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Abstract
The elliptic modular surface of level 4 is a complex K3 surface with Picard number 20. This
surface has a model over a number field such that its reduction modulo 3 yields a surface
isomorphic to the Fermat quartic surface in characteristic 3, which is supersingular. The
specialization induces an embedding of the Néron–Severi lattices. Using this embedding,
we determine the automorphism group of this K3 surface over a discrete valuation ring of
mixed characteristic whose residue field is of characteristic 3. The elliptic modular surface
of level 4 has a fixed-point-free involution that gives rise to the Enriques surface of type
IV in Nikulin–Kondo–Martin’s classification of Enriques surfaces with finite automorphism
group. We investigate the specialization of this involution to characteristic 3.

Keywords K3 surface · Enriques surface · Automorphism group · Petersen graph

Mathematics Subject Classification 14J28 · 14Q10

1 Introduction

Let R be a discrete valuation ring, and letX → Spec R be a smooth proper family of varieties
over R. We denote by X η̄ the geometric generic fiber and by Xs̄ the geometric special fiber.
Let Aut(X/R) denote the group of automorphisms of X over Spec R. Then we have natural
homomorphisms

Aut(Xs̄) ← Aut(X/R) → Aut(X η̄).

In this paper, we calculate the group Aut(X/R) in the case whereX is a certain natural model
of the elliptic modular surface of level 4, and the special fiber Xs̄ is its reduction modulo 3.
In this case, the surfaces X η̄ and Xs̄ are K3 surfaces, and their automorphism groups have
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1458 I. Shimada

been calculated in [1,2], respectively, by Borcherds’ method [3,4]. This paper gives the first
application of Borcherds’ method to the calculation of the automorphism group of a family
of K3 surfaces.

1.1 Elliptic modular surface of level 4

The elliptic modular surface of level N is a natural compactification of the total space of
the universal family over Γ (N )\H of complex elliptic curves with level N structure, where
H ⊂ C is the upper-half plane and Γ (N ) ⊂ PSL2(Z) is the congruence subgroup of level
N . This important class of surfaces was introduced and studied by Shioda [5].

The elliptic modular surface of level 4 is a K3 surface birational to the surface defined by
the Weierstrass equation

Y 2 = X(X − 1)

(
X −

(
1

2

(
σ + 1

σ

))2
)

, (1.1)

where σ is an affine parameter of the base curve P
1 = Γ (4)\H (see Section 3 in [6]). Shioda

[5,6] studied the reduction of this surface in odd characteristics. On the other hand, Keum
and Kondo [1] calculated the automorphism group of the elliptic modular surface of level 4.

To describe the results of Shioda [5,6] and Keum–Kondo [1], we fix some notation. A
lattice is a free Z-module L of finite rank with a non-degenerate symmetric bilinear form
〈 , 〉 : L × L → Z. The group of isometries of a lattice L is denoted by O(L), which we let
act on L from the right. A lattice L of rank n is said to be hyperbolic (resp. negative-definite)
if the signature of L ⊗ R is (1, n − 1) (resp. (0, n)). For a hyperbolic lattice L , we denote
by O+(L) the stabilizer subgroup of a connected component of {x ∈ L ⊗ R | 〈x, x〉 > 0} in
O(L). Let Z be a smooth projective surface defined over an algebraically closed field. We
denote by SZ the lattice of numerical equivalence classes [D] of divisors D on Z and call it
theNéron–Severi lattice of Z . Then SZ is hyperbolic by the Hodge index theorem.We denote
by PZ the connected component of {x ∈ SZ ⊗ R | 〈x, x〉 > 0} that contains an ample class.
We then put

NZ := { x ∈ PZ | 〈x, [C]〉 ≥ 0 for all curves C on Z }.
We let the automorphism group Aut(Z) of Z act on SZ from the right by pullback of divisors.
Then we have a natural homomorphism

Aut(Z) → Aut(NZ ) := { g ∈ O+(SZ ) | Ng
Z = NZ }.

For an ample class h ∈ SZ , we put

Aut(Z , h) := { g ∈ Aut(Z) | hg = h },
and call it the projective automorphism group of the polarized surface (Z , h).

Let kp be an algebraically closed field of characteristic p ≥ 0. From now on, we assume
that p 
= 2. Let σ : X p → P

1 be the smooth minimal elliptic surface defined over kp by (1.1).
Then X p is a K3 surface. For simplicity, we use the following notation throughout this paper:

Sp := SX p , Pp := PX p , Np := NXp .

Shioda [5,6] proved the following:

Theorem 1.1 (Shioda [5,6]) Suppose that p 
= 2.
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The elliptic modular surface of level 4 and its reduction modulo 3 1459

(1) The elliptic surface σ : X p → P
1 has exactly six singular fibers. These singular fibers

are located over σ = 0,±1,±i,∞, and each of them is of type I4. The torsion part of
the Mordell–Weil group of σ : X p → P

1 is isomorphic to (Z/4Z)2.
(2) The Picard number rank(Sp) of X p is{

20 if p = 0 or p ≡ 1 mod 4,

22 if p ≡ 3 mod 4.

(3) If k0 = C, the transcendental lattice of the complex K3 surface X0 is(
4 0
0 4

)
.

(4) The K3 surface X3 is isomorphic to the Fermat quartic surface

F3 : x41 + x42 + x43 + x44 = 0

in characteristic 3.

It follows from Theorem 1.1 (3) and the theorem of Shioda–Inose [7] that, over the complex
number field, X0 is isomorphic to the Kummer surface associated with E√−1×E√−1, where

E√−1 is the elliptic curve C/(Z ⊕ Z
√−1). (See also Proposition 15 of Barth–Hulek [8].)

Therefore the result of Keum–Kondo [1] contains the calculation of Aut(X0).

Definition 1.2 Let Z be a K3 surface defined over kp . A double-plane polarization is a vector
b = [H ] ∈ NZ ∩ SZ with 〈b, b〉 = 2 such that the corresponding complete linear system
|H | is base-point-free, so that |H | induces a surjective morphism Φb : Z → P

2. Let b be a
double-plane polarization, and let Z → Zb → P

2 be the Stein factorization of Φb. Then
we have a double-plane involution g(b) ∈ Aut(Z) associated with the finite double covering
Zb → P

2. Let Sing(b) denote the singularities of the normal K3 surface Zb. Since Zb has
only rational double points as its singularities, we have the ADE-type of Sing(b).

Remark 1.3 Suppose that an ample class a ∈ SZ and a vector b ∈ SZ with 〈b, b〉 = 2 are
given. Then we can determine whether b is a double-plane polarization or not, and if b is
a double-plane polarization, we can calculate the set of classes of smooth rational curves
contracted by Φb : Z → P

2 and compute the matrix representation of the double-plane
involution g(b) : Z → Z on SZ . These algorithms are described in detail in [9] (and also in
[10]). They are the key tools of this paper.

We re-calculatedAut(X0) by using these algorithms and obtained a generating set ofAut(X0)

different from the one given in [1].

Theorem 1.4 (Keum–Kondo [1]) There exist an ample class h0 ∈ S0 of degree 〈h0, h0〉 = 40
and four double-planepolarizations b80, b112, b296, b688 ∈ S0 such thatAut(X0) is generated
by the projective automorphism group Aut(X0, h0) ∼= (Z/2Z)5 :S5 and the double-plane
involutions g(b80), g(b112), g(b296), g(b688).

See Table 1 for the properties of the double-plane polarizations bd . See Proposition 4.2 for
the geometric meaning of these generators of Aut(X0) with respect to the action of Aut(X0)

on N0. In Sect. 4.3, we also give a detailed description of the finite group Aut(X0, h0) in
terms of a certain graph L40.

Remark 1.5 In [2], the automorphism group Aut(X3) ∼= Aut(F3) of the Fermat quartic
surface F3 in characteristic 3 was calculated (see Theorem 4.1). This calculation also plays
an important role in the proof of our main results.
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1460 I. Shimada

Table 1 Four double-plane
involutions on X0

〈h0, bd 〉 ADE type of Sing(bd ) d = 〈h0, hg(bd )
0 〉

16 2A3 + 3A2 + 2A1 80

18 4A3 + 3A1 112

26 A5 + 2A4 + A3 296

38 2A7 + A3 + A1 688

1.2 Main results

In [1,2], the followingwas proved, and hence, from now on, we regard Aut(X0) as a subgroup
of O+(S0) and Aut(X3) as a subgroup of O+(S3).

Proposition 1.6 In each case of X0 and X3, the action of the automorphism group on the
Néron–Severi lattice is faithful. ��

Let R be a discrete valuation ring whose fraction field K is of characteristic 0 and whose
residue field k is of characteristic 3. Suppose that

√−1 ∈ R. In Sect. 2.5, we construct
explicitly a smooth family of K3 surfaces X → Spec R over R such that the geometric
generic fiberX⊗R K̄ is isomorphic to X0 and the geometric special fiberX⊗R k̄ is isomorphic
to X3. The construction of this modelX is natural in the sense that it uses the inherent elliptic
fibration of X0. Note that the model of X0 over R is not unique and that the main results on
Aut(X/R) below may depend on the choice of the model.

By Proposition 3.3 ofMaulik and Poonen [11], the specialization fromX ⊗R K toX ⊗R k
gives rise to a homomorphism

ρ : S0 → S3.

In Sect. 2.3, we give an explicit description of ρ. It turns out that ρ is a primitive embedding
of lattices. We regard S0 as a sublattice of S3 by ρ and put

O+(S3, S0) := { g ∈ O+(S3) | Sg0 = S0 }.
Then we have a natural restriction homomorphism

ρ̃ : O+(S3, S0) → O+(S0).

The main results of this paper are as follows:

Theorem 1.7 The restriction of ρ̃ to O+(S3, S0) ∩ Aut(X3) induces an injective homomor-
phism

ρ̃|Aut : O+(S3, S0) ∩ Aut(X3) ↪→ Aut(X0).

The image of ρ̃|Aut is generated by the finite subgroupAut(X0, h0) and the two double-plane
involutions g(b112), g(b688). The other double-plane involutions g(b80) and g(b296) do not
belong to the image of ρ̃|Aut.
Let R′ be a finite extension of R, and let X ′ := X ⊗R R′ → Spec R′ be the pullback of
X → Spec R. We have a natural embedding Aut(X/R) ↪→ Aut(X ′/R′). We put

Aut(X/R) := colimR′ Aut(X ′/R′).
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The elliptic modular surface of level 4 and its reduction modulo 3 1461

Let res3 : Aut(X/R) → Aut(X3) and res0 : Aut(X/R) → Aut(X0) denote the restriction
homomorphisms. It is obvious that res0 is injective and that the following diagram commutes.

Aut(X/R)

res3 ↙ ↘ res0

O+(S3, S0) ∩ Aut(X3)

ρ̃|Aut
↪→ Aut(X0)

(1.2)

Theorem 1.8 The image of res0 is equal to the image of ρ̃|Aut.
Thus we have obtained a set of generators of Aut(X/R).

1.3 Enriques surfaces

By Nikulin [12] and Kondo [13], the complex Enriques surfaces with finite automorphism
group are classified, and this classification is extended to Enriques surfaces in odd character-
istics by Martin [14]. The Enriques surfaces in characteristic 
= 2 with finite automorphism
group are divided into seven classes I–VII. In this paper, we concentrate on the Enriques
surface of type IV.

Definition 1.9 A fixed-point-free involution of a K3 surface in characteristic 
= 2 is called
an Enriques involution. An Enriques surface Y in characteristic 
= 2 is of type IV if Aut(Y )

is of order 320. An Enriques involution of a K3 surface is of type IV if the quotient Enriques
surface is of type IV.

Proposition 1.10 (Kondo [13], Martin [14]) In each characteristic 
= 2, an Enriques surface
of type IV exists and is unique up to isomorphism. There exist exactly 20 smooth rational
curves on an Enriques surface of type IV. ��
Let YIV, p denote an Enriques surface of type IV in characteristic p 
= 2. Kondo [13] showed
that the covering K3 surface of YIV,0 is isomorphic to X0.

Proposition 1.11 There exist exactly six Enriques involutions in the projective automorphism
groupAut(X0, h0). These six Enriques involutions are conjugate inAut(X0, h0), and hence,
the corresponding Enriques surfaces are isomorphic to each other. All of them are of type IV.

By Theorem 1.7, these six Enriques involutions in Aut(X0, h0) specialize to involutions of
X3.

