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Abstract
Given an arbitrary closed set A of Rn , we establish the relation between the eigenvalues of
the approximate differential of the spherical image map of A and the principal curvatures of
A introduced by Hug–Last–Weil, thus extending a well-known relation for sets of positive
reach by Federer and Zähle. Then, we provide for every m = 1, . . . , n − 1 an integral
representation for the support measureμm of A with respect to them-dimensional Hausdorff
measure. Moreover, a notion of second fundamental form QA for an arbitrary closed set A is
introduced so that the finite principal curvatures of A correspond to the eigenvalues of QA.
Finally, we establish the relation between QA and the approximate differential of order 2
for sets introduced in a previous work of the author, proving that in a certain sense the latter
corresponds to the absolutely continuous part of QA.

Keywords Parallel sets · Nearest point projection · Approximate differentiability · Second
fundamental form · Support measures · Second-order rectifiability

Mathematics Subject Classification 52A22 · 53C65 (Primary); 28A75 · 60D05 (Secondary)

1 Introduction

Background

The theory of curvature of arbitrary closed subsets of the Euclidean space, which finds its
roots in the landmark paper of Federer [4] on sets of positive reach, has been initiated by
Stachó in [22] and continued by Hug–Last–Weil in [11]. If A ⊆ Rn is a closed set and δA is
the distance function from A, these authors introduced the generalized normal bundle of A,

N (A) = (A × Sn−1) ∩ {(a, u) : δA(a + su) = s for some s > 0}
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1432 M. Santilli

and they observed that there exists a countable collection A1, A2, . . . of closed sets of positive
reach and compact boundary such that

N (A) ⊆
∞⋃

i=1

N (Ai ).

On the basis of this fact, it follows that N (A) is a countably n − 1 rectifiable subset of
Rn ×Sn−1 and its n−1-dimensional approximate tangent plane coincides with that of one of
the sets Ai at H n−1 a.e. (a, u) ∈ N (A). This observation allows to introduce the principal
curvatures of A,

− ∞ < λA,1(a, u) ≤ · · · ≤ λA,n−1(a, u) ≤ ∞, (1)

atH n−1 a.e. (a, u) ∈ N (A), using the notion of principal curvature for sets of positive reach
introduced by Zähle in [24]. The support measures μ0, . . . , μn−1 of A are then introduced
by

μi (D) = 1

(n − i)α(n − i)

∫

D
Hn−i−1dH

n−1, (2)

whenever D ⊆ Rn × Sn−1 is an H n−1 measurable set such that the integral on the right
side exists (finite or infinite). Here, Hj denotes the j-th symmetric function of the principal
curvatures of A,

Hj =
∑

{l1,...,l j }⊆{1,...,n−1}

(
n−1∏

i=1

(1 + λ2A,i )
−1/2

) j∏

i=1

λA,li . (3)

The main result of the theory, the Steiner formula in [11, Theorem 2.1], is phrased in terms of
these support measures; see also [14, Theorem 1] where a corrected version of this formula
is pointed out. Despite this important result, several basic questions in the theory remain
undisclosed and it is our aim in this work to investigate some of them.

The theory of curvature for arbitrary closed sets has found applications so far in the study
of random closed sets in stochastic geometry (see [11, sections 7–8], [15]) and in spatial
statistics (see [14]). On the other hand, the fact that this is a theory developed with no a priori
assumptions on the structure of the sets (e.g., convex, positive reach, etc..), makes it certainly
appealing in the study of singular surfaces arising as solutions of variational problems (e.g.,
sets of finite perimeter, varifolds). See [20,21].

Results of the present paper

Relating the principal curvatures to the eigenvalues of the differential of the spherical image
map. If A ⊆ Rn is a closed set, let ξ A be the nearest point projection onto A and let νA

be the spherical image map, i.e., νA(x) = δA(x)−1(x − ξ A(x)) for x ∈ dmn ξ A ∼ A. If A
is a set of positive reach, then it is well known (Federer [4, 4.8] and Zähle [24]) that νA is
differentiable with symmetric differential at L n a.e. x ∈ {y : 0 < δA(y) < reach(A)} and,
denoting by χA,1(x) ≤ · · · ≤ χA,n−1(x) the eigenvalues of D νA(x)|{v : v • νA(x) = 0}, it
follows that the principal curvature λA,i (a, u) of A atH n−1 a.e. (a, u) ∈ N (A) is given by

λA,i (a, u) = χA,i (a + ru)

1 − rχA,i (a + ru)
for 0 < r < reach(A); (4)
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Fine properties of the curvature of arbitrary closed sets 1433

in fact the right side does not depend on r ∈ (0, reach(A)). On the other hand, it has been
proved in [1] that if A is an arbitrary closed subset of Rn , then any extension of the nearest
point projection ξ A on Rn is differentiable with symmetric differential at L n almost every
x ∈ Rn (recall that the nearest point projection is not well defined onRn unless A is convex).
Therefore, it is a natural question to understand if the principal curvatures of an arbitrary
closed set introduced in [11] (see (1)) can be realized by mean of a suitable extension of
(4). We provide the answer in Sects. 3 and 4, whose content we now briefly describe. The
main purpose of Sect. 3 is to analyze the set of approximate differentiability points of ξ A
for an arbitrary closed set A and to describe the tangential and curvature properties of the
level sets S(A, r) of the distance function δA in terms of νA and its approximate differential;
see 3.12 (together with 2.8, 3.6, 3.8). This is done introducing a reach-type function ρ(A, ·)
in 3.6 and analyzing the behavior of ξ A on the super-level sets of ρ(A, ·); see 3.10. A first
consequence of this analysis is contained in 3.13–3.14, where we provide a refined version
of the differentiability theorem in [1]. As a second consequence, we obtain in Sect. 4 the
answer to the question posed at the beginning of this paragraph, which we summarize in the
following theorem.

Theorem 1.1 If A ⊆ Rn is a closed set then νA is approximately differentiablewith symmetric
approximate differential at L n a.e. x ∈ Rn ∼ A. Moreover, if χA,1(x) ≤ · · · ≤ χA,n−1(x)
are the eigenvalues of apD νA(x)|{v : v • νA(x) = 0} then

λA,i (a, u) = χA,i (a + ru)

1 − rχA,i (a + ru)

for H n−1 a.e. (a, u) ∈ N (A), for every 0 < r < sup{s : δA(a + su) = s} and i =
1, . . . , n − 1.

The number sup{s : δA(a+su) = s} equals the reach function of A at (a, u) introduced in
[14, p. 292], and it naturally appears in the Steiner formula (see [14, Theorem 1]). Moreover,
in Sect. 4 we introduce a symmetric bilinear form (which we call second fundamental form
of A at a in the direction u)

QA(a, u) : TA(a, u) × TA(a, u) → R, (5)

atH n−1 a.e. (a, u) ∈ N (A), whose eigenvalues coincide with the finite principal curvatures
of A. Here, TA(a, u) is a linear subspace of Rn whose dimension can vary from 0 to n − 1.
The second fundamental form will be further investigated in Sects. 5 and 6.

Integral representation of the support measures. In Sect. 5, we consider the following
natural stratification of a closed set A: For each 0 ≤ m ≤ n, we define the m-th stratum of
A as

A(m) = A ∩ {a : dim ξ−1
A {a} = n − m} = A ∩ {a : 0 < H n−m−1(N (A, a)) < ∞}

(recall that ξ−1
A {a} is a convex set for every a ∈ A). The structure of this stratification

has been investigated in [16], where it is proved (notice 5.2) that A(m) is always countably
(H m,m) rectifiable of class 2; see [16, 4.12]. The main point here is to analyze the behavior
of the principal curvatures of A on each strata; see 5.6 and 5.7(1). Then, for each integer
1 ≤ m ≤ n − 1 we obtain the following integral representation formula of the support
measureμm with respect to them-dimensional Hausdorff measureH m . For arbitrary closed
sets, this result appears to be known only if m = n − 1; see [11, 4.1] (see also [3, 5.5] for
the special case of sets of positive reach).
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1434 M. Santilli

Theorem 1.2 (see 5.7) If A ⊆ Rn is a closed set, μ0, . . . , μn−1 are the support measures
of A, 1 ≤ m ≤ n − 1 is an integer, S is a countable union of Borel subsets with finite H m

measure and T ⊆ N (A)|S is H n−1 measurable, then

μm(T ) = 1

(n − m)α(n − m)

∫

A(m)

H n−m−1{v : (z, v) ∈ T }dH mz.

