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Abstract
We consider the equivalence problem of four-dimensional semi-Riemannian metrics with the
two-dimensional Abelian Killing algebra. In the generic case we determine a semi-invariant
frame and a fundamental set of first-order scalar differential invariants suitable for solution
of the equivalence problem. Genericity means that the Killing leaves are not null, the metric
is not orthogonally transitive (i.e., the distribution orthogonal to the Killing leaves is non-
integrable), and two explicitly constructed scalar invariants Cρ and �C are nonzero. All the
invariants are designed to have tractable coordinate expressions. Assuming the existence of
two functionally independent invariants, we solve the equivalence problem in two ways. As
an example, we invariantly characterize the Van den Bergh metric. To understand the non-
generic cases, we also find all Λ-vacuum metrics that are generic in the above sense, except
that either Cρ or �C is zero. In this way we extend the Kundu class to Λ-vacuum metrics.
The results of the paper can be exploited for invariant characterization of classes of metrics
and for extension of the set of known solutions of the Einstein equations.
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746 01 Opava, Czech Republic

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10231-019-00924-y&domain=pdf
http://orcid.org/0000-0002-5684-0493


1344 D. Catalano Ferraioli, M. Marvan

1 Introduction

Scalar differential invariants havemultiple uses in general relativity. Scalar polynomial invari-
ants [7] arise as scalar contractions of g, R and the covariant derivatives ∇R, . . . ,∇m R.
Besides being a tool to detect true singularities irremovable by coordinate transformations,
scalar differential invariants provide a basis for solving the equivalence problem, i.e., the
problem of classifying spacetime metrics with respect to local isometries. Scalar differential
invariants can, in principle, solve the equivalence problem except for metrics of the Kundt
class [9], but not in an effective way. Here the Cartan–Karlhede invariants, see [16,17] or [35,
Ch. 9], come to the rescue. The Cartan–Karlhede invariants, defined as components of the
Riemann tensor and its covariant derivatives with respect to suitably chosen frames, lie in the
heart of a workable algorithm to decide about equivalence of space-time metrics [3,18,32].
Another useful application is that of finding solutions of Einstein’s equations by imposing
additional invariant constraints [6,23,24,33].

All invariants mentioned so far started at the second order, a strict lower bound for scalar
invariants of metrics [40]. To enable first-order metric invariants, one would have to reduce
the pseudogroup of diffeomorphisms. One important case when this is easily done is when
the metric has Killing fields. The semi-Riemannian manifold then becomes a submersion in
a natural way and instead of the equivalence of spacetimes we can consider the equivalence
of the semi-Riemannian submersions. This allows the first-order invariants to appear, while
not impeding the solution of the equivalence problem, if the submersion is taken with respect
to the full Killing algebra.

More precisely, in the case of a semi-Riemannianmanifold (M, g)with theKilling algebra
Kill(g) = G, we consider the semi-Riemannian submersionM → M/G, whereM/G is the
orbit space of the Lie group G of the transformations generated by G onM. Obviously, two
semi-Riemannian manifolds are isometric if and only if the corresponding semi-Riemannian
submersion structures are isomorphic.

In the present paper, we apply the above scheme to the particular class, denoted as G2 I
(cf. [35, Ch. 17]), of four-dimensional semi-Riemannian metrics whose Killing algebra is
Abelian and two dimensional. For generic metrics of this kind, we obtain a fundamental
system of functionally independent scalar differential invariants and solve the problem of
equivalence. This fundamental system consists of six functionally independent first-order
scalar differential invariants. They admit very simple explicit expressions in terms of metric
coefficients, in sharp contrast to the curvature invariants mentioned above.

We have chosen the class G2 I because it is rather rich in explicit solutions of Einstein
equations, especially in the orthogonally transitive subcase (see Sect. 2) when the metric can
be written in a block diagonal form and the vacuum, electro-vacuum and some other Einstein
equations are integrable in the sense of soliton theory, see [1,11,19,35,36] and references
therein. At the same time, only a handful of orthogonally intransitive metrics are known
(e.g., [13,20,37–39]). Looking for non-generic cases, one can often obtain explicit solutions.
In this paper we just characterize metrics with vanishing invariants Cρ or �C . For Cρ = 0
we find that all Λ-vacuum metrics are pp-waves, whereas for �C = 0 (the Kundu class) we
obtain new explicit Λ-vacuum solutions.

The paper is organized as follows: In Sect. 2 we introduce the Lie pseudogroup G acting
on four-dimensional semi-Riemannian manifolds of class G2 I . In Sect. 3 we describe the
infinitesimal generators of Gτ , the natural extension of G to the bundle τ of metrics, and
determine the number of functionally independent differential invariants of jet orders 0, 1,
2. In Sect. 4 we study the orbit space S = M/G2 and the induced orbit metric g̃. In Sect. 5
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we introduce a maximal set of 6 generically functionally independent scalar differential
invariants Cρ, Cχ , Qχ , Qγ , �C, (ΘI)

2 of the first order. In the generic case, when Cρ and
�C do not vanish, we also provide a semi-invariant orthogonal frame. In Sect. 6, we provide
a maximal set of 20 generically functionally independent scalar differential invariants of
the second order. In Sect. 7, we derive the Λ-vacuum Einstein equations for G2 I -metrics,
and find their solutions in the two non-generic cases mentioned above. In Sect. 8, we find
functionally independent invariants on solutions to theΛ-vacuumEinstein equations. Finally,
in Sect. 9, we address the equivalence problem of G2-metrics in the generic case.

For reader’s convenience, we provide a list of symbols used throughout the paper, except
those limited to the section where they have been defined.

Symbols defined in Sect. 2

M a four-dimensional semi-Riemannian manifold;
G2 the two-dimensional Abelian Lie algebra;
G2 the two-dimensional Abelian Lie group;
g a metric of class G2 I on M;
Kill(g) the algebra of Killing fields of (M, g);
G2 I the class of four-dimensional semi-Riemannian metrics

with Kill(g) = G2;
Ξ the integrable two-dimensional distribution on M deter-

mined by G2;
ξ(1), ξ(2) fixed linearly independent Killing fields, local generators

of Ξ ;
Ξ⊥ the orthogonal complement of Ξ ;
S the two-dimensional orbit space M/G2;
π : M → S the natural Riemannian submersion;
{t1, t2, z1, z2} a systemof local adapted coordinates onM; by definition

ξ(i) = ∂zi and {t1, t2} are local coordinates on S;
τ : E → M the bundle of metrics;
τm : Jmτ → M the mth order jet bundle of sections of τ ;
h = hi j dzi dz j the restriction of g to the leaves of Ξ ,
H = (hi j ) the matrix composed of hi j ;
G the Lie pseudogroup of adapted-coordinates transforma-

tions on M;
Gτ , G

(k)
τ the natural extension of G to τ and J kτ , respectively;

Symbols defined in Sect. 3

|g restriction of a tensor from J∞τ to a prolongation of the
section of τ corresponding to g.

Symbols defined in Sect. 4

g̃ = g̃i j dt i dt j the induced metric tensor on S, referred to as the orbit
metric.

Symbols defined in Sect. 5.1

σ = d ln(det h) an invariant 1-form defined in terms of h;
ρ, χ, γ invariant symmetric (0, 2)-tensors defined in terms of h

and g̃;
Cρ,Cχ , Qχ , Qγ first-order scalar differential invariants;
X and X⊥ π1-relative semi-invariant orthogonal fields on S;
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1346 D. Catalano Ferraioli, M. Marvan

±g̃ = sgn det g̃ and
±h = sgn det h = sgn det H

signums.

Symbols defined in Sect. 5.2

c type (1, 2)Ehresmann curvature tensor of theRiemannian
submersion π ;

C the curvature vector field of the Riemannian submersion
π ;

H the mean curvature vector field of the Riemannian sub-
mersion π ;

{C, C⊥} resp. {H,H⊥} semi-invariant orthogonal frames in Ξ resp. Ξ⊥;
�C the squared length g(C, C) of the curvature vector;
ΘI another first-order scalar invariant.

2 The pseudogroup and themetric

Let G2 denote the two-dimensional Abelian Lie algebra. LetM be a four-dimensional mani-
fold, endowedwith a semi-Riemannianmetric g such that the algebraKill(g) ofKilling vector
fields of g is G2. In particular, there are no Killing vectors outside G2. We denote by Ξ the
vector distribution generated onM by the Killing fields of G2. The two-dimensional integral
submanifolds of Ξ are called the Killing leaves. Throughout the paper, we assume that the
Killing leaves are non-null. By G2 we denote the Lie group of transformations generated by
G2 on M. We also assume that the orbit space S = M/G2 is a two-dimensional manifold,
with π : M → S being the natural projection.

Let Ξ⊥ denote the distribution orthogonal to the Killing leaves. The case when Ξ⊥ is
integrable will be referred to as the orthogonally transitive case; otherwise, it will be referred
to as the orthogonally intransitive case.

One can always choose local coordinates {t1, t2, z1, z2} on M such that:

(A) G2 is generated by the coordinate vector fields ξ(i) = ∂/∂zi , i = 1, 2;
(B) the leaves of Ξ are the surfaces characterized by the constancy of t1 and t2.

We refer to such a kind of coordinates {t1, t2, z1, z2} as local adapted coordinates. In adapted
coordinates, the metric g takes the form

g = bi j (t
1, t2) dti dt j + 2 fik(t

1, t2) dti dzk + hkl(t
1, t2) dzk dzl , (1)

with b21 = b12 and h21 = h12.
Let h denote the restriction of the metric g to the individual leaves ofΞ . By condition (B),

h = hkl(t1, t2) dzk dzl . Let H denote the 2× 2 symmetric matrix H = (hi j ) with elements

hkl = g(ξ(k), ξ(l)) = gabξa(k)ξ
b
(l).

In view of the assumption that Ξ are not null, (see the beginning of this section), det h =
det H �= 0 everywhere.

In the orthogonally transitive case, the leaves of Ξ⊥ can be identified with surfaces z1 =
const, z2 = const, which means that the metric can be put in the block diagonal form with
fik = 0.
We introduce the Lie pseudogroup G of transformations of adapted coordinates now.

By definition,G-transformations are coordinate transformations t̄ i = t̄ i (t1, t2, z1, z2), z̄ i =
z̄i (t1, t2, z1, z2)which preserve (A) and (B), i.e., such that G2 is generated by ∂/∂ z̄i , i = 1, 2,
and the leaves of Ξ are surfaces characterized by the constancy of t̄1 and t̄2.
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Proposition 1 The Lie pseudogroupG is formed by transformations P : M → M which in
adapted coordinates have the form

t̄ i = φi (t1, t2), z̄ i = αi
j z

j + ψ i (t1, t2), (2)

where φi (t1, t2) and ψ i (t1, t2) are arbitrary differentiable functions satisfying

Jφ =
∣
∣
∣
∣

∂t1φ
1 ∂t2φ

1

∂t1φ
2 ∂t2φ

2

∣
∣
∣
∣
�= 0, (3)

and αi
j ∈ R, with (αi

j ) ∈ GL(2,R).
Infinitesimal generators of G have the form

U = Φ i (t1, t2)
∂

∂t i
+
(

Ak
l z

l + Ψ k(t1, t2)
) ∂

∂zk
, (4)

where Φ i (t1, t2) and Ψ k(t1, t2) are arbitrary differentiable functions and Ak
l ∈ R are

arbitrary constants.
In particular, G can be decomposed as

G = G+,+ ∪ G+,− ∪ G−,+ ∪ G−,−, (5)

where Gε1,ε2 are the connected components, with ε1 = sgn Jφ and ε2 = sgn(det αi
j ).

Proof Under a G-transformation ∂/∂z j = αi
j ∂/∂ z̄ i , with (αi

j ) ∈ GL(2,R). Since ∂/∂z j =
(

∂ z̄ i/∂z j
)

∂/∂z i + (

∂ t̄ i/∂z j
)

∂/∂t i , one gets ∂ z̄ i/∂z j = αi
j , ∂ t̄ i/∂z j = 0. Hence, the

G-transformations have the required form.
Next, a vector field U = T i (t, z) ∂/∂t i + Zk(t, z) ∂/∂zk is an infinitesimal generator

of G iff U is an infinitesimal symmetry of the Lie algebra generated by ξ(1) = ∂/∂z1

and ξ(2) = ∂/∂z2. Therefore,
[

∂/∂zl ,U
] = Ak

l ∂/∂zk , with Ak
l arbitrary constants. Hence,

∂T i (t, z)/∂zl = 0, ∂Zk(t, z)/∂zl = Ak
l , and the statement readily follows. 	


