R
m+p be a ξ -submanifold. Then for any η1, η2 ∈ 	(T ⊥Mm)

one of which is compactly supported, it holds that
∫

M
〈η1,Lη2〉 e− f dV = −

∫

M

〈
D⊥η1, D⊥η2

〉
e− f dV . (5.5)

Similarly, for any φ1, φ2 ∈ C∞(Mm) one of which is compactly supported, it holds that
∫

M
φ1L̃φ2e− f dV = −

∫

M
〈∇φ1,∇φ2〉 e− f dV . (5.6)

Proof To prove the two formulas, it suffices to use the Divergence Theorem and the following
equalities:

〈η1,Lη2〉 e− f = div
(〈

η1, D⊥
ei

η2

〉
e− f ei

)
−

〈
D⊥η1, D⊥η2

〉
e− f , (5.7)

φ1L̃φ2e− f = div
(
φ1∇ei φ2e− f ei

)
− 〈∇φ1,∇φ2〉 e− f . (5.8)

��

Lemma 5.3 For any φ ∈ C∞
0 (Mm) and η ∈ 	(T ⊥Mm), it holds that

∫

M
〈φη, L(φη)〉 e− f dV =

∫

M
φ2 〈η, L(η)〉 e− f dV −

∫

M
|∇φ|2|η|2e− f dV . (5.9)

Proof By (5.4) and (5.6), we find
∫

M
〈φη, L(φη)〉 e− f dV =

∫

M

〈
φη, (L̃φ)η + φLη + 2D⊥∇φη

〉
e− f dV

=
∫

M
(φ|η|2)L̃φe− f dV +

∫

M
φ2 〈η, Lη〉 e− f dV +

∫

M

〈
η, D⊥

∇φ2η
〉

e− f dV

= −
∫

M
((|∇φ|2|η|2) + 1

2

〈∇φ2,∇|η|2〉)e− f dV +
∫

M
φ2 〈η, Lη〉 e− f dV

+ 1

2

∫

M
∇∇φ2 |η|2e− f dV

=
∫

M
φ2 〈η, Lη〉 e− f dV −

∫

M
|∇φ|2|η|2e− f dV .

��

Proposition 5.4 As ξ -submanifolds, all m-planes in R
m+p are not stable.

Proof For an m-plane x : Pm ⊂ R
m+p , let o be the orthogonal projection on Pm of the

origin O . Then ξ = →
Oo. Denote by BR(o) ⊂ P the closed ball of radius R > 0 centered at

the fixed point o:

BR(o) = {x ∈ P; |x
| ≡ |x − ξ | ≤ R}.
Let N be a unit constant vector in Rm orthogonal to Pm and φR be a cut-off function on Pm

satisfying

(φR)|BR(o) ≡ 1, (φR)|Pm\BR+2(o) ≡ 0, |∇φ| ≤ 1, R > 0.
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Define ηR = φR N . Then ηR is compactly supported and can be chosen to be a variation
vector field for some SN -variation. By (5.9) and (5.3),

Q(ηR, ηR) = −
∫

M
〈φR N , L(φR N )〉 e− f dV

= −
∫

Pm
φ2

R 〈N , L(N )〉 e− f dV +
∫

Pm
|∇φR |2e− f dV

= −
∫

Pm
φ2

R

〈
N , N + 〈

hi j , N
〉
hi j

〉
e− f dV +

∫

Pm
|∇φR |2e− f dV

≤ −
∫

Pm
φ2

Re− f dV +
∫

BR+2(o)\BR(o)

e− f dV → −
∫

Pm
e− f dV < 0

when R → +∞ since
∫

Pm e− f dV < +∞. Thus for large R, we have Q(ηR, ηR) < 0. ��
Proposition 5.5 As ξ -submanifolds, the standard m-spheres Sm(r) are all non-stable.

Proof For the standard sphere Sm(r) ⊂ R
m+1 ⊂ R

m+p , we have h = − 1
r2

g x , x⊥ = x and

ξ =
(
− m

r2
+ 1

)
x . Choose the variation vector field η = x so that Lη = 0. It follows that

Q(η, η) ≤ −
∫

Sm (r)

〈η, L(η)〉 e− f dVSm (r) = −
∫

Sm (r)

(∑ 〈
hi j , η

〉2 + |x |2
)

e− f dVSm (r)

= −(m + r2)
∫

Sm (r)

e− f dVSm (r) < 0.

��
From Proposition 5.4 and Proposition 5.5, we easily find

Corollary 5.6 The product ξ -submanifolds Sm1(r1) × · · · × Smk (rk) × Pn1 × · · · × Pnl are
not stable.

A more general conclusion than Proposition 5.5 is the following

Proposition 5.7 Let x : Mm → R
m+p be a compact ξ -submanifold. If x has a non-trivial

parallel normal vector field, then x is not stable. In particular, all compact λ-hypersurfaces
and compact ξ -submanifold with ξ �= 0 are not stable.

Proof Let η �= 0 be a parallel normal vector field. Then η can be chosen to be the variation
vector field of some SN -variation F of x . Since �⊥η = D⊥

x
+Aξ (x
)
η = 0, it then follows

from (4.13) that

Q(η, η) = −
∫

M

(∑ 〈
hi j , η

〉2 + |η|2
)

e− f dV < 0.

��
Corollary 5.8 Any compact and simply connected ξ -submanifold with flat normal bundle is
not stable.

To end this section, we would like to remark that, by using suitably chosen cut-off func-
tions, say, the cut-off functions φR introduced in Sect. 7 for large enough numbers R > 0,
we can extend the above instability conclusions to more general complete case. For example,
the following conclusion is also true:
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Theorem 5.9 Any complete and properly immersed ξ -submanifold with a non-trivial parallel
normal vector field η is not stable.

