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Abstract
Let M ⊂ C

n be a real analytic hypersurface, M ′ ⊂ C
N (N ≥ n) be a strongly pseudoconvex

real algebraic hypersurface of the special form, and F be a meromorphic mapping in a
neighborhood of a point p ∈ M which is holomorphic in one side of M . Assuming some
additional conditions for the mapping F on the hypersurface M , we proved that F has a
holomorphic extension to p. This result may be used to show the regularity of CR mappings
between real hypersurfaces of different dimensions.
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1 Introduction

The remarkable result of Forstrenič [5] on the classification problem of proper holomorphic
mappings between unit balls states that if f is proper, holomorphic map from a ball inCn to a
ball inCN and smooth of classCN−n+1 on the closure then f is a rational mapping. He posed
the question of the holomorphic extendibility of such a rational mapping to any boundary
point. In [4], Cima and Suffridge proved that every such mapping extends holomorphically
to a neighborhood of the closed ball. This result was extended by Chiappari [3] by replacing
the unit ball in domain with an arbitrary real analytic hypersurface in Cn .

These results are also related to regularity of CR mappings between real hypersurfaces.
When the real hypersurfaces lie in the complex spaces of same dimension, CR mappings of
given smoothnessmust be real analytic (see for example [1]). In the case of real hypersurfaces
of different dimensions, analyticity of CR mappings with given smoothness on the boundary
was shown provided that the target is a real sphere (see for example [2,7]). In the proof, they
first show that the CRmappings extendmeromorphically. Then using the results of Chiappari
and Cima–Suffridge, this meromorphic extension defines an analytic extension.
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In this work, we obtain a holomorphic extension result for meromorphic mappings with
more general target spaces. More precisely, we prove the following theorem.

Theorem 1.1 Let M ⊂ C
n be a real analytic hypersurface and M ′ ⊂ C

N be a strongly
pseudoconvex real algebraic hypersurface which is locally equivalent to Im z′N = p(z′, z̄′)
by a birational holomorphic change of coordinates at a point q ∈ M ′, where (z′, z′N ) ∈ C

N ,
N ≥ n and p(z′, z̄′) is a real-valued polynomial. Let U ⊂ C

n be a neighborhood of a point
p ∈ M and � be the portion of U lying on one side of M. If F : U → C

N is a meromorphic
mapping which maps � holomorphically to one side of M ′, extends continuously on �,
F(M ∩U ) ⊂ M ′ and F(p) = q, then F extends holomorphically to a neighborhood of p.

In the statement of Theorem 1.1, by F(M∩U ) ⊂ M ′, wemean that lim��z→p F(z) ∈ M ′
and F(p) := lim��z→p F(z) for all p ∈ M ∩U . Note that Theorem 1.1 improves the result
of Chiappari [3] by replacing the sphere in the target with a special type of real algebraic
hypersurface. One cannot expect to have extension for mappings with arbitrary targets. There
are examples of proper rational mappings from the unit ball to a compact set that cannot be
extended holomorphically through the boundary, (see [4,6]).

2 Proof of Theorem 1.1

Proof For simplicity, we will take p = (0, . . . , 0). Since the ring of germs of holomor-
phic functions is a unique factorization domain, we may assume that F = f

g where
f = ( f j )1≤ j≤N is a holomorphic mapping and g is a holomorphic function near 0 ∈ C

n

which has no common factor with f . If g(0) 
= 0, then F defines a holomorphic mapping
near 0. Hence, we may assume that g(0) = 0.

Let M be given by ψ(z, z) = 0 for some real analytic function ψ near 0 such that
∂ψ
∂z1

(0) 
= 0. We define a nonzero holomorphic function m(z) = ∑n
i=1 mi zi where mi =

∂ψ
∂zi

(0). Since the zero sets of holomorphic functions are of measure zero, we can find a point
a = (a1, . . . , an) 
= 0 such that m(a) 
= 0, g(a) 
= 0, f j (a) 
= 0 for all j = 1, . . . , N . Here,
we have assumed that f ′

j -s are not identically equal to 0, otherwise we can replace those f ′
j -s

with zeros in the rest of the proof. Now, we change the coordinates by

zi = aiζ1 +
n∑

j=2

bi jζ j .

Since a 
= 0, we can choose bi j so that ζ = (ζ1, . . . , ζn) gives a non-singular linear change
of coordinates. In these new coordinates ζ = (ζ1, . . . , ζn), we have that f j (1, 0, . . . , 0) =
f j (a) 
= 0, g(1, 0 . . . , 0) = g(a) 
= 0 and

∂ψ

∂ζ1
(0) =

n∑

i=1

∂ψ

∂zi
(0)ai = m(a) 
= 0.

For the convenience, we will denote the new coordinates by z again. Then, we may
assume that f j (z1, 0)≡/ 0, g(z1, 0)≡/ 0 and ∂ψ

∂z1
(0) 
= 0. Hence, M can be defined as a graph

z1 = ρ(z1, z̃, z̃) where z̃ = (z2, . . . , zn) and ρ(z1, λ, τ ) is a holomorphic function near 0 in
C × C

n−1 × C
n−1. We may also assume that ρ(z1, 0, 0) = z1.