It is worth noting here that under G-transformations (2), g transforms to

ḡ = b̄mn(t̄
1, t̄2) dt̄m dt̄ n + 2 f̄mr (t̄

1, t̄2) dt̄m dz̄r + h̄rs(t̄
1, t̄2) dz̄r dz̄s, (6)

with

bi j = b̄mn
∂φm

∂t i
∂φn

∂t j
+ 2 f̄mr

∂φm

∂t i
∂ψr

∂t j
+ h̄rs

∂ψr

∂t i
∂ψ s

∂t j
,

fik = f̄mrα
r
k
∂φm

∂t i
+ h̄rsα

r
k
∂ψ s

∂t i
,

hkl = h̄rsαr
kα

s
l .

(7)

In particular

det ḡ = (det αi
j )
2 (Jφ

)2 det g �= 0. (8)

Semi-Riemannian metrics g, with Kill(g) = G2 and non-null Killing leaves, locally
described by (1), form a subbundle of the bundle of symmetric (0, 2)-tensors S2(T ∗M) →
M. We denote the subbundle by τ : E → M.

Proposition 2 The pseudogroup G naturally extends to the bundle τ : E → M of metrics
of the form (1) on M.

Proof See formulas (6) and (7). 	

The extension of G to τ will be denoted by Gτ .
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1348 D. Catalano Ferraioli, M. Marvan

3 Pseudogroup prolongation and differential invariants

In view of Proposition 2, the classification problem for metrics with an Abelian two-
dimensional Killing algebra G2 reduces to identifying orbits of the action of Gτ on the
vector bundle τ : E → M of metrics g of the form (1); indeed, these orbits consist of
mutually equivalent metrics.

Following Lie’s classical method, the classification problem for these metrics can be
solved by using a sufficient number of independent scalar differential invariants ofGτ . These
invariants are defined to be functions on the jet prolongations Jmτ , m = 0, 1, 2, . . ., that are
invariant with respect to the action of the corresponding prolonged pseudogroups G(m)

τ .
The problem of finding the m-th order scalar differential invariants becomes linear if

written in terms of the infinitesimal action of G(m)
τ on Jmτ . This fact is at the heart of

Lie’s infinitesimal method of computing differential invariants and also permits a simple
determination of the dimensions Nm of the orbit spaces Jmτ/G

(m)
τ for m = 0, 1, 2, . . .

Proposition 3 By using the coordinate representation (1), the pseudogroup Gτ is infinitesi-
mally generated by vector fields

U τ = Φ i ∂

∂t i
+
(

Ak
l z

l + Ψ k
) ∂

∂zk

−
(

bis
∂Φs

∂t j
+ fis

∂Ψ s

∂t j
+ b js

∂Φs

∂t i
+ f js

∂Ψ s

∂t i

)
∂

∂bi j

−
(

fsk
∂Φs

∂t i
+ hsk

∂Ψ s

∂t i
+ fis A

s
k

)
∂

∂ fik
− (

hks A
s
l + hsl A

s
k

) ∂

∂hkl
. (9)

where Φ i , Ψ i , Ak
l are as in Proposition 1, formula (4).

Proof Since U τ projects to U , it has the form

U τ = Φ i (t)
∂

∂t i
+
(

Ak
l z

l + Ψ k(t)
) ∂

∂zk
+ Bi j

∂

∂bi j
+ Fik

∂

∂ fik
+ Hkl

∂

∂hkl
,

with Bi j , Fik and Hkl differentiable functions of t1, t2, z1, z2 and fi j , bi j , hkl . Then, (9)
follows by imposing the Lie invariance condition LU τ (g) = 0. 	


Recall that J 0τ = τ and that the formal derivatives of bi j , fik and hkl of orders m =
0, 1, 2, . . .with respect to t1, t2, can serve as coordinates along the fibers of Jmτ in an obvious
way. We denote such coordinates as bi j,I, fi j,I and hkl,I, for any symmetric multi-index I
when m > 1, and bi j,s , fi j,s and hkl,s when m = 1.

Prolongation formulas of U τ to U Jmτ on Jmτ , m = 1, 2, . . ., are well known [2,27,29].
Alternatively, from the commutator

[
∂

∂t s
,U

]

= ∂Φ j

∂t s
∂

∂t j
+
(

∂Ak
l

∂t s
zl + ∂Ψ k

∂t s

)

∂

∂zk

valid on the base manifold S, one can infer the relations
[

U J∞τ , Ds
] = − (

∂Φ1/∂t s
)

D1 − (

∂Φ2/∂t s
)

D2

on J∞τ , where

Ds = ∂

∂t s
+ bi j,I+1s

∂

∂bi j,I
+ fi j,I+1s

∂

∂ fi j,I
+ hkl,I+1s

∂

∂hkl,I
, s = 1, 2,
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denote the usual total derivatives and I stands for an arbitrary symmetric multi-index. These
relations reflect the way how the action on metric coefficients extends to the action on
derivatives thereof. Thus, for any symmetric multi-index I of order m, we have

U Jm+1τ (bi j,I+1s ) = Ds
(

U Jmτ
(

bi j,I
)) − ∂Φ1

∂t s
bi j,I+11 − ∂Φ2

∂t s
bi j,I+12 ,

and analogously for fik and hkl .
Now, scalar differential invariants can be identified with functions on J∞τ invariant with

respect to the fieldsU J∞τ . These invariants form a commutative associativeR-algebra, which
can be thought of as algebra of functions on the orbit space J∞τ/G

(∞)
τ .

Proposition 4 In the orthogonally intransitive case, the generic dimension Nm of the orbit
space Jmτ/G

(m)
τ for m = 0, 1, 2 is given by

m 0 1 2
Nm 0 6 20.

In the orthogonally transitive case, the generic dimension Nm of the orbit space Jmτ/G
(m)
τ

for m = 0, 1, 2 is given by

m 0 1 2
Nm 0 4 14.

Proof Using the infinitesimal generators of G(m)
τ , obtained by prolonging (9) to Jmτ , and

taking the coefficients at Φ i , Ak
l , Ψ

k and their derivatives, we obtain a compatible linear
system for mth order invariants, m = 0, 1, 2. The dimensions of the solution spaces are the
dimensions sought. The orthogonally transitive case has been computed in [25]. 	


Of course, there may exist singular strata in J∞τ/G
(∞)
τ where the maximal number of

functionally independent scalar differential invariants is lower than Nm .

Remark 1 Proposition 4 refers to scalar differential invariants as functions on the jet space
J∞τ . If such a function, say F , is evaluated for a particular metric g, then it becomes a
function on the orbit space S, which we shall denote as F |g (formally F |g = F ◦ j∞σg,
where j∞ denotes a jet prolongation of a section of the bundle τ and σg is the section
associated with g), hence another interpretation of scalar differential invariants as functions
onS. Both interpretations are natural and important. For instance, the order of an invariant can
only be seen in the context of jet spaces, while the most natural way to construct an invariant
consists in combining various invariant geometric constructions on S [2]. We shall often use
one and the same notation with both interpretations and omit the symbol |g. However, one
should bear in mind that independence of functions on S is very different from that on J∞τ .
The maximal number of independent functions is two on S, and unlimited on J∞τ .

4 Orbit metric

We found it very convenient to rewrite the metric in the form

g = g̃i j dt
i dt j + hkl(dz

k + f ki dt i )(dzl + f lj dt
j ), (10)

where

g̃i j = bi j − fik f jl h
kl , f kj = f jsh

sk, (11)
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1350 D. Catalano Ferraioli, M. Marvan

and hkl denote the elements of the inverse matrix H−1. Notice that relations (11) directly
connect components of (1) to those of (10).

In terms of variables g̃i j , f ki , hkl , expression (9) for U τ simplifies to

U τ = Φ i ∂

∂t i
+ (Ak

l z
l + Ψ k)

∂

∂zk
−
(

g̃is
∂Φs

∂t j
+ g̃ js

∂Φs

∂t i

)
∂

∂ g̃i j

+
(

f si A
k
s − ∂Ψ k

∂t i
− f ks

∂Φs

∂t i

)
∂

∂ f ki
− (As

l hks + As
khsl)

∂

∂hkl
.

(12)

An important advantage of (10) is that g̃ = g̃i j dt i dt j defines a natural metric on the orbit
space S such that

g̃(X , Y ) = g(X , Y ) − hklg(ξ(k), X)g(ξ(l), Y ),

for any pair of vector fields X , Y on S.
Proposition 5 (Geroch [14]) The (0, 2)-tensor field g̃ defines a metric tensor on the orbit
space S = M/G2.

Proof The components of g̃ depend only on (t1, t2) and, since g̃(ξ(i), –) = 0 for i = 1, 2, we
have g̃(X , –) = 0 for every vector field X ∈ Ξ . Therefore, g̃ is a well-defined (0, 2) tensor
on the two-dimensional orbit space S = M/G2, and

g̃i j = bi j − fik f jl h
kl , i, j = 1, . . . , 2.

Moreover, by (10), it is easily checked that

det g̃ = det g
det h

.

Hence, g̃ is non-degenerate and defines a metric on S. 	

Explicit expressions of differential invariants of g are relatively simple in terms of
g̃i j , f ki , hkl , whereas they swell in bi j , fik, hkl .

5 First-order invariants

According to Proposition 4, on J 1τ there are at most 4 functionally independent scalar
invariants in the orthogonal transitive case (whenΞ⊥ is integrable), and atmost 6 functionally
independent invariants in the orthogonally intransitive case (when Ξ⊥ is not integrable).
Such a maximal system of functionally independent invariants generates the whole algebra
of differential invariants of the first order, since any first-order scalar differential invariant
must be a function of them. In this section we provide an explicit construction of a maximal
system of 6 functionally independent scalar invariants for the orthogonally intransitive case,
which extends the already known [25] maximal system I1 = Cρ , I2 = Cχ , I3 = Qχ ,
I4 = Qγ of invariants for the orthogonally transitive case.

5.1 Scalar invariants C�, C�,Q�,Q� and the semi-invariant orthogonal frame
{X ,X⊥} onS

The first-order invariants presented in this subsection essentially coincide with those of [25]
except that the metric coefficients gi j of [25] have been replaced with the coefficients of the
orbit space metric g̃i j .
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The equivalence problem for generic four-dimensional... 1351

Lemma 1 For any metric g of the form (10), the pseudogroup action leaves invariant the
1-form

σ = d ln(det h) = d(det h)

det h

and the symmetric (0, 2)-tensors

ρ = σ 2, χ = 1

(det h)
(dh11 dh22 − dh12 dh12) .

Proof Under pseudogroup transformations of Gτ , det h transforms as det h → (det h)/

(det αi
j )
2, with (αi

j ) ∈ GL(2,R). Therefore, the 1-form σ is G(1)
τ -invariant. The invariance

of χ follows from the transformation rule

(dh11 dh22 − dh12 dh12) → (dh11 dh22 − dh12 dh12) /(det αi
j )
2

under the pseudogroup transformations of Gτ . 	

Consequently, the Cosgrove form

γ = χ − 1
4ρ,

first introduced in [10, Eq. (2.3)], is also invariant.
An easy construction of the first-order scalar differential invariants follows from the con-

sideration of the determinant Qμ and the traceCμ of the self-adjoint (1, 1)-tensor field related
to a symmetric bilinear formμ on S, such asμ = ρ, χ, γ . In coordinates, ifμ = μi j dt i dt j ,

then the corresponding (1, 1)-tensor field has the components μ
j
i = μis g̃s j , and

Qμ = detμi j

det g̃
, Cμ = μi j g̃

i j . (13)

Choosing μ = ρ, χ, γ , we get four independent invariants Cρ,Cχ , Qχ , Qγ , whereas Qρ =
0 and Cγ = Cχ − 1

4Cρ . A geometric meaning of Cχ is given in Proposition 10.
In coordinates, we have

1. Cρ = 1

(det h)2
(det h),i (det h), j g̃i j ;

2. Cχ = 1

(det h)
g̃i j

∣
∣
∣
∣

h11,i h12, j
h12,i h22, j

∣
∣
∣
∣
;

3. Qχ = det χi j

det g̃
, χi j = 1

2 det h

∣
∣
∣
∣

h11,i h12, j
h21,i h22, j

∣
∣
∣
∣
+ 1

2 det h

∣
∣
∣
∣

h11, j h12,i
h21, j h22,i

∣
∣
∣
∣
;

4. Qγ = det γi j
det g̃

= 1

4(det h)3 det g̃

∣
∣
∣
∣
∣
∣

h11 h12 h22
h11,1 h12,1 h22,1
h11,2 h12,2 h22,2

∣
∣
∣
∣
∣
∣

2

.