Theorem 1.12 Let ε3 ∈ Aut(X3) be an involution that is mapped to an Enriques involution
in Aut(X0, h0) by ρ̃|Aut. Then ε3 is an Enriques involution of type IV, and the pullbacks of
the 20 smooth rational curves on X3/〈ε3〉 ∼= YIV,3 by the quotient morphism X3 → X3/〈ε3〉
are lines of the Fermat quartic surface F3 ∼= X3.

During the investigation, we have come to notice that the geometry of X p and YIV, p is
closely related to the Petersen graph (Fig. 1). See Sect. 2 for this relation. As a by-product,
we see that the dual graph of the 20 smooth rational curves on YIV, p is as in Fig. 2. Compare
Fig. 2 with the picturesque but complicated figure of Kondo (Figure 4.4 of [13]).

It has beenobserved that thePetersen graph is related to various K3/Enriques surfaces. See,
for example,Vinberg [15] for the relationwith the singular K3 surfacewith the transcendental
lattice of discriminant 4. See also Dolgachev–Keum [16] and Dolgachev [17] for the relation
with Hessian quartic surfaces and associated Enriques surfaces.
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1462 I. Shimada

Fig. 1 Petersen graph

Here is a pair of disjoint smooth ratio-
nal curves, and means that the two
pairs of smooth rational curves intersect as

,

whereas means that the two pairs
intersect as

.

Fig. 2 Smooth rational curves on YIV, p

1.4 Plan of the paper

In Sect. 2, we present a precise description of the embedding ρ : S0 ↪→ S3. First we introduce
the notion of QP-graphs. Then, using an isomorphism X3 ∼= F3 given by Shioda [6], we
show that S0 is a lattice obtained from a QP-graph and calculate the embedding ρ : S0 ↪→ S3
explicitly. An elliptic modular surface of level 4 over a discrete valuation ring is constructed,
and the relation with the Petersen graph is explained geometrically. In Sect. 3, we review the
method of Borcherds [3,4] to calculate the orthogonal group of an even hyperbolic lattice
and fix terminologies about chambers. The application of this method to K3 surfaces is
also explained. In Sect. 4, we review the results of [1] for Aut(X0) and of [2] for Aut(X3).
Using the chamber tessellations of N0 and N3 obtained in these works, we give a proof of
Theorems 1.7 and 1.8 in Sect. 5. In Sect. 6, we investigate Enriques involutions of X0 and
X3.

In this paper,wefixbases of lattices and reduce proofs of our results to simple computations
of vectors andmatrices.Unfortunately, these vectors andmatrices are too large to be presented
in the paper. We refer the reader to the author’s web site [18] for this data. In the computation,
we used GAP [19].

Thanks are due to Professors I. Dolgachev, G. van der Geer, S. Kondo, Y. Matsumoto,
S. Mukai, H. Ohashi, T. Shioda, and T. Terasoma. In particular, the contents of Sect. 2.5
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The elliptic modular surface of level 4 and its reduction modulo 3 1463

are obtained through discussions with S. Mukai and T. Terasoma. Thanks are also due to the
referees of the first and second version of this paper for theirmany comments and suggestions.
In particular, the contents of Sect. 2.6 are suggested by one of the referees.

2 The lattices S0 and S3

2.1 Graphs and lattices

First we fix terminologies and notation about graphs and lattices.
A graph (or more precisely, aweighted graph) is a pair (V , η), where V is a set of vertices

and η is a map from the set
(V
2

)
of non-ordered pairs of distinct elements of V to Z≥0. When

the image of η is contained in {0, 1}, we say that (V , η) is simple and denote it by (V , E),
where E = η−1(1) is the set of edges. Let Γ = (V , E) and Γ ′ = (V ′, E ′) be simple graphs.
A map γ : Γ → Γ ′ of simple graphs is a pair of maps γV : V → V ′ and γE : E → E ′ such
that, for all {v, v′} ∈ E , we have γE ({v, v′}) = {γV (v), γV (v′)} ∈ E ′. A graph is depicted
by indicating each vertex by � and η({v, v′}) by the number of line segments connecting
v and v′. The Petersen graph P = (VP , EP ) is the simple graph given in Fig. 1. It is well
known that the automorphism group Aut(P) of P is isomorphic to the symmetric groupS5.

A submodule M of a free Z-module L is primitive if L/M is torsion-free. A nonzero
vector v of L is primitive if Zv ⊂ L is primitive.

Let L be a lattice. We say that L is even if 〈x, x〉 ∈ 2Z for all x ∈ L . The dual lattice of L
is the free Z-module L∨ := Hom(L, Z), into which L is embedded by 〈 , 〉. Hence we have
L∨ ⊂ L ⊗ Q. The discriminant group A(L) is the finite abelian group L∨/L . We say that L
is unimodular if A(L) is trivial.

With a graph Γ = (V , η) with |V | < ∞, we associate an even lattice 〈Γ 〉 as follows. Let
Z
V be the Z-module freely generated by the elements of V . We define a symmetric bilinear

form 〈 , 〉 on Z
V by

〈v, v′〉 =
{

−2 if v = v′,
η({v, v′}) if v 
= v′.

Let Ker〈 , 〉 ⊂ Z
V denote the submodule {x ∈ Z

V | 〈x, y〉 = 0 for all y ∈ Z
V }. Then the

quotient module 〈Γ 〉 := Z
V /Ker〈 , 〉 has a natural structure of an even lattice.

Suppose that Z is a K3 surface or an Enriques surface defined over an algebraically
closed field. Let L be a set of smooth rational curves on Z . Then the mapping C �→ [C]
embeds L into the Néron–Severi lattice SZ of Z . The dual graph of L is the graph (L, η),
where η({C1,C2}) is the intersection number of two distinct curves C1,C2 ∈ L. By abuse of
notation, we sometimes use L to denote the dual graph (L, η) or the image of the embedding
L ↪→ SZ . Then the even lattice 〈L〉 constructed from the dual graph of L is canonically
identified with the sublattice of SZ generated by L ⊂ SZ , because every smooth rational
curve on Z has self-intersection number −2.

Example 2.1 Let Γ be the graph given in Fig. 2. Then 〈Γ 〉 is an even hyperbolic lattice of
rank 10 with A(〈Γ 〉) ∼= (Z/2Z)2. Since the Néron–Severi lattice of an Enriques surface is
unimodular of rank 10, the classes of 20 smooth rational curves on YIV, p generate a sublattice
of index 2 in the Néron–Severi lattice.
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1464 I. Shimada

2.2 QP-graph

We introduce the notion of QP-graphs, where QP stands for a quadruple covering of the

Petersen graph. In the following, a quadrangle means the simple graph
�

�

�

��

.

Definition 2.2 A QP-graph is a pair (Q, γ ) of a simple graph Q = (VQ, EQ) and a map
γ : Q → P to the Petersen graph with the following properties.

(i) The map γV : VQ → VP is surjective, and every fiber of γV is of size 4.
(ii) For any edge e ofP , the subgraph (γ −1

V (e), γ −1
E ({e})) ofQ is isomorphic to the disjoint

union of two quadrangles.

(iii) Any two distinct quadrangles in Q have at most one common vertex.

Amap γ : Q → P satisfying conditions (i)–(iii) is called aQP-coveringmap. TwoQP-graphs
(Q, γ ) and (Q′, γ ′) are said to be isomorphic if there exists an isomorphism h : Q → Q′
such that γ ′ ◦ h = γ .

Proposition 2.3 Up to isomorphism, there exist exactly twoQP-graphs (Q0, γ0)and (Q1, γ1).
The even lattices 〈Q0〉 and 〈Q1〉 are hyperbolic of rank 20. The discriminant group A(〈Q0〉)
of 〈Q0〉 is isomorphic to (Z/2Z)2, whereas A(〈Q1〉) is isomorphic to (Z/4Z)2.

Proof We enumerate all isomorphism classes of QP-graphs. Let
 be the set of ordered pairs
[{i1, i2}, {i3, i4}] of non-ordered pairs of elements of {1, 2, 3, 4} such that {i1, i2, i3, i4} =
{1, 2, 3, 4}. We have |
| = 6. Let T (
) be the set of ordered triples [δ1, δ2, δ3] of elements
of 
 such that, if μ 
= ν, then δμ = [{i1, i2}, {i3, i4}] and δν = [{i ′1, i ′2}, {i ′3, i ′4}] satisfy|{i1, i2} ∩ {i ′1, i ′2}| = 1. Then we have |T (
)| = 48. The following facts can be easily
verified.

(a) The natural action on T (
) of the full permutation groupS4 of {1, 2, 3, 4} decomposes
T (
) into two orbits o1 and o2 of size 24.

(b) For any triple [δ1, δ2, δ3] ∈ T (
) and any permutation μ, ν, ρ of 1, 2, 3, the triple
[δμ, δν, δρ] belongs to the same orbit as [δ1, δ2, δ3].

(c) For δ = [{i1, i2}, {i3, i4}] ∈ 
, we put δ̄ := [{i3, i4}, {i1, i2}] ∈ 
. Then [δ1, δ2, δ3] ∈
T (
) and [δ1, δ2, δ̄3] ∈ T (
) belong to different orbits.

Let ψ be a map from the set VP of vertices of P to the set {o1, o2} of the orbits. We construct
a QP-graph (Qψ, γψ) with the set of vertices

VQ := VP × {1, 2, 3, 4}
as follows. For each vertex v ∈ VP , we choose an element [δ1, δ2, δ3] from the orbit ψ(v),
choose an ordering e1, e2, e3 on the three edges ofP emitting from v, and assign δi to the pair
(v, ei ) for i = 1, 2, 3. Let e = {v, v′} be an edge of P . Suppose that δ = [{i1, i2}, {i3, i4}]
is assigned to (v, e) and δ′ = [{i ′1, i ′2}, {i ′3, i ′4}] is assigned to (v′, e). Then the edges of Qψ

lying over the edge e of P are the following eight edges.
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Let γψ : Qψ → P be obtained from the first projection VQ → VP . Then (Qψ, γψ) is a
QP-graph. The isomorphismclass of (Qψ, γψ) is independent of the choice of a representative
[δ1, δ2, δ3] of each orbit ψ(v) and the choice of the ordering of the edges emitting from each
vertex ofP . Indeed, changing these choices merely amounts to relabeling the vertices in each
fiber of the first projection VQ → VP (see fact (b)). It is also obvious that every QP-graph
is isomorphic to (Qψ, γψ) for some ψ : VP → {o1, o2}.

For an orbit o ∈ {o1, o2}, let ō denote the other orbit; {o1, o2} = {o, ō}. Let ψ : VP →
{o1, o2} be a map, and let e = {v, v′} be an edge of P . We define ψ ′ : VP → {o1, o2}
by ψ ′(v) := ψ(v), ψ ′(v′) := ψ(v′) and ψ ′(v′′) := ψ(v′′) for all v′′ ∈ VP\{v, v′}. Then
(Qψ, γψ) and (Qψ ′ , γψ ′) are isomorphic. (See the picture below and fact (c).)

Hence the isomorphism class of (Qψ, γψ) depends only on |ψ−1(o1)| mod 2. We denote
by (Q0, γ0) the QP-graph (Qψ, γψ) with |ψ−1(o1)| ≡ 0 mod 2 and by (Q1, γ1) the QP-
graph (Qψ, γψ)with |ψ−1(o1)| ≡ 1 mod 2. Sincewe have constructedQ0 andQ1 explicitly,
the assertions on 〈Q0〉 and 〈Q1〉 can be proved by direct computation. ��
Proposition 2.4 Let (Q, γ ) be aQP-graph. Each automorphism g ∈ Aut(Q)maps every fiber
of γV : VQ → VP to a fiber of γV , and hence induces ḡ ∈ Aut(P) such that ḡ ◦ γ = γ ◦ g.
The mapping g �→ ḡ gives a surjective homomorphism

Aut(Q) → Aut(P) ∼= S5,

and its kernel is isomorphic to (Z/2Z)6.