Second-order approximate differentiability. Finally, in Sect. 6 we analyze the relation of
the present notion of curvature with the notion of approximate curvature for second-order
rectifiable sets introduced by the author in [19]. In the latter, second-order rectifiable sets are
characterized by the existence of the approximate differential of order 2 at almost every point
(we refer to [19, 1.2] for a precise statement, which actually holds for all possible orders of
rectifiability). In this section, we complement this characterization with the following result:

Theorem 1.3 (see 2.7, 2.8 and 6.2) Let A ⊆ Rn be a closed set, 1 ≤ m ≤ n − 1, and let
S ⊆ A be H m measurable and (H m,m) rectifiable of class 2. Then, there exists R ⊆ S
such that H m(S ∼ R) = 0 and

ap Tan(S, a) = TA(a, u) apD2 S(a)(τ, υ) • u = −QA(a, u)(τ, υ)

for every τ, υ ∈ TA(a, u) and for H n−1 a.e. (a, u) ∈ N (A)|R.
In a certain sense, this theorem asserts that “the absolutely continuous part of the second

fundamental form QA, when restricted on a second-order rectifiable subset S of A, coincides
with the approximate differential of order 2 of S.” This result has an interesting analogy with
the classical theorem of Calderon and Zygmund asserting that the absolutely continuous part
of the total differential of a function of bounded variation coincides with its approximate
gradient. It is instructive to look at the primitive g of the Cantor function f ( f is a function
of bounded variation whose total differential cannot be fully described by the approximate
derivative); see 6.3. The epigraph of g is a closed convex set A of R2 (in particular ∂A is a
continuously differentiable submanifold and countably (H 1, 1) rectifiable of class 2) which
admits a subset T ⊆ ∂A such that H 1(T ) = 0,H 1(N (A)|T ) > 0 and

TA(a, u) = {0} for H 1 a.e. (a, u) ∈ N (A)|T .

2 Preliminaries

As a general rule, the notation and the terminology agree with [5, pp. 669–676]. Let m be
a nonnegative integer. The symbols U(a, r) and B(a, r) denote the open and closed ball
with center a and radius r ([5, 2.8.1]); Sm is the m-dimensional unit sphere in Rm+1 ([5,
3.2.13]);L m andH m are them-dimensional Lebesgue and Hausdorff measure ([5, 2.10.2]);
α(m) = L m(U(0, 1)); given a measure μ, we denote by �∗m(μ, ·), �m∗ (μ, ·) and �m(μ, ·)
the m-dimensional densities of μ ([5, 2.10.19]); G(m, k) is the Grassmann manifold of all
k-dimensional subspaces in Rm ([5, 1.6.2]). Moreover, given a function f , we denote by
dmn f and im f the domain and the image of f . The symbol • denotes the standard inner
product of Rm . If T is a linear subspace of Rm , then T� : Rm → Rm is the orthogonal
projection onto T and

T⊥ = Rm ∩ {v : v • u = 0 for u ∈ T }.
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Fine properties of the curvature of arbitrary closed sets 1435

For A ⊆ Rm we denote by reach(A) the reach of A, as defined in [4, 4.1].
If X and Y are sets, Z ⊆ X × Y and S ⊆ X , then

Z |S = Z ∩ {(x, y) : x ∈ S}.
Through the paper the maps p : Rm × Rm → Rm and q : Rm × Rm → Rm denote the
canonical projections onto the first and the second component; i.e.

p(x, v) = x, q(x, v) = v.

To treat the classical concept of rectifiable sets we adopt the terminology introduced in [5,
3.2.14]. Moreover, if A ⊆ Rn we say that A is countably (H m,m) rectifiable of class 2 if A
can beH m almost covered by the union of countably many m-dimensional submanifolds of
class 2 ofRn ; we omit the prefix “countably” whenH m(A) < ∞. We refer to [5, 3.1.21] for
the notions of tangent and normal cone of a set; moreover, given a measure μ and a positive
integer m, the approximate tangent cone Tanm(μ, ·) is defined as in [5, 3.2.16]. Finally, if X
and Y are metric spaces and f : X → Y is a function such that f and f −1 are Lipschitzian
functions, then we say that f is a bi-Lipschitzian homeomorphism.

Second fundamental form and normal bundle of submanifolds of class 2

Definition 2.1 Suppose 1 ≤ m ≤ n are integers, M is an m-dimensional submanifold of
class 2 of Rn and a ∈ M . Then, we call second fundamental form of M at a the unique
symmetric 2 linear function

bM (a) : Tan(M, a) × Tan(M, a) → Nor(M, a)

such that bM (a)(u, v) • ν(a) = −D ν(a)(u) • v for each u, v ∈ Tan(M, a), whenever
ν : M → Rn is of class 1 relative to M with ν(x) ∈ Nor(M, x) for every x ∈ M .

The following lemma is well known in differential geometry.

Lemma 2.2 Let M ⊆ Rn be anm-dimensional submanifold of class 2 and let N = Nor(M)∩
(M × Sn−1).

Then, N is an n−1-dimensional submanifold of class 1 ofRn×Rn and, if (a, u) ∈ N then
Tan(N , (a, u)) is the set of all (τ, v + D ν(a)(τ )) such that τ ∈ Tan(M, a), v ∈ Nor(M, a)

is orthogonal to u and ν is a unit normal vector field of class 1 on an open neighborhood of
a such that ν(a) = u.

Proof The conclusion is a direct consequence of the fact that, using a normal frame of M
in an open neighborhood Z of a, we can locally parametrize N at (a, u) using the product
manifold (M ∩ Z) × Sn−m−1. ��
Remark 2.3 If (a, u) ∈ N , τ ∈ Tan(M, a), τ1 ∈ Tan(M, a) and σ1 ∈ Rn is such that
(τ1, σ1) ∈ Tan(N , (a, u)), then

τ • σ1 = −bM (a)(τ, τ1) • u.

Approximate differentiability for functions and sets

First, we recall the following measure-theoretic notions of limit and differentiability for
functions, which play a key role in Sect. 3.
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1436 M. Santilli

Definition 2.4 Let f be a function mapping a subset of Rn into some set Y and let a ∈ Rn .
If Y is a normed vector space, a point y ∈ Y is the approximate limit of f at a if and only if

�n(L n � Rn ∼ {x : | f (x) − y| ≤ ε}, a) = 0 for every ε > 0

and we denote it by ap limx→a f (x). If Y = R , a point t ∈ R is the approximate lower limit
of f at a [the approximate upper limit of f at a] if and only if

t = sup{s : �n(L n � {x : f (x) < s}, a) = 0}
[
t = inf{s : �n(L n � {x : f (x) > s}, a) = 0}]

and we denote it by ap lim infx→a f (x) [ap lim supx→a f (x)].

Definition 2.5 Let n ≥ 1, ν ≥ 1 and k ≥ 0 be integers, A ⊂ Rn , f : A → Rν and a ∈ Rn .
We say that f is approximately differentiable of order k at a if there exists a polynomial

function P : Rn → Rν of degree at most k such that P(a) = f (a) if a ∈ A, and

ap lim
x→a

| f (x) − P(x)|
|x − a|k = 0.

We let apDi f (a) = Di P(a) for i = 1, . . . , k.

Remark 2.6 The following statement follows immediately from 2.4 and 2.5. Suppose
n, ν, k, A, f , a are as in 2.5 and B ⊆ A. Then, f |B is approximately differentiable
of order k at a if and only if f is approximately differentiable of order k at a and
�n(L n � Rn ∼ B, a) = 0. In this case, apDi ( f |B)(a) = apDi f (a) for i = 1, . . . , k.

We recall now from [19, 3.8, 3.19, 3.20] the notion of approximate differentiability for
sets.

Definition 2.7 Let n ≥ 1 and k ≥ 1 be integers, A ⊆ Rn , a ∈ Rn . We say that A is
approximately differentiable of order k at a if and only if there exist an integer 1 ≤ m ≤ n,
T ∈ G(n,m) and a polynomial function P : T → T⊥ of degree atmost k such that P(0) = 0,
D P(0) = 0 and the following two conditions hold:

(1) for every ε > 0, there exists η > 0 such that

H m(B(z, εr) ∩ {x − a : x ∈ A}) ≥ ηrm

for every z ∈ T ∩ B(0, r) and 0 ≤ r ≤ η,
(2) for every ε > 0,

lim
r→0

H m
({x − a : x ∈ A} ∩ B(0, r) ∩ {z : δgr(P)(z) > ε rk})

α(m)rm
= 0,

where gr P = {χ + P(χ) : χ ∈ T }.
Definition 2.8 Let n, k, A, a, m, T and P be as in 2.7. Then, we define

ap Tan(A, a) = T , apNor(A, a) = T⊥,

apDk A(a) = Dk(P ◦ T�)(0).

Remark 2.9 One can prove, using a standard density argument, that if M is anm-dimensional
submanifold of class 1 [class 2] in Rn and A ⊆ M is H m measurable with H m(A) < ∞,
then

Tan(M, a) = ap Tan(A, a) for H m a.e. a ∈ A

[ apD2 A(a)| ap Tan(A, a) × ap Tan(A, a) = bM (a) for H m a.e. a ∈ A.]
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Fine properties of the curvature of arbitrary closed sets 1437

Remark 2.10 For a set A ⊆ Rn , other notions of measure-theoretic tangent planes are well
known; see [19, 1.3, 1.4]. If A isH m measurable andH m(A) < ∞, then the sets of points
where these tangent planes exist and belong to G(n,m) are H m almost equal to the set of
points where ap Tan(A, ·) exists and belongs to G(n,m).

Remark 2.11 A characterization of higher-order rectifiable sets is obtained in [19, 3.23, 5.6]
in terms of the approximate differentiability given in 2.7.

Level sets of distance function

Definition 2.12 Let A ⊆ Rn be a closed set. We define

δA(x) = inf{|x − a| : a ∈ A} for x ∈ Rn,

S(A, r) = {x : δA(x) = r} for r > 0.

In this paper, we need the following result on the rectifiability properties of the level sets
of δA.

Theorem 2.13 Let A be a closed subset of Rn and r > 0.

(1) If K ⊆ Rn is compact, then S(A, r) ∩ K is n − 1 rectifiable.
(2) S(A, r) is countably (H n−1, n − 1) rectifiable of class 2.