Comma denotes partial differentiation.

Proposition 6 The functions Cρ,Cχ , Qχ and Qγ are functionally independent first-order
differential invariants in generic points of the jet space.

Proof Invariance follows from Lemma 1. Functional independence follows from the fact that
the rank of the Jacobian at a generic point of the jet space is equal to 4. Obviously, the last
condition is easily checked by computing the rank of a numeric matrix. 	
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Moreover, we notice that the 1-form σ is defined on J 1τ and horizontal with respect to
π1 := τ1 ◦π , where τ1 : J 1τ → M. Thus, following [25], we consider the π1-relative vector
fields X and X⊥ on S such that σ = g̃(X , –) and σ = X⊥ � volg̃, respectively, where

volg̃ = √|det g̃| dt1 ∧ dt2

is the volume form on (S, g̃).

Lemma 2 Under the pseudogroup action, for any metric g of the form (10), the vector field

X = g̃is
(det h),s

det h
∂t i , (14)

is invariant, whereas the vector field

X⊥ = (det h),2

(det h)
√|det g̃|∂t1 − (det h),1

(det h)
√|det g̃|∂t2 (15)

transforms as X⊥ → sgn(Jφ)X⊥. Moreover

g̃(X ,X ) = Cρ, g̃(X ,X⊥) = 0, g̃(X⊥,X⊥) = ±g̃Cρ. (16)

where ±g̃ = sgn det g̃. Hence, {X ,X⊥} is a semi-invariant orthogonal frame on S, when
Cρ �= 0.

Proof In view of the invariance of σ and the fact that volg̃ is invariant only up to a sign,
X and X⊥ have the specified invariance properties. Formulas (16) are routinely checked in
adapted coordinates. 	


5.2 The semi-invariant vector field C and scalar invariant �C

Themappingπ : M → S is aRiemannian submersion [5, 9.12], with respect tometrics g and
g̃. Relative to this submersion, Ξ will be referred to as the vertical distribution, whereas Ξ⊥
as the horizontal distribution. Moreover, due to non-degeneracy condition (ii), the tangent
bundle to M decomposes as TM = Ξ ⊕ Ξ⊥, with Ξ⊥ generated by the vector fields

e j = ∂

∂t j
− f kj

∂

∂zk
, j = 1, 2. (17)

Recall that f kj = f jshsk .
In view of this decomposition, one has the natural projections ver = prΞ : T M → Ξ

and hor = prΞ⊥ : T M → Ξ⊥ such that

ver

(
∂

∂t j

)

= ver

(
∂

∂t j
− f kj

∂

∂zk
+ f kj

∂

∂zk

)

= f kj
∂

∂zk
, ver

(
∂

∂zk

)

= ∂

∂zk
,

and

hor

(
∂

∂t j

)

= hor

(
∂

∂t j
− f kj

∂

∂zk
+ f kj

∂

∂zk

)

= ∂

∂t j
− f kj

∂

∂zk
, hor

(
∂

∂zk

)

= 0.

In the adapted coordinates, the non-vanishing components of ver and hor are

ver k
∗
j = f kj , ver k

∗
j∗ = δkj , j, k = 1, 2,

and

hor kj = δkj , hor k
∗
j = − f kj , j, k = 1, 2,
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respectively, where we use the notation k∗ = k + 2.

Remark 2 Every (relative) vector field X onS can be uniquely lifted to an horizontal (relative)
vector field X̂ on M which is π -related to X . In particular every invariant (relative) vector
field on S can be uniquely lifted to an invariant (relative) vector field on M. Moreover, the
lift preserves the scalar product. In coordinates,

∂̂

∂t i
= ∂

∂t i
− f ki

∂

∂zk
= ei , i = 1, 2.

The geometry of the Riemannian submersion π : M → S can be described by using the
Ehresmann curvature and the O’Neill tensors, which are naturally defined in terms of ver
and hor.

The Ehresmann curvature is the tensor c : D(M) ⊗ D(M) → D(M) defined in terms
of the Lie bracket by

c(W1,W2) = ver [hor W1, hor W2] ,

for any two vector fields W1,W2 ∈ D(M). This is an antisymmetric tensor whose nonzero
components in adapted coordinates are

ck
∗

i j = ∂ j f
k
i − ∂i f

k
j , (18)

where k∗ = k + 2. It is easily checked that c is traceless, caab = 0. Of course, c = 0 if and
only if Ξ⊥ is involutive.

The curvature vector field C is defined as

C = c(∂t1 , ∂t2)
√|det g̃| . (19)

This is a semi-invariant vector field, since it transforms as C → (sgn Jφ)C under pseudogroup
transformations (2). Indeed, the numerator and denominator of (19) transform as c(∂t1 , ∂t2) =
ver

[

hor ∂t1 , hor ∂t2
] → ver

[

hor ∂t1 , hor ∂t2
]

/Jφ and
√|det g̃| → √|det g̃|/|Jφ |, respec-

tively. In coordinates,

C = Ck
∂

∂zk
, Ck = ∂t2 f

k
1 − ∂t1 f

k
2

√|det g̃| , k = 1, 2. (20)

Consider now the scalar invariant �C = g(C, C), i.e., the squared length of C. Obviously from
the coordinate formulas, �C is given by

�C = g(C, C) = hklCkCl = hkl(∂t2 f
k
1 − ∂t1 f

k
2 )(∂t2 f

l
1 − ∂t1 f

l
2)

|det g̃| .

In the generic case, �C is functionally independent from the previous four invariants
Cρ,Cχ ,Cγ , Qχ . Consequently, �C is the fifth scalar invariant sought. Summarizing, we
have the following lemma.

Lemma 3 For any metric g of the form (10), the curvature vector field C transforms as
C → (sgn Jφ)C under the pseudogroup action (2). Therefore, �C = g(C, C) is a scalar
differential invariant.

We say that a metric belongs to theKundu classwhen �C ≡ 0, i.e., when C is null. Vacuum
Einstein metrics in this class have been studied by Kundu [21].
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1354 D. Catalano Ferraioli, M. Marvan

5.3 O’Neill tensors A and T. The invariant and semi-invariant vector fieldsH and
H⊥ in the case when C� �= 0

To construct further invariants, we introduce also a semi-invariant orthogonal frame on Ξ⊥
by employing the O’Neill tensors A and T [5,28]. These tensors are defined by

A(W1,W2) = O(W1,W2) + E(W1,W2),

T(W1,W2) = N(W1,W2) + L(W1,W2),

where

O(W1,W2) = ver
(∇hor W1 hor W2

)

, E(W1,W2) = hor
(∇hor W1 ver W2

)

,

N(W1,W2) = ver
(∇ver W1 hor W2

)

, L(W1,W2) = hor
(∇ver W1 ver W2

)

,

for arbitrary vector fields W1,W2 on M.
As is well known, see [5, §9.24],

A (hor W1, hor W2) = 1
2c(W1,W2),

while A (hor W1, hor W2) = A (W1, hor W2) = O(W1,W2), hence

O(W1,W2) = A (W1, hor W2) = 1
2c(W1,W2)

meaning that in adapted coordinates components ofO are simply one half of those of c given
by formulas (18).

Remark 3 The second fundamental form of the fibers of the submersion is defined by T̄
∣
∣
Ξ
,

the restriction of T to Ξ . Hence, T̄
∣
∣
Ξ

= 0 if and only if the Riemannian submersion has
totally geodesic fibers. Moreover, Ξ⊥ is completely integrable iff the restriction of A to Ξ⊥
identically vanishes. In particular, when A = 0, then Ξ⊥ is completely integrable.

To construct a semi-invariant orthogonal frame in Ξ⊥, we consider the mean curvature
vector field H, defined as

H =
2
∑

s=1

T(vs, vs),

for any vertical orthonormal frame {v1, v2}. Obviously, H is invariant with respect to the
action of G(1)

τ . In adapted coordinates, H is the contraction Ha = gklTa
kl . Hence,

H = Hi
(

∂

∂t i
− f ki

∂

∂zk

)

,

where

Hi = −1

2
g̃is

(det h),s

det h
, i = 1, 2. (21)

By comparing (14) and (21), one sees that H ∈ Ξ⊥ is a lifted vector field; more precisely,
H = − 1

2 X̂ . The squared length of H is easily seen to be �H = g(H,H) = 1
4Cρ .

In the case when Cρ �= 0, to complete the sought semi-invariant orthogonal frame, we
introduce the orthogonal complement H⊥ ∈ Ξ⊥ by lifting the vector field − 1

2X
⊥, see

formula (15). Then, since the lift preserves the scalar product, one has g(H,H⊥) = 0 and

�H⊥ = g(H⊥,H⊥) = g
(

− 1
2X

⊥,− 1
2X

⊥) = ±g̃
1
4 Cρ = ±g̃ �H.
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In coordinates,

H⊥ = (H⊥)i
(

∂

∂t i
− f ki

∂

∂zk

)

,

where

(H⊥)1 = −1

2

(det h),2

(det h)
√|det g̃| , (H⊥)2 = 1

2

(det h),1

(det h)
√|det g̃| .

The pair H,H⊥ is the sought semi-invariant orthogonal frame in Ξ⊥ when Cρ �= 0.

5.4 The semi-invariant orthogonal frame {H,H⊥,C,C⊥} in the case when
C� �C �= 0

By construction, C ∈ Ξ , whereΞ is two-dimensional. Let C⊥ be the orthogonal complement
of C in Ξ , uniquely determined by the requirements g(C, C⊥) = 0, volh(C, C⊥) > 0, �C⊥ =
g(C⊥, C⊥) = ±h�C , where ±h = sgn det h, and

volh = √|det h| dz1 ∧ dz2

is the (t1, t2)-dependent volume form of the orbits with metric h = hi j dzi dz j . In coordi-
nates,

C⊥ = C⊥k ∂

∂zk
, C⊥1 = hs2Cs√|det h| , C⊥2 = −hs1Cs√|det h| . (22)

The vector field C⊥ is semi-invariant, since it transforms as

C⊥ → (sgn Jφ)(sgn det αi
j )C

⊥

under pseudogroup transformations (2). Hence, when �C �= 0, the pair C, C⊥ defines a semi-
invariant orthogonal frame on Ξ .

Summarizing, we have the following proposition about the semi-invariant frame {H,H⊥,
C, C⊥}.
Proposition 7 In the case when Cρ �C �= 0, the pairs of vector fields H, H⊥ ∈ Ξ⊥ and
C, C⊥ ∈ Ξ form a semi-invariant orthogonal frame on M. In particular, under the pseu-
dogroup action (2), these fields transform as

H → H, H⊥ → (sgn Jφ)H⊥,

C → (sgn Jφ)C, C⊥ → (sgn Jφ)(sgn det αi
j )C

⊥.
(23)

Moreover, the nonzero components of g in this frame are the invariants

g(H,H) = �H = 1
4 Cρ, g(H⊥,H⊥) = �H⊥ = ±g̃

1
4 Cρ,

g(C, C) = �C, g(C⊥, C⊥) = �C⊥ = ±h�C,

where ±g̃ = sgn det g̃, ±h = sgn det h.
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5.5 Further first-order scalar invariants

In this section we discover three new semi-invariants ΘI, ΘII, ΘIII by examining the com-
ponents of the O’Neill tensors in the frame {H,H⊥, C, C⊥}. This frame is well defined only
when Cρ�C �= 0.

In the rest of the paper, the components of a tensor W with respect to the frame
{H,H⊥, C, C⊥} will be denoted byW(a)(b)...

(c)(d)... . Thus, e.g.,

g(1)(1) = g (H,H) , g(1)(2) = g
(

H,H⊥) ,

etc. Now, in view of Proposition 7 the nonzero components g(a)(b) are scalar invariants, which

coincide up to a sign with �H and �C . Analogously, the only nonzero components A(a)
(b)(c) of

the O’Neill tensor A are

A(1)
(2)(3) = − 1

2�C, A(2)
(1)(3) = ±g̃

1
2�C, A(3)

(1)(2) = − 1
2�H, A(3)

(2)(1) = 1
2�H,

yielding no new scalar invariant.
On the contrary, the nonzero components T(a)

(b)(c) of the O’Neill tensor T are much more
interesting. Indeed, in order of increasing complexity, the nonzero components of T are

T(3)
(3)(2),T

(3)
(4)(2),T

(3)
(4)(1),T

(3)
(3)(1),T

(4)
(4)(1).

In view of (23), the first three components of this quintuple are semi-invariants, whereas
T(3)

(3)(1) and T(4)
(4)(1) are invariants. Before exploring them in detail, we also introduce two

semi-invariant tensors of type (1, 1) defined by

TC(U ) = T(C,U ), TC⊥(U ) = T(C⊥,U )

for an arbitrary vector field U on M. Thus,

(TC)kj = Tk
s jC

s, (TC⊥)kj = Tk
s jC

⊥s .