Proof Let x : Mm → R
m+p be a complete and properly immersed ξ -submanifold and N

be a non-trivial parallel normal vector field of x . Without loss of generality, we assume that∫
M e− f dV < ∞ and |N |2 = 1. For a Large R > 0, define ηR := φR N . Choose an SN-

variation of x with ηR being its variation vector field. Then, by (5.2), (5.3) and Lemma 5.3,
we have

Q(ηR, ηR) = −
∫

M
〈φR N , L(φR N )〉 e− f dV

= −
∫

M
φ2

R 〈N , L(N )〉 e− f dV +
∫

M
|∇φR |2e− f dV

= −
∫

M
φ2

R

〈
N , N + 〈

hi j , N
〉
hi j

〉
e− f dV +

∫

B2R(o)\BR(o)

|∇φR |2e− f dV

≤ −
∫

M
φ2

Re− f dV +
∫

M\BR(o)

e− f dV → −
∫

M
e− f dV < 0 (R → +∞),

since limR→+∞
∫

M\BR(o)
e− f dV = 0. So that there is an R large enough such that we have

Q(ηR, ηR) < 0. ��
Corollary 5.10 Let x : Mm → R

m+p be a complete and properly immersed ξ -submanifold.
Then, x is not stable if any of the following three holds:

(1) the codimension p = 1;
(2) p ≥ 2 and ξ �= 0;
(3) Mm is simply connected and the normal bundle of x is flat.

Remark 5.1 Up to now, it is still unclear for the existence of stable ξ -submanifolds in the
sense ofDefinition 5.1 . Other stability problems have been previously discussed for both self-
shrinker hypersurfaces and λ-hypersurfaces. For example, Colding andMinicozzi introduced
a notion of F-functional and proved that self-shrinkers are exactly critical points of the F-
functional ([13]). They also proved that the standard sphere and hyperplane are the only two
complete F-stable hypersurface self-shrinkers of polynomial volume growth. Furthermore,
in [9], Cheng and Wei extended the above F-functional to λ-hypersurfaces and studied the
corresponding F-stability. In particular, they proved that the standard sphere Sm(r) of radius
r is F-unstable as a λ-hypersurface if and only if

√
m < r ≤ √

m + 1.

6 TheW�-stability of �-submanifolds

By the discussion of last section, it turns out that the concept of stability given in Definition
5.1 is over-strong in a sense. So it is natural and interesting to find a suitably weaker stability
definition for ξ -submanifolds. Motivated by the “weighted-volume-preserving” variations of
hypersurfaces (see [27]), we can introduce the Wξ -stability in the following way.

Note that, by [27], a compact variation F of a hypersurface x : Mm → R
m+1 is called

“weighted-volume-preserving” if
∫

M

〈
∂

∂ F

∣∣
t=0 , n

〉
e− 1

2 |x |2 = 0 where n is the unit normal
vector field. Since a normal vector field N = λn is parallel if and only if λ = const, it follows

that F is “weighted-volume-preserving” if and only if
∫

M

〈
∂

∂ F

∣∣
t=0 , N

〉
e− 1

2 |x |2dV = 0 for
all parallel normal vector field N . This recommends us to make the following generalization:
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Definition 6.1 Let x : Mm → R
m+p be an immersion. A compact SN -variation F : Mm ×

(−ε, ε) → R
m+p of x is called V P (“weighted-volume-preserving”) if the corresponding

variation vector η ≡ ∂ F
∂t

∣
∣
t=0 satisfies

∫

M
〈η, N 〉 e− f dV = 0, ∀ N ∈ 	(T ⊥M) satisfying D⊥N ≡ 0. (6.1)

Remark 6.1 It is clear that, in the special case of codimension 1, V P-variations defined here
are nothing but the “weighted-volume-preserving” ones that were considered in [27].

Definition 6.2 A ξ -submanifold x : Mm → R
m+p is called Wξ -stable if Vξ (x) < +∞ and

for every V P-variation it holds that V ′′
ξ (0) ≥ 0.

Then, we have

Theorem 6.1 Any of the m-planes is Wξ -stable.

Proof For an m-plane x : Pm ⊂ R
m+p , let η be an arbitrary normal vector field on Pm with

compact support. Then, we have Aη ≡ 0, x − ξ = x
 and

L = �⊥
Pm − D⊥

x
 + 1.

Clearly, there are constant normal basis eα , α = m + 1, . . . , m + p. So η can be expressed
by η = ∑

ηαeα with ηα ∈ C∞
0 (Pm). Consequently,

L(η) =
∑

L̃(ηα)eα, 〈Lη, η〉 =
∑

ηα L̃ηα,

where L̃ = �Pm − ∇x
 + 1. Now we make the following
Claim: The eigenvalues of the operator −L̃ are λn = n − 1 with n = 0, 1, . . ..
To prove this claim, we need to make use of the multivariable Hermitian polynomials

Hn1···nm on R
m , labelled with 0 ≤ n1, . . . , nm < +∞, which are defined by the expansion

(see [14] and [15] for the detail)

e− |u−t |2
2 = e− |u|2

2
∑

n1,...,nm

(t1)n1 · · · (tm)nm

n1! · · · nm ! Hn1···nm (u),

u = (u1, . . . , um), t = (t1, . . . tm) ∈ R
m, (6.2)

or equivalently

e− |t |2
2 +〈t,u〉 =

∑

n1,...,nm

(t1)n1 · · · (tm)nm

n1! · · · nm ! Hn1···nm (u),

u = (u1, . . . , um), t = (t1, . . . tm) ∈ R
m . (6.3)

It is clear that

Hn1···nm (u) = Hn1(u
1) . . . Hnm (um), ∀u = (u1, . . . , um) ∈ R

m (6.4)

where, for each i = 1, . . . , m,Hni (u
i ) is the Hermitian Polynomial of one variable ui defined

by

e− 1
2 |t i |2+ui t i =

∑

ni

(t i )ni

ni ! Hni (u
i ), ui , t i ∈ R. (6.5)
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By (6.5), we easily find that

Hni +1(u
i ) = uiHni − niHni −1,

d

dui
Hni (u

i ) = niHni −1, i = 1, . . . , m (6.6)

implying that
(

− d2

(dui )2
+ ui d

dui

)
Hni (u

i ) = niHni (u
i ), i = 1, . . . , m. (6.7)

Consequently, by (6.4), we have

(−�Rm + ∇u)Hn1···nm (u) =
(

m∑

i=1

ni

)

Hn1···nm (u), ∀n1, . . . , nm ≥ 0. (6.8)

It is known that all these multivariable Hermitian polynomials are weighted square integrable

with the weight e− |u|2
2 , that is

Hn1···nm ∈ L2
w(Rm) := {ϕ ∈ C∞(Rm);

∫

Rm
ϕ2e− f dVRm < +∞}.