Proof Since P does not contain a quadrangle, every quadrangle of Q is mapped to an edge
of P by γ . Hence two distinct vertices v, v′ of Q are mapped to the same vertex of P by
γ if and only if {v, v′} is not an edge of Q and there exists a quadrangle of Q containing v

and v′. Thus the first assertion follows. We make the complete list of elements of Aut(Q) by
computer and verify the assertion on Aut(Q) → Aut(P). ��
Corollary 2.5 A QP-covering map γ : Q → P from the graph Q is unique up to the action
of Aut(P). ��

2.3 The configurationsL40 andL112

In this section, following the argument of Shioda [6], we describe theNéron–Severi lattices S0
of X0 and S3 of X3 and investigate the embedding ρ : S0 ↪→ S3 induced by the specialization
of X0 to X3.
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1466 I. Shimada

By Theorem 1.1 (1), we have a distinguished set of

6 × 4 + 42 = 40

smooth rational curves on X p , where the 6× 4 curves are the irreducible components of the
six singular fibers of σ : X p → P

1 and the 42 curves are the torsion sections of the Mordell–
Weil group. We denote the configuration of these smooth rational curves by L40,p , or simply
by L40. The specialization of X0 to X p gives a bijection from L40,0 to L40,p , because the
specialization preserves the elliptic fibration σ : X p → P

1 and its zero section. This bijection
is obviously compatible with the specialization homomorphism S0 → Sp .

The set of lines on the Fermat quartic surface F3 in characteristic 3 has been studied
classically by Segre [20]. The surface F3 ⊂ P

3 contains exactly 112 lines, and every line on
F3 is defined over the finite field F9. We denote by L112 the set of these lines. We can easily
make the list of defining equations of all lines on F3 and calculate the dual graph of L112. It
is also known ([2]) that the classes of 22 lines appropriately chosen from L112 form a basis
of SF3 ∼= S3. Fixing a basis of S3, we can express all classes of lines as integer vectors of
length 22 (see [18]).

We show that the specialization of X0 to X3 ∼= F3 induces an embedding

ρL : L40 ↪→ L112

of configurations. We recall the construction of the isomorphism X3 ∼= F3 by Shioda [6].
Let σF : F3 → P

1 be the morphism defined by

σF : [x1 : x2 : x3 : x4] �→ [x23 − i x24 : x21 + i x22 ] = [−x21 + i x22 : x23 + i x24 ], (2.1)

where i = √−1 ∈ F9. The generic fiber of σF is a curve of genus 1, and σF has a section
(see the next paragraph). Hence the generic fiber of σF is isomorphic to its Jacobian, which
is defined by Eq. (1.1) by the result of Bašmakov and Faddeev [21]. Therefore σF : F3 → P

1

is isomorphic to σ : X3 → P
1 over P

1.

Remark 2.6 In characteristic 0, morphism (2.1) with i ∈ C from the Fermat quartic surface
to P

1 has no sections.

Using the defining equations of lines and the vector representations of their classes, we
confirm the following facts. These facts make the isomorphism between σF : F3 → P

1 and
σ : X3 → P

1 over P
1 more explicit. There exist exactly 6× 4 lines on F3 that are contracted

to points by σF . These 24 lines form, of course, a configuration of six disjoint quadrangles.
Moreover, there exist exactly 64 lines on F3 that are mapped to P

1 isomorphically by σF .
Let zF ∈ L112 be one of these 64 sections of σF . To be explicit, we choose the following
line as zF . (See Remark in Section 4 of [6]):

x1 + i x3 − x4 = x2 + x3 − i x4 = 0. (2.2)

Let MW(σF , zF ) denote the Mordell–Weil group of σF : F3 → P
1 with the zero section zF ,

and let Triv(σF , zF ) be the sublattice of S3 generated by the classes of the zero section zF
and the 24 lines in the singular fibers of σF . (This lattice is called the trivial sublattice of the
Jacobian fibration (σF , zF ) in the theory of Mordell–Weil lattices [22].) Let Triv−(σF , zF )

denote the primitive closure of Triv(σF , zF ) in S3. By [22], we have a canonical isomorphism

Triv−(σF , zF )/Triv(σF , zF ) ∼= the torsion part of MW(σF , zF ). (2.3)

Therefore a section s : P
1 → F3 of σF is a torsion element of MW(σF , zF ) if the class of

s belongs to Triv−(σF , zF ). By this criterion, we find 16 lines among the 64 sections of σF
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that form the torsion part of MW(σF , zF ). Thus we obtain the configuration L40,3 on X3 as
a sub-configuration of L112. Combining this embedding L40,3 ↪→ L112 with the bijection
L40 = L40,0 ∼= L40,3 induced by specialization of X0 to X3, we obtain the embedding
ρL : L40 ↪→ L112 induced by the specialization of X0 to X3.

The dual graph of L40 is now calculated explicitly. Hence we can prove the following by
a direct computation.

Proposition 2.7 The dual graph of L40 is isomorphic to the QP-graph Q1. ��
Comparing the ranks and the discriminants of 〈L40〉 ∼= 〈Q1〉 and S0, we obtain the following:
Corollary 2.8 The lattice S0 is generated by the classes of curves in L40. ��
Corollary 2.9 The embeddingρL : L40 ↪→ L112 induces the embeddingρ : S0 ↪→ S3 induced
by the specialization of X0 to X3. This embedding ρ is primitive. ��
The last assertion follows from the explicit matrix form of the embedding ρ with respect to
some bases of S0 and S3 (see [18]).

Remark 2.10 The existence of an isomorphism X3 ∼= F3 can be easily seen by the following
argument. By [23], we know that X3 is a supersingular K3 surface with Artin invariant 1,
and hence is isomorphic to F3 by the uniqueness of a supersingular K3 surface with Artin
invariant 1.

2.4 All embeddings ofL40 intoL112

The embedding ρL : L40 ↪→ L112 constructed in the preceding section depends on the choice
of σF and zF . In this section, we make the complete list of all embeddings L40 ↪→ L112.

Let a �→ ā := a3 denote the Frobenius automorphism of the base field k3. Then the
projective automorphism group of F3 ⊂ P

3 is equal to

PGU4(F9) := { g ∈ GL4(k3) | Tg · ḡ is a scalar matrix }/k×
3 ,

which is of order 13063680. We can calculate the action of PGU4(F9) on L112 and on
S3 = 〈L112〉. LetA denote the set of all ordered five tuples [z, �0, . . . , �3] of lines on F3 that
form the configuration whose dual graph is as follows:

�

z
�

�0
��2

��1

��3

��

��

��

��
(2.4)

Note that PGU4(F9) acts on A naturally. We have the following:

Proposition 2.11 The action of PGU4(F9) on A is simply transitive.

Proof By [24], we have the following facts.

(1) Since every line on F3 is defined over F9, the intersection points of � ∈ L112 with other
lines in L112 are F9-rational. For each F9-rational point P of �, there exist exactly three
lines in L112\{�} that intersect � at P . Hence there exist exactly 112 − 3× 10 − 1 = 81
lines in L112 that are disjoint from �. The group PGU4(F9) acts on the set of ordered
pairs of disjoint lines in L112.
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1468 I. Shimada

(2) If �1, �2, �3 ∈ L112 satisfy 〈�1, �2〉 = 〈�2, �3〉 = 〈�3, �1〉 = 1, then there exist a plane
� ⊂ P

3 containing �1, �2, �3 and a point P ∈ � contained in �1, �2, �3. The residual
line �4 = (F3 ∩ �) − (�1 + �2 + �3) also passes through P .

(3) Let [�1, �2] be an ordered pair of disjoint lines in L112. Then there exist exactly ten lines
that intersect both �1 and �2. Let Stab([�1, �2]) denote the stabilizer subgroup of [�1, �2]
in PGU4(F9). Then the restriction homomorphism

res� : Stab([�1, �2]) → PGL(�1, F9)

to the group of linear automorphisms of �1 ∼= P
1 over F9 is surjective, and its kernel

is of order 2. Let P be an F9-rational point of �1, and let mP ,m′
P ∈ L112 be the lines

that intersect �1 at P but are disjoint from �2. Then the non-trivial element of Ker(res�)
exchanges mP and m′

P .

The transitivity of the action of PGU4(F9) onA follows from these facts. Moreover, we have

|A| = 112 · 81 · 10 · 9 · 16 = 13063680 = |PGU4(F9)|,
where the factor 112 is the number of choices of �0 in [z, �0, . . . , �3] ∈ A, the factor 81 is
the number of choices of �2 when �0 is given, the factor 10 · 9 is the number of choices of �1
and �3 when �0 and �2 are given, and the factor 16 is the number of choices of z for a given
quadrangle [�0, . . . , �3]. Therefore the action of PGU4(F9) on A is simply transitive. ��
LetF denote the set of sub-configurations ofL112 isomorphic toL40. Letα = [zα, �0, . . . , �3]
be an element of A. Then there exists a unique Jacobian fibration

σα : F3 → P
1

with the zero section zα such that �0 + �1 + �2 + �3 is a singular fiber of σα . The Jacobian
fibration (σF , zF ) thatwas used in the construction ofρL is obtained as one of the (σα, zα). By
Proposition 2.11, all Jacobian fibrations (σα, zα) are conjugate under the action of PGU4(F9).
Therefore (σα, zα) yields a sub-configuration Lα of L112 isomorphic to L40, and the map
α �→ Lα gives a surjection λ : A → F compatible with the action of PGU4(F9). The size of
a fiber of λ over L′ ∈ F is

30 × 2 × 16 = 960,

where the factor 30 is the number of quadrangles inL′ ∼= L40, the factor 2 counts the flipping
�1 ↔ �3, and the factor 16 is the number of choices of the zero section zα . Thus we obtain
the following:

Corollary 2.12 The number of sub-configurations of L112 isomorphic to L40 is |PGU4(F9)|/
960 = 13608, and PGU4(F9) acts on the set of these sub-configurations transitively. ��

2.5 An elliptic modular surface of level 4 over a discrete valuation ring

Let R be a discrete valuation ring such that 2 ∈ R× and i = √−1 ∈ R. We construct
a model of the elliptic modular surface of level 4 over R, that is, we perform over R the
resolution of the completion of the affine surface defined by (1.1). This construction explains
the isomorphism L40 ∼= Q1 of graphs geometrically.

In this paragraph, all schemes andmorphisms are definedover R.We consider the complete
quadrangle on P

2 (Fig. 3) such that each of the triple points t1, . . . , t4 is an R-valued point.
Let M → P

2 be the blowup of P
2 at t1, . . . , t4. Let l̄1, . . . , l̄6 be the strict transforms of the
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Fig. 3 Complete quadrangle

t1

t2

t3

t4

l1

l2

l3

l4 l5

l6

lines l1, . . . , l6, and let t̄1, . . . , t̄4 be the exceptional divisors over t1, . . . , t4. It is well known
that these 6 + 4 = 10 smooth rational curves on M form a configuration whose dual graph
is the Petersen graph P . Let

ϕM : M → P
1 (2.5)

be the fibration induced by the pencil of lines on P
2 passing through t1. (The dependence

of the construction on the choice of this P
1-fibration ϕM will be discussed in Sect. 4.3. See

Remark 4.5.) Then ϕM has exactly three singular fibers l̄1 + t̄4, l̄2 + t̄3, l̄3 + t̄2, and four
sections t̄1, l̄4, l̄5, l̄6. Let M ′ → M be the blowup at the nodes on l̄1 + t̄4, l̄2 + t̄3, l̄3 + t̄2, and
let ϕ′

M : M ′ → P
1 be the composite of ϕM and M ′ → M . We choose an affine parameter λ

on the base curve P
1 of ϕ′

M such that the singular fibers are located over λ = 0, 1,∞. Let
M̃ ′ → P

1 be the pullback of ϕ′
M : M ′ → P

1 by the covering P
1 → P

1 given by

σ �→ λ = ((σ + σ−1)/2)2, (2.6)

and let M̃ → M̃ ′ be the normalization of M̃ ′. Then M̃ is smooth over R, and the natural
morphism ϕ̃M : M̃ → P

1 to the σ -line has exactly 6 singular fibers over σ = 0,±1,±i,∞.
Each singular fiber is a union of three smooth rational curves forming the configuration
� � �, the middle of which is with multiplicity 2. Let t̃1, l̃4, l̃5, l̃6 be the pullbacks of

the sections t̄1, l̄4, l̄5, l̄6 of ϕM by M̃ → M . For a divisor D on M̃ , let [D] denote the class of
D in the Picard group Pic M̃ . Note that, via M̃ → M , a fiber F of ϕM : M → P

1 is pulled
back to a sum of two fibers of ϕ̃M : M̃ → P

1, and hence the class [F̃] of the pullback F̃ of
F is divisible by 2 in Pic M̃ . Let [H ] ∈ Pic M̃ denote the class of the pullback of a general
line of P

2. We put B := t̃1 + l̃4 + l̃5 + l̃6. Since [F̃] = [H ]− [t̃1] and [l̃i ] = [H ]− [t̃ j ]− [t̃k]
for (i, j, k) = (4, 3, 4), (5, 2, 3), (6, 2, 4), we have

[B] = 3[F̃] + 2[2t̃1 − t̃2 − t̃3 − t̃4].
Therefore [B] is divisible by 2 in Pic M̃ , and we can construct a double covering X → M̃
branched along B. ThenX is a model of the elliptic modular surface of level 4 over R, and the
Jacobian fibration σ : X → P

1 is obtained as the composite of the double covering X → M̃
and ϕ̃M : M̃ → P

1.
TheQP-coveringmapL40 → P (see Corollary 2.5) is constructed as follows.We consider

an F-valued point of Spec R, where F is a field.We put XF := X⊗R F , and M̃F := M̃⊗R F ,
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MF := M ⊗R F . Let EF be the generic fiber of σ ⊗ F : XF → P
1
F , which is an elliptic

curve over the function field F(σ ) defined by (1.1). Let m2 : XF → XF be the rational map
induced by multiplication by 2 on EF . Then the rational map

μF : XF
m2−→ XF −→ M̃F −→ MF (2.7)

gives a map from L40 to the Petersen graph P formed by {t̄1, . . . , t̄4, �̄1, . . . , �̄6}.
Proposition 2.13 The rational map μF induces a Galois extension of the function fields.
Its Galois group Gal(μ) is isomorphic to (Z/2Z)5 and is generated by the inversion
ι : (X , Y , σ ) �→ (X ,−Y , σ ) of the elliptic curve EF , two involutions

(X , Y , σ ) �→ (X , Y ,−σ), (X , Y , σ ) �→ (X , Y , 1/σ), (2.8)

and the translations by the 2-torsion points of EF .