Of interest are

ΘC = detTC, ΘC⊥ = detTC⊥ ,

since they are invariants, while the traces (TC)ii = (TC⊥)ii = 0 vanish. We could choose ΘC
or ΘC⊥ as the missing sixth invariant, but there exist semi-invariants of lower complexity. To
find these semi-invariants, we first consider the vector fields

T = T(3)(2) = T(C,H⊥), T ⊥ = T(4)(2) = T(C⊥,H⊥).

They are, respectively, invariant and semi-invariant and constitute another orthogonal frame
in Ξ . Moreover, denoting by

�T = g(T , T ), �T ⊥ = g(T ⊥, T ⊥)

the squared lengths,which are invariants,wehave �T ⊥ = ±h�T . The angles betweenT orT ⊥
and C or C⊥ (they all lie inΞ ) are scalar semi-invariants, proportional to g(T , C) = �CT

(3)
(3)(2)

and g(T ⊥, C) = �CT
(3)
(4)(2).
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The coordinate description of the invariants and semi-invariants introduced above involves
the three relatively simple semi-invariants

ΘI = 1

|det h|1/2 |det g̃|1/2

∣
∣
∣
∣
∣
∣

h11,1 h12,1 h22,1
h11,2 h12,2 h22,2
(C2)2 −C1C2 (C1)2

∣
∣
∣
∣
∣
∣

,

ΘII = 4g(T , C) = 1

det h |det g̃|1/2

∣
∣
∣
∣
∣
∣

h11,1 h12,1 h22,1
h11,2 h12,2 h22,2

−2h1kCkC2 h11(C1)2 − h22(C2)2 2h2kC1Ck

∣
∣
∣
∣
∣
∣

,

and

ΘIII = 1

|det h|3/2 |det g̃|1/2

∣
∣
∣
∣
∣
∣

h11,1 h12,1 h22,1
h11,2 h12,2 h22,2

(h1kCk)2 h1kh2lCkCl (h2lCl)2

∣
∣
∣
∣
∣
∣

,

which are such that

Θ2
I = 16ΘC, ΘII = 4�CT

(3)
(3)(2), Θ2

III = ±g̃h16ΘC⊥ . (24)

Summarizing,

Cρ,Cχ ,Cγ , Qχ , Qγ ,ΘC,ΘC⊥ , �C, �T ,T(3)
(3)(1),T

(4)
(4)(1)

and

ΘI,ΘII,ΘIII,T
(3)
(3)(2),T

(3)
(4)(2),T

(3)
(4)(1),

are two (relatively simple) sets of first-order scalar invariants and semi-invariants, respec-
tively.

As we already know, at most six first-order invariants can be functionally independent.
Since the semi-invariants can only change their sign under the pseudogroup action (2),

Cρ,Cχ , Qχ , Qγ , �C, (ΘI)
2

turn out to be the simplest six functionally independent scalar invariants.

Proposition 8 In the orthogonally intransitive case, the scalar differential invariants I1 =
Cρ , I2 = Cχ , I3 = Qχ , I4 = Qγ , I5 = �C and I6 = (ΘI)

2 form a maximal system of
functionally independent scalar differential invariants of the first order in generic points of
the jet space.

Proof The rank of the Jacobian at a generic point of the jet space is equal to six. 	

Thus, all invariants can be expressed in terms ofCρ,Cχ , Qχ , Qγ , �C, (ΘI)

2. The simplest
functional relations are provided by (24) and

Θ2
II

16 �2C
±h (T(3)

(4)(2))
2 ±g̃

1
4 (Qχ − Qγ ) = 0.

Moreover, the relations among Qχ , Qγ , �C,ΘI,ΘII,ΘIII are

−2�C
√|Qγ | + ΘI + ΘIII = 0

and

±g̃4Qχ�2C ∓h 8ΘI
√|Qγ |�C ±h 4Θ

2
I + Θ2

II = 0,

where Qγ is the scalar invariant defined in Sect. 5.1.
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6 Additional second-order invariants

Besides the fourteen second-order Carminati–McLenaghan invariants [7] available for every
four-dimensional metric, there are additional invariants originating in the submersion struc-
ture.

An infinite sequence of higher-order scalar differential invariants is obtained by repeatedly
applying invariant or semi-invariant differentiations to the first-order scalar invariants listed
in Proposition 8. Invariant differentiations correspond to vector fields on the orbit space S.
We already introduced two such vector fields X ,X⊥ in Sect. 5.1, assuming that Cρ �= 0; the
corresponding invariant differentiations will be denoted X , X⊥. In coordinates,

X = g̃is
(det h),s

det h
Dti ,

X⊥ = (det h),2

(det h)
√|det g̃|Dt1 − (det h),1

(det h)
√|det g̃|Dt2 ,

cf. Lemma 2. Therefore, according to Proposition 8, we have the 12 second-order invariants
X(I j ), X⊥(I j ), j = 1, . . . , 6.

A related construction of higher-order invariants is as follows. Let I1, I2 be two scalar
invariants such that

Δ =
∣
∣
∣
∣

XI1 XI2

X⊥I1 X⊥I2

∣
∣
∣
∣
�= 0.

For any other scalar invariant φ, define scalar invariants φI1 , φI2 by

φI1 = 1

Δ

∣
∣
∣
∣

Xφ XI2

X⊥φ X⊥I2

∣
∣
∣
∣
, φI2 = 1

Δ

∣
∣
∣
∣

XI1 Xφ

X⊥I1 X⊥φ

∣
∣
∣
∣
.

When I1, I2 are of the first order and φ is of order n ≥ 1, then φI1 , φI2 are, in general, of
order n+1. The invariantsφI1 , φI2 have an obvious geometricmeaning. The scalar invariants
I1, I2 restricted to the orbit space S (see Remark 1) constitute a local coordinate system
on S if they are functionally independent or, equivalently, when Δ �= 0 (still assuming
that Cρ �= 0). Let φ be any other invariant restricted to S. Solving {Xφ = XIi ∂φ/∂Ii ,
X⊥φ = X⊥Ii ∂φ/∂Ii } as a linear system for ∂φ/∂Ii , we see that the partial derivative
∂φ/∂Ii is equal to φIi .

Additional invariants arise bymeans of formula (13) for suitable symmetric bilinear forms
on the orbit space S. For instance, denoting ric = Ric(g̃) the Ricci form of S, one has the
invariants Qric and also Cric = ScS , the scalar curvature of S. Along the same line, in view
of the invariance of σ = d ln |det h|, the Hessian ν = Hess(ln |det h|), defined by

ν(U , V ) = Hess(ln |det h|)(U , V ) = U � ∇V d (ln |det h|) = V � ∇Ud (ln |det h|)
for all vector fields U , V on S, is another symmetric bilinear form on S. Hence, one obtains
two additional invariants Qν and Cν = ΔS ln |det h|, where ΔS is the Laplace–Beltrami
operator. It is worth mentioning here that

C ′
ν := Cν − 2Cχ + Cρ = gi j hklhkl,i j + gi ji h

klhkl, j + 1
2 g

i j gm,ngmn,i h
klhkl, j

has a noteworthy simpler coordinate expression than Cν itself.

Proposition 9 In the orthogonally intransitive case, the invariants I j , X(I j ), X⊥(I j ), j =
1, . . . , 6 (see Proposition 8), Cric and Cν (or C ′

ν) form a maximal system of 20 generically
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functionally independent scalar differential invariants of order less than 3. All other second-
order invariants are functionally dependent on these.

Proof The rank of the Jacobian at a generic point of the jet space is equal to 20. 	


For example, one can check that

Qric = 1
4 (Cric)

2 ,

4C2
ρQν + (XCρ)2 ±g̃ (X⊥Cρ)2 − 2CνCρXCρ = 0.

If Cρ �= 0, then the last formula allows us to express Qν in terms of Cρ , XCρ , X⊥Cρ and
Cν .

To extend the set of geometrically meaningful invariants, we consider the sectional cur-
vatures

K (Ξ) = g
(

R
(

∂z1 , ∂z2
)

∂z1 , ∂z2
)

g
(

∂z1 , ∂z1
)

g
(

∂z2 , ∂z2
) − g

(

∂z1 , ∂z2
)2 (25)

and

K (Ξ⊥) = g (R (e1, e2) e1, e2)

g (e1, e1) g (e2, e2) − g (e1, e2)2
(26)

of Ξ and Ξ⊥, respectively, with vectors ei being given by formulas (17).

Proposition 10 We have

K (Ξ) = − 1
4Cχ , K (Ξ⊥) = 1

2Cric ∓g̃
3
4�C .

Proof Both formulas are routinely checked in adapted coordinates. 	


Finally, second-order invariants can be also obtained from the commutator [X ,X⊥], which
lies in Ξ , hence is a linear combination of X and X⊥. However, the coefficients are rather
simple expressions in Cρ , XCρ , X⊥Cρ and Cν .

Proposition 11 Let Cρ �= 0. Then, the (semi-)invariant differentiationsX andX⊥ satisfy the
commutation relations

[X ,X⊥] = J1X + J2X⊥,

where

J1 = − X⊥Cρ

Cρ

, J2 = XCρ

Cρ

− Cν .

Proof By orthogonality, we have

J1 = g̃(X , [X ,X⊥])
Cρ

, J2 = g̃(X⊥, [X ,X⊥])
Cρ

.

Identities g̃(X , [X ,X⊥]) = −X⊥(Cρ) and g̃(X⊥, [X ,X⊥]) = X⊥Cρ −CρCν are routinely
checked in adapted coordinates. 	
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7 3-vacuum Einstein equations forG2 metrics, and their solutions in
the special cases C� = 0 and �C = 0

Vacuum Einstein equations for metrics with two commuting Killing fields have been derived
by Geroch [14,15], Gaffet [13, eq. (3.15)], Whelan and Romano [38]. Here we look for
Λ-vacuum equations. We obtain a tractable system by choosing g̃i j , f kj , hkl as dependent
variables, i.e., substituting

fil = f ki hkl , gi j = g̃i j + f ki f lj hkl .

This choice ensures that the components of the inverse matrix gαβ are relatively simple.
Then, to simplify the Einstein equations further, we exploit the fact that the metric g̃, being
two-dimensional and non-degenerate, is conformally flat. Hence, depending on the position
of the Killing leaves in the spacetime, g̃ is either conformally Euclidean or conformally
Minkowskian. In addition, denoting by H the symmetric 2 × 2 matrix with elements hkl , it
is useful to introduce the row vectors

Fi = ( f 1i f 2i ), i = 1, 2,

P = (F1,2 − F2,1)H ,

i.e., P is a row vector obtained by multiplication of the row vector F1,2 − F2,1 by H from
the right. By comparison with formula (20), P = 0 iff C = 0 iff the metric is orthogonally
transitive.

Below we derive the Λ-vacuum Einstein equations for G2-metrics. We find their explicit
solutions in the special cases Cρ = 0 and �C = 0. In particular, we show that when Cρ = 0,
then the correspondingΛ-vacuumEinsteinmetrics belong to thewell-understood class of pp-
waves, characterized by the presence of a constant null vector, see [35, §25.5] and references
therein. In this special case all first-order invariants vanish. In the case when �C = 0, on the
other hand, we show that the explicit vacuum solution originally presented by Kundu [21]
can be extended to the Λ-vacuum case. In particular, we find two new solutions (43–44) and
(45–46).

7.1 The case when g̃ is Lorentzian and explicit solutions with C� = 0

Proposition 12 Let the metric (10) be such that Cρ �= 0, with det g̃ < 0 and det H > 0.
Then, by writing the orbit metric in the conformally flat form

g̃ =
(

0 q
q 0

)

, q = q(t1, t2) �= 0,

the Λ-vacuum Einstein equations Rμν − Λgμν = 0 are equivalent to the compatible system
of matrix and scalar equations

(r H,1H
−1),2 + (r H,2H

−1),1 = 2Λqr E + q

r
A�AH−1,

(ln q),1 = (ln(ln r),1),1 + tr(H,1H−1H,1H−1)

4(ln r),1
,

(ln q),2 = (ln(ln r),2),2 + tr(H,2H−1H,2H−1)

4(ln r),2
,

F1,2 − F2,1 = q

r
A H−1, (27)
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where r = √
det H, E is the 2 × 2 unit matrix and

A = (a1 a2), ai = const

denotes an arbitrary constant row vector, which is zero if and only if Ξ⊥ is completely
integrable. Moreover,

r,12 = −Λqr − q

4r
AH−1A�

as a consequence of first equation of (27).