Consequently, integers
∑m

i=1 ni , for all n1, . . . , nm ≥ 0, are eigenvalues of the operator
−�Rm + ∇u acting on L2

w(Rm). By making a change of coordinates on R
m+p we can

assume xi − ξ i = ui , i = 1, 2, . . . , m, for x ∈ Pm . Thus, (6.8) shows that −L̃ + 1 has
n = 0, 1, . . . as its eigenvalues, or equivalently, n − 1 = −1, 0, 1, . . . are eigenvalues of −L̃
where constants are those eigenfunctions corresponding to −1.

To complete the claim, we also have to show that {Hn1···nm ; n1, . . . , nm ≥ 0} is a complete
basis for the space of smooth and weighted square integrable functions on R

m . For doing
this, we let E be the orthogonal complement in L2

w(Rm) of the closure of the linear span of
all Hn1...nm , that is,

E := (Span {Hn1...nm , n1, . . . , nm = 0, 1, . . .})⊥.

For any ϕ ∈ E , we have

0 = (ϕ,Hn1...nm )w :=
∫

Rm
ϕ(u)Hn1...nm (u)e− f dVRm , n1, . . . , nm = 0, 1, . . . .

It then easily follows from (6.3) thatF(ϕe− f ) = 0whereF is the usual multivariable Fourier
transformation. Since F is injective, we obtain that ϕe− f = 0 implying ϕ ≡ 0. This shows
that E = 0 and thus

L2
w(Rm) = Span {Hn1···nm , n1, . . . , nm = 0, 1, . . .}. (6.9)

Now suppose η = ∑
ηαeα is a compact normal vector field that can be taken as a V P-

variation vector field. Then for each α, we have

ηα ∈ S∞,2
w (Pm) :=

{
ϕ ∈ C∞(Pm);

∫

Pm
ϕ2e− f dVPm < +∞

}
.

Since L̃ is self-adjoint with respect to the weighted measure e− f dV , we know that it is
diagonalizable, that is, any compactly supported smooth function can be decomposed into a
sum of some eigenfunctions of L̃ . In particular, we can write for each α = m +1, . . . , m + p,

ηα = ηα
0 +

∑

k≥1

ηα
k , ηα

0 ∈ R, (6.10)
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where ηα
k ∈ S∞,2

w (Pm) satisfying L̃(ηα
k ) = −λkη

α
k , k ≥ 0. Furthermore, the self-adjointness

of L̃ also implies that, for each pair of k �= l, ηα
k and ηα

l are orthogonal, that is
∫

Pm

∑

α

ηα
k ηα

l e− f dV = 0, k �= l. (6.11)

Since η is a V P-variation vector field, we have by (6.10) and (6.1) that
∫

Pm ηαe− f dV = 0
for all α = m+1, . . . , m+ p. It then follows from (6.11) that ηα

0 = 0, α = m+1, . . . , m+ p.
Therefore,

∫

Pm

∑

α

|ηα|2e− f dV =
∫

Pm

∑

α

∑

k,l≥1

ηα
k ηα

l e− f dV =
∑

α

∑

k≥1

∫

Pm
|ηα

k |2e− f dV .

Consequently, we have
∫

Pm

∑

α

ηα(−L̃ηα)e− f dV =
∫

Pm

∑

α

∑

k≥1

ηα
k

∑

l≥1

(−L̃ηα
l )e− f dV

=
∑

α

∑

k,l≥1

∫

Pm
λlη

α
k ηα

l e− f dV =
∑

α

∑

k≥1

λk

∫

Pm
|ηα

k |2e− f dV

≥ λ1
∑

α

∑

k

∫

Pm
|ηα

k |2e− f dV = λ1
∑

α

∫

Pm
|ηα|2e− f dV ≥ 0

implying that

Q(η, η) = −
∫

Pm
〈η, Lη〉 e− f dV =

∫

Pm

∑

α

ηα(−L̃ηα)e− f dV

=
∑

α

∫

Pm
ηα(−L̃ηα)e− f dV ≥ 0.

��
Theorem 6.2 As a ξ -submanifold, the index ind(Sm(r)) of the standard m-sphere Sm(r) with
respect to V P-variations is no less than m + 1. Furthermore, ind(Sm(r)) = m + 1 if and
only if r2 ≤ m. In particular, all of these spheres are not Wξ -stable.

Proof For the standard sphere Sm(r) ⊂ R
m+1 ⊂ R

m+p , we have x
 = 0, h = − 1
r2

gx and

hence ξ =
(
− m

r2
+ 1

)
x . It follows that x − ξ = m

r2
x and

L = �⊥
Sm (r) + 〈

hi j , ·
〉
hi j + 1 = �⊥

Sm (r) + m

r4
〈x, ·〉 x + 1, L̃ = �Sm (r).

In particular, L(x) = 1
r2

(m + r2)x and, for any parallel normal vector field N orthogonal
to x , L(N ) = N . Let em+2, . . . , em+p be an orthonormal constant basis of the subspace
(Span {T Sm(r), x})⊥ ⊂ R

m+p . Then, em+1 :≡ 1
r x, em+2, . . . , em+p is an orthonormal

normal frame field of Sm(r) and

L(em+1) = 1

r2
(m + r2)em+1, L(eα) = eα, α = m + 2, . . . , m + p. (6.12)

Now for any η ∈ 	(T ⊥Sm(r)) we can write

η =
∑

α

ηαeα with ηα ∈ C∞(Sm(r)), m + 1 ≤ α ≤ m + p.
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Then by (5.4) and (6.12)

L(η) =
∑

α

(L̃(ηα))eα + ηα L(eα)

= (�Sm (r)η
m+1)em+1 + ηm+1L(em+1) +

∑

α≥m+2

((�Sm (r)η
α)eα + ηα L(eα))

=
(

L̃ + m

r2

)
ηm+1em+1 +

∑

α≥m+2

L̃(ηα)eα

where L̃ = �Sm (r) + 1. Furthermore, let λk , k ≥ 0 be the eigenvalues of L̃ and write
ηα = ∑

k≥0 ηα
k for some eigenfunctions ηα

k satisfying L̃(ηα
k ) = −λkη

α
k , k ≥ 0.