Proof If A is bounded, then the proof of (1) is contained in [17, 2.3] (which relies on [8]).
If A is unbounded, then the proof can be readily reduced to the previous case noting that if
r > 0 and K ⊆ Rn is compact, then the set

C =
⋃

x∈S(A,r)∩K

A ∩ {a : |x − a| = δA(x)}

is compact and S(A, r) ∩ K ⊆ S(C, r).
We notice that for each x ∈ S(A, r) there exists v ∈ Rn ∼ {0} such thatU(x+v, |v|) = ∅.

In fact, we can choose v = a− x for a ∈ A such that |x −a| = r . Therefore, (2) comes from
[16, 4.12]. Notice that [16, 4.12] also implies that S(A, r) is countably n − 1 rectifiable, a
piece of information already contained in (1). ��
Remark 2.14 The local structure of the level sets of the distance function has been thoroughly
studied in the last decades; see [7,8,10] and [18]. However, here we only use the rectifiability
properties in 2.13.

Definition 2.15 If A ⊆ Rn is a closed set, we define the positive boundary ∂+A of A as the
set of all x ∈ A such that there exists v ∈ Rn ∼ {0} with A ∩ U(x + v, |v|) = ∅.

The following result is contained in [17, 2.5] when A is a compact set.

Lemma 2.16 Let A ⊆ Rn be a closed set and let Pr = {x : δA(x) ≤ r} for r > 0. Then, for
all r > 0 up to a countable set,

H n−1(S(A, r) ∼ ∂+Pr ) = 0.

Proof If r > 0 and i ≥ 1 is an integer, we define Pi,r = {x : δA∩B(0,i)(x) ≤ r}. We fix two
integers i ≥ 1 and j ≥ 1, and we prove that for all 0 < r < j up to a countable set,

H n−1(S(A, r) ∩ U(0, i) ∼ ∂+Pr ) = 0.
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1438 M. Santilli

Let 0 < r < j and x ∈ S(A, r) ∩ U(0, i) ∩ ∂+Pi+ j,r . Then, there exist s > 0 and v ∈ Rn

with |v| = 1 and U(x + sv, s) ∩ Pi+ j,r = ∅. Evidently, we can choose s small so that
U(x + sv, s) ⊆ U(0, i). If there was z ∈ U(x + sv, s) such that δA(z) ≤ r , then we could
choose a ∈ A so that |z − a| = δA(z) and infer that

a ∈ A ∩ B(0, i + j), δA∩B(0,i+ j)(z) ≤ r ,

whence we would get a contradiction. Therefore,

S(A, r) ∩ U(0, i) ∩ ∂+Pi+ j,r ⊆ S(A, r) ∩ U(0, i) ∩ ∂+Pr .

Moreover, we observe that

S(A, r) ∩ U(0, i) ⊆ S(A ∩ B(0, i + j), r) for all 0 < r < j .

Now, we employ [17, 2.5] to infer

H n−1(S(A, r) ∩ U(0, i) ∼ ∂+Pr ) = 0

for all 0 < r < j , up to a countable set. ��

3 Fine properties of the nearest point projection

The main objective of this section is to analyze the fine properties of the nearest point
projection ξ A and relate them to the tangential and curvature properties of the distance sets
S(A, r).

We start introducing some basic notation. It will be repeatedly used through the rest of
this paper together with the notation already introduced in 2.12.

Definition 3.1 (Basic notation) Suppose A ⊆ Rn is closed and U is the set of all x ∈ Rn

such that there exists a unique a ∈ A with |x − a| = δA(x). The nearest point projection
onto A is the map ξ A characterized by the requirement

|x − ξ A(x)| = δA(x) for x ∈ U .

Let νA and ψ A be the functions on U ∼ A such that

νA(z) = δA(z)−1(z − ξ A(z)) and ψ A(z) = (ξ A(z), νA(z)),

whenever z ∈ U ∼ A. We refer to νA as the spherical image map of A. Finally,

U (A) = dmn ξ A ∼ A.

Remark 3.2 It is known that ξ A is continuous by [4, 4.8(4)], dmn ξ A is a Borel subset of Rn

by [16, 3.5], ξ−1
A {a} is a convex subset of Rn whenever a ∈ A by [4, 4.8(2)] and

L n(Rn ∼ dmn ξ A) = 0 (6)

by [4, 4.8(3)] and Rademacher’s theorem [5, 3.1.6].

Remark 3.3 Noting 3.2, we infer that for every 0 < r < ∞ the map ψ A|U (A) ∩ S(A, r) is
an homeomorphism with

(ψ A|U (A) ∩ S(A, r))−1(a, u) = a + ru whenever (a, u) ∈ ψ A[U (A) ∩ S(A, r)].
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Fine properties of the curvature of arbitrary closed sets 1439

Remark 3.4 We notice that if v ∈ Rn ∼ {0}, a ∈ A and |v| = δA(a + v), then

a + tv ∈ U (A) and ξ A(a + tv) = a

whenever 0 < t < 1.

Lemma 3.5 Suppose A ⊆ Rn is closed, x ∈ U (A), ξ A is approximately differentiable at x
and T = Rn ∩ {v : v • νA(x) = 0}.

Then, δA is differentiable at x, νA is approximately differentiable at x,

apD ξ A(x) • νA(x) = 0 and apD νA(x) = |x − ξ A(x)|−1(T� − apD ξ A(x)).

In particular ker apDψ A(x) ⊆ T⊥.

Proof Since δA(y) = |y− ξ A(y)| for y ∈ dmn ξ A, we use A.4, A.5 and [4, 4.8(3)] to deduce
that δA is differentiable at x and

D δA(x)(v) = νA(x) • v for v ∈ Rn . (7)

It follows that νA is approximately differentiable at x and employing (7) one computes

apD νA(x)(v) = T�(v) − apD ξ A(x)(v)

δA(x)
for v ∈ Rn .

Then, we readily infer that ker apDψ A(x) ⊆ T⊥.
If r = |x − ξ A(x)| we use the continuity of ξ A at x (see 3.2) to select 0 < δ < r such

that |ξ A(z) − ξ A(x)| ≤ r and

(ξ A(z) − x) • νA(x) = (ξ A(z) − ξ A(x)) • νA(x) − r ≤ 0 (8)

whenever z ∈ U(x, δ) ∩ dmn ξ A. Since |ξ A − x | ≥ r and T�(x − ξ A(x)) = 0, we use (8) to
infer

(
r2 − |T�(ξ A(z) − ξ A(x))|2)1/2 ≤ |(ξ A(z) − x) • νA(x)| = −(ξ A(z) − x) • νA(x),

(ξ A(z) − ξ A(x)) • νA(x) + (r2 − |T�(ξ A(z) − ξ A(x))|2)1/2 ≤ r , (9)

for z ∈ U(x, δ) ∩ dmn ξ A. Employing A.1 and A.4, we obtain from (9) that

apD ξ A(x) • νA(x) = 0.

��
Definition 3.6 If A is a closed subset of Rn , we define

ρ(A, x) = sup{t : δA(ξ A(x) + t(x − ξ A(x))) = tδA(x)},
whenever x ∈ U (A).

Remark 3.7 We notice that if x ∈ U (A), then 1 ≤ ρ(A, x) ≤ ∞ and

ρ(A, x) ≥ λ if and only if δA(ξ A(x) + λ(x − ξ A(x))) = λδA(x)

for λ ≥ 1. It follows from 3.2 that the set {x : ρ(A, x) ≥ λ} is relatively closed in U (A)

for every λ ≥ 1, whence we deduce that ρ(A, ·) : U (A) → R ∪ {+∞} is an upper-
semicontinuous function; in particular it is a Borel function.
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Definition 3.8 If A is a closed subset of Rn and λ ≥ 1, we define

Aλ = {x : ρ(A, x) ≥ λ}
and D(Aλ) to be the set of x ∈ Aλ such that ξ A|Aλ is approximately differentiable at x ;
see 2.6.

Remark 3.9 If 0 < R = reach(A), 0 < r < R and 0 < δA(x) ≤ r , it follows from [4, 4.8(6)]
that

sup{t : ξ A(ξ A(x) + t(x − ξ A(x))) = ξ A(x)} ≥ R/r;
in particular, {x : 0 < δA(x) ≤ r} ⊆ AR/r .

Here, we provide a thorough description of the nearest point projection ξ A on the super-
level sets Aλ.

Lemma 3.10 Suppose A is a closed subset of Rn and define the maps ht on U (A) corre-
sponding to 0 < t < ∞ by

ht (z) = ξ A(z) + t(z − ξ A(z)) for z ∈ U (A). (10)

Then, the following statements hold for 1 < λ < ∞ and 0 < t < λ.

(1) Lip(ξ A|Aλ) ≤ λ(λ − 1)−1 and ht |Aλ is a bi-Lipschitzian homeomorphism onto Aλ/t

with (ht |Aλ)
−1 = ht−1 |Aλ/t .

(2) L n(Aλ ∼ D(Aλ)) = 0.
(3) The map ψ A|Aλ has an extension � : Rn → Rn × Rn such that � is differentiable at

every x ∈ D(Aλ) with D�(x) = apDψ A(x). Moreover, ker apDψ A(x) = {sνA(x) :
s ∈ R} whenever x ∈ D(Aλ).