Proof By assumption Cρ �= 0, where

Cρ = 8
r,1r,2
r2q

= 2
(det H),1(det H),2

(det H)2q
.

Therefore, (det H),1 �= 0, (det H),2 �= 0. Denote R the Ricci tensor of the metric g. Solving
the Einstein equations Rμν − Λgμν with respect to H,12, P,1, P,2, q,1, q,2, q,12, we obtain
one 2 × 2 matrix equation

H,12 − 1

2
H,1H

−1H,2 − 1

2
H,2H

−1H,1

+ 1

4

(det H),1

det H
H,2 + 1

4

(det H),2

det H
H,1 + ΛqH + 1

2q
P�P = 0,

(28)

two vector equations

P,1 =
(

(det H),11

(det H),1
− det(H,1)

(det H),1
− (det H),1

det H

)

P,

P,2 =
(

(det H),22

(det H),2
− det(H,2)

(det H),2
− (det H),2

det H

)

P,

(29)

and three scalar equations

q,1 =
(

(det H),11

(det H),1
− det(H,1)

(det H),1
− 1

2

(det H),1

det H

)

q,

q,2 =
(

(det H),22

(det H),2
− det(H,2)

(det H),2
− 1

2

(det H),2

det H

)

q,

(ln q),12 = (trH),1(trH),2 − tr(H,1H,2)

4 det H
+ 3

4q
PH−1P�.

(30)

By comparison of the cross derivatives q,12 and q,21, one sees that the third equation (30) is
a differential consequence of the first two.

Conversely, if the five equations (28), (29) and (30) hold, thenRμν = Λgμν . Compatibility
of the equations is routinely checked.

As an easy consequence of equations (29) and (30), we obtain

P,1 =
(
q,1

q
− 1

2

(det H),1

det H

)

P, P,2 =
(
q,2

q
− 1

2

(det H),2

det H

)

P.

It follows that r P/q is a constant vector (recall that r = √
det H ). Therefore, we can write

P = q

r
A,

where A is an arbitrary constant rowvector. Now theEinstein equations reduce to system (27).
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1362 D. Catalano Ferraioli, M. Marvan

Remark 4 When A = 0 and Λ = 0, equations (27) reduce to the well-known Belinsky–
Zakharov [4] formulation of the vacuum Einstein equations.

Proposition 13 All Λ-vacuum Einstein metrics of the form (10), with Cρ = 0, det g̃ < 0 and
det H > 0, satisfy Λ = 0 and in adapted coordinates can be written in the form

g = dt1 dt2 + R2(dz1 + W dz2)2 + S2(dz2)2, (31)

with R, W and S differentiable functions of t1 such that R S �= 0 and

(

W ′)2 = 2S2

R2

(
R′′

R
+ S′′

S

)

. (32)

In particular these Ricci-flat metrics are such that C = 0 (then �C = 0), hence are orthog-
onally transitive and, in addition, are pp-waves since ∂t2 is a null Killing vector field such
that ∇∂t2 = 0.

Proof By assumption

0 = Cρ = 2
(det H),1(det H),2

(det H)2q
.

Therefore, det H is a function of either t1 or t2; we assume the former, i.e., t1. On the other
hand, since h11 �= 0 can be always achieved by a linear change of coordinates {z̄i = αi

j z
j },

without loss of generality one can write h (the restriction of the metric to the Killing leaves
Ξ ) as

h = h11

[(

dz1 + h12
h11

dz2
)2

+
(

h11 h22 − h212
)

h211
(dz2)2

]

,

i.e., in the Weyl–Lewis–Papapetrou form [22,31]

h = r

s

[

(dz1 + w dz2)2 + s2 (dz2)2
]

,

with

w = h12
h11

, r = √
det H , s = r

h11
.

In terms of Weyl–Lewis–Papapetrou parameters r , s, w, the analysis of Einstein equations
Lμν = Rμν − Λgμν = 0 simplifies noteworthy. Indeed, by computing the contravariant
components Lμν , one finds that L11 = 0 if and only if s2,2 + w2

,2 = 0. Since w, s are real, it

follows that they are functions of t1. Hence, all components hi j are functions of t1, which
substantially simplifies computation of the remaining components of L. In particular, we
obtain

0 = L13 + f 12 L
12 = − 1

2C
3
t2 , 0 = L14 + f 22 L

12 = − 1
2C

4
t2 .
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Consequently, components of the curvature vector depend on t1 only as well. Continuing
further, we obtain

0 = L33 + 3h11L12 = 1
2 (C

2)2 det H +
(
q,12

q3
− q,1q,2

q2

)

h11 + 4Λh11,

0 = L34 + 3h12L12 = 1
2C

3C2 det H +
(
q,12

q3
− q,1q,2

q2

)

h12 + 4Λh12,

0 = L44 + 3h22L12 = 1
2 (C

3)2 det H +
(
q,12

q3
− q,1q,2

q2

)

h22 + 4Λh22

0 = (4q det H)L12 + h22L33 − 2h12L34 + h11L44

= 2

(
q,12

q3
− q,1q,2

q2
+ 3Λ

)

det H

By the fourth equation,

q,12

q3
− q,1q,2

q2
= −3Λ,

then, by substituting into the remaining three equations and using (C3)2(C2)2 = (C3C2)2, we
obtain Λ = 0 and

q,12 = q,1q,2

q
. (33)

Hence, C = 0 and the metric g is orthogonally transitive.
On the other hand, Eq. (33) implies that q(t1, t2) is a product, q = q1(t1)q2(t2). There-

fore, by passing to new coordinates t̄ i = ∫

qi dti , the orbit metric reduces to dt̄2 dt̄2 and
the Einstein equations reduce to a single ordinary differential equation. Hence, by suitably
rearranging the unknown functions, one can write the metric g and the corresponding Ein-
stein equations in the form (31) and (32), respectively. The case when det H depends on t2

is completely analogous. 	


Obviously, the three Killing fields commute and, therefore, the metric has no unique two-
dimensional commuting Killing algebra. Hence, it actually falls outside the class of metrics
considered in this paper.

7.2 The case when g̃ is Riemannian and explicit solutions with C� = 0

In the case of conformally Euclidean orbit metric, we have g̃ = q(d t1)2 + q(d t2)2 and,
therefore,

g = q((dt1)2 + (dt2)2) + hkl(dz
k + f k1 dt

1 + f k2 dt
2)(dzl + f l1dt

1 + f l2dt
2), (34)

where q, f ki , hkl are the unknown functions of x, y. Clearly, det H < 0.

Proposition 14 Let the metric (10) be such that Cρ �= 0, with det g̃ > 0 and det H < 0.
Then, by writing the orbit metric in the conformally flat form

g̃ =
(

q 0
0 q

)

, q = q(t1, t2) �= 0.
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1364 D. Catalano Ferraioli, M. Marvan

the Λ-vacuum Einstein equations Rμν − Λgμν = 0 are equivalent to the compatible system
of matrix and scalar equations

(r H,1H
−1),1 + (r H,2H

−1),2 = 2Λqr E + q

r
A�AH−1,

(

ln
q

r2,1 + r2,2

)

,1

= −r,11 + r,22
r2,1 + r2,2

r,1 + det(H,1) − det(H,2)

r2,1 + r2,2

r,1
2r

+ (trH),1(trH),2 − tr(H,1H,2)

r2,1 + r2,2

r,2
2r

,

(

ln
q

r2,1 + r2,2

)

,2

= −r,11 + r,22
r2,1 + r2,2

r,2 + det(H,2) − det(H,1)

r2,1 + r2,2

r,2
2r

+ (trH),1(trH),2 − tr(H,1H,2)

r2,1 + r2,2

r,1
2r

,

F1,2 − F2,1 = q

r
A H−1,

(35)

where r = √− det H, E is the unit 2 × 2 matrix and

A = (a1 a2), ai = const

is an arbitrary constant row vector, which is zero if and only if Ξ⊥ is completely integrable.
Moreover,

r,11 + r,22 = −2Λqr + q

2r
AH−1A�

as a consequence of the first equation of (35).

Proof By assumption

0 �= Cρ = 4
r,12 + r,22

qr2
.

Consequently, also r,12 + r,22 �= 0. Denote R the Ricci tensor of the metric (34). By
tedious routine computations, solving the Einstein equations Rμν − Λgμν with respect to
H,22, P,1, P,2, q,1, q,2, q,22, we obtain one 2 × 2 matrix equation

H,11 + H,22 − H,1H
−1H,1 − H,2H

−1H,2

+ 1

2

(det H),1

det H
H,1 + 1

2

(det H),2

det H
H,2 + 2ΛqH + 1

q
P�P = 0,

(36)

two vector equations

P,1 =
(
q,1

q
− 1

2

(det H),1

det H

)

P, P,2 =
(
q,2

q
− 1

2

(det H),2

det H

)

P, (37)
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and three scalar equations

(det H),2
q,1

q
+ (det H),1

q,2

q
− 2(det H),12

+ (det H),1(det H),2

det H
+ (trH),1(trH),2 − tr(H,1H,2) = 0,

(det H),1
q,1

q
− (det H),2

q,2

q
+ (det H),11 − (det H),22

− (det H)2,1 + (det H)2,2

2 det H
− det(H,1) + det(H,2) = 0,

(ln q),11 + (ln q),22 = det(H,1) + det(H,2)

2 det H
− 3

4q
PH−1P�.

(38)

Again, the third equation (38) is a differential consequence of the first two.
Conversely, if the five equations (36), (37) and (38) hold, thenRμν = Λgμν . Compatibility

of the equations is routinely checked. Again, r P/q is a constant vector (recall that r =√− det H ) and we can write

P = q

r
A,

where A is a constant row vector.
The two scalar equations (38) simplify to

r,2
q,1

q
+ r,1

q,2

q
− 2r,12 − (trH),1(trH),2

2r
+ tr(H,1H,2)

2r
= 0,

− r,1
q,1

q
+ r,2

q,2

q
+ r,11 − r,22 + det(H,2) − det(H,2)

2r
= 0.

Then, the Einstein equations reduce to system (35). 	

Proposition 15 All Λ-vacuum Einstein metrics of the form (10), with Cρ = 0, det g̃ > 0 and
det H < 0, satisfy Λ = 0 and in adapted coordinates can be written either in the form

g = (dt1)2 + (dt2)2 + ψ(dz1)2 + 2
(

c t1 dt2 + dz2
)

dz1, (39)

with c ∈ R and ψ = ψ(t1, t2) a differentiable function such that ψ,11 +ψ,22 = c2, or in the
form

g = et
1
(dt1)2 + et

1
(dt2)2 + ψ(dz1)2 + 2

(

c et
1
dt2 + dz2

)

dz1, (40)

with c ∈ R and ψ = ψ(t1, t2) a differentiable function such that ψ,11 + ψ,22 = et
1
c2.

In particular, these Ricci-flat metrics are such that �C = 0 and, in addition, are pp-waves
since ∂z2 is a null Killing vector field such that ∇∂z2 = 0; moreover, these metrics are
orthogonally transitive if, and only if, c = 0.

Proof By assumption

0 = Cρ = (det H,1)
2 + (det H,2)

2

q (det H)2
.

Consequently, det H is a constant. Like in the proof of Proposition 13, the analysis of Einstein
equations Lμν = Rμν − Λgμν = 0 simplifies noteworthy if considering h in the Weyl–
Lewis–Papapetrou form. In terms of the Weyl–Lewis–Papapetrou parameters r , s, w, one
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1366 D. Catalano Ferraioli, M. Marvan

has det H = −r2 and, without loss in generality, one can assume r = 1, because this can
always be achieved by a coordinate transformation zi → zi/

√|r |, i = 1, 2, and rearranging
the sign of s whenever r < 0. Moreover, by equating contravariant components L12 and
L11 − L22 to zero modulo det H = const, we obtain

0 = h11,2h22,1 − 2h12,1h12,2 + h11,1h22,2 = s,1s,2 − w,1w,2,

0 = h11,1h22,1 − h12,1
2 + h12,2

2 − h11,2h22,2 = s,1
2 − s,2

2 − w,1
2 + w,2

2,

The latter algebraic system has two real solutions

s,1 = ±w,1, s,2 = ±w,2

and also a complex solution s,2 = iw,1, s,1 = −iw,2, which gives s = const, w = const as
the unique real subcase. Altogether, we obtain

s = ±w + c1, r = 1,

Hence,

H =

⎛

⎜
⎜
⎝

1

±w + c1

w

±w + c1
w

±w + c1

−c21 ∓ 2c1w

±w + c1

⎞

⎟
⎟
⎠

∼
⎛

⎝

1

±w + c1
1

1 0

⎞

⎠ ,

where the matrix congruence H ∼ Q�HQ is with respect to the transition matrix

Q =
(±1 ±c1

0 1

)

.