It is well known that the eigenvalues of −�Sm (r) is
k(m+k−1)

r2
, k ≥ 0, so that

λk = k(m + k − 1)

r2
− 1, for k = 0, 1, 2, . . . ,

with constants being the eigenfunctions corresponding to k = 0. But by (6.1),∫
Sm (r)

ηαe− f dVSm (r) = 0 which implies that ηα
0 = 0. Therefore,

Q(η, η) = −
∫

Sm (r)

〈η, L(η)〉 e− f dVSm (r)

= −
∫

Sm (r)

ηm+1
(

L̃ + m

r2

)
ηm+1e− f dVSm (r) +

∑

α≥m+2

∫

Sm (r)

ηα(−L̃ηα)e− f dVSm (r)

=
∑

k≥1

∫

Sm (r)

(
k(m + k − 1)

r2
− 1

r2
(m + r2)

)
|ηm+1

k |2e− f dVSm (r)

+
∑

α≥m+2,k≥1

∫

Sm (r)

(
k(m + k − 1)

r2
− 1

)
|ηα

k |2e− f dVSm (r)

= −
∫

Sm (r)

|ηm+1
1 |2e− f dVSm (r)

+
∑

k≥2

∫

Sm (r)

(
k(m + k − 1)

r2
− 1

r2
(m + r2)

)
|ηm+1

k |2e− f dVSm (r)

+
∑

α≥m+2,k≥1

∫

Sm (r)

(
k(m + k − 1)

r2
− 1

)
|ηα

k |2e− f dVSm (r)

≥ −
∫

Sm (r)

|ηm+1
1 |2e− f dVSm (r) +

(
m + 2

r2
− 1

) ∑

k≥2

∫

Sm (r)

|ηm+1
k |2e− f dVSm (r)

+
( m

r2
− 1

) ∑

α≥m+2,k≥1

∫

Sm (r)

|ηα
k |2e− f dVSm (r). (6.13)

Define

Vλ1 = {ϕ ∈ C∞(Sm(r)); �Sm (r)ϕ = − m

r2
ϕ}, Ṽλ1 = {ϕem+1; ϕ ∈ Vλ1}.

Then dim Ṽλ1 = dim Vλ1 and the left side is well known to be m +1. It is not hard to see from
(6.13) that Q is negative definite on Ṽλ1 , and thus, ind(Sm(r)) ≥ m + 1 with the equality
holding if and only if m

r2
− 1 ≥ 0, that is, r2 ≤ m. ��
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7 The uniqueness problem for completeW-stable �-submanifolds

It is interesting to know whether or not m-planes are the only Wξ -stable ξ -submanifolds. We
shall start to deal with this problem in this section. To make things more clear, we would
better use the standard weighted volume functional Vw for immersed submanifolds, which
is a special case of either Vξ or V̄ξ with ξ ≡ 0:

Vw(x) ≡ V0(x) =
∫

M
e− 1

2 |x |2dVx , x ∈ M.

Then, the same argument as in the proof of Theorem 4.1, Theorem 4.3 and Corollary 4.4
easily lead to the following

Proposition 7.1 Let x : Mm → R
m+p be a ξ -submanifold. Then for any V P-variation of x,

we have

V ′
w(t) = −

∫

M

〈
Ht + x⊥

t ,
∂ F

∂t

〉
e− 1

2 |xt |2dVt , xt ∈ M, (7.1)

V ′′
w(0) = −

∫

M

( 〈
�⊥

M (η) − D⊥
x
η + gik g jl 〈

hi j , η
〉
hkl + η, η

〉 )
e− 1

2 |x |2dV . (7.2)

By making applications of (7.1) and (7.2), we can generalize the conventional extreme
value problem with conditions to our situation. For example, we have by Definition 6.1 and
(7.1):

Corollary 7.2 (see [27] for the hypersurface case). An immersion x ∈ M is a ξ -submanifold
if and only if it is a critical point of Vw under the V P-variations (the “critical point with
condition”).

Now we introduce the concept of W -stability for ξ -submanifolds, which can be viewed
as the “conditional” critical points of Vw.

Definition 7.1 A ξ -submanifold x : Mm → R
m+p is calledW -stable if it has a finite standard

weighted volume Vw(x) and V ′′
w(0) ≥ 0 for all V P-variations of x .

In other words, the W -stability is exactly the W0-stability, a typical one to the Wξ -stability:
just put ξ = 0 in the functional Vξ . In this sense our main theorem can be stated as follows:

Theorem 7.3 Let x : Mm → R
m+p be a complete and properly immersed ξ -submanifold

with flat normal bundle. Then, x is W -stable if and only if x(Mm) is an m-plane.

To prove this theorem, we shall extend the main idea in [27], originally applied for the
hypersurface case, to our higher codimension case here by solving some certain technical
problems. Clearly, we only need to prove the necessity part of Theorem 7.3. For this, we can
first make use of the universal covering if necessary to assume that Mm is simply connected.
Then that x has a flat normal bundle implies the existence of a parallel orthonormal normal
frame {eα; m + 1 ≤ α ≤ m + p}. Furthermore, from (5.1) or (7.2) we have

L = �⊥
Mm − D⊥

x
 , L = L + 〈
hi j , ·

〉
hi j + 1, L̃ = �Mm − ∇x
 . (7.3)

Lemma 7.4 Let x be a ξ -submanifold. Then for any constant vector v ∈ R
m+p and any

parallel normal vector field N, we have

L̃ 〈v, N 〉 = − 〈
AN , Av⊥

〉 ≡ − 〈
hi j , N

〉 〈
hi j , v

〉
, L(v⊥) = v⊥ (7.4)

where v
 and v⊥ are the orthogonal projections of the vector v on T Mm and T ⊥Mm,
respectively.
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Proof By using Weingarten formula and the equality that D⊥(H + x⊥) ≡ 0, we find

L̃ 〈v, N 〉 = �Mm 〈v, N 〉 − ∇x
 〈v, N 〉
= (〈v,−AN (ei )〉),i −

〈
v,−AN (x
)

〉

= − 〈
hi ji , N

〉 〈
v, e j

〉 − 〈
hi j , N

〉 〈
v, e j

〉
,i +

〈
v, AN (x
)

〉

= 〈x, N 〉 j
〈
v, e j

〉 − 〈
hi j , N

〉 〈
v, h ji

〉 +
〈
v, AN (x
)

〉

= − 〈
x, AN (e j )

〉 〈
v, e j

〉 − 〈
AN , Av⊥

〉 +
〈
v, AN (x
)

〉

= −
〈
x
, AN (v
)

〉
− 〈

AN , Av⊥
〉 +

〈
AN (v
), x
〉

= − 〈
AN , Av⊥

〉
.