Proof The inversion ι and the involutions in (2.8) fix each 2-torsion point of EF . Hence the
involutions in the statement of Proposition 2.13 generate a group isomorphic to (Z/2Z)5.
By (2.6), the function field F(σ ) is a Galois extension of F(λ) with Galois group generated
by σ �→ −σ and σ �→ 1/σ . Hence the covering M̃F → MF in (2.7) is the quotient by the
involutions in (2.8). The covering XF → M̃F in (2.7) is the quotient by ι, and the map m2

is the quotient by the group of translations by the 2-torsion points of EF . Thus the proof is
completed. ��

2.6 Another model of the elliptic modular surface of level 4

We give a much simpler construction of a (Z/2Z)5-covering X0 → MC over the complex
numbers by means of a Hirzebruch covering (see Hironaka [25]). This section is due to a
suggestion by one of the referees of the first version of the paper. Let MC be the complex
surface obtained by blowing up P

2
C
at the triple points of the complete quadrangle on P

2
C
,

and let M◦
C
be the complement of the ten (−1)-curves on MC. We have a canonical surjective

homomorphism π1(M◦
C
) →→ H1(M◦

C
, Z/2Z) ∼= (Z/2Z)5. It is known (see [25]) that the

corresponding étale covering W ◦ → M◦
C
extends to a finite morphism W → MC from a

smooth surface W and that W is a K3 surface.

Proposition 2.14 The surface W has a Jacobian fibration σW : W → P
1 that is isomorphic

to σ : X0 → P
1.

Proof Consider the (Z/2Z)5-covering γ : P
5 → P5 defined by

[x0 : x1 : · · · : x6] �→ [X0 : X1 : · · · : X6] = [x20 : x21 : · · · : x26 ].
Let P ⊂ P5 be the linear plane defined by

X1 − X2 + X3 = −X3 + X5 + X6 = X2 + X4 − X5 = 0,

and, for i = 1, . . . , 6, let li ⊂ P denote the intersection of P and the coordinate hyperplane
Xi = 0. Then the six lines l1, . . . , l6 form the complete quadrangle in Fig. 3. The surface
W := γ −1(P) ⊂ P

5 is the complete intersection of three quadratic hypersurfaces

x21 − x22 + x23 = −x23 + x25 + x26 = x22 + x24 − x25 = 0. (2.9)

The finite covering γ |W : W → P extends to the covering γW : W → MC by the blowing
up of MC → P at the triple points t1, . . . , t4 of the complete quadrangle on P . The pullback
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of each line li by γ |W is a union of four conics, and W has 4 × 4 nodes over t1, . . . , t4.
Thus we obtain a configuration LW of 40 smooth rational curves on W consisting of 4 × 6
pullbacks of conics on W and 4 × 4 exceptional curves over the nodes of W . By computing
the intersection numbers of the 24 conics and the incidence relation between the conics and
the 16 nodes, we can write the intersection matrix of the configuration LW explicitly. Then
we confirm that this configuration LW is isomorphic to L40. In fact, by Proposition 2.4, there
exist 7680 isomorphisms between LW and L40. Among these isomorphisms, we have 1536
isomorphisms such that the 16 smooth rational curves corresponding to the nodes of W are
mapped to the sections of σ : X0 → P

1 and the 24 smooth rational curves over the lines li
are mapped to the irreducible components of singular fibers of σ . Hence W has an elliptic
fibration σW : W → P

1 with a section and 6 singular fibers of type I4. By [26], such an
elliptic K3 surface is unique up to isomorphism. Hence σW : W → P

1 is isomorphic to
σ : X0 → P

1. ��
Remark 2.15 The Jacobian fibration σW : W → P

1 is obtained from the elliptic fibration
MC → P

1 induced by the pencil of conics passing through all the triple points t1, . . . , t4. See
Remark 4.5, which also explains the number 1536 = 7680/5 of the special isomorphisms
LW ∼= L40 in the proof.

For J ⊂ {1, . . . , 6}, let τ̃J denote the involution of P
5 given by

xm �→ −xm if m ∈ J , xn �→ xn if n /∈ J .

Note that τ̃J = τ̃J ′ if J ∩ J ′ = ∅ and J ∪ J ′ = {1, . . . , 6}. The Galois group Gal(γW ) of the
covering γW : W → MC consists of the restrictions τJ := τ̃J |W of these involutions τ̃J to
W . Let SW denote the Néron–Severi lattice of W , which is equal to 〈LW 〉. We can calculate
the action of Gal(γW ) on SW explicitly.

For an isomorphism ϕ : LW ∼= L40 of graphs, let 〈ϕ〉 : SW ∼= S0 denote the induced
isometry of lattices, and let O(〈ϕ〉) : O(SW ) ∼= O(S0) denote the induced isomorphism of the
automorphism groups of lattices. By checking all the 7680 isomorphisms ϕ : LW ∼= L40, we
confirmed the following fact. See Remark 4.5 for a geometric reason of this result.

Proposition 2.16 For each isomorphism ϕ : LW ∼= L40 of graphs, the isomorphism O(〈ϕ〉)
maps Gal(γW ) ⊂ O+(SW ) to Gal(μ) ⊂ O+(S0) isomorphically. ��
By Barth–Hulek [8], we know that the sum I of the classes of sections of σ : X0 → P

1 is
divisible by 2 in Pic X0. We put h8 := (1/2)I + F , where F ∈ Pic X0 is a fiber of σ . Then h8
is primitive in Pic X0 and nef of degree 8. The complete linear system |h8| is base-point-free,
because there exist no vectors f ∈ S0 such that 〈 f , f 〉 = 0 and 〈 f , h8〉 = 1 (see Nikulin [27]
and Proposition 12 of [8]). Let Φ8 : X0 → P

5 be the morphism induced by |h8|. The curves
contracted by Φ8 are exactly the sections of σ : X0 → P

1, and Φ8 maps each irreducible
component of singular fibers of σ to a conic. Hence the image of Φ8 is equal to W . We
consider the involutions τJ of W as elements of Aut(X0) via the birational morphism Φ8.
By Proposition 2.16, we have the following description of Gal(μ) simpler than the one given
in Proposition 2.13.

Proposition 2.17 The Galois group Gal(μ) consists of 32 involutions τJ . ��
Remark 2.18 In [28], Abo–Sasakura–Terasoma studied X p , where p ≡ 1 mod 4, and
obtained an isomorphism from X p to the reduction of the complete intersection (2.9) modulo
p.
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3 Borcherds’ method

3.1 Chambers

Wefix notions about tessellation of a positive cone of an even hyperbolic lattice by chambers.
Let L be an even lattice. A vector r ∈ L is called a root if 〈r , r〉 = −2. The set of roots

of L is denoted by R(L).
Let L be an even hyperbolic lattice. Let P(L) be one of the two connected components

of {x ∈ L ⊗ R | 〈x, x〉 > 0}. Then O+(L) acts on P(L). For v ∈ L ⊗ Q with 〈v, v〉 < 0, let
(v)⊥ denote the hyperplane ofP(L) defined by 〈x, v〉 = 0. Let V be a set of vectors of L⊗Q

such that 〈v, v〉 < 0 for all v ∈ V . We assume that the family {(v)⊥ | v ∈ V} of hyperplanes
is locally finite in P(L). A V-chamber is the closure in P(L) of a connected component of

P(L) \
⋃
v∈V

(v)⊥.

Typical examples are R(L)-chambers defined by the set R(L) of roots of L .

Definition 3.1 Let N be a closed subset ofP(L). We say that N is tessellated by V-chambers
if N is a union of V-chambers. Suppose that N is tessellated by V-chambers, and let H be
a subgroup of O+(L) that preserves N . We say that H preserves the tessellation of N by
V-chambers if any g ∈ H maps each V-chamber in N to a V-chamber. Suppose that this is
the case. We say that the tessellation of N is H-transitive if H acts transitively on the set of
V-chambers in N .

Remark 3.2 Let U be a subset of V such that the closed subset

NU := { x ∈ P(L) | 〈x, v〉 ≥ 0 for all v ∈ U }
of P(L) contains an interior point. Then NU is tessellated by V-chambers. In particular, if
V ′ is a subset of V , then each V ′-chamber is tessellated by V-chambers.

Let D be a V-chamber. We put

Aut(D) := { g ∈ O+(L) | Dg = D }.
A wall of D is a closed subset of D of the form (v)⊥ ∩ D such that the hyperplane (v)⊥ of
P(L) is disjoint from the interior of D and (v)⊥ ∩ D contains a non-empty open subset of
(v)⊥. We say that a hyperplane (v)⊥ of P(L) defines a wall of D if (v)⊥ ∩ D is a wall of D.
We say that a vector v ∈ L ⊗ Q with 〈v, v〉 < 0 defines a wall of D if (v)⊥ defines a wall of
D and 〈v, x〉 ≥ 0 for all x ∈ D. Note that, for each wall of D, there exists a unique primitive
vector in L∨ defining the wall. Let (v)⊥ ∩ D be a wall of D. Then there exists a unique
V-chamber D′ such that the interiors of D and D′ are disjoint and that (v)⊥ ∩ D is equal to
(v)⊥ ∩ D′. (Hence (v)⊥ ∩ D′ is a wall of D′.) We say that D′ is a V-chamber adjacent to D
across the wall (v)⊥ ∩ D. A face of D is a closed subset of D of the form F ∩ D such that

F = (v1)
⊥ ∩ · · · ∩ (vm)⊥, where (v1)

⊥, . . . , (vm)⊥ define walls of D,

and that F ∩ D contains a non-empty open subset of F .

Example 3.3 We consider the tessellation of P(L) by R(L)-chambers. Each root r of L
defines a reflection sr ∈ O+(L) via x �→ x + 〈x, r〉r . Let W (L) denote the subgroup of
O+(L) generated by all the reflections with respect to the roots. Then the tessellation of
P(L) byR(L)-chambers isW (L)-transitive. AnR(L)-chamber N is a fundamental domain
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of the action ofW (L) on P(L), and O+(L) is equal toW (L) �Aut(N ). Moreover,W (L) is
generated by the reflections sr associated with the roots r of L defining the walls of N , and
the faces of codimension 2 of N give the defining relations of W (L) with respect to this set
of generators.

Let L26 be an even unimodular hyperbolic lattice of rank 26, which is unique up to isomor-
phism. The shape of anR(L26)-chamber was determined by Conway [29], and hence we call
an R(L26)-chamber a Conway chamber. Let w be a nonzero primitive vector of L26 with
〈w,w〉 = 0 such that w is contained in the closure of P(L26) in L26 ⊗ R. We say that w

is a Weyl vector if the lattice 〈w〉⊥/〈w〉 is isomorphic to the negative-definite Leech lattice,
where 〈w〉⊥ is the orthogonal complement in L26 of 〈w〉 := Zw ⊂ L26. Let w ∈ L26 be a
Weyl vector. Then a root r of L26 is called a Leech root with respect to w if 〈w, r〉 = 1. We
put

C(w) := { x ∈ P(L26) | 〈x, r〉 ≥ 0 for all Leech roots r with respect to w }.
Theorem 3.4 (Conway [29]) The mapping w �→ C(w) gives a bijection from the set of Weyl
vectors to the set of Conway chambers. ��

3.2 Borcherds’method

Borcherds [3,4] developed a method to analyzeR(S)-chambers of an even hyperbolic lattice
S bymeans of Conway chambers.We briefly review this method, and fix some terminologies.
See [30] for details of the algorithms.