(4) ht [D(Aλ)] ⊆ D(Aλ/t ).
(5) If x ∈ D(Aλ), then ht−1 is approximately differentiable at ht (x) with

apD ht−1(ht (x)) = apD ht (x)
−1,

apDψ A(x) = apDψ A(ht (x)) ◦ apD ht (x).

(6) If x ∈ D(Aλ), then the eigenvalues of apD ξ A(x) and apD νA(x) belong to the intervals
0 ≤ s ≤ λ(λ − 1)−1 and (1 − λ)−1δA(x)−1 ≤ s ≤ δA(x)−1, respectively. In case
apD ξ A(x) is a symmetric endomorphism, so are apD ξ A(ht (x)) and apD νA(ht (x)).

Proof of (1) If x ∈ Aλ and y ∈ Aλ, then we apply [16, 4.7(1)] with q , a, b and v replaced by
λ|x − ξ A(x)|, ξ A(x), ξ A(y) and x − ξ A(x), respectively, to infer that

(ξ A(y) − ξ A(x)) • (x − ξ A(x)) ≤ (2λ)−1|ξ A(x) − ξ A(y)|2,
and symmetrically,

(ξ A(x) − ξ A(y)) • (y − ξ A(y)) ≤ (2λ)−1|ξ A(x) − ξ A(y)|2.
Combining the two equations, we get

|ξ A(x) − ξ A(y)||x − y| ≥ (ξ A(x) − ξ A(y)) • (x − y) ≥ λ−1(λ − 1)|ξ A(x) − ξ A(y)|2.
By 3.4, one infers ξ A(ht (x)) = ξ A(x) and ht−1(ht (x)) = x whenever x ∈ Aλ, and

ht [Aλ] ⊆ Aλ/t . Since 0 < t−1 < λ/t , the same conclusions hold with λ and t replaced by
λ/t and t−1, respectively. Henceforth, (1) is proved. ��
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Proof of (2) Since ξ A|Aλ is Lipschitzian, L n(Aλ ∼ D(Aλ)) = 0 by [19, 2.11]. ��
Proof of (3) Since ξ A|Aλ is Lipschitzian, there exists a Lipschitzian function F : Rn → Rn

such that F |Aλ = ξ A|Aλ by [5, 2.10.43]. Then, by A.5, the map F is differentiable at every
x ∈ D(Aλ) with

D F(x) = apD ξ A(x).

If x ∈ D(Aλ), then x + sνA(x) ∈ Aλ and

F(x + sνA(x)) = ξ A(x + sνA(x)) = ξ A(x)

for −δA(x) < s < (λ − 1)δA(x). Differentiating with respect to s, we get that

apD ξ A(x)(νA(x)) = D F(x)(νA(x)) = 0

and apD νA(x)(νA(x)) = 0 by 3.5. Let G : Rn → Rn be any function such that G(x) =
δA(x)−1(x−F(x)) for x ∈ Rn ∼ A. Noting 3.5 and [19, 2.8], we infer thatG is differentiable
at every x ∈ D(Aλ) with DG(x) = apD νA(x). Henceforth, � = (F,G) and (3) is proved.

��
Proof of (4) and (5) Let x ∈ D(Aλ) and y = ht (x). Then, ht is approximately differentiable
at x and, noting 3.10(1), we can use A.3 and [2, Theorem 1] to infer that apD ht (x) is an
isomorphism of Rn and

�n(L n � Rn ∼ Aλ/t , y) = 0.

For ε > 0, we define

Pε = Aλ ∩ {w : |ht (w) − ht (x) − apD ht (x)(w − x)| ≥ ε|w − x |},
Qε = Aλ/t ∩ {z : |ht−1(z) − x − apD ht (x)

−1(z − y)| ≥ ε|z − y|},
we observe that Qε ⊆ ht (PCε) for C = ‖ apD ht (x)−1‖−1(Lip(ht |Aλ)

−1)−1 and

B(ht (x), r) ∩ Qε ⊆ ht [PCε ∩ B(x, (Lip(ht |Aλ)
−1)r)] for r > 0,

whence we deduce that

�n(L n � Qε, ht (x)) = 0 for every ε > 0,

the map ht−1 is approximately differentiable at y and

apD ht−1(y) = apD ht (x)
−1.

Let � be an extension of ψ A|Aλ given by 3.10(3). If z ∈ Aλ/t , being λ > 1 and noting 3.4,
we get that

�(ht−1(z)) = ψ A(ht−1(z)) = ψ A(z)

and we use A.4 to infer that ψ A is approximately differentiable at y with

apDψ A(y) = apDψ A(x) ◦ apD ht−1(y).

��
Proof of (6) If μ ∈ R , v ∈ Sn−1 and apD ξ A(x)(v) = μv, then, noting that apD hs(x) is
injective for 0 < s < λ by 3.10(5), we infer that
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(1 − s)μ + s �= 0 for 0 < s < λ,

whence we deduce that

0 ≤ μ ≤ λ(λ − 1)−1.

If μ �= 0, v ∈ Sn−1 and apD νA(x)(v) = μv, then

v • νA(x) = 0 and apD ξ A(x)(v) = (1 − δA(x)μ)v

by 3.5, which implies (1 − λ)−1δA(x)−1 ≤ μ ≤ δA(x)−1.
If apD ξ A(x) is symmetric, then there exists an orthonormal basis v1, . . . , vn of Rn and

0 ≤ μ1 ≤ · · · ≤ μn such that apD ξ A(x)(vi ) = μivi for i = 1, . . . , n and 3.10(5) implies
that

apD ξ A(ht (x))(vi ) = μi ((1 − t)μi + t)−1vi whenever i = 1, . . . , n.

Therefore, apD ξ A(ht (x)) is symmetric and so is apD νA(ht (x)) by 3.5. ��
Remark 3.11 Combining 3.5 and 3.10(5), if 1 < λ < ∞, 0 < t < λ, x ∈ D(Aλ) and
T = Rn ∩ {v : v • νA(x) = 0}, then

im apD ξ A(ht (x)) = im apD ξ A(x) ⊆ T ,

im apD νA(ht (x)) = im apD νA(x) ⊆ T .

Here, the tangential and curvature properties of the distance sets S(A, r) are expressed in
terms of the spherical image map of A and its approximate differential.

Lemma 3.12 If A is a closed subset of Rn, then for L 1 a.e. r > 0 and for H n−1 a.e.
x ∈ S(A, r) the following three statements hold:

H n−1
(
S(A, r) ∼

⋃

λ>1

D(Aλ)

)
= 0,

ap Tan(S(A, r), x) = {v : v • νA(x) = 0},
apD2 S(A, r)(x)(u, v) • νA(x) = − apD νA(x)(u) • v

for u, v ∈ ap Tan(S(A, r), x).

Proof We define Pr = {x : δA(x) ≤ r} for r > 0 and B = ⋃
λ>1 Aλ. First, we prove that

S(A, r) ∩ B = ∂+Pr for every r > 0.

Let x ∈ ∂+Pr . Then, x ∈ S(A, r) and we choose a ∈ A with |x − a| = r , u ∈ Sn−1 and
s > 0 such that U(x + su, s) ∩ Pr = ∅. Noting that δA(x + su) > r , we apply [4, 4.9] to
infer that

s = δPr (x + su) = δA(x + su) − r

whencewe deduce that r+s ≤ |x+su−a| and r ≤ u•(x−a). It follows that x−a and umust
be linearly dependent and x − a = ru. Noting 3.4, we conclude that ρ(A, x) ≥ r−1(r + s).
We assume now x ∈ Aλ ∩ S(A, r) for λ > 1. Since δA(ξ A(x) + λ(x − ξ A(x))) = λr , it
follows from [4, 4.9] that

δPr (ξ A(x) + λ(x − ξ A(x))) = (λ − 1)r

and, noting that ξ A(x) + λ(x − ξ A(x)) = x + (λ − 1)rνA(x), we conclude that x ∈ ∂+Pr .
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It follows from 2.16 that H n−1(S(A, r) ∼ B) = 0 for all, but countably many r > 0,
whence we deduce using 3.10(2) and Coarea formula that

H n−1
(
S(A, r) ∼

⋃

λ>1

D(Aλ)

)
= 0 for L 1 a.e. r > 0. (11)

It follows from 3.10(3) and [5, 2.10.19(4), 3.2.16] that for all r > 0, λ > 1 and forH n−1

a.e. x ∈ S(A, r) ∩ D(Aλ),

�n−1(H n−1 � S(A, r) ∼ Aλ, x) = 0 (12)

and ψ A is (H n−1 � S(A, r), n − 1) approximately differentiable1 at x with

(H n−1 � S(A, r), n − 1) apDψ A(x) = apDψ A(x). (13)

Moreover, we claim that for L 1 a.e. r > 0 and for H n−1 a.e. x ∈ S(A, r)

ap Tan(S(A, r), x) = {v : v • νA(x) = 0}. (14)

To prove (14), first we notice that it follows from [5, 3.1.6, 3.2.11, 3.1.21], [4, 4.8(3)] and
(3.2) that δA is differentiable at x with grad δA(x) = νA(x) and Tan(S(A, r), x) is contained
in {v : v • grad δA(x) = 0} for L 1 a.e. r > 0 and for H n−1 a.e. x ∈ S(A, r); second, we
employ 2.13 and [19, 3.23].