The second equality follows directly from (5.3), (5.4) and the first equality in (7.4). ��
Lemma 7.5 For any η = eα + v⊥, v ∈ R

m+p, it holds that

Q(φη, φη) ≤ −
∫

M
φ2|η|2e− f dV +

∫

M
|∇φ|2(|η|2 + |v
|2)e− f dV , ∀ φ ∈ C∞

0 (Mm),

(7.5)

where and hereafter we denote f = 1
2 |x |2.

Proof By (5.3) and (7.4),

L(η) = L(eα + v⊥) = eα + hα
i j hi j + v⊥ = η + hα

i j hi j .

It follows from (5.9) that

Q(φη, φη) = −
∫

M
〈φη, L(φη)〉 e− f dV

= −
∫

M
φ2 〈η, L(η)〉 e− f dV +

∫

M
|∇φ|2|η|2e− f dV

= −
∫

M
φ2

〈
η, η + hα

i j hi j

〉
e− f dV +

∫

M
|∇φ|2|η|2e− f dV

= −
∫

M
φ2|η|2e− f dV −

∫

M
φ2hα

i j

〈
hi j , eα + v⊥〉

e− f dV +
∫

M
|∇φ|2|η|2e− f dV .

(7.6)

On the other hand, by (5.1) and (5.5)

∫

M
φ2

〈
eα, v⊥〉

e− f dV =
∫

M
φ2

〈
eα, L(v⊥)

〉
e− f dV

=
∫

M
φ2

〈
eα,

〈
hi j , v

⊥〉
hi j + v⊥〉

e− f dV +
∫

M

〈
φ2eα,Lv⊥〉

e− f dV

=
∫

M
φ2

〈
eα, v⊥〉

e− f dV +
∫

M
φ2hα

i j

〈
hi j , v

⊥〉
e− f dV −

∫

M

〈
D⊥(φ2eα), D⊥v⊥〉

e− f dV

=
∫

M
φ2

〈
eα, v⊥〉

e− f dV +
∫

M
φ2hα

i j

〈
hi j , v

⊥〉
e− f dV − 2

∫

M
φ

〈
(∇φ)eα,−d(v
)

〉
e− f dV

=
∫

M
φ2

〈
eα, v⊥〉

e− f dV +
∫

M
φ2hα

i j

〈
hi j , v

⊥〉
e− f dV + 2

∫

M
φhα(∇φ, v
)e− f dV ,
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implying that
∣
∣
∣
∣

∫

M
φ2hα

i j

〈
hi j , v

⊥〉
e− f dV

∣
∣
∣
∣ =

∣
∣
∣
∣2

∫

M
φhα(∇φ, v
)e− f dV

∣
∣
∣
∣

≤ 2
∫

M
|φ||hα||∇φ||v
|e− f dV ≤

∫

M
φ2|hα|2e− f dV +

∫

M
|∇φ|2|v
|2e− f dV .

Inserting this into (7.6) we complete the proof. ��
Define

W = Span R{eα}, V 
 = {v
; v ∈ R
m+p}, V ⊥ = {v⊥; v ∈ R

m+p}. (7.7)

Then W is the space of parallel normal fields of x and p ≤ dim V ⊥ ≤ m + p.

Lemma 7.6 Denote

V ⊥
0 = {v⊥ = const; v ∈ R

m+p}. (7.8)

Then W ∩ V ⊥ = V ⊥
0 .

Proof For any η ∈ W ∩ V ⊥, we have η = v⊥ = cαeα for some v ∈ R
m+p and cα ∈ R. Then

it follows from (5.3) and (5.4) that

v⊥ = L(v⊥) = cα L(eα) = cα(eα + hα
i j hi j ) = v⊥ + cαhα

i j hi j

implying that cαhα
i j hi j = 0. Multiplying this with v⊥ = cαeα it follows that

〈
h, v⊥〉2 =

∑

i, j,α,β

cαcβhα
i j h

β
i j = 0.

Thus
〈
h, v⊥〉 = 0 or equivalently Av⊥ = 0 which with the fact that v⊥ is parallel in the

normal bundle shows that v⊥ must be a constant vector.
The inverse part is trivial. ��
Define

	∞,2
w (T ⊥Mm) := {η ∈ 	(T ⊥M);

∫

M
|η|2e− f dV < +∞},

on which there is a standard L2
w inner product (·, ·) by

(η1, η2) :=
∫

M
〈η1, η2〉 e− f dV , ∀ η1, η2 ∈ 	∞,2

w (T ⊥Mm),

giving the corresponding L2
w-norm ‖ ·‖2,w. The L2

w inner product (·, ·) and L2
w-norm ‖ ·‖2,w

for all weighted square integrable tangent vector fields and functions on Mm are defined in
the same way. In particular, for a constant c, we have ‖c‖22,w = c2

∫
M e− f dV .