Otherwise said, we can take

H =
(

ψ 1
1 0

)

with ψ = ψ(t1, t2) a differentiable function. This simplifies L further. From L44 = 0 we
get C3 = 0, i.e., f 11,2 − f 12,1 = 0, and by L34 = 0 we get Λ = 0. Then, L11 = 0 is equivalent

to q,11 + q,22 = (q,1
2 + q,2

2)/q , which transforms to the Laplace equation φ,11 + φ,22 = 0
under q = eφ , and by L14 = L24 = 0 one gets that C4 = const, i.e., f 22,1 − f 21,2 = ceφ , with
c ∈ R. It follows that the remaining equations Lμν = 0 are satisfied if, and only if,

ψ,11 + ψ,22 = c2eφ.

Thus, when φ = c0, c0 ∈ R, one has

f 11 = φ21,1 + φ1, f 21 = φ12,1, f 12 = φ21,2, f 22 = φ12,2 + c ec0 t1 + φ2,

with φ12 = φ12(t1, t2), φ21 = φ21(t1, t2), φ1 = φ1(t1), φ2 = φ2(t2) arbitrary differentiable
functions and, by choosing new adapted coordinates

t̄1 = ec0/2t1, t̄2 = ec0/2t2, z̄1 = φ21 + φ1 + z1, z̄2 = φ12 + φ2 + z2,

we get

g = (dt̄1)2 + (dt̄2)2 + ψ(dz̄1)2 + 2(c t̄1dt̄2 + dz̄2) dz̄1,

where ∂2
t̄1

ψ + ∂2
t̄2

ψ = c2.
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On the other hand, if φ is non-constant, then, being a harmonic function, φ can be chosen
for t1 and the conjugate harmonic function for t2. Then,

f 11 = φ21,1 + φ1, f 21 = φ12,1, f 12 = φ21,2, f 22 = φ12,2 + c et
1 + φ2,

with φ12 = φ12(t1, t2), φ21 = φ21(t1, t2), φ1 = φ1(t1), φ2 = φ2(t2) arbitrary differentiable
functions. By choosing new adapted coordinates

t̄1 = t1, t̄2 = t2, z̄1 = φ21 + φ1 + z1, z̄2 = φ12 + φ2 + z2,

we get

g = et̄
1
(dt̄1)2 + et̄

1
(dt̄2)2 + ψ(dz̄1)2 + 2(c et̄

1
dt̄2 + dz̄2) dz̄1,

where ∂2
t̄1

ψ + ∂2
t̄2

ψ = et̄
1
c2. These Ricci-flat metrics are pp-waves since ∂/∂ z̄2 is a covari-

antly constant and null Killing vector. 	


7.3 Exact solutions in the case when �C = 0

In the paper [21] Kundu looked for solutions of the vacuum Einstein equations satisfying the
condition hklckcl = 0, where the scalars

ci = εαβρσ ξ(1)αξ(2)βξ(i)ρ;σ

measure the orthogonal intransitivity (cf. [14]), and ξ(i) = ∂zi , i = 1, 2, are the Killing vec-
tors.Kundupresented all solutions satisfying this condition, butwithout proof.We reconstruct
the proof below and extend his result to Λ-vacuum metrics.

To start with, we notice that the Kundu condition hklckcl = 0 is equivalent to cα
12c

β
12gαβ =

ck
∗

12c
l∗
12hkl = 0, i.e., in invariant terms,

�C = 0.

Lemma 4 WhenCρ �= 0, the semi-invariant vector field C and the invariant �C can be written
as

C = sgn(q)
1√∓ det H

AH−1, �C = 1

∓ det H
AH−1A�,

where A is the constant vector introduced in Propositions 12 and 14. Moreover, under trans-
formations ∂/∂z j = αi

j ∂/∂ z̄ i , with (αi
j ) ∈ GL(2,R), we have

H → α�Hα, A → Aα, q → q, P → P (41)

and, whenever A is nonzero, it can be always normalized to any prescribed nonzero vector
by means of transformation (41).

Proof This is easily checked using Propositions 12 and 14. 	

The next theorem describes all Λ-vacuum Einstein metrics with �C = 0.

Theorem 1 Every Lorentzian Λ-vacuum metric of the form (10) that satisfies the condition
�C = 0 has one of the following forms:

1. pp-waves with Cρ = 0, described by Propositions 13 and 15;
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1368 D. Catalano Ferraioli, M. Marvan

2. Petrov type II vacuum metrics of Kundu [21]

1√
x

(

dx2 + dy2 + (x3/2ψ + 1) du2 + 2 dy du − 2 x3/2 du dv
)

, (42)

where ψ solves the cylindrical Laplace equation ψxx − 2ψx/x + ψyy = 0;
3. Petrov type II Λ-vacuum metrics

3

Λ

c2r

c2r3 + 1
dr2 + c2r3 + 1

r
dy2 + 2

r
dy du + r3ψ + 1

r
du2 + 2

r2
du dv (43)

where c,Λ are nonzero constants and ψ(r , y) is a solution of the separable linear
equation

(c2r3 + 1)2

r2
ψrr + (c2r3 + 1)(4c2r3 + 1)

r3
ψr + 3

c2

Λ
ψyy = 0; (44)

4. Petrov type III Λ-vacuum metrics

3

Λx2
dx2 + 1

x2
dy2 + 2x dy du + 2

x2
du dv + x6 + ψ

2x2
du2 (45)

where Λ �= 0 and ψ(x, y) satisfy the cylindrical Laplace equation

ψxx − 2

x
ψx + 3

Λ
ψyy = 0. (46)

Proof The case of Cρ = 0 is completed in Sect. 7, since all metrics found in Propositions 13
and 15 satisfy �C = 0. Assume henceforth that Cρ �= 0, so that we can use Propositions 12
and 14.

We consider theΛ-vacuumEinstein equations augmentedwith condition �C = 0. Accord-
ing to Lemma 4, the scalar invariant �C equals

�C = 1

∓ det H
AH−1A�. (47)

Therefore, condition �C = 0 implies that the vector C is null with respect to the matrix
H−1; then necessarily det H < 0, so that Proposition 12 is applicable. Rewriting Λ-vacuum
Einstein equations in terms of Weyl–Lewis–Papapetrou parameters and renaming t1, t2 to
x, y for brevity, we obtain

rxx = 1

4

r2x − r2y
r

+ 1

4
r
w2
x − w2

y − s2x + s2y
s2

+ 1

2

rxqx − ryqy
q

+ 1

4
rq�C − Λrq,

rxy = 1

2

rxry
r

+ 1

2
r
wxwy − sx sy

s2
+ 1

2

rxqy + ryqx
q

,

ryy = 1

4

r2y − r2x
r

+ 1

4
r
w2

y − w2
x − s2y + s2x
s2

+ 1

2

ryqy − rxqx
q

+ 1

4
rq�C − Λrq,

qxx + qyy = q2x + q2y
q

+ 1

2
q
r2x + r2y

r2
+ 1

2
q

w2
y + w2

x − s2y − s2x
s2

− 3

2
q2�C,

sxx + syy = −rx sx + rysy
r

+ w2
x + w2

y + s2x + s2y
s

− 1

2
q
a21(s

2 + w2) − 2a1a2w + a22
r3

,

wxx + wyy = −rxwx + rywy

r
+ 2

wx sx + wysy
s

− sq

r3
a1(a1w − a2),

(48)
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where

�C = a21(s
2 − w2) + 2a1a2w − a22

sr3
= (a1s − a1w + a2)(a1s + a1w − a2)

sr3
, (49)

according to Eq. (47). If system (48) is solved, then the components f j
i can be found from

the underdetermined system

f 11,y − f 12,x = (a1s
2 − a1w

2 + a2w)
q

sr2
, f 21,y − f 22,x = (a1w − a2)

q

sr2
. (50)

The condition �C = 0 implies that a1 �= 0, since otherwise a1 = a2 = 0, contradicting the
assumption that the metric is not orthogonally transitive. Then, one has w = ±s + a2/a1.
One can choose the upper sign without loss in generality since the equations are invariant
with respect to the transformation w → −w, a2 → −a2, f 2i → − f 2i . Thus, we let

w = s + a2
a1

.

Equations (48) turn into

rxx = 1

4

r2x − r2y
r

+ 1

2

rxqx − ryqy
q

− Λrq,

rxy = 1

2

rxry
r

+ 1

2

rxqy + ryqx
q

,

ryy = 1

4

r2y − r2x
r

+ 1

2

ryqy − rxqx
q

− Λrq,

qxx + qyy = 1

2
q
r2x + r2y

r2
+ q2x + q2y

q
,

sxx + syy = −rx sx + rysy
r

+ 2
s2x + s2y

s
− a21qs

2

r3
,

(51)

whence,

rxx + ryy = −2Λrq. (52)

Moreover, the system (50) reduces to

− f 11,y + f 12,x + a2
q

r2
= 0, − f 21,y + f 22,x − a1

q

r2
= 0. (53)

Now, system (51) is preserved under the coordinate transformations (isometries of the orbit
metric)

x → x̃, y → ỹ, q → q̃

(r , s, w being unchanged), where x̃(x, y), ỹ(x, y) are arbitrary functionally independent
conjugate harmonic functions, i.e., x̃x = ỹy , x̃y = −ỹx , and

q̃ = q

J
, J = ∂(x̃, ỹ)

∂(x, y)
= x̃2x + x̃2y �= 0.

In order to reproduce Kundu’s result, assume thatΛ = 0. Then, r is harmonic by Eq. (52).
Moreover, r is non-constant, since otherwise Cρ = 8rxry/r2q = 0, which we excluded
at the beginning of the proof. Therefore, r can be chosen for x̃ . Transforming back to the
coordinates x, y, we thus identify r = x . Next we put a1 = 3/2, s = 1/(S + x−3/2), and
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1370 D. Catalano Ferraioli, M. Marvan

u = z1, v = z2 to get solution (42), which is easily identified with the Kundu orthogonally
intransitive solution [21, eq. (4), α = 1].

To cover the remaining two cases, assume that Λ �= 0. Then, we can express

q = −rxx + ryy
2Λr

and substitute back into system (51), obtaining two third-order equations on r . These are
equivalent to

(

r2x + r2y
rxx + ryy

r1/2 − 2

3
r3/2

)

x

= 0,

(

r2x + r2y
rxx + ryy

r1/2 − 2

3
r3/2

)

y

= 0,

i.e.,

r1/2(r2x + r2y ) = ( 23r
3/2 + c)(rxx + ryy), (54)

where c is an arbitrary constant. Equation (54) is equivalent to

ρxx + ρyy = 0 (55)

under substitution ρ = ρ(r), where ρ(r) satisfies

( 23r
3/2 + c)

∂2ρ

∂r2
+ r1/2

∂ρ

∂r
= 0. (56)

The last equation is easily integrated,

ρ =
∫

dr

r3/2 + c
,

which yields r(ρ). The integration constants are suppressed, since they correspond to point
symmetries ρ → b1ρ + b0 of the Laplace equation (55) and as such they are inessential.

Moreover, r is non-constant, since otherwise Cρ = 8rxry/r2q = 0, which we excluded
at the beginning of the proof. Then, ρ is non-constant as well and we are free to choose
coordinates x, y in such a way that ρ = x . Otherwise said, we are free to assume that
r = r(x) is given by

x =
∫

dr

r3/2 + c
. (57)

Now, the above expression for q evaluates to

q = −3

4

r3/2 + c

4Λ
.

To solve equations (53), we choose

f 11 = 0, f 12 = ∓ a2
2Λr3/2

,

f 21 = 0, f 22 = ± a1
2Λr3/2

.

Next steps differ according to whether c = 0 or not.
Assume that c �= 0. With ρ being an arbitrary harmonic function, the equation for s

becomes

sxx + syy − 2
s2x + s2y

s
+ (r

3
2 + c)(sxρx + syρy)

r
− 3

4
a21

(r2 + c
√
r)s2(ρ2

x + ρ2
y)

Λr4
= 0,
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which is linearizable in terms of the variable

S = 1

s
+ a21

3Λcr3/2
, i.e., s =

(

S − a21
3Λcr3/2

)−1

,

giving

Sxx + Syy + r3/2 + c

r
(ρx Sx + ρy Sy) = 0. (58)

With ρ = x , Eq. (58) simplifies to

Sxx + Syy + r3/2 + c

r
Sx = 0, (59)

and the metric becomes

− 3

4

r3/2 + c√
rΛ

(dx2 + dy2) − 2
dy du√
rΛ

− 2r du dv + 4

3

ψr2 − √
r

Λcr
du2. (60)

Choosing r , y, u, v as coordinates, we get the solution (43) and Eq. (44) for the unknown
function ψ .