Combining (11)–(14) with 3.10(1) and [19, 3.25], we conclude that

apD2 S(A, r)(x)(u, v) • νA(x) = − apD νA(x)(u) • v

for u, v ∈ ap Tan(S(A, r), x), for H n−1 a.e. x ∈ S(A, r) and for L 1 a.e. r > 0. ��
Definition 3.13 If A ⊆ Rn is a closed set, we say that x ∈ U (A) is a regular point of ξ A if
and only if ap limy→xρ(A, y) = ρ(A, x) > 1 and ξ A is approximately differentiable at x
with symmetric approximate differential.

The set of regular points of ξ A is denoted by R(A).

Theorem 3.14 If A is a closed subset of Rn, thenL n(Rn ∼ (R(A) ∪ A)) = 0. If x ∈ R(A),
then ξ A(x) + t(x − ξ A(x)) ∈ R(A) for every 0 < t < ρ(A, x).

Proof Noting that the approximate differential of order 2 of a set is symmetric by def-
inition (see 2.8), one infers from 3.12, 3.5, 3.10(3) and Coarea formula that ρ(A, x) > 1
and ξ A is approximately differentiable with symmetric approximate differential
for L n a.e. x ∈ Rn ∼ A. Since ρ(A, ·) is a Borel function by 3.7, it follows that
ap limy→x ρ(A, y) = ρ(A, x) for L n a.e. x ∈ U (A) by [5, 2.9.13]. Therefore,

L n(Rn ∼ (R(A) ∪ A)) = 0.

If x ∈ R(A) and 0 < t < ρ(A, x) we choose λ such that t < λ < ρ(A, x) and λ > 1 and
we notice that x ∈ D(Aλ). It follows from 3.10(4)(6) that ξ A is approximately differentiable
at ht (x) (see (10)) with symmetric approximate differential,

�n(L n �Rn ∼ Aλ/t , ht (x)) = 0, ap lim inf
y→ht (x)

ρ(A, y) ≥ λ/t .

1 Given a measure μ on a normed vector space and a positive integer m, we refer to [5, 3.2.16] for the notion
of (μ,m) approximate differentiability.
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Since ρ(A, ht (x)) = t−1ρ(A, x), we conclude that

ap lim inf
y→ht (x)

ρ(A, y) ≥ ρ(A, ht (x)) > 1

and it follows from 3.7 that ht (x) ∈ R(A). ��
Remark 3.15 It follows from Coarea formula and 3.14 that

H n−1(S(A, r) ∼ R(A)) = 0 for L 1 a.e. r > 0.

Definition 3.16 If A ⊆ Rn is a closed set, 1 < λ < ∞ and 0 < r < ∞, then we define

Sλ(A, r) = S(A, r) ∩ Aλ,

Remark 3.17 If r > 0 we can readily check the following properties.

(1) ψ A|Sλ(A, r) is a bi-Lipschitzian homeomorphism by 3.3 and 3.10(1).
(2) ψ A[Sλ(A, r)] = (A× Sn−1)∩ {(a, u) : δA(a + λru) = λr} (using 3.4 and 3.7), whence

we deduce that ψ A[Sλ(A, r)] is a closed subset of A × Sn−1 and

ψ A[Sλ(A, r)] ⊆ ψ A[Sλ(A, s)] if 0 < s < r < ∞.

(3) It follows from 2.13(1) that ψ A[Sλ(A, r)]|K is n − 1 rectifiable for every K ⊆ Rn

compact.
(4) If reach(A) = R > 0 and 0 < r < R, it follows from 3.9 that

S(A, r) = SR/r (A, r).

Remark 3.18 The results in 3.10(1), 3.10(4) and 3.12 generalize to arbitrary closed subsets
of the Euclidean space the results proved [23, 3.1, 3.2, 3.3] for geodesically convex subsets
of Riemannian manifolds.

Remark 3.19 The fact that ξ A is approximately differentiable with symmetric approximate
differential at L n a.e. x ∈ U (A) can be alternatively deduced from [1].

4 Second fundamental form

In this section, we introduce the second fundamental form in (5) and we prove Theorem 1.1.

Definition 4.1 Suppose A is a closed subset of Rn . We define

N (A) = (A × Sn−1) ∩ {(a, u) : δA(a + su) = s for some s > 0}.
Moreover, we let N (A, a) = {v : (a, v) ∈ N (A)} for a ∈ A.

Remark 4.2 We notice that N (A) coincides with the normal bundle of A introduced in [11,
§ 2.1] and N (A) ⊆ Nor(A); see [4, 4.4] or [5, 3.1.21]. If reach A > 0, then N (A, a) =
Nor(A, a) ∩ Sn−1 for a ∈ A by [4, 4.8(12)].

Remark 4.3 If 1 < λ < ∞, (a, u) ∈ A×Sn−1 and δA(a+ su) = s for some s > 0 it follows
from 3.4 that a + λ−1su ∈ Aλ and ψ A(a + λ−1su) = (a, u). Then, we readily infer that

N (A) = ψ A[Aλ] =
⋃

r>0

ψ A[Sλ(A, r)].

It follows from 3.17 that N (A) is a countably n − 1 rectifiable Borel subset of Rn × Sn−1.
This fact has been already noticed in [11, p. 243].
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Definition 4.4 If x ∈ R(A), then ψ A(x) is a regular point of N (A). We denote the set of all
regular points of N (A) by R(N (A)).

Remark 4.5 It follows from 4.3, 3.17 and 3.15 that

H n−1(N (A) ∼ R(N (A)) = 0.

Moreover, it follows from 3.14 that if (a, u) ∈ R(N (A)), then a + ru ∈ R(A) for
0 < r < sup{s : δA(a + su) = s}.

The following lemma ensures that the definition in 4.7 is well posed.

Lemma 4.6 Suppose A ⊆ Rn is a closed set, x ∈ R(A), 0 < t < ρ(A, x) and y =
ξ A(x) + t(x − ξ A(x)), then the following two statements hold:

(1) If v, v1, v2 ∈ Rn are such that apD ξ A(x)(v1) = apD ξ A(x)(v2), then

apD ξ A(x)(v) • apD νA(x)(v1) = apD ξ A(x)(v) • apD νA(x)(v2),

apD ξ A(x)(v1) • apD νA(x)(v) = apD ξ A(x)(v) • apD νA(x)(v1).

(2) Ifv,w, v1, w1 ∈ Rn are such that apD ξ A(y)(w) = apD ξ A(x)(v)and apD ξ A(y)(w1) =
apD ξ A(x)(v1), then

apD νA(x)(v1) • apD ξ A(x)(v) = apD νA(y)(w1) • apD ξ A(y)(w).

Proof Let r = |x − ξ A(x)| and we recall that x ∈ D(Aλ) for 1 < λ < ρ(A, x). To prove (1)
we compute, using 3.5 and 3.10(3),

apD ξ A(x)(v) • apD νA(x)(v1)

= r−1v • [apD ξ A(x)(v1) − (apD ξ A(x) ◦ apD ξ A(x))(v1)]
= r−1v • [apD ξ A(x)(v2) − (apD ξ A(x) ◦ apD ξ A(x))(v2)]
= apD ξ A(x)(v) • apD νA(x)(v2),

apD ξ A(x)(v) • apD νA(x)(v1)

= r−1v • [apD ξ A(x)(v1) − (apD ξ A(x) ◦ apD ξ A(x))(v1)]
= r−1 apD ξ A(x)(v1) • [v − apD ξ A(x)(v)]
= apD ξ A(x)(v1) • apD νA(x)(v);

to prove (2) we compute, using 3.5 and 3.10(3)(5)(6),

apD ξ A(y)(w1) = apD ξ A(x)(v1) = apD ξ A(x)(T�(v1))

= apD ξ A(y)[apD ξ A(x)(v1) + t(T�(v1) − apD ξ A(x)(v1))]
= apD ξ A(y)[apD ξ A(y)(w1) + tr apD νA(x)(v1)],
t−1r−1[apD ξ A(y)(w1) − (apD ξ A(y) ◦ apD ξ A(y))(w1)]

= (apD ξ A(y) ◦ apD νA(x))(v1),

apD νA(x)(v1) • apD ξ A(x)(v)

= apD νA(x)(v1) • apD ξ A(y)(w)

= (apD ξ A(y) ◦ apD νA(x))(v1) • w

= t−1r−1[apD ξ A(y)(w1) − (apD ξ A(y) ◦ apD ξ A(y))(w1)] • w

= apD νA(y)(w1) • apD ξ A(y)(w).

��
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Definition 4.7 Suppose A is a closed subset of Rn and (a, u) ∈ R(N (A)).
We define

TA(a, u) = im apD ξ A(x) and QA(a, u)(τ, τ1) = τ • apD νA(x)(v1),

whenever x is a regular point of ξ A such that ψ A(x) = (a, u), τ ∈ TA(a, u), τ1 ∈ TA(a, u)

and v1 ∈ Rn such that apD ξ A(x)(v1) = τ1.
We call QA(a, u) second fundamental form of A at a in the direction u.

Lemma 4.8 If A ⊆ Rn is a closed set and (a, u) ∈ R(N (A)), then

QA(a, u) : TA(a, u) × TA(a, u) → R

is a symmetric bilinear form and TA(a, u) ⊆ {v : v • u = 0}. Moreover, if r > 0 and
δA(a + ru) = r , then

QA(a, u)(τ, τ ) ≥ −r−1|τ |2 whenever τ ∈ TA(a, u).