Let V ⊥
1 be the orthogonal complement of V ⊥

0 in V ⊥ with respect to the L2
w inner product,

and define Ṽ = W ⊕ V ⊥
1 as subspaces of 	∞,2

w (T ⊥Mm). So for any η ∈ Ṽ we can write
η = w + v⊥ for a unique w ∈ W and some v ∈ R

m+p such that η = w + v⊥ where v may
not be unique. Since dim W = p and dim V ⊥

1 ≤ dim V ⊥ ≤ m + p, we have dim Ṽ < +∞.
Fix a basis {wa + v⊥

a ; 1 ≤ a ≤ dim Ṽ } for Ṽ such that ‖wa‖22,w + ‖va‖22,w = 1 for

1 ≤ a ≤ dim Ṽ . Define

S = {η =
∑

a

ηa(wa + v⊥
a );

∑

a

(ηa)2 = 1} ⊂ Ṽ .
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Then the finiteness of dim Ṽ implies that S is compact. Note that for any η ∈ S, η can not be
zero.

Now we consider the compact case and prove the following

Proposition 7.7 Any compact ξ -submanifold with parallel normal bundle can not be W -
stable.

Proof It suffices to show that both of the following two are true:

(1) Q is negative definite on Ṽ and, consequently, is negative definite on V ⊥
1 ;

(2) dim V ⊥
1 > 0.

In fact, the conclusion (1) follows directly from Lemma 7.5 by choosing φ ≡ 1; while
conclusion (2) follows from the fact that the converse of (2) would imply that Mm = R

m , by
the argument at the end of this paper, which contradicts the compactness assumption. ��

Next we consider the non-compact case and thus assume that x : Mm → R
m+p is a

complete and non-compact ξ -submanifold.
Let o be a fixed point of M and ō = x(o). For any R > 0, we define B̄R(ō) = {x ∈

R
m+p; |x − ō| ≤ R} and introduce a cut-off function φ̄R as follows (cf. [27]):

φ̄R(x) =

⎧
⎪⎨

⎪⎩

1, x ∈ B̄R(ō);
1 − 1

R (|x − ō| − R), x ∈ B̄2R(ō)\B̄R(ō);
0, x ∈ R

m+p\B̄2R(ō).

(7.9)

For the given immersion x : Mm → R
m+p , let φR = φ̄R ◦ x ∈ C∞(Mm) and BR(o) =

x−1(B̄R(ō)). Then, BR(o) is compact since x is properly immersed. In particular, φR is
compactly supported. Furthermore, it is easily seen that |∇φR | ≤ |Dφ̄R | ≤ 1

R .

Lemma 7.8 There is a large R0 > 0 such that
∫

BR(o)

|η|2e− f dV ≥
∫

BR0 (o)

|η|2e− f dV > 0, ∀ η ∈ S, ∀ R ≥ R0.

Proof If the lemma is not true, then one can find a sequence {η j } ⊂ S such that
∫

B j (o)

|η j |2e− f dV = 0, j = 1, 2, . . . .

By the compactness of S, there exists a subsequence {η jk } which is convergent to some
η0 ∈ S. For any R > 0, there exists some K > 0 such that jk > R for all k > K . It follows
that

∫

BR(o)

|η0|2e− f dV = lim
k→+∞

∫

BR(o)

|η jk |2e− f dV = 0

which implies that
∫

M
|η0|2e− f dV = lim

R→+∞

∫

BR(o)

|η0|2e− f dV = 0.

Thus we have η0 = 0 contradicting to the fact that η0 ∈ S. ��
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For each R > 0, define

m R := min
η∈S {

∫

M
φ2

R |η|2e− f dV }, MR = max
η∈S {

∫

M
φ2

R |η|2e− f dV }. (7.10)

Clearly,

MR ≤ C :≡ max
η∈S

∫

M
|η|2e− f dV < +∞. (7.11)

Moreover, m R is increasing with respect to R which together with Lemma 7.8 gives that

m R ≥ m R0 > 0, ∀ R ≥ R0. (7.12)

Lemma 7.9 There exists a large R0, such that

dim φR Ṽ = dim Ṽ , dim φR V ⊥
1 = dim V ⊥

1 , R ≥ R0; (7.13)

Furthermore, Q is negative definite on φR Ṽ ⊃ φR V ⊥
1 .

Proof First, we prove dim φR Ṽ = dim Ṽ for all R ≥ R0 if R0 is large enough. For a given
R > 0, consider the surjective linear map

�R : Ṽ → φR Ṽ , η �→ �R(η) := φRη, ∀ η ∈ Ṽ .

We claim that, when R0 is large enough, the kernel ker�R0 of �R0 must be trivial. In
fact, if it is not the case, there should be a nonzero sequence {η j ∈ Ṽ } such that φ jη j = 0.
By writing η j = ∑

a ηa
j (wa + v⊥

a ), we can define η̃ j = η j√∑
a(ηa

j )
2
. Then φ j η̃ j = 0, and {η̃ j }

is contained in S. Then the compactness of S assures that, by passing to a subsequence if
possible,we can assume that η̃ j → η̃0 ∈ S. Consequently,we have η̃0 = lim j→+∞ φ j η̃ j = 0
which is not possible. So there must be a large R0 > 0 such that ker�R0 = 0 and the claim
is proved.

For any R ≥ R0, it is easily seen that ker�R ⊂ ker�R0 which implies that ker�R = 0
and φR Ṽ ∼= Ṽ . In particular, dim φR Ṽ = dim Ṽ .

That dim φR V ⊥
1 = dim V ⊥

1 follows in the same way.
Next we are to find a larger R ≥ R0 such that Q is negative definite on φR Ṽ . For this, we

first note that |∇φR | supports in B2R(o)\BR(o) and |∇φR | ≤ 1
R , and then use Lemma 7.5 to

conclude that, for all η ∈ S

Q(φRη, φRη) ≤ −
∫

M
φ2

R |η|2e− f dV +
∫

M
|∇φR |2(|η|2 + |v
|2)e− f dV

≤ −
∫

M
φ2

R |η|2e− f dV + 1

R2

∫

B2R(0)\BR(0)
(|η|2 + |v
|2)e− f dV

≤ −
∫

M
φ2

R |η|2e− f dV + 3

R2 dim Ṽ .