Let S be an even hyperbolic lattice. Suppose that we have a primitive embedding i : S ↪→
L26 such that the orthogonal complement R of S in L26 satisfies the following condition:

R cannot be embedded into the negative-definite Leech lattice. (3.1)

(This condition is fulfilled, for example, if R contains a root.) We choose P(S) so that the
embedding i : S ↪→ L26 induces an embedding iP : P(S) ↪→ P(L26). Let

prS : L26 ⊗ Q → S ⊗ Q

denote the orthogonal projection. A hyperplane (v)⊥ of P(L26) intersects P(S) in a hyper-
plane if and only if 〈prS(v), prS(v)〉 < 0, and, if this is the case, we have P(S) ∩ (v)⊥ =
(prS(v))⊥. We put

V(i) := { prS(r) | r ∈ R(L26), 〈prS(r), prS(r)〉 < 0 }. (3.2)

The tessellation of P(L26) by Conway chambers induces a tessellation of P(S) by V(i)-
chambers. Each V(i)-chamber is of the form i−1

P (C(w)). It is easily seen (see [30]) that
assumption (3.1) implies that each V(i)-chamber has only a finite number of walls. The
defining vectors ofwalls of aV(i)-chamber i−1

P (C(w)) can be calculated from theWeyl vector
w ∈ L26 of the Conway chamber C(w). From this set of walls of i−1

P (C(w)), we can calculate
the finite group Aut(i−1

P (C(w))) ⊂ O+(S). Moreover, for each wall (v)⊥ ∩ i−1
P (C(w)) of

a V(i)-chamber i−1
P (C(w)), we can calculate a Weyl vector w′ such that i−1

P (C(w′)) is the
V(i)-chamber adjacent to i−1

P (C(w)) across the wall (v)⊥ ∩ i−1
P (C(w)).

Since R(S) ⊂ V(i), Remark 3.2 implies the following:

Proposition 3.5 An R(S)-chamber is tessellated by V(i)-chambers. ��
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3.3 Discriminant forms

For the application of Borcherds’ method to K3 surfaces, we need the notion of discriminant
forms due to Nikulin [31].

Let q : A → Q/2Z be a non-degenerate quadratic form with values in Q/2Z on a finite
abelian group A. We denote by O(q) the automorphism group of (A, q). For a prime p, we
denote by Ap the p-part of A and by qp : Ap → Q/2Z the restriction of q to Ap . Then we
have a canonical orthogonal direct-sum decomposition

(A, q) =
⊕

(Ap, qp).

Hence O(q) is canonically isomorphic to the direct product of O(qp).
Let L be an even lattice, and let A(L) = L∨/L denote the discriminant group of L . We

define the discriminant form of L

q(L) : A(L) → Q/2Z

by q(L)(x̄) := 〈x, x〉 mod 2Z, where x �→ x̄ is the natural projection L∨ → A(L). Then
we have a natural homomorphism

ηL : O(L) → O(q(L)).

Let M be a primitive sublattice of an even lattice L , and N the orthogonal complement of
M in L . Let O(L, M) denote the subgroup {g ∈ O(L) | Mg = M} of O(L). Then we have a
canonical embedding O(L, M) ↪→ O(M) × O(N ). The submodule L ⊂ M∨ ⊕ N∨ defines
a subgroup ΓL := L/(M ⊕ N ) ⊂ A(M) × A(N ). By Nikulin [31], we have the following:

Proposition 3.6 Let p be a prime that does not divide |A(M)|. Then N ↪→ L induces an
isomorphism q(L)p ∼= q(N )p, which is compatible with the actions of O(L, M) on L and
on N. ��
Proposition 3.7 Let p be a prime that does not divide |A(L)|. Then the p-part of ΓL is
the graph of an isomorphism q(M)p ∼= −q(N )p, which is compatible with the actions of
O(L, M) on M and on N. ��
Proposition 3.8 Suppose that L is unimodular, and let γL : q(M) ∼= −q(N ) be the iso-
morphism with the graph ΓL . Let H be a subgroup of O(N ). Then g ∈ O(M) extends to
g̃ ∈ O(L, M) with g̃|N ∈ H if and only if the isomorphism O(q(M)) ∼= O(q(N )) induced
by γL maps ηM (g) ∈ O(q(M)) into ηN (H) ⊂ O(q(N )). ��

3.4 Geometric application of Borcherds’method

Let Z be a K3 surface defined over an algebraically closed field. We use the notation SZ , PZ

and NZ defined in Sect. 1.1. The following is well known.

Proposition 3.9 The closed subset NZ of PZ is an R(SZ )-chamber. The mapping C �→
([C])⊥ ∩ NZ gives a one-to-one correspondence between the set of smooth rational curves
on Z and the set of walls of NZ . ��
Since the action of O+(SZ ) on PZ preserves the tessellation by R(SZ )-chambers and an
ample class is an interior point of NZ ⊂ PZ , we obtain the following.
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Corollary 3.10 Let a ∈ SZ be an ample class. Then the following three conditions on g ∈
O+(SZ ) are equivalent: (i) NZ = Ng

Z . (ii) NZ ∩ Ng
Z contains an interior point of NZ . (iii)

There exist no roots r of SZ such that 〈r , a〉 and 〈r , ag〉 have different signs. ��

Let Z be a complex K3 surface. Let TZ denote the orthogonal complement of SZ =
H2(Z , Z) ∩ H1,1(Z) in the even unimodular lattice H2(Z , Z) with the cup-product. Then
TZ ⊗ C contains a one-dimensional subspace H2,0(Z) = C ω, where ω is a nonzero holo-
morphic 2-form on Z . We put

O(TZ , ω) := { g ∈ O(TZ ) | C ωg = C ω }.
Recall that we have a natural homomorphism ηTZ : O(TZ ) → O(q(TZ )). We put

O(q(TZ ), ω) := the image of O(TZ , ω) under ηTZ .

The even unimodular overlattice H2(Z , Z) of SZ ⊕ TZ induces an isomorphism γH between
q(SZ ) and −q(TZ ). Let O(q(SZ ), ω) denote the subgroup of O(q(SZ )) corresponding to
O(q(TZ ), ω) via the isomorphismO(q(TZ )) ∼= O(q(SZ )) induced by γH . By Proposition 3.8,
an isometry g ∈ O(SZ ) extends to an isometry g̃ of H2(Z , Z) that preserves H2,0(Z) if and
only if ηSZ (g) ∈ O(q(SZ ), ω).

Let Z be a supersingular K3 surface defined over an algebraically closed field kp of odd
characteristic p. Then A(SZ ) is an Fp-vector space, and we have the period of Z , which
is a subspace of A(SZ ) ⊗ kp . (See Ogus [32,33].) Let O(q(SZ ), ω) denote the subgroup of
O(q(SZ )) consisting of automorphisms that preserve the period.

In the two cases where Z is defined over C or supersingular in odd characteristic, we call
the condition

ηSZ (g) ∈ O(q(SZ ), ω) (3.3)

on g ∈ O+(SZ ) the period condition. In these two cases, we have the Torelli theorem. (See
Piatetski-Shapiro and Shafarevich [34], Ogus [32,33] for p > 3 and Bragg and Lieblich [35]
for p ≥ 3.) By virtue of this theorem, we have the following:

Theorem 3.11 Let Z be a complex K3 surface or a supersingular K3 surface in odd char-
acteristic, and let ψZ : Aut(Z) → O+(SZ ) be the natural representation of Aut(Z) on SZ .
Then an isometry g ∈ O+(SZ ) belongs to the image of ψZ if and only if g preserves NZ and
satisfies the period condition (3.3). ��

We explain the procedure of Borcherds’ method in the simplest case. See [30] for more
general cases. In the following, we assume that Z is a complex K3 surface or a supersingular
K3 surface in odd characteristic. We also assume that ψZ is injective, and regard Aut(Z)

as a subgroup of O+(SZ ). We search for a primitive embedding i : SZ ↪→ L26 inducing
iP : PZ ↪→ P(L26) and a Weyl vector w0 ∈ L26 with the following properties, and look at
the tessellation of theR(SZ )-chamber NZ by V(i)-chambers, where V(i) is defined by (3.2).

(I) Let R denote the orthogonal complement of SZ in L26.We require that R satisfies (3.1),
so that eachV(i)-chamber has only afinite number ofwalls.We also require thatηR : O(R) →
O(q(R)) is surjective. By Proposition 3.8, every isometry g ∈ O+(SZ ) extends to an isometry
of L26. Hence the action of O+(SZ ) preserves the tessellation of PZ by V(i)-chambers. In
particular, the action of Aut(Z) on NZ preserves the tessellation of NZ by V(i)-chambers.

(II) Let D be the closed subset i−1
P (C(w0)) of PZ . We require that D contains an ample

class in its interior. Then D is a V(i)-chamber contained in NZ .
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Definition 3.12 The V(i)-chamber D is called the initial chamber of this procedure. A wall
(v)⊥ ∩ D of D is called an outer wall if (v)⊥ defines a wall of theR(SZ )-chamber NZ , that
is, if there exists a root r of SZ such that (v)⊥ = (r)⊥. We call the wall (v)⊥ ∩ D an inner
wall otherwise. Let Wout(D) and Winn(D) denote the set of outer walls and inner walls,
respectively.

We calculate the set of walls of the initial chamber D. Since each outer wall corresponds to a
smooth rational curve on Z by Proposition 3.9, we obtain a configuration of smooth rational
curves on Z from Wout(D).

(III) We calculate Aut(D) := {g ∈ O+(SZ ) | Dg = D}. By Corollary 3.10, any element
of Aut(D) preserves NZ . Therefore the group

Aut(Z , D) := { g ∈ Aut(D) | g satisfies the period condition (3.3) } (3.4)

is contained in Aut(Z). We find an ample class h in the interior of D such that hg = h for all
g ∈ Aut(Z , D). Then Aut(Z , D) is equal to the projective automorphism group Aut(Z , h).

(IV) Note that Aut(Z , D) = Aut(Z , h) acts on Wout(D) and Winn(D). We decompose
Winn(D) into the orbits under the action of Aut(Z , h):

Winn(D) = O1 ∪ · · · ∪ OJ .

From each orbit Oj , we choose a wall (v j )
⊥ ∩ D and calculate a Weyl vector w j ∈ L26 such

that Dj := i−1
P (C(w j )) is theV(i)-chamber adjacent to D across (v j )

⊥∩D. Since (v j )
⊥∩NZ

is not a wall of NZ , the V(i)-chamber Dj is contained in NZ . For each j = 1, . . . , J , we
find an isometry g j of O+(SZ ) that satisfies the period condition (3.3) and Dgj = Dj . Note
that each g j preserves NZ by Corollary 3.10, and hence g j ∈ Aut(Z). Note also that, for
each inner wall (v′)⊥ ∩ D ∈ Oj , there exists a conjugate g′ ∈ Aut(Z) of g j by Aut(Z , h)

that maps D to the V(i)-chamber adjacent to D across the wall (v′)⊥ ∩ D.
(V) Under the assumptions given in (I)–(IV), the group Aut(Z) is generated by Aut(Z , h)

and the automorphisms g1, . . . , gJ . Moreover, the tessellation of NZ by V(i)-chambers is
Aut(Z)-transitive, and the mappings g �→ hg and g �→ Dg give one-to-one correspondences
between the following sets:

• The set of cosets Aut(Z , h)\Aut(Z).
• The set of V(i)-chambers contained in NZ .
• The subset {hg | g ∈ Aut(Z)} of SZ .

Moreover, considering the reflections with respect to the roots r defining the outer walls
(r)⊥ ∩ D of D, we see that, under the assumptions given in (I)–(IV), the tessellation of PZ

by V(i)-chambers is O+(SZ )-transitive.
The method described in this section was applied by Kondo [36] to the calculation of the

automorphism group of a generic Jacobian Kummer surface, and since then, many studies
have been done on the automorphism groups of various K3 surfaces (see the references of
[30]). This method was also applied to the study of automorphism group of an Enriques
surface in [37,38].