Finally, assume that c = 0. Then, x = −2/
√
r , so that r = 4/x2 and easy computation

gives the metric (45). 	

Remark 5 Let us remark that not only the cylindrical Laplace equation, but also the linear
equation (44) is separable by the substitution ψ(r , y) = R(r)Y (y). The y-dependent factor
Y (y) is easy to find from Y ′′ = 1

3ΛCY/c2 where C is an arbitrary constant. The difficult
part is the equation for R(r),

(c2r3 + 1)2

r2
Rrr + (c2r3 + 1)(4c2r3 + 1)

r3
Rr − CR = 0.

It is easily solvable for C = 0, but to apply the linear superposition principle for solutions
we need enough solutions for C �= 0, too. Since c �= 0 by assumption, we can set it to 1 by
substitution r → r/c2/3, obtaining

R′′ + 4r3 + 1

r(r3 + 1)
R′ − Cr2

(r3 + 1)2
R = 0. (61)

Equation (61) has five regular singular points given by r = 0, r3 + 1 = 0, r = ∞; at these
points it is amenable to convergent series solution.

8 Differential invariants for 3-vacuum Einsteinmetrics

In this sectionwe answer the question of howmany invariants are functionally independent on
solutions of theΛ-vacuum Einstein equations. Recall that every system of partial differential
equations induces a proper subset E(k) in each kth-order jet space, where k is greater or equal
to the order of the equation. The 20 invariants given in Proposition 9 can be easily restricted
to E(k). The easiest way to do this is to solve the equations with respect to a suitable set of
the highest order variables, and use them as substitutions.

Proposition 16 The ten (semi-)invariants Cρ , Cχ , Qχ , Qγ , �C , ΘI, XCχ , X Qγ , X⊥Cχ ,
X⊥Qγ constitute a maximal set of scalar differential (semi-)invariants of order ≤ 2 func-
tionally independent on generic solutions of the Λ-vacuum Einstein equations.
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1372 D. Catalano Ferraioli, M. Marvan

Proof The rank of the Jacobian at a generic point of E(2) is equal to 10. 	

The simplest six relations are

Cric + 1
2Cχ ∓g̃

3
2�C = 0,

Cν ∓g̃ �C + 4Λ + 1
2Cρ = 0,

±g̃(X
⊥Cρ)2 + 4QχC

2
ρ − 16(Qχ − Qγ )CχCρ + 64(Qχ − Qγ )2 = 0,

±g̃(X
⊥�C)2 ±g̃h 4(ΘI − 2�C

√

Qγ )ΘI + 4�2CQχ = 0,

XCρ + (Cρ − Cχ + 4Λ ∓g̃ �C)Cρ + 8(Qχ − Qγ ) = 0,

(Qχ − Qγ )X�2C ∓g̃h Cρ

√

Qγ ΘIX�C + (3Qχ − 2Qγ )Cρ�CX�C

+ (CχCρQχ + 2C2
ρQχ − C2

ρQγ − 4Q2
χ + 4Qχ Qγ )�2C

∓g̃h (2CχCρ + C2
ρ − 8Qχ )

√

Qγ ΘI�C − 8
√

Qγ
3
ΘI�C

±g̃h (CχCρ − 1
4C

2
ρ − 4Qχ + 4Qγ )Θ2

I = 0.

Here ±g̃h = sgn(det g̃ det h), ∓g̃h = −sgn(det g̃ det h) and ±g̃ = sgn(det g̃).
Let us turn back to the sectional curvatures (25) and (26).

Proposition 17 The Λ-vacuum Einstein equations imply that Ξ and Ξ⊥ have the same
sectional curvatures.

Proof The relation Cric + 1
2Cχ ∓g̃

3
2�C = 0 is equivalent to K (Ξ⊥) = K (Ξ). 	


9 The equivalence problem in the case �CC� �= 0

Let {I1, . . . , I6} be a maximal system of generically functionally independent scalar differ-
ential invariants for G(1) on J 1(τ ). For every metric g, which is a section of τ : E → M,
the restrictions Ii |g (see Remark 1) to the first-order prolongation of g provide at most two
functionally independent differential invariants on S. The functional relations between the
restricted invariants provide necessary conditions for another metric ḡ to be equivalent to g.
Here we discuss two different methods for the solution of the equivalence problem, appli-
cable to metrics satisfying �CCρ �= 0 and possessing at least two functionally independent
scalar invariants.

9.1 The first method

Let g and ḡ be two generic metrics which, in adapted coordinates (t1, t2, z1, z2) and
(t̄1, t̄2, z̄1, z̄2), are written as

g = bi j (t
1, t2) dti dt j + 2 fik(t

1, t2) dti dzk + hkl(t
1, t2) dzk dzl , (62)

and

ḡ = b̄mn(t̄
1, t̄2) dt̄m dt̄ n + 2 f̄mr (t̄

1, t̄2) dt̄m dz̄r + h̄rs(t̄
1, t̄2) dz̄r dz̄s, (63)

respectively. If g and ḡ are equivalent, then there is a pair of indexes a, b ∈ {1, 2, . . . , 6} such
that {Ia |g(t1, t2), Ib|g(t1, t2)} and { Īa |ḡ(t̄1, t̄2), Īb|ḡ(t̄1, t̄2)} are two systems of functionally
independent invariants on S. For ease of notation, we will denote by {I1(t1, t2), I2(t1, t2)}
and {Ī1(t̄1, t̄2), Ī2(t̄1, t̄2)}, respectively, these two systems.
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Then, by implicit function theorem, the system

I1(t1, t2) = Ī1(t̄1, t̄2), I2(t1, t2) = Ī2(t̄1, t̄2)

locally defines the (t1, t2)-part of coordinate transformation (2), i.e.,

t̄ i = φi (t1, t2), i = 1, 2. (64)

On the other hand, under a coordinate transformation P of the form (2), the coordinate vector
fields transform as

P∗(∂z j ) = αi
j∂z̄i , P∗(∂t j ) =

(
∂ψ i

∂t j
◦ P−1

)

∂z̄i +
(

∂φi

∂t j
◦ P−1

)

∂t̄ i .

Hence, in view of relations (see Proposition 7)

P∗ (C) = ε1 C̄, P∗
(

C⊥) = ε1ε2 C̄⊥,

where ε1 = sgn
(

Jφ
)

and ε2 = sgn
(

det
(

αi
j

))

, one readily gets that

(

α1
1 α1

2
α2
1 α2

2

)

= ε1

(

C̄1 ε2
(

C̄⊥)1

C̄2 ε2
(

C̄⊥)2

)(

C1
(

C⊥)1

C2
(

C⊥)2

)−1

, (65)

where t̄ i = φi (t1, t2), i = 1, 2.
Analogously, in view of relations

P∗ (H) = H̄, P∗
(

H⊥) = ε1 H̄⊥,

one also gets under substitution (2) that
⎛

⎜
⎝

∂φ1

∂t1
∂φ1

∂t2
∂φ2

∂t1
∂φ2

∂t2

⎞

⎟
⎠ =

(

H̄1 ε1
(

H̄⊥)1

H̄2 ε1
(

H̄⊥)2

)(

H1
(

H⊥)1

H2
(

H⊥)2

)−1

(66)

and
⎛

⎜
⎝

∂ψ1

∂t1
∂ψ1

∂t2
∂ψ2

∂t1
∂ψ2

∂t2

⎞

⎟
⎠ =

(

α1
1 α1

2
α2
1 α2

2

)(

f 11 f 12
f 21 f 22

)

−
(

f̄ 11 f̄ 12
f̄ 21 f̄ 22

)(

H̄1 ε1
(

H̄⊥)1

H̄2 ε1
(

H̄⊥)2

)(

H1
(

H⊥)1

H2
(

H⊥)2

)−1

,

(67)

where f kj = f jshsk and f̄ kj = f̄ j s h̄sk with hsk and h̄sk denoting the elements of the inverse

matrix (hi j )−1 and (h̄i j )−1, respectively.
Thus, one gets the following theorem:

Theorem 2 The metrics

g = bi j (t
1, t2) dti dt j + 2 fik(t

1, t2) dti dzk + hkl(t
1, t2) dzk dzl

and

ḡ = b̄mn(t̄
1, t̄2) dt̄m dt̄ n + 2 f̄mr (t̄

1, t̄2) dt̄m dz̄r + h̄rs(t̄
1, t̄2) dz̄r dz̄s,
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with �CCρ �= 0 and �̄C̄C̄ρ̄ �= 0, respectively, are equivalent if and only if there exists a
coordinate transformation

P : t̄ i = φi (t1, t2), z̄ i = αi
j z

j + ψ i (t1, t2), (αi
j ) ∈ GL(2,R)

satisfying the following conditions:

(i) {I1 = Ia |g, I2 = Ib|g} and {Ī1 = Īa |ḡ, Ī2 = Īb|ḡ}, for some a, b ∈ {1, 2, . . . , 6},
are two systems of functionally independent scalar invariants on S and the coordinate
transformation

{

t̄1 = φ1(t1, t2), t̄2 = φ2(t1, t2)
}

is implicitly defined by

I1 − Ī1 = 0, I2 − Ī2 = 0;
(ii) the right-hand side of (65), with ε1 = sgn

(

Jφ
)

and ε2 = sgn
(

det
(

αi
j

))

, is a constant

matrix coinciding with (αi
j ) ∈ GL(2,R);

(iii) the transformation
{

t̄1 = φ1(t1, t2), t̄2 = φ2(t1, t2)
}

, defined in (i), satisfies (66);
(iv) the functions ψ i = ψ i (t1, t2), i = 1, 2, are solutions of an integrable system of first-

order partial differential equations defined by (67);
(v) the matrix (αi

j ) and the derivatives of φ
i and ψ i satisfy the system (7) for g and ḡ.

9.2 The secondmethod

Let g and ḡ be two metrics which, in adapted coordinates (t1, t2, z1, z2) and (t̄1, t̄2, z̄1, z̄2),
read as (62) and (63), respectively. Under the assumption �CCρ �= 0, by using the semi-
invariant orthogonal frames (see Proposition 7)

{

Y1 = H,Y2 = H⊥,Y3 = C,Y4 = C⊥}

and
{

Ȳ1 = H̄, Ȳ2 = H̄⊥, Ȳ3 = C̄, Ȳ4 = C̄⊥} ,

and the corresponding semi-invariant dual co-frames {ω1, ω2, ω3, ω4} and {ω̄1, ω̄2, ω̄3, ω̄4},
g and ḡ can be written as

g = �Hω2
1 + �H⊥ω2

2 + �Cω2
3 + �C⊥ω2

4

and

ḡ = �̄H̄ω̄2
1 + �̄H̄⊥ ω̄2

2 + �̄C̄ω̄2
3 + �̄C̄⊥ ω̄2

4,

respectively.
We notice that in view of (23) the co-frame transforms as

ω1 → ω1, ω2 → (sgn Jφ)ω2, ω3 → (sgn Jφ)ω3, ω4 → (sgn Jφ)(sgn det αi
j )ω4.(68)

under the pseudogroup action (2). Moreover, in terms of local adapted coordinates
{t1, t2, z1, z2}, one has

(

ω1

ω2

)

=
(

H1
(

H⊥)1

H2
(

H⊥)2

)−1 (
dt1

dt2

)

(69)
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and
(

ω3

ω4

)

=
(

C1
(

C⊥)1

C2
(

C⊥)2

)−1 [(
f 11 f 12
f 21 f 22

)(

dt1

dt2

)

+
(

dz1

dz2

)]

. (70)

From now on, we assume that there is a pair of indexes a, b ∈ {1, 2, . . . , 6} such
that {Ia |g(t1, t2), Ib|g(t1, t2)} and { Īa |ḡ(t̄1, t̄2), Īb|ḡ(t̄1, t̄2)} are two systems of func-
tionally independent invariants on S. For ease of notation, we will denote these two
systems by {I1(t1, t2), I2(t1, t2)} and {Ī1(t̄1, t̄2), Ī2(t̄1, t̄2)}, respectively. In view of
the functional independence,

{

I1, I2, z1, z2
}

and
{

Ī1, Ī2, z̄1, z̄2
}

define new adapted
coordinates for g and ḡ, respectively. Therefore, by the implicit function theorem,
{

I1 = I1(t1, t2), I2 = I2(t1, t2)
}

and
{

Ī1 = Ī1(t̄1, t̄2), Ī2 = Ī2(t̄1, t̄2)
}

define local
coordinate transformations

t i = mi (I1, I2), i = 1, 2

and

t̄ i = m̄i (Ī1, Ī2), i = 1, 2.