Therefore, by (7.10)–(7.12) and Lemma 7.8, there must be an R0 large enough such that
Q(φRη, φRη) < 0 for all η ∈ S, R ≥ R0. Then the conclusion that Q is negative definite on
φR Ṽ follows directly from the bilinearity of Q. ��
Lemma 7.10 Under the complete and non-compact assumption, we have

V ⊥
1 = 0 or equivalently, V ⊥ = V ⊥

0 . (7.14)
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Proof Let W ⊥ be the orthogonal complement ofW in the space	∞,2
w (T ⊥Mm) of L2

w-smooth
normal sections. For any given R > 0, define a subspace

W ⊥(φR Ṽ ) := W ⊥ ∩ (φR Ṽ )

of W ⊥ and a linear map �R : φR V ⊥
1 → W ⊥(φR Ṽ ) by

φRv⊥ �→ �R(φRv⊥) := φRv⊥ −
∫

M

〈
φRv⊥, eα

〉
e− f dV

∫
M φRe− f dV

φReα, ∀v⊥ ∈ V ⊥
1 .

Claim: There must be a large R > 0 such that ker�R = 0.
In fact, if this is not true, then we can find a sequence {v⊥

j } ⊂ V ⊥
1 with φ jv

⊥
j �= 0 and

� j (φ jv
⊥
j ) = 0 for each j = 1, 2, . . .. It follows that v⊥

j �= 0, j = 1, 2, . . .. Define

ṽ⊥
j := v⊥

j

‖v⊥
j ‖2,w

, j = 1, 2, . . . .

Then� j (φ j ṽ
⊥
j ) = 0, j = 1, 2, . . ..Without loss of generality, we can assume that ṽ⊥

j → ṽ⊥
0 .

Then ṽ⊥
0 ∈ V ⊥

1 and ‖ṽ⊥
0 ‖2,w = 1.

On the other hand, from � j (φ j ṽ
⊥
j ) = 0 ( j = 1, 2, . . .) it follows that

φ j ṽ
⊥
j =

∫
M

〈
φ j ṽ

⊥
j , eα

〉
e− f dV

∫
M φ j e− f dV

φ j eα, j = 1, 2, . . . ,

implying that

‖φ j ṽ
⊥
j ‖22,w =

∫
M

〈
φ j ṽ

⊥
j , eα

〉
e− f dV

∫
M φ j e− f dV

(φ j eα, φ j ṽ
⊥
j ), j = 1, 2, . . . . (7.15)

But it is clear that φ j ṽ
⊥
j → ṽ⊥

0 when j → +∞ since

‖φ j ṽ
⊥
j − ṽ⊥

0 ‖2,w ≤ ‖φ j (ṽ
⊥
j − ṽ⊥

0 )‖2,w + ‖(φ j − 1)ṽ⊥
0 ‖2,w

≤ ‖ṽ⊥
j − ṽ⊥

0 ‖2,w + ‖φ j − 1‖2,w → 0, j → +∞.

Let j → +∞ in (7.15) then we obtain

‖ṽ⊥
0 ‖22,w =

∫
M

〈
ṽ⊥
0 , eα

〉
e− f dV

∫
M e− f dV

(eα, ṽ⊥
0 ) = 0

because ṽ⊥
0 ∈ V ⊥

1 is orthogonal to W , contradicting to the fact that ‖ṽ⊥
0 ‖2,w = 1. So the

claim is proved.
Thus by (7.13), when R is large enough it holds that

dim V ⊥
1 = dim φR V ⊥

1 ≤ dim W ⊥(φR Ṽ ) ≤ indW (Q)

where indW (Q) denotes the W -stability index of Q. By the W -stability of x we have
indW (Q) = 0, implying that dim V ⊥

1 = 0 and thus V ⊥
1 = 0, which is equivalent to

V ⊥ = V ⊥
0 . ��

Proof of Theorem 7.3 Using Proposition 7.7, we conclude that x : Mm → R
m+p must be

non-compact. Then by Lemma 7.10, we have a direct decomposition

R
m+p = V 
 ⊕ V ⊥
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where V 
 now consists of all constant vectors in R
m+p that are tangent to x∗T Mm at each

point of Mm , while V ⊥ consists of all constant vectors in R
m+p that are normal to x∗T Mm

at each point of Mm . It then follows that dim V 
 ≤ m and dim V ⊥ ≤ p. Consequently,

m + p = dimR
m+p = dim V 
 + dim V ⊥ ≤ m + p

which implies that dim V 
 = m and dim V ⊥ = p. This is true only if x(Mm) ≡ Pm .
Theorem 7.3 is proved. ��

Acknowledgements This research is supported by National Natural Science Foundation of China (Nos.
11671121, 11871197 and 11971153). X. Li thanks ProfessorD. T. Zhou for kindly introducing to him reference
[27]. Both the authors highly appreciate the important remarks and valuable suggestions by the referee.

References

1. Abresch, U., Langer, J.: The normalized curve shortening flow and homothetic solutions. J. Differ. Geom.
23, 175–196 (1986)

2. Anciaux, H.: Construction of Lagrangian self-similar solutions to the mean curvature flow in Cn . Geom.
Dedicata 120, 37–48 (2006)

3. Brendle, S.: Embedded self-similar shrinkers of genus 0. Ann. Math. 183, 715–728 (2016); Preprint:
arXiv:1411.4640v3 [math. DG], 26 Oct. 2015

4. Cao,H.-D., Li, H.Z.: A gap theorem for self-shrinkers of themean curvature flow in arbitrary codimension.
Calc. Var. Part. Differ. Equ. 46, 879–889 (2013)

5. Castro, I., Lerma, A.M.: Hamiltonian stationary self-similar solutions for Lagrangian mean curvature
flow in the complex Euclidean plane. Proc. Am. Math. Soc. 138, 1821–1832 (2010)

6. Castro, I., Lerma, A.M.: The Clifford torus as a self-shrinker for the Lagrangian mean curvature flow. Int.
Math. Res. Not. 6, 1515–1527 (2014)

7. Cheng,Q.-M.,Ogata, S.,Wei,G.X.: Rigidity theorems ofλ-hypersurfaces. Commun.Anal.Geom. (2015).
https://doi.org/10.4310/CAG.2016.v24.n1.a2; Preprint: arXiv:1403.4123v3 [math. DG], 17, Sept., 2014

8. Cheng, Q.-M., Peng, Y.J.: Complete self-shrinkers of the mean curvature flow. Calc. Var. 52(3), 497–506
(2015); Preprint arXiv:1202.1053v3 [math.DG], 8 Feb(2012)

9. Cheng, Q.-M., Wei, G.X.: Complete λ-hypersurfaces of weighted volume-preserving mean curvature
flow. Calc. Var. Partial Differential Equations 57(2), 21 (2018). arXiv:1403.3177v4 [math. DG], 13 May,
2015.