4 Borcherds’ method for X0 and X3

Recall from Sect. 1.1 that we use the following notation:

S3 := SX3 , P3 := PX3 , N3 := NX3 , S0 := SX0 , P0 := PX0 , N0 := NX0 .
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Table 2 Inner walls of D3

Orbit 〈v, v〉 〈v, h3〉 〈h3, b′
d 〉 Sing(b′

d ) d = 〈h3, hg(b
′
d )

3 〉
O ′
648 −4/3 2 6 4A2 + 6A1 10

O ′
5184 −2/3 3 9 4A3 + 6A1 31

4.1 Borcherds’method for X3

We identify X3 and F3 via Shioda’s isomorphism explained in Sect. 2.3. Hence S3 is the
Néron–Severi lattice of F3. In [2], we have obtained a generating set of Aut(X3) by finding
a primitive embedding i3 : S3 ↪→ L26 inducing i3,P : P3 ↪→ P(L26) and a Weyl vector
w0 ∈ L26 that satisfy the requirements in Sect. 3.4. The result is as follows. See [18] or [2]
for the explicit descriptions of i3, w0, and other computational data.

We have A(S3) ∼= (Z/3Z)2. The group O(q(S3)) is a dihedral group of order 8, and
O(q(S3), ω) is a cyclic subgroup of order 4. The orthogonal complement R3 of S3 in L26 is a
negative-definite root lattice of type 2A2. The order of O(R3) is 288, the order of O(q(R3))

is 8, and the natural homomorphism O(R3) → O(q(R3)) is surjective. We put

D3 := i−1
3,P (C(w0)).

Then D3 contains the class h3 ∈ S3 of a hyperplane section of X3 = F3 ⊂ P
3 in its interior.

Hence D3 is a V(i3)-chamber. The set Wout(D3) of outer walls of the initial chamber D3 is
equal to {(�)⊥ ∩ D3 | � ∈ L112}. Because

h3 = 1

28

∑
�∈L112

[�],

the group Aut(X3, D3) defined by (3.4) is equal to Aut(X3, h3), which is the projective
automorphism group {g ∈ PGL4(k3) | g(F3) = F3} = PGU4(F9) of F3 ⊂ P

3. Hence
Aut(X3, D3) is of order 13063680. The class h3 is in fact the image ofw0 under the orthogonal
projection L26 ⊗ Q → S3 ⊗ Q. Under the action of Aut(X3, h3) = PGU4(F9), the set
Winn(D3) of inner walls of D3 is decomposed into two orbits O ′

648 and O ′
5184 of size 648 and

5184, respectively. Each inner wall (v)⊥ ∩ D3 in the orbit O ′
s is defined by a primitive vector

v of S∨
3 with the properties given in Table 2, and there exists a double-plane polarization

b′
d ∈ S3 such that the corresponding double-plane involution g(b′

d) ∈ Aut(X3) maps D3

to the V(i3)-chamber adjacent to D3 across the wall (v)⊥ ∩ D3. These results prove the
following:

Theorem 4.1 (Kondo–Shimada [2]) The automorphism group Aut(X3) is generated by the
projective automorphism groupAut(X3, h3) = PGU4(F9) and two double-plane involutions
g(b′

10), g(b
′
31) corresponding the orbits O ′

648, O
′
5184 of the action of PGU4(F9) on the set

Winn(D3) of inner walls of the initial chamber D3. ��

4.2 Borcherds’method for X0

We define an embedding i0 : S0 ↪→ L26 by

i0 := i3 ◦ ρ, (4.1)
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Table 3 Inner walls of D0

Orbit 〈v, v〉 〈v, h0〉 〈h0, bd 〉 Sing(bd ) d = 〈h0, hg(bd )
0 〉

O64 −5/4 5 16 2A3 + 3A2 + 2A1 80

O40 −1 6 18 4A3 + 3A1 112

O160 −1/2 8 26 A5 + 2A4 + A3 296

O320 −1/4 9 38 2A7 + A3 + A1 688

where i3 : S3 ↪→ L26 is the embedding used in Sect. 4.1, and ρ : S0 ↪→ S3 is the embedding
given by the specialization of X0 to X3. The key observation of this article is that i0 is equal
to the embedding used by Keum–Kondo [1] for the calculation of Aut(X0).

We have A(S0) ∼= (Z/4Z)2. The group O(q(S0)) is isomorphic to the dihedral group of
order 8, and the subgroup O(q(S0), ω) is cyclic of order 4. The embedding i0 is primitive
and induces i0,P : P0 ↪→ P(L26). The orthogonal complement R0 of S0 in L26 is a negative-
definite root lattice of type 2A3. The order of O(R0) is 4608, the order of O(q(R0)) is 8, and
the natural homomorphism O(R0) → O(q(R0)) is surjective. The vector

h0 := 1

2

∑
�∈L40

[�] ∈ S0 ⊗ Q (4.2)

is in fact in S0, and we have 〈h0, h0〉 = 40. Since 〈h0, �〉 = 2 for all � ∈ L40, the class
h0 is nef. Since there exist no roots r of S0 such that h0 ∈ (r)⊥, the class h0 is ample. Let
w0 ∈ L26 be the same Weyl vector that was used in Sect. 4.1. The orthogonal projection of
w0 to S0 ⊗ Q is equal to h0/2. (In [1], the vector h0/2 is used instead of h0.) We put

D0 := i−1
0,P (C(w0)).

Then D0 contains h0 in its interior, and hence D0 is a V(i0)-chamber. The set Wout(D0) of
outer walls of the initial chamber D0 is equal to {(�)⊥ ∩ D0 | � ∈ L40}. We have

Aut(X0, D0) = Aut(X0, h0), (4.3)

which is of order 3840 and acts onWout(D0) transitively. Using the algorithms in Remark 1.3,
we search for double-plane polarizations in S0 and obtain the following proposition, which
proves Theorem 1.4.

Proposition 4.2 The action of Aut(X0, h0) decomposes the set Winn(D0) of inner walls of
the initial chamber D0 into four orbits O64, O40, O160, O320, where |Os | = s. For each
inner wall (v)⊥ ∩ D0 ∈ Os, there exists a double-plane polarization bd ∈ S0 such that the
corresponding double-plane involution g(bd) ∈ Aut(X0) maps D0 to the V(i0)-chamber
adjacent to D0 across the wall (v)⊥ ∩ D0. ��
Each inner wall (v)⊥ ∩ D0 ∈ Os is defined by a primitive vector v ∈ S∨

0 with the properties
given in Table 3. See [18] for the matrix representations of double-plane involutions g(bd).

4.3 The group Aut(X0, h0)

We investigate the finite group Aut(X0, h0) more closely. Note that the order 3840 of this
group is the maximum among all finite subgroups of automorphisms of complex K3 surfaces
(see Kondo [39]). There exists a natural identification betweenWout(D0) and L40. Therefore
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by (4.3), the group Aut(X0, h0) acts on L40 faithfully, and hence Aut(X0, h0) is embedded
into the automorphism group Aut(L40) of the dual graph of L40. On the other hand, since
〈L40〉 = S0 (Corollary 2.8), we have an embeddingAut(L40) ↪→ O+(S0). In fact, we confirm
by direct calculation the following:

Aut(X0, h0) =
{
g ∈ Aut(L40)

∣∣∣∣ g, as an element of O+(S0), satisfies the
period condition (3.3)

}
,

and Aut(X0, h0) is of index 2 in Aut(L40). By Propositions 2.4 and 2.7, we have a natural
homomorphism Aut(L40) → Aut(P) to the automorphism group of the Petersen graph
P . Recall that, in Sects. 2.5 and 2.6, we have constructed a morphism μC : X0 → MC

that induces the QP-covering map L40 → P , and calculated the Galois group Gal(μ) in
Propositions 2.13 and 2.17.

Proposition 4.3 The homomorphism

Aut(X0, h0) ↪→ Aut(L40) → Aut(P) (4.4)

is surjective, and its kernel is equal to the Galois group Gal(μ) ∼= (Z/2Z)5.

Proof By the list of elements of Aut(X0, h0) (see [18]), we see that the homomorphism (4.4)
is surjective, and its kernel is of order 32. Each generator of Gal(μ) given in Proposi-
tions 2.13 or 2.17 preserves L40, and hence Gal(μ) is contained in Aut(X0, h0). Since μ

induces the QP-covering map L40 → P , it follows that Gal(μ) is contained in the kernel
of (4.4). Comparing the order, we complete the proof. ��
For v ∈ S0, we put

Aut(X0, v) := { g ∈ Aut(X0) | vg = v }.
Let f ∈ S0 be the class of a fiber of the Jacobian fibration σ : X0 → P

1 defined by (1.1).
For each element g of Aut(X0, f ), there exists an automorphism ḡ ∈ Aut(P1) such that the
diagram

X0
g−→ X0

σ ↓ ↓ σ

P
1 ḡ−→ P

1

(4.5)

commutes and hence g preserves L40. Therefore Aut(X0, f ) is contained in Aut(X0, h0),
and we have a homomorphism

β : Aut(X0, f ) → Stab(Cr(σ )),

where Cr(σ ) := {0,∞,±1,±i} is the set of critical values of σ and Stab(Cr(σ )) is the
stabilizer subgroup of Cr(σ ) in Aut(P1).

We have the inversion ισ : X0 → X0 of the Jacobian fibration σ . We also have a subgroup
Tσ of Aut(X0, f ) consisting of translations by the 16 sections of σ .

Proposition 4.4 The order of Aut(X0, f ) is 768. The image of β is isomorphic to S4, and
the kernel of β is equal to the subgroup Tσ � 〈ισ 〉 of Aut(X0, f ).

Proof By means of ρL : L40 ↪→ L112 and (2.1), we can calculate the quadrangle Fc in L40

consisting of the classes of irreducible components of the singular fiber σ−1(c) for each
c ∈ Cr(σ ). Then f is the sum of vectors in one of these Fc, and hence we can calculate
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Aut(X0, f ) from the list of elements of Aut(X0, h0). Looking at the action of Aut(X0, f )
on the set of the quadrangles Fc, we see that the image of β is isomorphic toS4 generated by
permutations (0,−1,−i)(∞, 1, i) and (0,−i)(∞, i)(1,−1) of Cr(σ ). Therefore the kernel
is of order 32. Since Tσ � 〈ισ,z〉 is of order 32 and contained in the kernel, we complete the
proof. ��
Remark 4.5 Since |Aut(X0, h0)|/|Aut(X0, f )| = 5, the orbit of f under the action of
Aut(X0, h0) consists of five elements f = f (1), f (2), . . . , f (5). We can easily confirm
that

Gal(μ) =
5⋂

ν=1

Aut(X0, f (ν)).

The five classes f (ν) give rise to five elliptic fibrations σ (ν) : X0 → P
1. These elliptic

fibrations correspond to the choices of the P
1-fibration ϕM : M → P

1 in (2.5): for ν =
1, . . . , 4, the class f (ν) is induced by the pencil of lines passing through the triple point tν , and
f (5) is induced by the pencil of conics passing through all the triple points (see Remark 2.15).
Let h(ν)

8 ∈ S0 be the polarization of degree 8 constructed from σ (ν) : X0 → P
1 via the recipe

of Barth–Hulek explained in Sect. 2.6. Then we have Aut(X0, f (ν)) = Aut(X0, h
(ν)
8 ).

5 Proof of Theorems 1.7 and 1.8

We use the same notation as in Sect. 4. The following fact has been established.

Proposition 5.1 (1) The tessellation of N3 by V(i3)-chambers isAut(X3)-transitive, and the
tessellation of P3 by V(i3)-chambers is O+(S3)-transitive.

(2) The tessellation of N0 by V(i0)-chambers is Aut(X0)-transitive, and the tessellation of
P0 by V(i0)-chambers is O+(S0)-transitive. ��

From now on, we consider S0 as a sublattice of S3 via ρ : S0 ↪→ S3 and P0 as a subspace of
P3. For example, we use notation such as h0 ∈ S3, D0 ⊂ P3,P0 ⊂ P3,…. By definition (4.1)
of i0, we have the following:

Proposition 5.2 The tessellation of P0 by V(i0)-chambers is obtained as the restriction to
P0 of the tessellation of P3 by V(i3)-chambers. ��

5.1 Proof of Theorem 1.7

First, we show that the restriction homomorphism ρ̃ from O+(S3, S0) to O+(S0) maps
O+(S3, S0) ∩ Aut(X3) to Aut(X0). By Theorem 3.11, it suffices to show that, for each
g ∈ O+(S3, S0)∩Aut(X3), the restriction g|S0 ∈ O+(S0) satisfies the period condition (3.3)
and preserves N0.