Proof If x and y are regular points of ξ A such that ψ A(x) = (a, u) = ψ A(y), then y =
ξ A(x) + (δA(y)/δA(x))(x − ξ A(x)), and the first part of the conclusion follows from 3.11
and 4.6.

If 0 < s < r , then a + su is a regular point of ξ A by 4.5 and ψ A(a + su) = (a, u).
Suppose τ ∈ TA(a, u) and v ∈ Rn are such that apD ξ A(a + su)(v) = τ . Then, noting that
apD ξ A(a + su)(v) • v ≥ 0 by 3.10(6), we use 3.5 to compute

QA(a, u)(τ, τ ) = apD ξ A(a + su)(v) • apD νA(a + su)(v)

= s−1 apD ξ A(a + su)(v) • (T�(v) − apD ξ A(a + su)(v))

= s−1 apD ξ A(a + su)(v) • (v − apD ξ A(a + su)(v))

≥ −s−1| apD ξ A(a + su)(v)|2 = −s−1|τ |2.
Letting s → r we get the second conclusion. ��

Definition 4.9 Let A ⊆ Rn be closed. For each regular point (a, u) of N (A), we define the
principal curvatures of A at (a, u),

κA,1(a, u) ≤ · · · ≤ κA,n−1(a, u),

so that κA,m+1(a, u) = ∞, κA,1(a, u), . . . , κA,m(a, u) are the eigenvalues of QA(a, u) and
m = dim TA(a, u). Moreover,

χA,1(x) ≤ · · · ≤ χA,n−1(x)

are the eigenvalues of apD νA(x)|{v : v • νA(x) = 0} for x ∈ R(A).

Now, we clarify the relation between the κA,i ’s and the χA,i ’s.

Lemma 4.10 If A ⊆ Rn is closed and (a, u) ∈ R(N (A)), then

κA,i (a, u) = χA,i (a + ru)

1 − rχA,i (a + ru)

for 0 < r < sup{s : δA(a + su) = s} and i = 1, . . . , n − 1.
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Proof If (a, u) ∈ R(N (A)) and 0 < r < sup{s : δA(a + su) = s} let
T = {v : v • νA(a + ru) = 0}

and let {v1, . . . , vn−1} be an orthonormal basis of T such that

apD νA(a + ru)(vi ) = χA,i (a + ru)vi for i = 1, . . . , n − 1.

It follows from 3.5 that

apD ξ A(a + ru)(vi ) = (1 − rχA,i (a + ru))vi for i = 1, . . . , n − 1,

whence we conclude from Definitions 4.7 and 4.9 that

χA,i (a + ru) = r−1 for i > dim TA(a, u),

QA(a, u)(vi , v j ) = χA, j (a + ru)(1 − rχA, j (a + ru))−1vi • v j for i, j ≤ dim TA(a, u),

κA,i (a, u) = χA,i (a + ru)(1 − rχA,i (a + ru))−1 for 1 ≤ i ≤ n − 1.

��
It is immediate from the following lemma to conclude that the principal curvatures intro-

duced in [11] coincides with those introduced in 4.9; see 4.12.

Lemma 4.11 Suppose A ⊆ Rn is closed and θ is H n−1 � N (A) measurable and
H n−1 � N (A) almost positive function such that θH n−1 � N (A) is a Radon measure over
Rn × Sn−1. Let ψ = θH n−1 � N (A).

Then, the following three statements hold:

(1) For H n−1 a.e. (a, u) ∈ N (A), Tann−1(ψ, (a, u)) is a (n − 1)-dimensional plane con-
tained in Tann−1(H n−1 � N (A), (a, u)). Moreover, there exist u1, . . . , un−1 ∈ Rn such
that {u1, . . . , un−1, u} is an orthonormal basis of Rn and

{(
1

(1 + κA,i (a, u)2)1/2
ui ,

κA,i (a, u)

(1 + κA,i (a, u)2)1/2
ui

)
: 1 ≤ i ≤ n − 1

}

is an orthonormal basis of Tann−1(ψ, (a, u)).2

(2) For H n−1 a.e. (a, u) ∈ N (A),

TA(a, u) = p[Tann−1(ψ, (a, u))] and QA(a, u)(τ, τ1) = τ • σ1

whenever τ ∈ TA(a, u), τ1 ∈ TA(a, u) and (τ1, σ1) ∈ Tann−1(ψ, (a, u)).
(3) For every (H n−1 � N (A))-integrable R-valued function f on N (A),

∫

N (A)

f (a, u)

n−1∏

i=1

|κA,i (a, u)|
(1 + κA,i (a, u)2)1/2

dH n−1(a, u)

=
∫

Sn−1

∫

{a:(a,v)∈N (A)}×{v}
f dH 0 dH n−1v.

Proof The first part of (1) directly follows from B.4 and 4.3. We fix now λ > 1. For r > 0
let Pr be the set of x ∈ R(A) ∩ D(Aλ) ∩ S(A, r) such that

2 If κA,i (a, u) = ∞ the corresponding vector equals (0, ui ).
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ap Tan(Sλ(A, r), x) = Rn ∩ {v : v • νA(x) = 0},
Tann−1(H n−1 � ψ A[Sλ(A, r)],ψ A(x)) = Tann−1(ψ,ψ A(x)) is an n − 1

dimensional plane.

If r > 0 and x ∈ Pr , it follows from 3.10(3), 3.17, B.2 and B.3 that

apDψ A(x)[ap Tan(Sλ(A, r), x)] = Tann−1(H n−1 � ψ A[Sλ(A, r)],ψ A(x)),

p[Tann−1(ψ,ψ A(x))] = im apD ξ A(x),

QA(ψ A(x))(τ, τ1) = τ • σ1

for τ, τ1 ∈ TA(ψ A(x)) and (τ1, σ1) ∈ Tann−1(ψ,ψ A(x)); moreover, if {v1, . . . , vn−1} is
an orthonormal basis of ap Tan(Sλ(A, r), x) such that apD νA(x)(vi ) = χA,i (x)vi for i =
1, . . . , n − 1, then we can easily check using 4.10 that

{(
1

(1 + κA,i (ψ A(x))2)1/2
vi ,

κA,i (ψ A(x))

(1 + κA,i (ψ A(x))2)1/2
vi

)
: 1 ≤ i ≤ n − 1

}

is an orthonormal basis of Tann−1(H n−1 � ψ A[Sλ(A, r)],ψ A(x)). Noting that

H n−1(Sλ(A, r) ∼ Pr ) = 0 and H n−1(ψ A[Sλ(A, r)] ∼ ψ A[Pr ]) = 0

for L 1 a.e. r > 0 and 4.3 one easily infers the second part of (1) and the statement in (2).
Finally, when f is a nonnegative (H n−1 � N (A))-measurableR-valued function, wemay

apply [5, 3.2.22(3)] with W , Z and f replaced by ψ A[Sλ(A, r)], Sn−1 and q|ψ A[Sλ(A, r)]
to conclude

∫

ψ A[Sλ(A,r)]
f (a, u)

n−1∏

i=1

|κA,i (a, u)|(1 + κA,i (a, u)2)−1/2 dH n−1(a, u)

=
∫

Sn−1

∫

{a:(a,v)∈ψ A[Sλ(A,r)]}×{v}
f dH 0 dH n−1v

for L 1 a.e. r > 0 and (3) is a consequence of 4.3 and [5, 2.4.7]. The general case asserted
in (3) is then a consequence of [5, 2.4.4]. ��

Remark 4.12 It follows from 4.11(1) that the principal curvatures on N (A) introduced in [11,
p. 244] coincide onH n−1 almost all of N (A)with the principal curvatures introduced in 4.9.

Remark 4.13 In case reach(A) > 0, it follows from4.11(2) that QA coincideswith the second
fundamental form of A introduced in [9, 4.5] on H n−1 almost all of N (A).

Remark 4.14 One may check using 4.11(2) that if A and B are closed subsets of Rn then

QA(a, u) = QB(a, u) for H n−1 a.e. (a, u) ∈ N (A) ∩ N (B).

5 Stratification and support measures

Recalling that ξ−1
A {a} is a convex subset for every a ∈ A, see 3.2, we introduce the following

stratification.
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Definition 5.1 Suppose A is a closed subset of Rn . For each 0 ≤ m ≤ n, we define the m-th
stratum of A by3

A(m) = A ∩ {a : dim ξ−1
A {a} = n − m}.

Remark 5.2 In [16, 4.1], the distance bundle of A is defined as

Dis(A) = (Rn × Rn) ∩ {(a, v) : a ∈ A, |v| = δA(a + v)}
and Dis(A, a) = {v : (a, v) ∈ A} is a closed convex subset of Nor(A, a) with 0 ∈ Dis(A, a)

for every a ∈ A; see [16, 4.2]. One readily sees that

N (A) = {(a, |v|−1v) : 0 �= v ∈ Dis(A, a)}
and it follows from [16, 4.4] that

dim Dis(A, a) = dim ξ−1
A {a} whenever a ∈ A,

A(m) = A ∩ {a : dimDis(A, a) = n − m}.
It is proved in [16, 4.12] that A(m) is a countably m rectifiable Borel set which can be H m

almost covered by the union of a countable family of m-dimensional submanifolds of Rn of
class 2. Finally, one may use Coarea formula to infer that

A(m) = A ∩ {a : 0 < H n−m−1(N (A, a)) < ∞} for m = 0, . . . , n − 1.