Then, according to (69) and (70), {ω1, ω2, ω3, ω4} can be written in terms of new adapted
coordinates

{

I1, I2, z1, z2
}

as

ωh = ahi dIi + phi dz
i ,

where ahi = ahi
(

I1, I2
)

, phi = phi
(

I1, I2
)

and

det

(

a11 a12
a21 a22

)

�= 0, det

(

p31 p32
p41 p42

)

�= 0, p1i = p2i = 0.

In particular, the coefficients ahi and phi can be computed by using the identities

(

ω1

ω2

)

=
(

H1
(

H⊥)1

H2
(

H⊥)2

)−1

invar.

⎛

⎜
⎝

∂m1

∂I1

∂m1

∂I2

∂m2

∂I1

∂m2

∂I2

⎞

⎟
⎠

(

dI1

dI2

)

, (71)

and

(

ω3

ω4

)

=
(

C1
(

C⊥)1

C2
(

C⊥)2

)−1

invar.

⎡

⎢
⎣

(

f 11 f 12
f 21 f 22

)

invar.

⎛

⎜
⎝

∂m1

∂I1

∂m1

∂I2

∂m2

∂I1

∂m2

∂I2

⎞

⎟
⎠

(

dI1

dI2

)

+
(

dz1

dz2

)

⎤

⎥
⎦ , (72)

where “invar.” means the restriction to {t i = mi
(

I1, I2
)}.

Analogously, one can write {ω̄1, ω̄2, ω̄3, ω̄4} in terms of the adapted coordinates
{Ī1, Ī2, z̄1, z̄2} as

ω̄i = āhi dĪi + p̄hi dz̄
i ,

where the coefficients āhi = āhi (Ī1, Ī2), p̄hi = p̄hi (Ī1, Ī2) are such that

det

(

ā11 ā12
ā21 ā22

)

�= 0, det

(

p̄31 p̄32
p̄41 p̄42

)

�= 0, p̄1i = p̄2i = 0

and can be computed by using formulas analogous to (71) and (72) (where in this case “invar.”
means the restriction to {t̄ i = m̄i (Ī1, Ī2)}).
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Lemma 5 Under the pseudogroup action (2), the coefficients ai j = ωi (∂I j ) transform
according to the following formulas

ā1i = a1i , ā2i = ε1 a2i , ā3i = ε1 a3i , ā4i = ε1ε2 a4i , (73)

with ε1 = sgn Jφ and ε2 = sgn det αi
j , whereas the coefficients phi = ωh(∂zi ) transform as

p3i = ε1 p̄3sα
s
i , p4i = ε1ε2 p̄4sα

s
i , (74)

with (αi
j ) ∈ GL(2,R) such that

(

α1
1 α1

2
α2
1 α2

2

)

= ε1

(

C̄1 ε2
(

C̄⊥)1

C̄2 ε2
(

C̄⊥)2

)

invar.

(

C1
(

C⊥)1

C2
(

C⊥)2

)−1

invar.

. (75)

Proof Equations (73) and (74) readily follow by (68). On the other hand, when ω̄3, ω̄4 are
obtained by ω3, ω4 through the pseudogroup action (2), equations (73) and (74) entail (75).

	

Notice that (75) is the same condition (65) obtained in the first method. One also has the

following lemma.

Lemma 6 The fact that right-hand side of (75) is an element of GL(2,R) is equivalent to
the following condition

(

C̄1 ε2
(

C̄⊥)1

C̄2 ε2
(

C̄⊥)2

)−1

invar.

∂

∂Is

(

C̄1 ε2
(

C̄⊥)1

C̄2 ε2
(

C̄⊥)2

)

invar.

=
(

C1
(

C⊥)1

C2
(

C⊥)2

)−1

invar.

∂

∂Is

(

C1
(

C⊥)1

C2
(

C⊥)2

)

invar.

, s = 1, 2.

(76)

In particular, under transformations preserving the orientations of the leaves of Ξ , (76) is
equivalent to the invariance of the matrices

(

C1
(

C⊥)1

C2
(

C⊥)2

)−1

invar.

∂

∂Is

(

C1
(

C⊥)1

C2
(

C⊥)2

)

invar.

, s = 1, 2. (77)

Moreover, by introducing the functions

cs11 =
(

C⊥)2 ∂C1

∂Is
− (

C⊥)1 ∂C2

∂Is

C1
(

C⊥)2 − C2
(

C⊥)1 , cs22 =
C1

∂
(

C⊥)2

∂Is
− C2

∂
(

C⊥)1

∂Is

C1
(

C⊥)2 − C2
(

C⊥)1 ,

cs12 =
(

C⊥)2 ∂
(

C⊥)1

∂Is
− (

C⊥)1 ∂
(

C⊥)2

∂Is

C1
(

C⊥)2 − C2
(

C⊥)1 , cs21 =
C1

∂C2

∂Is
− C2

∂C1

∂Is

C1
(

C⊥)2 − C2
(

C⊥)1 .

where s = 1, 2, condition (76) is equivalent to the identities

cs11 = c̄s11, cs22 = c̄s22, cs12 = ε2c̄
s
12, cs21 = ε2c̄

s
21, (78)

Proof By differentiating (75) with respect to Is and observing that Is = Īs , one gets (76).
Conversely, (75) follows by integrating (76). The rest of the proof follows by straightforward
computations. 	
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Now the following remark is in order.

Remark 6 In view of (75), transformation formulas (74) are equivalent to

p3 = ε1p̄3, p4 = ε2p̄4, p⊥
3 = ε1ε2p̄

⊥
3 , p⊥

4 = p̄⊥
4 ,

where pa = pasCs , p⊥
a = pas

(

C⊥)s , a = 3, 4. On the other hand, (76) is equivalent to the
identities (78). Thus, (73), (74) and (75) are equivalent to the invariance of the 18 functions

a1i , p⊥
4 , (a2i )2 , (a3i )2 , (a4i )2 , a2i a3i, (p3)

2 ,
(

p⊥
3

)2
, (p4)

2 , p3a2i , p3a3i , p⊥
3 a4i , p3p4a4i , p3p⊥

3 p4,(

cs12
)2

,
(

cs21
)2

, cs12p4, cs21p4

(79)

with i, s = 1, 2.

Theorem 3 Two metrics

g = bi j (t
1, t2) dti dt j + 2 fik(t

1, t2) dti dzk + hkl(t
1, t2) dzk dzl

and

ḡ = b̄mn(t̄
1, t̄2) dt̄m dt̄ n + 2 f̄mr (t̄

1, t̄2) dt̄m dz̄r + h̄rs(t̄
1, t̄2) dz̄r dz̄s,

with �CCρ �= 0 and �̄C̄C̄ρ̄ �= 0, respectively, are equivalent if and only if there are two
systems {I1(t1, t2), I2(t1, t2)} and {Ī1(t̄1, t̄2), Ī2(t̄1, t̄2)} of functionally independent first-
order scalar differential invariants on S, such that the six fundamental first-order scalar
differential invariants of g depend on (I1, I2) in the same way as the corresponding six
fundamental invariants of ḡ depend on (Ī1, Ī2).

Proof If g and ḡ are two equivalent metrics such that �CCρ �= 0 and �̄C̄C̄ρ̄ �= 0, then there are
certainly two systems {I1(t1, t2), I2(t1, t2)} and {Ī1(t̄1, t̄2), Ī2(t̄1, t̄2)} of functionally inde-
pendent first-order scalar differential invariants on S such that the six fundamental first-order
scalar differential invariants of g depend on (I1, I2) in the same way as the corresponding
six fundamental invariants of ḡ depend on (Ī1, Ī2).

For the proof of the converse, we first observe that in the generic case, all first-order
scalar differential invariants are functions of the six fundamental scalar differential invariants.
Hence, when restricting to a metric g with two functionally independent scalar differential
invariants (I1, I2), all first-order scalar differential invariants become functions of (I1, I2).
Then, under the given assumptions, all first-order scalar differential invariants of g depend on
(I1, I2) in the same way as all the corresponding first-order scalar differential invariants of
ḡ depend on (Ī1, Ī2). Consequently, the invariants (79) for g transform to the corresponding
invariants for ḡ under the transformation {Ī1 = I1, Ī2 = I2}. Hence, in view of Lemma 5,
Lemma 6 and Remark 6, the matrix (αi

j ) defined by (75) belongs to GL(2,R) and defines
the adapted coordinate transformation

P : Ī1 = I1, Ī2 = I2, z̄i = αi
j z

j

by which {ω1, ω2, ω3, ω4} transforms to {ω̄1, ω̄2, ω̄3, ω̄4}. It follows that P is an isometry
between g and ḡ:

P∗(ḡ) = P∗ (�̄H̄ω̄2
1 + �̄H̄⊥ ω̄2

2 + �̄C̄ω̄2
3 + �̄C̄⊥ ω̄2

4

)

= �Hω2
1 + �H⊥ω2

2 + �Cω2
3 + �C⊥ω2

4 = g.
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Corollary 1 The equivalence class of a metric g such that �CCρ �= 0 is completely character-
ized by the way the six first-order scalar differential invariants I1 = Cρ ,I2 = Cχ , I3 = Qχ ,
I4 = Qγ , I5 = �C , I6 = (ΘI)

2 depend on two functionally independent first-order scalar
differential invariants (I1, I2).

9.2.1 Example

We consider here the Van den Bergh metric

g = cosh(
√
6 t1)

{

sinh4(t2)
[

(dt1)2 − (dt2)2
]

+ 2 sinh2(t2)
[

dz2 + cosh(t2) dt1
]2
}

+ 12

cosh(
√
6 t1)

[

dz1 + cosh(t2) dz2 + 1
2 cosh

2(t2) dt1
]2

.

This is a Ricci-flat metric with two Killing vector fields ∂z1 and ∂z2 and an orthogonally
intransitive Ξ .

In this case the six fundamental first-order scalar differential invariants are

Cρ = −4
cosh2(t2)

cosh(
√
6 t1) sinh6(t2)

, Cχ = −6
sinh2(

√
6 t1) − 1

cosh3(
√
6 t1) sinh4(t2)

,

Qχ = 6
sinh2(

√
6 t1)

[

−6 sinh2(t2) + cosh2(t2) cosh2(
√
6 t1)

]

cosh6(
√
6 t1) sinh10(t2)

,

Qγ = −36
sinh2(

√
6 t1)

cosh6(
√
6 t1) sinh8(t2)

, �C = 2
1

cosh(
√
6 t1) sinh4(t2)

,

(Θ1)
2 = 144

sinh2(
√
6 t1)

sinh16(t2) cosh8(
√
6 t1)

.

(80)

Then, by choosing I1 = Cρ , I2 = �C , one can write

t1 = 1√
6
arccosh

(

2

�C

(
Cρ

2�C
+ 1

)2
)

, t2 = arccoth

(√

1 − 1

2

Cρ

�C

)

. (81)

It follows that by substituting (81) in (80), the remaining 4 fundamental first-order scalar
differential invariants reduce to the following functions of I1 = Cρ and I2 = �C :

Cχ = 3�C
(

8 �6C − (C2
ρ + 4Cρ�C + 4�2C)2

)

(Cρ + 2 �C)4
,

Qχ = 3�C
(

48 �7C + Cρ (C2
ρ + 4Cρ�C + 4�2C)2

) (

4�6C − (C2
ρ + 4Cρ�C + 4�2C)2

)

4 (Cρ + 2 �C)8
,

Qγ = 36 �8C
(

4�6C − (C2
ρ + 4Cρ�C + 4�2C)2

)

(Cρ + 2 �C)8
,

(ΘI)
2 = −�2C Qγ .

(82)

By Corollary 1, conditions (82) give an invariant characterization of the equivalence class of
metrics equivalent to the Van den Bergh metric.
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10 Conclusions

Considering metrics with two commuting Killing vectors, referred to as G2 I -metrics, we
introduced scalar differential invariants of the first and second order with respect to the
pseudogroup of transformations preserving the Riemannian submersion structure. The set
of (semi-)invariants with tractable coordinate expressions is sufficient for the solution of the
equivalence problem in the generic case. The next goal is to look for relations satisfied by
knownmetrics or classes thereof. By computing allmetrics satisfying these relations, one can,
in principle, either extend the set of known solutions or prove an invariant characterization of
a class of metrics in the spirit of [12]. As an example, we extended the Kundu class, defined
by �C = 0, to the Λ-vacuum case.
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