Lemma 5.3 If g ∈ O+(S3, S0) satisfies the period condition ηS3(g) ∈ O(q(S3), ω) for X3,
then g|S0 ∈ O+(S0) satisfies the period condition ηS0(g|S0) ∈ O(q(S0), ω) for X0.

Proof Let Q denote the orthogonal complement of S0 in S3. Then Q is an even negative-
definite lattice of rank 2 with discriminant group isomorphic to (Z/4Z)2 × (Z/3Z)2. By the
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O+(S3, S0) → O(Q) × O+(S0)→ ↓ pr1
−→ pr2

O+(S3 Q) O( ) O+(S0)
⏐
⏐
⏐
⏐ ηS3

⏐

ηQ

⏐
⏐
⏐
⏐ ηS0O(q(Q))

p3 p2

O(q(S3)) ∼= O(q(Q)3) O(q(Q)2) ∼= O(q(S0))

Fig. 4 Commutative diagram for the period condition

classical theory of Gauss, such a lattice is unique up to isomorphism, and the lattice Q is
given by a Gram matrix (− 12 0

0 − 12

)
.

We consider the commutative diagram in Fig. 4. The two isomorphisms in the bottom line
of this diagram are derived from the isomorphism q(S3) ∼= q(Q)3 given in Proposition 3.6
and the isomorphism q(Q)2 ∼= −q(S0) given in Proposition 3.7. It is easy to verify that
O(Q) is a dihedral group of order 8, and the composites p3 ◦ ηQ : O(Q) → O(q(Q)3)

and p2 ◦ ηQ : O(Q) → O(q(Q)2) are isomorphisms, where p2 and p3 are projections to
the 2-part and the 3-part, respectively. Using the image of ηQ : O(Q) → O(q(Q)) as the
graph of an isomorphism between O(q(Q)3) and O(q(Q)2), we obtain an isomorphism
O(q(S3)) ∼= O(q(S0)) that is compatible with the homomorphisms from O+(S3, S0). Recall
that O(q(S3), ω) and O(q(S0), ω) are cyclic of order 4. Since the cyclic subgroup of order 4
is a characteristic subgroup of the dihedral group of order 8, the isomorphism O(q(S3)) ∼=
O(q(S0)) maps O(q(S3), ω) to O(q(S0), ω). ��

Since we have calculated the embedding ρ : S0 ↪→ S3 in the form of a matrix and the
set Wout(D3) ∪ Winn(D3) of walls of the initial chamber D3 for X3 in the form of a list of
vectors (see [18]), we can easily prove the following:

Lemma 5.4 (1) The ample class h0 of X0 is contained in D3, and no outer walls of D3 pass
through h0. In particular, h0 belongs to the interior of N3 and hence is ample for X3.

(2) Among the walls (v)⊥ ∩ D3 of D3, there exist exactly two walls such that the hyperplane
(v)⊥ of P3 contains P0. These two walls (v1)

⊥ ∩ D3 and (v2)
⊥ ∩ D3 belong to the orbit

O ′
648 ⊂ Winn(D3). Moreover, we have 〈v1, v2〉 = 0. ��

Combining Lemma 5.4 with Propositions 5.1 and 5.2, we obtain the following:

Corollary 5.5 (1) We have P0 = (v1)
⊥ ∩ (v2)

⊥, where (v1)
⊥ and (v2)

⊥ are the hyperplanes
of P3 given in Lemma 5.4.

(2) For each V(i0)-chamber D′
0 ⊂ P0, there exist exactly four V(i3)-chambers that contain

D′
0.

(3) The initial chamber D0 for X0 is a face (v1)
⊥ ∩ (v2)

⊥ ∩ D3 of the initial chamber D3

for X3, and the interior of D0 ⊂ P0 is contained in the interior of N3 ⊂ P3.
(4) The four V(i3)-chambers containing D0 are contained in N3. In particular, we have

γ1, γ2, ε ∈ Aut(X3) such that the four V(i3)-chambers containing D0 are D3 and Dγ1
3 ,

Dγ2
3 , Dε

3 . See Fig. 5. ��
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D3 Dγ1
3

Dγ2
3 Dε

3

(v1)
⊥

(v2)⊥

Fig. 5 V(i3)-chambers containing D0

Remark 5.6 The automorphisms γ1 and γ2 of X3 in Corollary 5.5 (4) can be obtained as
conjugates of the double-plane involution g(b′

10) by PGU4(F9). Let (v′′)⊥ ∩ D3 be the wall
of D3 that is mapped to the wall (v2)⊥ ∩ Dγ1

3 of Dγ1
3 by γ1. Then (v′′)⊥ ∩ D3 is an inner wall

belonging to O ′
648, and hence we have a conjugate γ ′′ of g(b′

10) by PGU4(F9) that maps D3

to the V(i3)-chamber adjacent to D3 across (v′′)⊥ ∩ D3. Then, as the automorphism ε, we
can take γ ′′γ1. See Sect. 6.2 for another construction of ε.

Let pr3 : L26 ⊗ Q → S3 ⊗ Q, pr0 : L26 ⊗ Q → S0 ⊗ Q and pr30 : S3 ⊗ Q → S0 ⊗ Q be the
orthogonal projections. Then we have pr30 ◦ pr3 = pr0. We put

V(ρ) := { pr30(r) | r ∈ R(S3), 〈pr30(r), pr30(r)〉 < 0 }.
The restriction to P0 of the tessellation of P3 byR(S3)-chambers is the tessellation of P0 by
V(ρ)-chambers. The closed subset

N30 := N3 ∩ P0

of P0 contains D0 by Corollary 5.5 (3), and hence its interior is non-empty. Therefore N30 is
a V(ρ)-chamber. We have

R(S0) ⊂ V(ρ) ⊂ V(i0),

where the second inclusion follows from R(S3) ⊂ R(L26) and pr30 ◦ pr3 = pr0. It follows
from Remark 3.2 that

D0 ⊂ N30 ⊂ N0, (5.1)

and that theV(ρ)-chamber N30 is tessellated byV(i0)-chambers. If g ∈ O+(S3, S0) preserves
N3, then g|S0 ∈ O+(S0) preserves N30 and hence preserves N0 by Corollary 3.10. Combining
this fact with Lemma 5.3, we conclude that every element of the image of ρ̃|Aut belongs to
Aut(X0).

Next we calculate a generating set of the image of ρ̃|Aut.
Lemma 5.7 The group PGU4(F9) = Aut(X3, h3) acts transitively on the set of non-ordered
pairs {(v)⊥, (v′)⊥} of hyperplanes of P3 such that (v)⊥ ∩ D3 and (v′)⊥ ∩ D3 are inner walls
of D3 belonging to O ′

648, and such that 〈v, v′〉 = 0.

Proof As can be seen from the list [18] of walls of D3, for each inner wall (v)⊥ ∩ D3 in
O ′
648, the number of inner walls (v′)⊥ ∩ D3 in O ′

648 satisfying 〈v, v′〉 = 0 is 42. Comparing
42 × 648/2 = 13608 with Corollary 2.12, we obtain the proof. ��
Corollary 5.8 Let g be an element of Aut(X3) such that D′

0 := P0 ∩ Dg
3 is a V(i0)-chamber,

that is, D′
0 has an interior point as a subset ofP0. Then there exists an element γ ∈ PGU4(F9)

such that γ g ∈ Aut(X3) maps the face D0 of D3 to the face D′
0 of D

g
3 = Dγ g

3 .
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Proof We put v′
1 := v

g−1

1 and v′
2 := v

g−1

2 , where v1 and v2 are given in Lemma 5.4. Then

D′g−1

0 = Pg−1

0 ∩ D3 = (v′
1)

⊥ ∩ (v′
2)

⊥ ∩ D3 is a face of D3, which is the intersection of
two perpendicular inner walls (v′

1)
⊥ ∩ D3 and (v′

2)
⊥ ∩ D3 in O ′

648. Hence the existence of
γ ∈ PGU4(F9) follows from Lemma 5.7. ��
We put

Aut(X3, D0) := { g ∈ Aut(X3) | Dg
0 = D0 }, (5.2)

and compare it with Aut(X0, D0) = Aut(X0, h0). Note that Aut(X3, D0) is a subgroup of
O+(S3, S0) ∩ Aut(X3) containing the kernel of ρ̃|Aut.
Lemma 5.9 The homomorphism ρ̃|Aut mapsAut(X3, D0) toAut(X0, h0) isomorphically. In
particular, the homomorphism ρ̃|Aut is injective, and the image of ρ̃|Aut containsAut(X0, h0).

Proof By Corollary 5.5 (4), the subgroup Aut(X3, D0) of Aut(X3) is contained in the finite
subset

PGU4(F9) � PGU4(F9) · γ1 � PGU4(F9) · γ2 � PGU4(F9) · ε (5.3)

of Aut(X3). For each element g of this subset, we determine whether g preserves P0 or not.
We see that, in each coset PGU4(F9) ·γ in (5.3), exactly 960 elements g satisfyPg

0 = P0, and
that the set of restrictions g|S0 of these 960 × 4 = 3840 elements g is equal to Aut(X0, h0).

��
We discuss the following problem: Let (v)⊥ be a hyperplane of P0 that defines a wall of D0.
Determine whether (v)⊥ defines a wall of N30 or not.

Since L40 ⊂ L112, it immediately follows that, if (v)⊥ ∩ D0 is an outer wall of D0, then
(v)⊥ ∩ N30 is a wall of N30.

Lemma 5.10 Let (v)⊥ ∩ D0 be an inner wall of D0. Then (v)⊥ ∩ N30 is a wall of N30 if and
only if (v)⊥ ∩ D0 ∈ O64 or (v)⊥ ∩ D0 ∈ O160.

Proof Let g ∈ Aut(X0) be an automorphism that maps D0 to the V(i0)-chamber adjacent to
D0 across the inner wall (v)⊥∩D0 (for example, we can take as g a conjugate byAut(X0, h0)
of the double-plane involution g(bd) corresponding to the orbit Os containing (v)⊥ ∩ D0).
Then (v)⊥ ∩ N30 is a wall of N30 if and only if h0 and hg0 , regarded as vectors of S3 via
ρ : S0 ↪→ S3, are separated by a root in S3, that is, the set

{ r ∈ R(S3) | 〈h0, r〉 and 〈hg0, r〉 have different sign }
is non-empty (see Corollary 3.10). We can calculate this set using the algorithm described in
Section 3.3 of [9]. ��
Remark 5.11 The ‘if ’-part of Lemma 5.10 is refined as follows. For each positive integer d ,
we put

Cd := { [C] ∈ S3 | C is a smooth rational curve on X3 such that 〈h3, [C]〉 = d }.
The walls of N3 are in one-to-one correspondence with the union of these sets Cd . We have
C1 = L112. The set Cd can be calculated by induction on d . Indeed, a root r of S3 satisfying
〈h3, r〉 = d belongs to Cd if and only if there exists no class r ′ ∈ Cd ′ with d ′ < d such that
〈r , r ′〉 < 0. By this method, we obtain the following:
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Proposition 5.12 For d = 2, 3, 5, 6, the set Cd is empty. We have

|C1| = 112, |C4| = 18144, |C7| = 2177280 = 1632960 + 544320.

The actions of PGU4(F9) on C1 and on C4 are transitive. The action of PGU4(F9) on C7 has
two orbits of size 1632960 and 544320. ��
Then we have the following:

• Among the 64 walls in O64, 32 walls are defined by (pr30(r))
⊥ with r ∈ C1, and the

other 32 walls are defined by (pr30(r))
⊥ with r ∈ C4.

• Among the 160 walls in O160, 40 walls are defined by (pr30(r))
⊥ with r ∈ C1, 80 walls

are defined by (pr30(r))
⊥ with r ∈ C4, and 40 walls are defined by (pr30(r))

⊥ with
r ∈ C7.

Note that, if g ∈ Aut(X0) belongs to the image of ρ̃|Aut, then g preserves N30 ⊂ N0. Hence
the double-plane involutions g(b80) and g(b296) corresponding to the orbits O64 and O160

are not in the image of ρ̃|Aut.
Lemma 5.13 Let O be either O40 or O320, and let (v)⊥ ∩ D0 be an element of O. Let D′

0
be the V(i0)-chamber adjacent to D0 across (v)⊥ ∩ D0. Then there exists an element g′ of
O+(S3, S0) ∩ Aut(X3) such that g′|S0 maps D0 to D′

0.