Lemma 5.3 Suppose A ⊆ Rn is closed, 0 ≤ m ≤ n − 1 is an integer and x ∈ ξ−1
A [A(m)]

such that ap lim inf y→x ρ(A, y) ≥ ρ(A, x) > 1 and ξ A is approximately differentiable at x.
Then, dim im apD ξ A(x) ≤ m. In particular, dim TA(a, u) ≤ m if (a, u) is a regular point

of N (A) such that a ∈ A(m).

Proof Let a = ξ A(x), 1 < λ < ρ(A, x) and C = ξ−1
A [{a}] ∩ Aλ. First, we prove that C is a

convex subset of Rn and

dimC = dim ξ−1
A {a} = n − m.

In fact,C = {y : δA(a+λ(y−a)) = λ|y−a|} by 3.7 and 3.4 andC is convex by [4, 4.8(2)].
Moreover, if U is the relative interior4 of ξ−1

A {a}, then {y : a + λ(y − a) ∈ U } is contained
in C and it is open relative to the affine hull of ξ−1

A {a}. Therefore, dimC = dim ξ−1
A {a}.

By 3.10(3), let F : Rn → Rn be an extension of ξ A|Aλ that is differentiable at x with
D F(x) = apD ξ A(x). Since F(y) = a for y ∈ C , we conclude that D F(x)(y − x) = 0
whenever y ∈ C . Therefore, D F(x)(y − x) = 0 whenever y belongs to the affine hull of C .
Since dimC = n − m, we conclude

dim im apD ξ A(x) ≤ m.

��

We point out a Coarea-type formula for the generalized normal bundle.

3 The dimension of a convex subset K of Rn is the dimension of the affine hull of K and it is denoted by
dim K .
4 The relative interior of a convex subset K of Rn is the interior of K relative to the affine hull of K .
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Lemma 5.4 If A ⊆ Rn is closed set, f is a (H n−1 � N (A))-integrable R-valued function
and 0 ≤ m ≤ n − 1, then

∫

N (A)|A(m)

f (a, u)

m∏

i=1

1

(1 + κA,i (a, u)2)1/2
dH n−1(a, u)

=
∫

A(m)

∫

{z}×N (A,z)
f dH n−m−1 dH mz.

Proof We assume f ≥ 0 on H n−1 almost all of N (A), since, as usual, the general case
follows from [5, 2.4.4]. Since A(0) is a countable set by 5.2, the case m = 0 is clear.
Therefore, we assume m ≥ 1, we let λ > 1 and we define Ci = ψ A[Sλ(A, 1/i)] for
every integer i ≥ 1. Since κA,m+1(a, u) = ∞ for H n−1 a.e. (a, u) ∈ N (A)|A(m) by 5.3,
noting 3.17, the conclusion can be easily derived in two simple steps: First, we apply Coarea
formula [6, p. 300] with W , f and S replaced by Ci , p|Ci and A(m), respectively; second,
we let i → ∞ and we recall 4.3. ��
Remark 5.5 If reach(A) > 0 and f is the characteristic function of a Borel subset of N (A),
then the conclusion of 5.4 is essentially contained in [12, 3.2].

Remark 5.6 The following corollary can be deduced from 5.4. If S ⊆ A and 1 ≤ m ≤ n − 1
then H m(S ∩ A(m)) = 0 if and only if

κA,m(a, u) = ∞ for H n−1 a.e. (a, u) ∈ N (A)|S ∩ A(m).

We obtain here an integral representation for the support measures.

Theorem 5.7 Suppose A ⊆ Rn is a closed set, μ0, . . . , μn−1 are the support measures of A,
1 ≤ m ≤ n − 1 is an integer and S is a countable union of Borel subsets with finite H m

measure.
Then, the following two statements hold:

(1) If j > m, then κA,m(x, u) = ∞ for H n−1 a.e. (x, u) ∈ N (A)|S ∩ A( j);
(2) if T ⊆ N (A)|S is H n−1 measurable, then

μm(T ) = 1

(n − m)α(n − m)

∫
H n−m−1{v : (z, v) ∈ T }dH mz.

Proof Suppose S1, S2, . . . is a sequence of Borel subsets with finite H m measure whose
union equals S and Si ⊆ Si+1 for i ≥ 1. Let λ > 1 and Ci = ψ A[Sλ(A, 1/i)]. We apply the
coarea formula in [6, p. 300] with W , f and S replaced by Ci , p|Ci and Si ∩ A( j) to infer
that

∫

Ci |Si∩A( j)
‖ ∧

m[p|Tann−1(H n−1 �Ci , (x, u))]‖ dH n−1(x, u) = 0

whenever j > m. It follows that

dim p[Tann−1(H n−1 �Ci , (x, u))] < m,

whence we deduce that κA,m(x, u) = ∞ forH n−1 a.e. (x, u) ∈ Ci |Si ∩ A( j) and for j > m
by 4.11(2). Then, we obtain (1) letting i → ∞ and noting 4.3.

Since κA,m(x, u) = ∞ for H n−1 a.e. (x, u) ∈ N (A)|A( j) if j < m by 5.3, we conclude
from the definition of the j-th symmetric function of the principal curvatures of A that if
j �= m then

Hn−m−1(x, u) = 0 for H n−1 a.e. (x, u) ∈ N (A)|S ∩ A( j).
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Since κA,m+1(x, u) = ∞ for H n−1 a.e. (x, u) ∈ N (A)|A(m) by 5.3, it follows that

Hn−m−1(x, u) =
m∏

i=1

1

(1 + κA,i (x, u)2)1/2
for H n−1 a.e. (x, u) ∈ N (A)|A(m).

Then, (2) follows from 5.4. ��
Remark 5.8 The integral representation in 5.7(2) has been proved in [3, 5.5] for sets of positive
reach.

Remark 5.9 Since A(n−1) is countably (n−1) rectifiable andH n−1(A(i)) = 0 for i < n−1
(see 5.2), it follows from 5.7 that if T ⊆ N (A) is H n−1 measurable then

μn−1(T ) = 1

2

∫
H 0{v : (z, v) ∈ T }dH n−1z.

This formula is equivalent to [11, 4.1].

6 Relation with second-order rectifiability

In this final section, we prove that, in a certain sense, the “absolutely continuous part” of
the second fundamental form introduced in Sect. 4 can be described by the approximate
differential of order 2 introduced by the author in [19]; see 6.2.

Lemma 6.1 Suppose A ⊆ Rn is closed, 1 ≤ m ≤ n − 1 and let M be an m-dimensional
submanifold of class 2.

Then, there exists R ⊆ A ∩ M such that H m((A ∩ M) ∼ R) = 0 and

QA(a, u) = −bM (a) • u for H n−1 a.e. (a, u) ∈ N (A)|R.

Proof Let N be the unit normal bundle of M and

R = A ∩ M ∩ {a : N (A, a) ⊆ Nor(M, a)}.
Using [5, 2.10.19(4)], we infer that

�m(H m � M ∼ A, a) = 0 for H m a.e. a ∈ A ∩ M;
recalling [5, 3.2.16], we readily deduce that

Tan(M, a) = Tanm(H m � M, a) = Tanm(H m � A ∩ M, a) ⊆ Tan(A, a)

and, noting 4.2,

N (A, a) ⊆ Nor(A, a) ⊆ Nor(M, a)

for H m a.e. a ∈ A ∩ M . Henceforth, H m((A ∩ M) ∼ R) = 0.
Since N (A)|R ⊆ N and N is an n − 1-dimensional submanifold of class 1 of Rn × Sn−1

by 2.2, we can combine as above [5, 2.10.19(4), 3.2.16] to get

Tann−1(H n−1 � N (A)|R, (a, u)) = Tan(N , (a, u))

for H n−1 a.e. (a, u) ∈ N (A)|R. If ψ is a measure as in 4.11, we use 4.11(1) and B.4 to
deduce

Tan(N , (a, u)) = Tann−1(ψ, (a, u)) for H n−1 a.e. (a, u) ∈ N (A)|R
and the conclusion follows from 4.11(2) and 2.3. ��
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Theorem 6.2 Let A ⊆ Rn be a closed set, 1 ≤ m ≤ n−1 and let S ⊆ A beH m measurable
and (H m,m) rectifiable of class 2. Then, there exists R ⊆ S such that H m(S ∼ R) = 0
and5

ap Tan(S, a) = TA(a, u) apD2 S(a) • u = −QA(a, u) ◦ ⊙
2 TA(a, u)�

for H n−1 a.e. (a, u) ∈ N (A)|R.
Proof Let {Mi : i ≥ 1} be a sequence of m-dimensional submanifolds of class 2 such that

H m(S ∼ ⋃∞
i=1 Mi ) = 0.

Employing [5, 2.10.19(4)] and [19, 3.22], it follows that

ap Tan(S, a) = Tan(Mi , a), apD2 S(a) = bMi (a) ◦ ⊙
2 Tan(Mi , a)�,

forH m a.e. a ∈ Mi∩S and for every i ≥ 1,whencewe easily get the conclusion applying 6.1.
��

The following lemma shows that the approximate differential of order 2 of a second-
order rectifiable closed set S ⊆ Rn does not always fully describe its second fundamental
form QS . The same phenomenon arises in the theory of functions of bounded variation: The
total differential is not always fully described by the approximate gradient. It seems to be
not a coincidence that the following example considers exactly the primitive of a function
of bounded variation whose total differential cannot be fully described by the approximate
derivative. Recall that the boundary of a convex set ofRn is always countably (H n−1, n−1)
rectifiable of class 2.