By Weierstrass preparation theorem, g can be written as g(z1, z̃) = u(z1, z̃)h(z1, z̃)
where u(z1, z̃) = ∑l

j=0 a j (z̃)z
j
1 is a Weierstrass polynomial so that al(z̃) ≡ 1, a j (0) = 0
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for 0 ≤ j ≤ l − 1 and h(0, 0) 
= 0. Since F is bounded as z = (z1, z̃) → 0 in �, f j can
be decomposed as f j (z1, z̃) = u j (z1, z̃)h j (z1, z̃) where u′

j -s are Weierstrass polynomials in
z1 of degree k j ≥ l and h j (0, 0) 
= 0. Using division algorithm, one can find r j of degree
smaller than l in z1 such that u j (z1, z̃) = u(z1, z̃)d j (z1, z̃) + r j (z1, z̃). Setting Dj = d j h j ,
R j = r j h j , D = (Dj )

N
j=1, R = (R j )

N
j=1, we have f = uD + R. Our aim is to show that

R ≡ 0.
SinceM ′ is strongly pseudoconvex, by a holomorphic change of variables, it can bewritten

as

M ′ =
⎧
⎨

⎩
(z′, z′N ) ∈ C

N : Im z′N −
N−1∑

j=1

|z′j |2 + φ(z′, z′) = 0

⎫
⎬

⎭

where φ ≡ 0 or φ is a real-valued polynomial of degree bigger than 2. If φ ≡ 0, then M ′ is
locally equivalent to the real sphere in CN , and Theorem 1.1 follows from the main result in
[3].

Hence, we can assume that φ≡/ 0. Let’s write φ as

φ(z′, z′) =
∑

I ,J

αI ,J z
′ I z′ J .

Since φ is real valued, αI J = αJ I and hence the highest degrees of z′ and z′ in φ are the
same, say they are equal to d ≥ 2.

Since F maps M into M ′, ∀z ∈ M , we have that

fN (z)

g(z)
− fN (z)

g(z)
− 2i

N−1∑

j=1

| f j (z)|2
|g(z)|2 − 2iφ

(
f̃ (z)

g(z)
,
f̃ (z)

g(z)

)

≡ 0 (2.1)

where f̃ = ( f1, . . . , fN−1). Multiplying both sides of the above equation by g(z)d g(z)
d
,

we obtain that

fN (z)g(z)d−1g(z)
d − fN (z)g(z)d g(z)

d−1 − 2i
N−1∑

j=1

| f j (z)|2g(z)d−1g(z)
d−1

− 2ig(z)d g(z)
d
φ

(
f̃ (z)

g(z)
,
f̃ (z)

g(z)

)

≡ 0 (2.2)

For z = (z1, z̃), we set z∗ = (ρ(z1, z̃, z̃), z̃), s∗(z) = s(z∗) for any function s. Then,

fN (z)g(z)d−1g(z∗)d − fN (z∗)g(z)d g(z∗)d−1 − 2i〈 f̃ (z), f̃ (z∗)〉g(z)d−1g(z∗)d−1

− 2ig(z)d g(z∗)dφ
(

f̃ (z)

g(z)
,
f̃ (z∗)
g(z∗)

)

(2.3)

is a holomorphic function of z1, and by (2.2), it is equal to 0 whenever z1 = ρ(z1, z̃, z̃), that
is, when z = z∗. Here, 〈, 〉 denotes the standard inner product, that is, 〈a, b〉 = ∑N

i=1 aibi for
a = (a1, . . . , aN ) and b = (b1, . . . , bN ) in C

N . For a fixed z̃0, the real codimension of the
set {z1 = ρ(z1, z̃0, z̃0)} in C

n is at most the sum of real codimensions of M and {z̃ = z̃0}.
Hence, the real dimension of the set {z1 = ρ(z1, z̃0, z̃0)} is at least 1. It follows that the
function above is identically 0 as a function of z1.
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Using the identities f = uD + R, g = uh and f̃ (z∗) = f̃ ∗(z), it follows from (2.3) that

udu∗d(DNh
d−1h∗d − D∗

Nh
dh∗(d−1) − 2i〈D̃, D̃∗〉hd−1h∗(d−1)

)

+ ud−1u∗d(RNh
d−1h∗d − 2ihd−1h∗(d−1)〈R̃, D̃∗〉)

+ udu∗(d−1)
(R∗

Nh
dh∗(d−1) − 2ihd−1h∗(d−1)〈D̃, R̃∗〉)

− 2iud−1u∗(d−1)hd−1h∗(d−1)〈R̃, R̃∗〉 − 2ig(z)dg(z∗)dφ
(

f̃ (z)

g(z)
,
f̃ (z∗)
g(z∗)

)