Proof Let F denote the hyperplane (v)⊥ of P0 considered as a linear subspace of P3 of
codimension 3. Let D′

3 be one of the fourV(i3)-chambers such that D′
0 = P0∩D′

3. (SeeCorol-
lary 5.5 (2).) We have F ∩ D0 = F ∩ D′

0 = F ∩ D3 = F ∩ D′
3, and this set contains a

non-empty open subset of F . Lemma 5.10 implies that there exists no root r of S3 such that
the hyperplane (r)⊥ of P3 contains F . Since F ∩ D3 = F ∩ D′

3, we see that D3 and D′
3 are

on the same side of (r)⊥ for any root r of S3, and hence D′
3 is contained in N3. Therefore we

have an element g′ of Aut(X3) such that D
g′
3 = D′

3. By Lemma 5.8, there exists an element

γ of PGU4(F9) such that γ g′ maps the face D0 of D3 to the face D′
0 of D

′
3 = Dg′

3 = Dγ g′
3 .

Since each of D0 and D′
0 contains a non-empty open subset ofP0, we see that γ g′ ∈ Aut(X3)

belongs to O+(S3, S0). Then γ g′|S0 maps D0 to D′
0. ��

Lemmas 5.9 and 5.13 imply that g(b112) and g(b688) are in the image of ρ̃|Aut. Let G be
the subgroup of Aut(X0) generated by Aut(X0, h0) and g(b112) and g(b688). Since G is
contained in the image of ρ̃|Aut, each g ∈ G preserves N30.

Lemma 5.14 If a V(i0)-chamber D′ is contained in N30, then there exists an element g ∈ G
such that D′ = Dg

0 .

Proof Since N30 is tessellated by V(i0)-chambers, there exists a sequence

D(0) = D0, D(1), . . . , D(N ) = D′

of V(i0)-chambers such that each D(ν) is contained in N30 and that D(ν) is adjacent to D(ν−1)

for ν = 1, . . . , N . We prove the existence of g ∈ G by induction on N . The case N = 0 is

trivial. Suppose that N > 0, and let g′ ∈ G be an element such that Dg′
0 = D(N−1). Note that

g′ preserves N30. The V(i0)-chambers D0 and D
′g′−1

are adjacent, and both are contained in
N30. Hence, by Lemma 5.10, the wall of D0 across which D

′g′−1
is adjacent to D0 is either

in O40 or in O320. Therefore we have an element g′′ ∈ G (a conjugate of g(b112) or g(b688)

by Aut(X0, h0)) such that D
′g′−1 = Dg′′

0 . Then g′′g′ ∈ G maps D0 to D′. ��
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Let g be an arbitrary element of the image of ρ̃|Aut. Since g preserves N30, there exists an

element g′ ∈ G such that Dg
0 = Dg′

0 . Then g′g−1 ∈ Aut(X0, h0), and hence g ∈ G. Thus
the proof of Theorem 1.7 is completed. ��

5.2 Proof of Theorem 1.8

By the commutativity of diagram (1.2) and Theorem 1.7, it suffices to prove that the image
of res0 : Aut(X/R) → Aut(X0) contains Aut(X0, h0) and the double-plane involutions
g(b112) and g(b688). Let π : X → Spec R be the elliptic modular surface of level 4 over a
discrete valuation ring R of mixed characteristic with residue field k of characteristic 3. Let
K be the fraction field of R. We put XK := X ⊗R K and Xk := X ⊗R k and identify X0

with XK ⊗K K̄ and X3 with X ⊗k k̄, where K̄ and k̄ are algebraic closures of K and k,
respectively.

Replacing R by a finite extension of R, we can assume that h0 is the class of a line bundle
LK on XK and that every element of Aut(X0, h0) is defined over K . We can extend LK

to a line bundle L on X by (21.6.11) of EGA, IV [40]. Then the class of the line bundle
Lk := L|Xk on Xk is ρ(h0) ∈ S3. Hence Lk is ample by Lemma 5.4. Therefore L is ample
relative to Spec R by (4.7.1) of EGA, III [41]. We choose n > 0 such that L⊗n is very
ample relative to Spec R, embed X into a projective space P

N
R over Spec R by L⊗n , and

regard Aut(X0, h0) as the group of projective automorphisms of XK ⊂ P
N
K . Since X3 is not

birationally ruled, we can apply the theorem of Matsusaka–Mumford [42] and conclude that
every element of Aut(X0, h0) has a lift in Aut(X/R).

Remark 5.15 The argument in the preceding paragraph is a special case of Theorem 2.1 of
Lieblich and Maulik [43].

Let b be either b112 or b688. Replacing R by a finite extension of R, we can assume that b
is the class of a line bundle MK on XK , and that each smooth rational curve contracted by
Φb : XK → P

2
K is defined over K . Let �(b) ⊂ S0 be the set of classes of smooth rational

curves contracted by Φb. We extend MK to a line bundle M on X . Then the class of the
line bundle Mk := M|Xk on Xk is ρ(b) ∈ S3. Using the algorithms in Remark 1.3, we can
verify that ρ(b) is a double-plane polarization of X3 and calculate the set �(ρ(b)) ⊂ S3
of classes of smooth rational curves contracted by Φρ(b) : Xk → P

2
k . Then we have the

following equality:

�(ρ(b)) = ρ(�(b)). (5.4)

Since the complete linear systems |MK | and |Mk | are of dimension 2 and fixed-point-free,
we see that π∗M is free of rank 3 over R and defines a morphism

Φ̃ : X → P
2
R

over R. We execute, over R, Horikawa’s canonical resolution for double coverings branched
along a curve with only ADE-singularities (see Section 2 of [44]). Let C1,K , . . . ,Cμ,K be
the smooth rational curves on XK contracted by Φb, where μ is the total Milnor number of
the singularities of the branch curve of Φb (and hence of Φρ(b)). It follows from (5.4) that
the closure C j of each C j,K in X is a smooth family of rational curves over Spec R, that
Φ̃ contracts C j to an R-valued point q0 j of P

2
R (that is, a section of the structure morphism

P
2
R → Spec R), and that Φ̃ is finite of degree 2 over the complement of {q01, . . . , q0μ} in

P
2
R . We put J0 := {1, . . . , μ}, P0 := P

2
R , and let β0 : P0 → P

2
R be the identity. Suppose that
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we have a morphism βi : Pi → P
2
R over R from a smooth R-scheme Pi and a subset Ji ⊂ J0

such that

(i) Φ̃ factors as

X αi−→ Pi
βi−→ P

2
R,

(ii) αi contracts C j to an R-valued point qi j of Pi for each j ∈ Ji , and
(iii) αi is finite of degree 2 over the complement of {qi j | j ∈ Ji } in Pi .

Suppose that Ji is non-empty. We choose an index j0 ∈ Ji , and let β ′ : Pi+1 → Pi be the
blowup at the R-valued point qi j0 . Let βi+1 : Pi+1 → P

2
R be the composite of β ′ and βi .

Then properties (i)–(iii) are satisfied with i replaced by i + 1 for some Ji+1 ⊂ Ji with
Ji+1 
= Ji . Indeed, αi+1 induces a finite morphism from at least one of the C j with j ∈ Ji to
the exceptional divisor of β ′. Therefore after finitely many steps, we obtain a finite double
coveringX → P that factors Φ̃, where P is obtained from P

2
R by a finite number of blowups

at R-valued points. Then the deck-transformation of X → P gives a lift of the double-plane
involution g(b) ∈ Aut(X0) to Aut(X/R). ��
Remark 5.16 The double-plane polarizations ρ(b112), ρ(b688) ∈ S3 have the following prop-
erties with respect to h3:

〈h3, ρ(b112)〉 = 9, 〈h3, hg(bρ(b112))

3 〉 = 34,

〈h3, ρ(b688)〉 = 19, 〈h3, hg(bρ(b688))

3 〉 = 178.

6 Enriques surface of type IV

Let Z be a K3 surface defined over an algebraically closed field of characteristic 
= 2. For
an element g ∈ O+(SZ ) of order 2, we put

S+g
Z := { v ∈ SZ | vg = v }, S−g

Z := { v ∈ SZ | vg = −v }.
Suppose that ε : Z → Z is an Enriques involution, and let π : Z → Y := Z/〈ε〉 be the
quotient morphism. Note that the lattice SY of numerical equivalence classes of divisors on
the Enriques surface Y is an even unimodular hyperbolic lattice of rank 10, which is unique
up to isomorphism. Then the pullback homomorphism π∗ : SY ↪→ SZ induces an isometry
of lattices from SY (2) to S+ε

Z , where SY (2) is the lattice obtained from SY by multiplying the
intersection form by 2. Hence the following are satisfied: (i) S+ε

Z is a hyperbolic lattice of
rank 10 and (ii) if M is a Gram matrix of S+ε

Z , then (1/2)M is an integer matrix that defines
an even unimodular lattice. Moreover, since π is étale, we have that (iii) the orthogonal
complement S−ε

Z of S+ε
Z in SZ contains no roots.

6.1 Proof of Proposition 1.11

We check conditions (i), (ii), (iii) for all involutions in the finite group Aut(X0, h0). It turns
out that there exist exactly six involutions ε(1), . . . , ε(6) satisfying these conditions. They
are conjugate to each other, and they belong to the subgroup Gal(μ) of Aut(X0, h0) (see
Proposition 4.3). We show that these involutions are Enriques involutions of type IV.

Let ε0 be one of ε(1), . . . , ε(6). Recall that σ : X0 → P
1 is the Jacobian fibration defined

by (1.1), and let f ∈ S0 be the class of a fiber of σ . Since ε0 ∈ Gal(μ), we have ε0 ∈
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Aut(X0, f ) by Remark 4.5. Let Fc ⊂ L40 be the set of classes of irreducible components of
the singular fiber σ−1(c) over c ∈ Cr(σ ). Looking at the action of ε0 on these 6 quadrangles
Fc, we see that the element ε̄0 ∈ Stab(Cr(σ )) defined by diagram (4.5) is of order 2 and fixes
exactly 2 points of Cr(σ ). Suppose that Fc is fixed by ε0. Then ε0 acts on Fc as �0 ↔ �2
and �1 ↔ �3, where �0, . . . , �3 are labeled as in (2.4). Therefore ε0 is fixed-point-free, and
Y0 := X0/〈ε0〉 is an Enriques surface.

The Enriques involution ε0 acts on L40 in such a way that, for any curve C ∈ L40, we
have C ∩ Cε0 = ∅. Hence we obtain a configuration of 20 smooth rational curves on Y0.
It is easy to check that this configuration is isomorphic to the configuration of type IV. By
Theorem 6.1 of [14], we see that Y0 is an Enriques surface of type IV. ��

Using Proposition 2.17, we can describe the six Enriques involutions ε(ν) in Gal(μ) as
follows.

Proposition 6.1 The involution τJ ∈ Gal(μ) is an Enriques involution if and only if |J | = 3
and J contains {1, 5} or {2, 6} or {3, 4}. ��

6.2 Proof of Theorem 1.12

Let ε0 ∈ Aut(X0, h0) be the image of ε3 under ρ̃|Aut, which is one of ε(1), . . . , ε(6). Since
ε0 ∈ Aut(X0, h0), the involution ε3 preserves the face D0 = P0 ∩ D3 of D3. Therefore
ε3 belongs to the finite group Aut(X3, D0) defined by (5.2). We check all involutions in
Aut(X3, D0) and find ε3 in the form of a matrix acting on S3. We have 〈h3, hε3

3 〉 = 16.
Indeed, the V(i3)-chamber Dε3

3 is the chamber Dε
3 in Fig. 5. The action of ε3 on the fibers of

the Jacobian fibration σ : X3 → P
1 defined by (1.1) is exactly the same as the action of ε0

on the fibers of the corresponding fibration of X0. Hence ε3 is fixed-point-free. Moreover,
the configuration on Y3 := X3/〈ε3〉 of 20 smooth rational curves obtained from L40 ⊂ L112

is isomorphic to the configuration of type IV, and hence Y3 is of type IV by Theorem 6.1 of
[14]. The set of pullbacks of the smooth rational curves on Y3 by π3 is L40 ⊂ L112. Hence
they are lines on F3. ��

Remark 6.2 Recently, we have shown in [38] that X0 has exactly nine Enriques involutions
modulo conjugation in Aut(X0) and that four of the quotient Enriques surfaces have finite
automorphism groups (of types I, II, III, IV), whereas the other five have infinite automor-
phism groups.
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