Lemma 6.3 There exists a closed convex set A ⊆ R2 and a subset T of the topological
boundary of A such that H 1(T ) = 0, H 1(N (A)|T ) > 0 and

TA(a, u) = {0} for H 1 a.e. (a, u) ∈ N (A)|T .

Proof Let 0 < s < 1 and let C ⊆ R be a compact set with 0 < H s(C) < ∞. Define

f (x) = H s(C ∩ {z : z ≤ x}) for x ∈ R,

and let g be a primitive of f . Then, g is a non-decreasing convex function of class 1 on R
and we define

A = R2 ∩ {(x, y) : g(x) ≤ y}, T = {(x, g(x)) : x ∈ C}.
We notice that A is a closed convex set, T ⊆ A(1), H 1(T ) = 0 and

N (A, (x, g(x))) = {(1 + f (x)2)−1/2( f (x),−1)} whenever x ∈ R.

It follows that H 1(q(N (A))) > 0. Moreover, since f is constant on each connected com-
ponent of R ∼ C , it follows that q(N (A)|A ∼ T ) is a countable subset of S1; in particular
H 1(q(N (A)|A ∼ T )) = 0. Therefore, one easily infers that

H 1(N (A)|T ) > 0.

Finally, we notice that TA(a, u) = {0} for H 1 a.e. (a, u) ∈ N (A)|T by 5.6. ��
5 If f : V → W is a linear map between vector spaces, then

⊙
2 f : V × V → W × W is defined by⊙

2 f (u, v) = ( f (u), f (v)) for (u, v) ∈ V × V .
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Remark 6.4 If M is an m-dimensional submanifold of class 1 in Rn that meets every m-
dimensional submanifold of class 2 in a set of H m measure zero, then it follows from [16,
4.12] that H m(M (m)) = 0. Since M (i) = ∅ if i < m by 4.2, it follows from 5.6 and 5.7(1)
that

dim TM (a, u) ≤ m − 1 for H n−1 a.e. (a, u) ∈ N (M).

The existence of such M can be inferred from [13].

Acknowledgements The author thanks Prof. Ulrich Menne for conversations concerning the content of
Sect. 6; moreover, the author thanks the referee for the careful reading of the manuscript.

Appendix

In this appendix, we collect for the reader’s convenience some remarks that are simple
consequences of known facts.

A Approximate differentiability

Basic facts on approximate differentiability for functions are collected in [19, § 2]. Here, we
point out some additional remarks.

Lemma A.1 Suppose n ≥ 1 is an integer, B ⊆ A ⊆ Rn, a ∈ A and f : A → R are such
that f is approximately differentiable at a,�∗n(L n � B, a) = 1 and f (x) ≤ f (a) for every
x ∈ B.

Then, apD f (a) = 0.

Proof Assume a = 0 and f (0) = 0. If apD f (0) �= 0, then there would be ε > 0 and
a non-empty open cone C such that apD f (0)(x) ≥ 2ε|x | for every x ∈ C . Therefore,
f (x) − apD f (0)(x) ≤ −2ε|x | for every x ∈ C ∩ B and

�∗n(L n � B ∼ C, 0) < 1, �∗n(L n � B ∩ C, 0) > 0,

�∗n(L n � Rn ∼ {x : | f (x) − apD f (0)(x)| ≤ ε|x |}, 0) > 0.

This would be a contradiction. ��

Remark A.2 We observe that a similar argument proves that if f is approximately differen-
tiable of order 2 at a then apD2 f (a) ≤ 0.

Lemma A.3 Suppose n ≥ 1 and ν ≥ 1 are integers, B ⊆ A ⊆ Rn, a ∈ B and f : A → Rν

are such that f is approximately differentiable at a, f |B is a bi-Lipschitzian homeomorphism
and �n(L n � Rn ∼ B, a) = 0.

Then, ker apD f (a) = {0}.

Proof If � = (1/2)(Lip( f |B)−1)−1, then | f (y) − f (x)| ≥ 2�|y − x | whenever y, x ∈ B.
If there was v ∈ Rn ∼ {0} such that apD f (a)(v) = 0, then there would exist a non-empty
open cone C such that

| apD f (a)(u)| ≤ �|u| whenever u ∈ C .
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Choosing 0 < ε < � and letting D = {u + a : u ∈ C} and
E = A ∩ {x : | f (x) − f (a) − apD f (a)(x − a)| ≤ ε|x − a|},

we would notice that �n(L n � Rn ∼ E, a) = 0 and B ∩ D ∩ E = ∅ and we would get a
contradiction. ��
Lemma A.4 If m, n, ν are positive integers, D ⊆ Rm, U ⊆ Rn is open, f : D → Rn,
g : U → Rν , x ∈ D, f (x) ∈ U, f is approximately differentiable at x and g is differentiable
at f (x), then g ◦ f is approximately differentiable at x with

apD(g ◦ f )(x) = D g( f (x)) ◦ apD f (x).

Proof Combine [19, 2.8] and [5, 3.1.1(2)]. ��
Lemma A.5 If n, ν ≥ 1 are integers, D ⊆ Rn, z ∈ D and g : Rn → Rν is a Lipschitzian
function such that g|D is approximately differentiable at z, then g is differentiable at z with
apD(g|D)(z) = D g(z).

Proof This is proved in [5, 3.1.5]. ��

B The tangent cone of ameasure

The concept of approximate tangent vector to a measure is introduced in [5, 3.2.16]. Besides
the fundamental results given in [5, 3.2.16–3.2.22, 3.3.18], we point out here some useful
consequences.

First, the following elementary inequality is useful here and elsewhere.

Lemma B.1 If X and Y are metric spaces, m ≥ 1 is an integer, θ(x) ≥ 0 forH m a.e. x ∈ X,
0 ≤ γ < ∞ and f : X → Y is an univalent Lipschitzian map onto Y such that γ is a
Lipschitz constant for f −1, then

∫ ∗

X
θdH m ≤ γm

∫ ∗

Y
θ ◦ f −1dH m .

Proof We assume
∫ ∗
Y θ ◦ f −1dH m < ∞. Then, the conclusion easily follows from the

definition of upper integral in [5, 2.4.2], using approximation by upper functions. ��
Lemma B.2 Suppose X and Y are normed vector spaces, P ⊆ X, m ≥ 1 is an integer,
θ(x) ≥ 0 for H m a.e. x ∈ P, a ∈ P and f : X → Y is a function differentiable at a such
that f |P is a bi-Lipschitzian homeomorphism. Additionally, we define the measures

ψ = θH m � P, μ = (θ ◦ ( f |P)−1)H m � f (P).

Then, D f (a)[Tanm(ψ, a)] ⊆ Tanm(μ, f (a)).

Proof Firstly, we prove that �m(ψ � X ∼ f −1[T ], a) = 0, whenever T ⊆ Y such that
�m(μ � Y ∼ T , f (a)) = 0. In fact, for such a subset T , if S = f −1[T ], γ is a Lipschitz
constant for f |P and( f |P)−1 and r > 0, we observe that

f [(P ∼ S) ∩ B(a, r)] ⊆ ( f [P] ∼ T ) ∩ B( f (a), γ r),

and we employ B.1 to get that ψ(B(a, r) ∼ S) ≤ γmμ(B( f (a), γ r) ∼ T ). Therefore,
D f (a)[Tanm(ψ, a)] ⊆ Tanm(μ, f (a)) by [5, 3.1.21, p. 234] and [5, 3.2.16, p. 252]. ��
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Remark B.3 If θ is the characteristic function of P , then by [5, 2.4.5], we have that ψ =
H m � P and μ = H m � f [P].
Lemma B.4 Suppose 1 ≤ k ≤ ν are integers, E ⊆ Rν is countably (H k, k) rectifiable and
H k measurable and θ is a H k � E measurable H k � E almost positive function such that

ψ = θH k � E

is a Radon measure over Rν .
Then, Tank(ψ, z) is a k-dimensional plane contained in Tank(H k � E, z) for H k a.e.

z ∈ E and

Tank(H k � F, z) ⊆ Tank(ψ, z) for H k a.e. z ∈ F,

whenever F ⊆ E is H k measurable such that H k(F) < ∞.

Proof Firstly, we observe that ψ(S) = 0 if and only if H k(S) = 0. Therefore, Rν is (ψ, k)
rectifiable and, employing [5, 2.4.10, 2.10.19(3)],

�∗k(ψ, z) < ∞ for ψ a.e. z ∈ Rν .

We apply [5, 3.3.18] to conclude that Tank(ψ, z) ∈ G(n, k) for H k a.e. z ∈ E . If F ⊆ E is
H k measurable and H k(F) < ∞, we define

Fi = F ∩ {z : θ(z) ≥ i−1} for every integer i ≥ 1,

we observe that Tank(H k � F, z) = Tank(H k � Fi , z) forH k a.e. z ∈ Fi by [5, 2.10.19(4)],
and we use [5, 3.2.16] to conclude

Tank(H k � F, z) ⊆ Tank(ψ, z) for H k a.e. z ∈ F .

Since by [5, 3.2.14] the set E can be H k almost covered by countably many H k measur-
able k rectifiable subsets of Rν , we may apply [5, 3.2.19] to conclude that Tank(ψ, z) ⊆
Tank(H k � E, z) for H k a.e. z ∈ E . ��
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