≡ 0 (2.4)

where D̃ = (D1, . . . , DN−1) and R̃ = (R1, . . . , RN−1).
Let z̃ = 0. We note that

u∗(z1, 0) = u(ρ(z1, 0, 0), 0) = ρ(z1, 0, 0)l = zl1

and u(z1, 0) = zl1. Let us assume that R(z1, 0)≡/ 0 and the multiplicity of z1 in R(z1, 0) is
a for some 0 ≤ a < l. That is, R(z1, 0) = za1Q(z1) for some holomorphic function Q such
that Q(0) 
= 0. The multiplicity of z1 in the first summand of the function in (2.4) is greater
than or equal to 2dl. In the second and the third summands, the multiplicity of z1 is greater
than or equal to (2d − 1)l + a. In the fourth summand, the multiplicity of z1 is greater than
or equal to 2(d − 1)l + 2a. Equation (2.4) implies that

min{2dl, (2d − 1)l + a, 2(d − 1)l + 2a} = 2(d − 1)l + 2a (2.5)

must be smaller thanor equal to themultiplicity of z1 in the last term g(z)d g(z∗)dφ
(

f̃ (z)
g(z) ,

f̃ (z∗)
g(z∗)

)

.

Note that the multiplicity of z1 in f = uD + R and in g = uh are a and l, respectively.
By writing

g(z)d g(z∗)dφ
(

f̃ (z)

g(z)
,
f̃ (z∗)
g(z∗)

)

=
∑

|I |,|J |≤d

αI J f̃ (z)
I g(z)d−|I | f̃ (z∗)

J
g(z∗)d−|J |

we see that the multiplicity of z1 in the last summand in (2.4) is equal to

min|I |,|J |,αI J 
=0
{a|I | + l(d − |I |) + a|J | + l(d − |J |)} ≤ min|J | {ad + ld + |J |(a − l)}. (2.6)

The inequality above is obtained by taking |I | = d . We have the following cases for d .
Case 1: d = 2. Since the total degree of φ is bigger than or equal to 3, when |I | = 2, |J |

must be at least one. Then, it follows from (2.5) and (2.6) that

2l + 2a ≤ min|J | {2a + 2l + |J |(a − l)} ≤ 3a + l.

The second inequality above follows from the fact that |J | ≥ 1 and a − l < 0. But this
implies that l ≤ a, which contradicts to the choice of a, and hence R(z1, 0) ≡ 0.

Case 2: d > 2. It follows from (2.5) and (2.6) that

2(d − 1)l + 2a ≤ min|J | {ad + ld + |J |(a − l)} ≤ ad + ld.

But this implies that d ≤ 2. Hence, again we have that R(z1, 0) ≡ 0.
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Now, we suppose that R≡/ 0. We may assume that R(a) 
= 0 for some a = (a1, . . . , an)
such that a2 
= 0. We change the coordinates from z to ζ defined by

z1 = a1ζ2 + ζ1, zi = aiζ2 +
n∑

j=3

bi jζ j , i = 2, . . . , n.

Since (a2, . . . , an) 
= 0, bi j can be chosen so that ζ gives a non-singular linear change
of coordinates. In these new coordinates, R(0, 1, 0, . . . , 0) = R(a) 
= 0, R(ζ1, 0) ≡ 0,
f j (ζ1, 0)≡/ 0, g(ζ1, 0)≡/ 0 and ∂φ

∂ζ1
(0) = ∂φ

∂z1
(0) 
= 0. We denote these new coordinates by z

again. Then

R(z1, 0) ≡ 0, R(z1, z2, 0 . . . , 0)≡/ 0,

f j and g do not vanish on z1-axis, and M can be written as z1 = ρ(z1, z̃, z̃) near the origin.
Since R(z1, z2, 0, . . . , 0) is a nonzero analytic function of z2 vanishing at z2 = 0, there

exists the largest integer k ≥ 1 such that zk2 divides R(z1, z2, 0, . . . , 0). We define Gi = Ri
zk2
,

G = (G1, . . . ,GN ) and G̃ = (G1, . . . ,GN−1). Note that

G(z1, 0, . . . , 0) 
= 0. (2.7)

Then, dividing the terms in (2.4) by |z2|2k , we obtain that

1

|z2|2k u
du∗d(DNh

d−1h∗d − D∗
Nh

dh∗(d−1) − 2i〈D̃, D̃∗〉hd−1h∗(d−1)
)

+ 1

z2k
ud−1u∗d(GNh

d−1h∗d − 2ihd−1h∗(d−1)〈G̃, D̃∗〉)

+ 1

z2k
udu∗(d−1)

(G∗
Nh

dh∗(d−1) − 2ihd−1h∗(d−1)〈D̃, G̃∗〉)

− 2iud−1u∗(d−1)hd−1h∗(d−1)〈G̃, G̃∗〉 − 2i

|z2|2k g(z)
d g(z∗)dφ

(
f̃ (z)

g(z)
,
f̃ (z∗)
g(z∗)

)

≡ 0. (2.8)

We take (z3, . . . , zn) = 0 and let z2 → 0 in above equation. Considering the order of z1 in
all terms in (2.8), as in above argument for R(z1, 0, . . . , 0), we obtain thatG(z1, 0 . . . , 0) = 0
when z1 = ρ(z1, 0, 0). But this contradicts to (2.7). Consequently, R ≡ 0 and F = f

g = D
h

defines a holomorphic mapping near 0 ∈ C
n . ��
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