10. Cheng Q.-M., Wei, G.X.: The Gauss image of λ-hypersurfaces and a Bernstein type problem.
arXiv:1410.5302v1 [math.DG], 20 Oct (2014)

11. Cheng Q.-M.,Wei, G.X.: Compact embedded λ-torus in Euclidean spaces. arXiv:1512.04752 [math.DG],
20 Oct (2015)

12. Cheng, X., Zhou, D.T.: Volume estimate about shrinkers. Proc. Am. Math. Soc. 141, 687–696(2013);
Preprint arXiv:1106.4950v2 [math.DG], 8 Aug (2012)

13. Colding, T.H., Minicozzi II, W.P.: Generic mean curvature flow I Generic singularities. Ann. Math. 175,
755–833 (2012)

14. Dattoli, G., Torre, A., Lorenzutta, S., Maino, G., Chiccoli, C.: Multivariable Hermite polynomials and
phase-space dynamics. Nasa Technical Reports Server (NTRS). http://ntrs.nasa.gov/archive/nasa/casi.
ntrs.nasa.gov/19950007516.pdf

15. Dattoli, G., Chiccoli, C., Lorenzutta, S.,Maino, G., Torre, A.: Theory of generalizedHermite polynomials.
Comput. Math. Appl. 28(4), 71–83 (1994)

16. Ding, Q., Xin, Y.L.: Volume growth, eigenvalue and compactness for self-shrinkers. Asian J. Math. 17(3),
443–456 (2013); Preprint arXiv:1101.1411v2 [math.DG], 18 Oct (2013)

17. Ding, Q., Xin, Y.L.: The rigitity theorems of self-shrinkers. Trans. Am.Math. Soc. 366, 5067–5085 (2014)
18. Guang, Q.: Gap and rigidity theorems of λ-hypersurfaces. arXiv:1405.4871v1 [math. DG], 19May (2014)
19. Huisken, G.: Asymptotic behavior for singularities of the mean curvature flow. J. Differ. Geom. 31,

285–299 (1990)
20. Joyce, D., Lee, Y.I., Tsui, M.P.: Self-similar solution and translating solitons for Lagrangian mean cur-

vature flow. J. Differ. Geom. 84, 127–161 (2010)
21. Kapouleas, N., Kleene, S.J., Mφller, N.M.: Mean curvature self-shrinkers of high genus: non-compact

examples. arXiv:1106.5454v3 [math. DG], 18 Nov. 2014

123

http://arxiv.org/abs/1411.4640v3
https://doi.org/10.4310/CAG.2016.v24.n1.a2
http://arxiv.org/abs/1403.4123v3
http://arxiv.org/abs/1202.1053v3
http://arxiv.org/abs/1403.3177v4
http://arxiv.org/abs/1410.5302v1
http://arxiv.org/abs/1512.04752
http://arxiv.org/abs/1106.4950v2
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19950007516.pdf
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19950007516.pdf
http://arxiv.org/abs/1101.1411v2
http://arxiv.org/abs/1405.4871v1
http://arxiv.org/abs/1106.5454v3


1518 X. Li, Z. Li

22. Le, N.Q., Sesum, N.: Blow-up rate of the mean curvature flow during the mean curvature flow and a gap
theorem for self-shrinkers. Commun. Anal. Geom. 19, 633–659 (2011)

23. Li, H.Z., Wang, X.F.: New characterizations of the Clifford torus as a Lagrangian self-shrinkers. J. Geom.
Anal. 27, 1393–1412 (2017); arXiv:1505.05593v1 [math.DG], 21 May 2015

24. Li, H.Z., Wei, Y.: Classification and rigidity of self-shrinkers in the mean curvature flow. J. Math. Soc.
Japan 66, 709-734 (2014); Preprint: arXiv:1201.4623v1 [math. DG], 23 Jan. 2012

25. Li, X.X., Chang, X.F.: A rigidity theorem of ξ -submanifolds inC2. Geom. Dedicata 185, 155-169 (2016),
https://doi.org/10.1007/s10711-016-0173-1; Preprint: arXiv:1511.02568v1 [math. DG], 9 Nov. 2015

26. Li, X.X., Chang, X.F.: Rigidity theorems on the space-like λ-hypersurfaces in the Lorentzian spaceRn+1
1 .

J. of Math. (P.R.C.) 38(2), 253-268 (2018); Preprint: arXiv:1511.02984v1 [math. DG], 10 Nov. 2015
27. McGonagle, M., Ross, J.: The hyperplane is the only stable, smooth solution to the isoperimetric Problem

in Gaussian space, Geom. Dedicata, 178, 277-296 (2015), https://doi.org/10.1007/s10711-015-0057-9;
Preprint: arXiv:1307.7088v2 [math. DG], 8 Dec. 2014

28. Smoczyk, K.: Self-shrinkers of the mean curvature flow in arbitrary codimension. Int. Math. Res. Not.
48, 2983–3004 (2005)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://arxiv.org/abs/1505.05593v1
http://arxiv.org/abs/1201.4623v1
https://doi.org/10.1007/s10711-016-0173-1
http://arxiv.org/abs/1511.02568v1
http://arxiv.org/abs/1511.02984v1
https://doi.org/10.1007/s10711-015-0057-9
http://arxiv.org/abs/1307.7088v2

	Variational characterizations of ξ-submanifolds in the Eulicdean space mathbbRm+p
	Abstract
	1 Introduction
	2 ξ-submanifolds–definition and typical examples
	3 As submanifolds of the Gaussian space
	4 Variational characterizations
	5 The instabilities of the typical examples
	6 The Wξ-stability of ξ-submanifolds
	7 The uniqueness problem for complete W-stable ξ-submanifolds
	Acknowledgements
	References




